text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : List Γ ⊢ l = l ++ List.replicate 0 default [PROOFSTEP] simp [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ ⊢ BlankExtends l₁ l₂ → BlankExtends l₂ l₃ → BlankExtends l₁ l₃ [PROOFSTEP] rintro ⟨i, rfl⟩ ⟨j, rfl⟩ [GOAL] case intro.intro Γ : Type u_1 inst✝ : Inhabited Γ l₁ : List Γ i j : ℕ ⊢ BlankExtends l₁ (l₁ ++ List.replicate i default ++ List.replicate j default) [PROOFSTEP] exact ⟨i + j, by simp [List.replicate_add]⟩ [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l₁ : List Γ i j : ℕ ⊢ l₁ ++ List.replicate i default ++ List.replicate j default = l₁ ++ List.replicate (i + j) default [PROOFSTEP] simp [List.replicate_add] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l l₁ l₂ : List Γ ⊢ BlankExtends l l₁ → BlankExtends l l₂ → List.length l₁ ≤ List.length l₂ → BlankExtends l₁ l₂ [PROOFSTEP] rintro ⟨i, rfl⟩ ⟨j, rfl⟩ h [GOAL] case intro.intro Γ : Type u_1 inst✝ : Inhabited Γ l : List Γ i j : ℕ h : List.length (l ++ List.replicate i default) ≤ List.length (l ++ List.replicate j default) ⊢ BlankExtends (l ++ List.replicate i default) (l ++ List.replicate j default) [PROOFSTEP] use j - i [GOAL] case h Γ : Type u_1 inst✝ : Inhabited Γ l : List Γ i j : ℕ h : List.length (l ++ List.replicate i default) ≤ List.length (l ++ List.replicate j default) ⊢ l ++ List.replicate j default = l ++ List.replicate i default ++ List.replicate (j - i) default [PROOFSTEP] simp only [List.length_append, add_le_add_iff_left, List.length_replicate] at h [GOAL] case h Γ : Type u_1 inst✝ : Inhabited Γ l : List Γ i j : ℕ h : i ≤ j ⊢ l ++ List.replicate j default = l ++ List.replicate i default ++ List.replicate (j - i) default [PROOFSTEP] simp only [← List.replicate_add, add_tsub_cancel_of_le h, List.append_assoc] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l l₁ l₂ : List Γ ⊢ BlankExtends l₁ l → BlankExtends l₂ l → List.length l₁ ≤ List.length l₂ → BlankExtends l₁ l₂ [PROOFSTEP] rintro ⟨i, rfl⟩ ⟨j, e⟩ h [GOAL] case intro.intro Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ e : l₁ ++ List.replicate i default = l₂ ++ List.replicate j default h : List.length l₁ ≤ List.length l₂ ⊢ BlankExtends l₁ l₂ [PROOFSTEP] use i - j [GOAL] case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ e : l₁ ++ List.replicate i default = l₂ ++ List.replicate j default h : List.length l₁ ≤ List.length l₂ ⊢ l₂ = l₁ ++ List.replicate (i - j) default [PROOFSTEP] refine' List.append_right_cancel (e.symm.trans _) [GOAL] case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ e : l₁ ++ List.replicate i default = l₂ ++ List.replicate j default h : List.length l₁ ≤ List.length l₂ ⊢ l₁ ++ List.replicate i default = l₁ ++ List.replicate (i - j) default ++ List.replicate j default [PROOFSTEP] rw [List.append_assoc, ← List.replicate_add, tsub_add_cancel_of_le] [GOAL] case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ e : l₁ ++ List.replicate i default = l₂ ++ List.replicate j default h : List.length l₁ ≤ List.length l₂ ⊢ j ≤ i [PROOFSTEP] apply_fun List.length at e [GOAL] case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ h : List.length l₁ ≤ List.length l₂ e : List.length (l₁ ++ List.replicate i default) = List.length (l₂ ++ List.replicate j default) ⊢ j ≤ i [PROOFSTEP] simp only [List.length_append, List.length_replicate] at e [GOAL] case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ h : List.length l₁ ≤ List.length l₂ e : List.length l₁ + i = List.length l₂ + j ⊢ j ≤ i [PROOFSTEP] rwa [← add_le_add_iff_left, e, add_le_add_iff_right] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ ⊢ BlankRel l₁ l₂ → BlankRel l₂ l₃ → BlankRel l₁ l₃ [PROOFSTEP] rintro (h₁ | h₁) (h₂ | h₂) [GOAL] case inl.inl Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₁ l₂ h₂ : BlankExtends l₂ l₃ ⊢ BlankRel l₁ l₃ [PROOFSTEP] exact Or.inl (h₁.trans h₂) [GOAL] case inl.inr Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₁ l₂ h₂ : BlankExtends l₃ l₂ ⊢ BlankRel l₁ l₃ [PROOFSTEP] cases' le_total l₁.length l₃.length with h h [GOAL] case inl.inr.inl Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₁ l₂ h₂ : BlankExtends l₃ l₂ h : List.length l₁ ≤ List.length l₃ ⊢ BlankRel l₁ l₃ [PROOFSTEP] exact Or.inl (h₁.above_of_le h₂ h) [GOAL] case inl.inr.inr Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₁ l₂ h₂ : BlankExtends l₃ l₂ h : List.length l₃ ≤ List.length l₁ ⊢ BlankRel l₁ l₃ [PROOFSTEP] exact Or.inr (h₂.above_of_le h₁ h) [GOAL] case inr.inl Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₂ l₁ h₂ : BlankExtends l₂ l₃ ⊢ BlankRel l₁ l₃ [PROOFSTEP] cases' le_total l₁.length l₃.length with h h [GOAL] case inr.inl.inl Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₂ l₁ h₂ : BlankExtends l₂ l₃ h : List.length l₁ ≤ List.length l₃ ⊢ BlankRel l₁ l₃ [PROOFSTEP] exact Or.inl (h₁.below_of_le h₂ h) [GOAL] case inr.inl.inr Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₂ l₁ h₂ : BlankExtends l₂ l₃ h : List.length l₃ ≤ List.length l₁ ⊢ BlankRel l₁ l₃ [PROOFSTEP] exact Or.inr (h₂.below_of_le h₁ h) [GOAL] case inr.inr Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₂ l₁ h₂ : BlankExtends l₃ l₂ ⊢ BlankRel l₁ l₃ [PROOFSTEP] exact Or.inr (h₂.trans h₁) [GOAL] Γ : Type ?u.9261 inst✝ : Inhabited Γ l₁ l₂ : List Γ h : BlankRel l₁ l₂ ⊢ { l // BlankExtends l₁ l ∧ BlankExtends l₂ l } [PROOFSTEP] refine' if hl : l₁.length ≤ l₂.length then ⟨l₂, Or.elim h id fun h' ↦ _, BlankExtends.refl _⟩ else ⟨l₁, BlankExtends.refl _, Or.elim h (fun h' ↦ _) id⟩ [GOAL] case refine'_1 Γ : Type ?u.9261 inst✝ : Inhabited Γ l₁ l₂ : List Γ h : BlankRel l₁ l₂ hl : List.length l₁ ≤ List.length l₂ h' : BlankExtends l₂ l₁ ⊢ BlankExtends l₁ l₂ case refine'_2 Γ : Type ?u.9261 inst✝ : Inhabited Γ l₁ l₂ : List Γ h : BlankRel l₁ l₂ hl : ¬List.length l₁ ≤ List.length l₂ h' : BlankExtends l₁ l₂ ⊢ BlankExtends l₂ l₁ [PROOFSTEP] exact (BlankExtends.refl _).above_of_le h' hl [GOAL] case refine'_2 Γ : Type ?u.9261 inst✝ : Inhabited Γ l₁ l₂ : List Γ h : BlankRel l₁ l₂ hl : ¬List.length l₁ ≤ List.length l₂ h' : BlankExtends l₁ l₂ ⊢ BlankExtends l₂ l₁ [PROOFSTEP] exact (BlankExtends.refl _).above_of_le h' (le_of_not_ge hl) [GOAL] Γ : Type ?u.10721 inst✝ : Inhabited Γ l₁ l₂ : List Γ h : BlankRel l₁ l₂ ⊢ { l // BlankExtends l l₁ ∧ BlankExtends l l₂ } [PROOFSTEP] refine' if hl : l₁.length ≤ l₂.length then ⟨l₁, BlankExtends.refl _, Or.elim h id fun h' ↦ _⟩ else ⟨l₂, Or.elim h (fun h' ↦ _) id, BlankExtends.refl _⟩ [GOAL] case refine'_1 Γ : Type ?u.10721 inst✝ : Inhabited Γ l₁ l₂ : List Γ h : BlankRel l₁ l₂ hl : List.length l₁ ≤ List.length l₂ h' : BlankExtends l₂ l₁ ⊢ BlankExtends l₁ l₂ case refine'_2 Γ : Type ?u.10721 inst✝ : Inhabited Γ l₁ l₂ : List Γ h : BlankRel l₁ l₂ hl : ¬List.length l₁ ≤ List.length l₂ h' : BlankExtends l₁ l₂ ⊢ BlankExtends l₂ l₁ [PROOFSTEP] exact (BlankExtends.refl _).above_of_le h' hl [GOAL] case refine'_2 Γ : Type ?u.10721 inst✝ : Inhabited Γ l₁ l₂ : List Γ h : BlankRel l₁ l₂ hl : ¬List.length l₁ ≤ List.length l₂ h' : BlankExtends l₁ l₂ ⊢ BlankExtends l₂ l₁ [PROOFSTEP] exact (BlankExtends.refl _).above_of_le h' (le_of_not_ge hl) [GOAL] Γ : Type ?u.13118 inst✝ : Inhabited Γ α : Sort ?u.13130 l : ListBlank Γ f : List Γ → α H : ∀ (a b : List Γ), BlankExtends a b → f a = f b ⊢ ∀ (a b : List Γ), Setoid.r a b → f a = f b [PROOFSTEP] rintro a b (h | h) <;> [exact H _ _ h; exact (H _ _ h).symm] [GOAL] Γ : Type ?u.13118 inst✝ : Inhabited Γ α : Sort ?u.13130 l : ListBlank Γ f : List Γ → α H : ∀ (a b : List Γ), BlankExtends a b → f a = f b ⊢ ∀ (a b : List Γ), Setoid.r a b → f a = f b [PROOFSTEP] rintro a b (h | h) [GOAL] case inl Γ : Type ?u.13118 inst✝ : Inhabited Γ α : Sort ?u.13130 l : ListBlank Γ f : List Γ → α H : ∀ (a b : List Γ), BlankExtends a b → f a = f b a b : List Γ h : BlankExtends a b ⊢ f a = f b [PROOFSTEP] exact H _ _ h [GOAL] case inr Γ : Type ?u.13118 inst✝ : Inhabited Γ α : Sort ?u.13130 l : ListBlank Γ f : List Γ → α H : ∀ (a b : List Γ), BlankExtends a b → f a = f b a b : List Γ h : BlankExtends b a ⊢ f a = f b [PROOFSTEP] exact (H _ _ h).symm [GOAL] Γ : Type ?u.14152 inst✝ : Inhabited Γ l : ListBlank Γ ⊢ Γ [PROOFSTEP] apply l.liftOn List.headI [GOAL] Γ : Type ?u.14152 inst✝ : Inhabited Γ l : ListBlank Γ ⊢ ∀ (a b : List Γ), BlankExtends a b → List.headI a = List.headI b [PROOFSTEP] rintro a _ ⟨i, rfl⟩ [GOAL] case intro Γ : Type ?u.14152 inst✝ : Inhabited Γ l : ListBlank Γ a : List Γ i : ℕ ⊢ List.headI a = List.headI (a ++ List.replicate i default) [PROOFSTEP] cases a [GOAL] case intro.nil Γ : Type ?u.14152 inst✝ : Inhabited Γ l : ListBlank Γ i : ℕ ⊢ List.headI [] = List.headI ([] ++ List.replicate i default) [PROOFSTEP] cases i [GOAL] case intro.nil.zero Γ : Type ?u.14152 inst✝ : Inhabited Γ l : ListBlank Γ ⊢ List.headI [] = List.headI ([] ++ List.replicate Nat.zero default) [PROOFSTEP] rfl [GOAL] case intro.nil.succ Γ : Type ?u.14152 inst✝ : Inhabited Γ l : ListBlank Γ n✝ : ℕ ⊢ List.headI [] = List.headI ([] ++ List.replicate (Nat.succ n✝) default) [PROOFSTEP] rfl [GOAL] case intro.cons Γ : Type ?u.14152 inst✝ : Inhabited Γ l : ListBlank Γ i : ℕ head✝ : Γ tail✝ : List Γ ⊢ List.headI (head✝ :: tail✝) = List.headI (head✝ :: tail✝ ++ List.replicate i default) [PROOFSTEP] rfl [GOAL] Γ : Type ?u.14936 inst✝ : Inhabited Γ l : ListBlank Γ ⊢ ListBlank Γ [PROOFSTEP] apply l.liftOn (fun l ↦ ListBlank.mk l.tail) [GOAL] Γ : Type ?u.14936 inst✝ : Inhabited Γ l : ListBlank Γ ⊢ ∀ (a b : List Γ), BlankExtends a b → mk (List.tail a) = mk (List.tail b) [PROOFSTEP] rintro a _ ⟨i, rfl⟩ [GOAL] case intro Γ : Type ?u.14936 inst✝ : Inhabited Γ l : ListBlank Γ a : List Γ i : ℕ ⊢ mk (List.tail a) = mk (List.tail (a ++ List.replicate i default)) [PROOFSTEP] refine' Quotient.sound' (Or.inl _) [GOAL] case intro Γ : Type ?u.14936 inst✝ : Inhabited Γ l : ListBlank Γ a : List Γ i : ℕ ⊢ BlankExtends (List.tail a) (List.tail (a ++ List.replicate i default)) [PROOFSTEP] cases a [GOAL] case intro.nil Γ : Type ?u.14936 inst✝ : Inhabited Γ l : ListBlank Γ i : ℕ ⊢ BlankExtends (List.tail []) (List.tail ([] ++ List.replicate i default)) [PROOFSTEP] cases' i with i <;> [exact ⟨0, rfl⟩; exact ⟨i, rfl⟩] [GOAL] case intro.nil Γ : Type ?u.14936 inst✝ : Inhabited Γ l : ListBlank Γ i : ℕ ⊢ BlankExtends (List.tail []) (List.tail ([] ++ List.replicate i default)) [PROOFSTEP] cases' i with i [GOAL] case intro.nil.zero Γ : Type ?u.14936 inst✝ : Inhabited Γ l : ListBlank Γ ⊢ BlankExtends (List.tail []) (List.tail ([] ++ List.replicate Nat.zero default)) [PROOFSTEP] exact ⟨0, rfl⟩ [GOAL] case intro.nil.succ Γ : Type ?u.14936 inst✝ : Inhabited Γ l : ListBlank Γ i : ℕ ⊢ BlankExtends (List.tail []) (List.tail ([] ++ List.replicate (Nat.succ i) default)) [PROOFSTEP] exact ⟨i, rfl⟩ [GOAL] case intro.cons Γ : Type ?u.14936 inst✝ : Inhabited Γ l : ListBlank Γ i : ℕ head✝ : Γ tail✝ : List Γ ⊢ BlankExtends (List.tail (head✝ :: tail✝)) (List.tail (head✝ :: tail✝ ++ List.replicate i default)) [PROOFSTEP] exact ⟨i, rfl⟩ [GOAL] Γ : Type ?u.15941 inst✝ : Inhabited Γ a : Γ l : ListBlank Γ ⊢ ListBlank Γ [PROOFSTEP] apply l.liftOn (fun l ↦ ListBlank.mk (List.cons a l)) [GOAL] Γ : Type ?u.15941 inst✝ : Inhabited Γ a : Γ l : ListBlank Γ ⊢ ∀ (a_1 b : List Γ), BlankExtends a_1 b → mk (a :: a_1) = mk (a :: b) [PROOFSTEP] rintro _ _ ⟨i, rfl⟩ [GOAL] case intro Γ : Type ?u.15941 inst✝ : Inhabited Γ a : Γ l : ListBlank Γ a✝ : List Γ i : ℕ ⊢ mk (a :: a✝) = mk (a :: (a✝ ++ List.replicate i default)) [PROOFSTEP] exact Quotient.sound' (Or.inl ⟨i, rfl⟩) [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ ⊢ ∀ (l : ListBlank Γ), cons (head l) (tail l) = l [PROOFSTEP] apply Quotient.ind' [GOAL] case h Γ : Type u_1 inst✝ : Inhabited Γ ⊢ ∀ (a : List Γ), cons (head (Quotient.mk'' a)) (tail (Quotient.mk'' a)) = Quotient.mk'' a [PROOFSTEP] refine' fun l ↦ Quotient.sound' (Or.inr _) [GOAL] case h Γ : Type u_1 inst✝ : Inhabited Γ l : List Γ ⊢ BlankExtends l (head (Quotient.mk'' l) :: List.tail l) [PROOFSTEP] cases l [GOAL] case h.nil Γ : Type u_1 inst✝ : Inhabited Γ ⊢ BlankExtends [] (head (Quotient.mk'' []) :: List.tail []) [PROOFSTEP] exact ⟨1, rfl⟩ [GOAL] case h.cons Γ : Type u_1 inst✝ : Inhabited Γ head✝ : Γ tail✝ : List Γ ⊢ BlankExtends (head✝ :: tail✝) (head (Quotient.mk'' (head✝ :: tail✝)) :: List.tail (head✝ :: tail✝)) [PROOFSTEP] rfl [GOAL] Γ : Type ?u.17656 inst✝ : Inhabited Γ l : ListBlank Γ n : ℕ ⊢ Γ [PROOFSTEP] apply l.liftOn (fun l ↦ List.getI l n) [GOAL] Γ : Type ?u.17656 inst✝ : Inhabited Γ l : ListBlank Γ n : ℕ ⊢ ∀ (a b : List Γ), BlankExtends a b → List.getI a n = List.getI b n [PROOFSTEP] rintro l _ ⟨i, rfl⟩ [GOAL] case intro Γ : Type ?u.17656 inst✝ : Inhabited Γ l✝ : ListBlank Γ n : ℕ l : List Γ i : ℕ ⊢ List.getI l n = List.getI (l ++ List.replicate i default) n [PROOFSTEP] cases' lt_or_le n _ with h h [GOAL] case intro.inl Γ : Type ?u.17656 inst✝ : Inhabited Γ l✝ : ListBlank Γ n : ℕ l : List Γ i : ℕ h : n < ?m.17919 ⊢ List.getI l n = List.getI (l ++ List.replicate i default) n [PROOFSTEP] rw [List.getI_append _ _ _ h] [GOAL] case intro.inr Γ : Type ?u.17656 inst✝ : Inhabited Γ l✝ : ListBlank Γ n : ℕ l : List Γ i : ℕ h : List.length l ≤ n ⊢ List.getI l n = List.getI (l ++ List.replicate i default) n [PROOFSTEP] rw [List.getI_eq_default _ h] [GOAL] case intro.inr Γ : Type ?u.17656 inst✝ : Inhabited Γ l✝ : ListBlank Γ n : ℕ l : List Γ i : ℕ h : List.length l ≤ n ⊢ default = List.getI (l ++ List.replicate i default) n [PROOFSTEP] cases' le_or_lt _ n with h₂ h₂ [GOAL] case intro.inr.inl Γ : Type ?u.17656 inst✝ : Inhabited Γ l✝ : ListBlank Γ n : ℕ l : List Γ i : ℕ h : List.length l ≤ n h₂ : ?m.18386 ≤ n ⊢ default = List.getI (l ++ List.replicate i default) n [PROOFSTEP] rw [List.getI_eq_default _ h₂] [GOAL] case intro.inr.inr Γ : Type ?u.17656 inst✝ : Inhabited Γ l✝ : ListBlank Γ n : ℕ l : List Γ i : ℕ h : List.length l ≤ n h₂ : n < List.length (l ++ List.replicate i default) ⊢ default = List.getI (l ++ List.replicate i default) n [PROOFSTEP] rw [List.getI_eq_get _ h₂, List.get_append_right' h, List.get_replicate] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ ⊢ nth l 0 = head l [PROOFSTEP] conv => lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ | nth l 0 = head l [PROOFSTEP] lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ | nth l 0 = head l [PROOFSTEP] lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ | nth l 0 = head l [PROOFSTEP] lhs [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ | nth l 0 [PROOFSTEP] rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ ⊢ nth (cons (head l) (tail l)) 0 = head l [PROOFSTEP] exact Quotient.inductionOn' l.tail fun l ↦ rfl [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ n : ℕ ⊢ nth l (n + 1) = nth (tail l) n [PROOFSTEP] conv => lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ n : ℕ | nth l (n + 1) = nth (tail l) n [PROOFSTEP] lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ n : ℕ | nth l (n + 1) = nth (tail l) n [PROOFSTEP] lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ n : ℕ | nth l (n + 1) = nth (tail l) n [PROOFSTEP] lhs [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ n : ℕ | nth l (n + 1) [PROOFSTEP] rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ n : ℕ ⊢ nth (cons (head l) (tail l)) (n + 1) = nth (tail l) n [PROOFSTEP] exact Quotient.inductionOn' l.tail fun l ↦ rfl [GOAL] Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ ⊢ (∀ (i_1 : ℕ), nth L₁ i_1 = nth L₂ i_1) → L₁ = L₂ [PROOFSTEP] refine' ListBlank.induction_on L₁ fun l₁ ↦ ListBlank.induction_on L₂ fun l₂ H ↦ _ [GOAL] Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 ⊢ mk l₁ = mk l₂ [PROOFSTEP] wlog h : l₁.length ≤ l₂.length [GOAL] case inr Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ ⊢ mk l₁ = mk l₂ [PROOFSTEP] cases le_total l₁.length l₂.length <;> [skip; symm] [GOAL] case inr Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ ⊢ mk l₁ = mk l₂ [PROOFSTEP] cases le_total l₁.length l₂.length [GOAL] case inr.inl Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₁ ≤ List.length l₂ ⊢ mk l₁ = mk l₂ [PROOFSTEP] skip [GOAL] case inr.inr Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ mk l₁ = mk l₂ [PROOFSTEP] symm [GOAL] case inr.inl Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₁ ≤ List.length l₂ ⊢ mk l₁ = mk l₂ [PROOFSTEP] apply this [GOAL] case inr.inr Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ mk l₂ = mk l₁ [PROOFSTEP] apply this [GOAL] case inr.inl.L₁ Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₁ ≤ List.length l₂ ⊢ ListBlank Γ [PROOFSTEP] try assumption [GOAL] case inr.inl.L₁ Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₁ ≤ List.length l₂ ⊢ ListBlank Γ [PROOFSTEP] assumption [GOAL] case inr.inl.L₂ Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₁ ≤ List.length l₂ ⊢ ListBlank Γ [PROOFSTEP] try assumption [GOAL] case inr.inl.L₂ Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₁ ≤ List.length l₂ ⊢ ListBlank Γ [PROOFSTEP] assumption [GOAL] case inr.inl.H Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₁ ≤ List.length l₂ ⊢ ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 [PROOFSTEP] try assumption [GOAL] case inr.inl.H Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₁ ≤ List.length l₂ ⊢ ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 [PROOFSTEP] assumption [GOAL] case inr.inl.h Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₁ ≤ List.length l₂ ⊢ List.length l₁ ≤ List.length l₂ [PROOFSTEP] try assumption [GOAL] case inr.inl.h Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₁ ≤ List.length l₂ ⊢ List.length l₁ ≤ List.length l₂ [PROOFSTEP] assumption [GOAL] case inr.inr.L₁ Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ ListBlank Γ [PROOFSTEP] try assumption [GOAL] case inr.inr.L₁ Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ ListBlank Γ [PROOFSTEP] assumption [GOAL] case inr.inr.L₂ Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ ListBlank Γ [PROOFSTEP] try assumption [GOAL] case inr.inr.L₂ Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ ListBlank Γ [PROOFSTEP] assumption [GOAL] case inr.inr.H Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ ∀ (i_1 : ℕ), nth (mk l₂) i_1 = nth (mk l₁) i_1 [PROOFSTEP] try assumption [GOAL] case inr.inr.H Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ ∀ (i_1 : ℕ), nth (mk l₂) i_1 = nth (mk l₁) i_1 [PROOFSTEP] assumption [GOAL] case inr.inr.h Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ List.length l₂ ≤ List.length l₁ [PROOFSTEP] try assumption [GOAL] case inr.inr.h Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ List.length l₂ ≤ List.length l₁ [PROOFSTEP] assumption [GOAL] case inr.inr.H Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ ∀ (i_1 : ℕ), nth (mk l₂) i_1 = nth (mk l₁) i_1 [PROOFSTEP] intro [GOAL] case inr.inr.H Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ i✝ : ℕ ⊢ nth (mk l₂) i✝ = nth (mk l₁) i✝ [PROOFSTEP] rw [H] [GOAL] Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 h : List.length l₁ ≤ List.length l₂ ⊢ mk l₁ = mk l₂ [PROOFSTEP] refine' Quotient.sound' (Or.inl ⟨l₂.length - l₁.length, _⟩) [GOAL] Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 h : List.length l₁ ≤ List.length l₂ ⊢ l₂ = l₁ ++ List.replicate (List.length l₂ - List.length l₁) default [PROOFSTEP] refine' List.ext_get _ fun i h h₂ ↦ Eq.symm _ [GOAL] case refine'_1 Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 h : List.length l₁ ≤ List.length l₂ ⊢ List.length l₂ = List.length (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) [PROOFSTEP] simp only [add_tsub_cancel_of_le h, List.length_append, List.length_replicate] [GOAL] case refine'_2 Γ : Type u_1 i✝ : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i : ℕ), nth (mk l₁) i = nth (mk l₂) i h✝ : List.length l₁ ≤ List.length l₂ i : ℕ h : i < List.length l₂ h₂ : i < List.length (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) ⊢ List.get (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) { val := i, isLt := h₂ } = List.get l₂ { val := i, isLt := h } [PROOFSTEP] simp only [ListBlank.nth_mk] at H [GOAL] case refine'_2 Γ : Type u_1 i✝ : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i : ℕ), List.getI l₁ i = List.getI l₂ i h✝ : List.length l₁ ≤ List.length l₂ i : ℕ h : i < List.length l₂ h₂ : i < List.length (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) ⊢ List.get (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) { val := i, isLt := h₂ } = List.get l₂ { val := i, isLt := h } [PROOFSTEP] cases' lt_or_le i l₁.length with h' h' [GOAL] case refine'_2.inl Γ : Type u_1 i✝ : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i : ℕ), List.getI l₁ i = List.getI l₂ i h✝ : List.length l₁ ≤ List.length l₂ i : ℕ h : i < List.length l₂ h₂ : i < List.length (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) h' : i < List.length l₁ ⊢ List.get (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) { val := i, isLt := h₂ } = List.get l₂ { val := i, isLt := h } [PROOFSTEP] simp only [List.get_append _ h', List.get?_eq_get h, List.get?_eq_get h', ← List.getI_eq_get _ h, ← List.getI_eq_get _ h', H] [GOAL] case refine'_2.inr Γ : Type u_1 i✝ : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i : ℕ), List.getI l₁ i = List.getI l₂ i h✝ : List.length l₁ ≤ List.length l₂ i : ℕ h : i < List.length l₂ h₂ : i < List.length (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) h' : List.length l₁ ≤ i ⊢ List.get (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) { val := i, isLt := h₂ } = List.get l₂ { val := i, isLt := h } [PROOFSTEP] simp only [List.get_append_right' h', List.get_replicate, List.get?_eq_get h, List.get?_len_le h', ← List.getI_eq_default _ h', H, List.getI_eq_get _ h] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ n i : ℕ L : ListBlank Γ ⊢ nth (modifyNth f n L) i = if i = n then f (nth L i) else nth L i [PROOFSTEP] induction' n with n IH generalizing i L [GOAL] case zero Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i✝ : ℕ L✝ : ListBlank Γ i : ℕ L : ListBlank Γ ⊢ nth (modifyNth f Nat.zero L) i = if i = Nat.zero then f (nth L i) else nth L i [PROOFSTEP] cases i [GOAL] case zero.zero Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i : ℕ L✝ L : ListBlank Γ ⊢ nth (modifyNth f Nat.zero L) Nat.zero = if Nat.zero = Nat.zero then f (nth L Nat.zero) else nth L Nat.zero [PROOFSTEP] simp only [ListBlank.nth_zero, if_true, ListBlank.head_cons, ListBlank.modifyNth, ListBlank.nth_succ, if_false, ListBlank.tail_cons, Nat.zero_eq] [GOAL] case zero.succ Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i : ℕ L✝ L : ListBlank Γ n✝ : ℕ ⊢ nth (modifyNth f Nat.zero L) (Nat.succ n✝) = if Nat.succ n✝ = Nat.zero then f (nth L (Nat.succ n✝)) else nth L (Nat.succ n✝) [PROOFSTEP] simp only [ListBlank.nth_zero, if_true, ListBlank.head_cons, ListBlank.modifyNth, ListBlank.nth_succ, if_false, ListBlank.tail_cons, Nat.zero_eq] [GOAL] case succ Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i✝ : ℕ L✝ : ListBlank Γ n : ℕ IH : ∀ (i : ℕ) (L : ListBlank Γ), nth (modifyNth f n L) i = if i = n then f (nth L i) else nth L i i : ℕ L : ListBlank Γ ⊢ nth (modifyNth f (Nat.succ n) L) i = if i = Nat.succ n then f (nth L i) else nth L i [PROOFSTEP] cases i [GOAL] case succ.zero Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i : ℕ L✝ : ListBlank Γ n : ℕ IH : ∀ (i : ℕ) (L : ListBlank Γ), nth (modifyNth f n L) i = if i = n then f (nth L i) else nth L i L : ListBlank Γ ⊢ nth (modifyNth f (Nat.succ n) L) Nat.zero = if Nat.zero = Nat.succ n then f (nth L Nat.zero) else nth L Nat.zero [PROOFSTEP] rw [if_neg (Nat.succ_ne_zero _).symm] [GOAL] case succ.zero Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i : ℕ L✝ : ListBlank Γ n : ℕ IH : ∀ (i : ℕ) (L : ListBlank Γ), nth (modifyNth f n L) i = if i = n then f (nth L i) else nth L i L : ListBlank Γ ⊢ nth (modifyNth f (Nat.succ n) L) Nat.zero = nth L Nat.zero [PROOFSTEP] simp only [ListBlank.nth_zero, ListBlank.head_cons, ListBlank.modifyNth, Nat.zero_eq] [GOAL] case succ.succ Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i : ℕ L✝ : ListBlank Γ n : ℕ IH : ∀ (i : ℕ) (L : ListBlank Γ), nth (modifyNth f n L) i = if i = n then f (nth L i) else nth L i L : ListBlank Γ n✝ : ℕ ⊢ nth (modifyNth f (Nat.succ n) L) (Nat.succ n✝) = if Nat.succ n✝ = Nat.succ n then f (nth L (Nat.succ n✝)) else nth L (Nat.succ n✝) [PROOFSTEP] simp only [IH, ListBlank.modifyNth, ListBlank.nth_succ, ListBlank.tail_cons, Nat.succ.injEq] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : List Γ ⊢ List.headI (List.map f.f l) = Turing.PointedMap.f f (List.headI l) [PROOFSTEP] cases l <;> [exact (PointedMap.map_pt f).symm; rfl] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : List Γ ⊢ List.headI (List.map f.f l) = Turing.PointedMap.f f (List.headI l) [PROOFSTEP] cases l [GOAL] case nil Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' ⊢ List.headI (List.map f.f []) = Turing.PointedMap.f f (List.headI []) [PROOFSTEP] exact (PointedMap.map_pt f).symm [GOAL] case cons Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' head✝ : Γ tail✝ : List Γ ⊢ List.headI (List.map f.f (head✝ :: tail✝)) = Turing.PointedMap.f f (List.headI (head✝ :: tail✝)) [PROOFSTEP] rfl [GOAL] Γ : Type ?u.27995 Γ' : Type ?u.27994 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ ⊢ ListBlank Γ' [PROOFSTEP] apply l.liftOn (fun l ↦ ListBlank.mk (List.map f l)) [GOAL] Γ : Type ?u.27995 Γ' : Type ?u.27994 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ ⊢ ∀ (a b : List Γ), BlankExtends a b → mk (List.map f.f a) = mk (List.map f.f b) [PROOFSTEP] rintro l _ ⟨i, rfl⟩ [GOAL] case intro Γ : Type ?u.27995 Γ' : Type ?u.27994 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ l : List Γ i : ℕ ⊢ mk (List.map f.f l) = mk (List.map f.f (l ++ List.replicate i default)) [PROOFSTEP] refine' Quotient.sound' (Or.inl ⟨i, _⟩) [GOAL] case intro Γ : Type ?u.27995 Γ' : Type ?u.27994 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ l : List Γ i : ℕ ⊢ List.map f.f (l ++ List.replicate i default) = List.map f.f l ++ List.replicate i default [PROOFSTEP] simp only [PointedMap.map_pt, List.map_append, List.map_replicate] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ ⊢ head (map f l) = PointedMap.f f (head l) [PROOFSTEP] conv => lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ | head (map f l) = PointedMap.f f (head l) [PROOFSTEP] lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ | head (map f l) = PointedMap.f f (head l) [PROOFSTEP] lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ | head (map f l) = PointedMap.f f (head l) [PROOFSTEP] lhs [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ | head (map f l) [PROOFSTEP] rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ ⊢ head (map f (cons (head l) (tail l))) = PointedMap.f f (head l) [PROOFSTEP] exact Quotient.inductionOn' l fun a ↦ rfl [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ ⊢ tail (map f l) = map f (tail l) [PROOFSTEP] conv => lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ | tail (map f l) = map f (tail l) [PROOFSTEP] lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ | tail (map f l) = map f (tail l) [PROOFSTEP] lhs; rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ | tail (map f l) = map f (tail l) [PROOFSTEP] lhs [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ | tail (map f l) [PROOFSTEP] rw [← ListBlank.cons_head_tail l] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ ⊢ tail (map f (cons (head l) (tail l))) = map f (tail l) [PROOFSTEP] exact Quotient.inductionOn' l fun a ↦ rfl [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ a : Γ ⊢ map f (cons a l) = cons (PointedMap.f f a) (map f l) [PROOFSTEP] refine' (ListBlank.cons_head_tail _).symm.trans _ [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ a : Γ ⊢ cons (head (map f (cons a l))) (tail (map f (cons a l))) = cons (PointedMap.f f a) (map f l) [PROOFSTEP] simp only [ListBlank.head_map, ListBlank.head_cons, ListBlank.tail_map, ListBlank.tail_cons] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ n : ℕ ⊢ nth (map f l) n = PointedMap.f f (nth l n) [PROOFSTEP] refine' l.inductionOn fun l ↦ _ -- Porting note: Added `suffices` to get `simp` to work. [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ ⊢ nth (map f (Quotient.mk (BlankRel.setoid Γ) l)) n = PointedMap.f f (nth (Quotient.mk (BlankRel.setoid Γ) l) n) [PROOFSTEP] suffices ((mk l).map f).nth n = f ((mk l).nth n) by exact this [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ this : nth (map f (mk l)) n = PointedMap.f f (nth (mk l) n) ⊢ nth (map f (Quotient.mk (BlankRel.setoid Γ) l)) n = PointedMap.f f (nth (Quotient.mk (BlankRel.setoid Γ) l) n) [PROOFSTEP] exact this [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ ⊢ nth (map f (mk l)) n = PointedMap.f f (nth (mk l) n) [PROOFSTEP] simp only [List.get?_map, ListBlank.map_mk, ListBlank.nth_mk, List.getI_eq_iget_get?] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ ⊢ Option.iget (Option.map f.f (List.get? l n)) = PointedMap.f f (Option.iget (List.get? l n)) [PROOFSTEP] cases l.get? n [GOAL] case none Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ ⊢ Option.iget (Option.map f.f none) = PointedMap.f f (Option.iget none) [PROOFSTEP] exact f.2.symm [GOAL] case some Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ val✝ : Γ ⊢ Option.iget (Option.map f.f (some val✝)) = PointedMap.f f (Option.iget (some val✝)) [PROOFSTEP] rfl [GOAL] ι : Type u_1 Γ : ι → Type u_2 inst✝ : (i : ι) → Inhabited (Γ i) i : ι L : ListBlank ((i : ι) → Γ i) n : ℕ ⊢ ListBlank.nth (ListBlank.map (proj i) L) n = ListBlank.nth L n i [PROOFSTEP] rw [ListBlank.nth_map] [GOAL] ι : Type u_1 Γ : ι → Type u_2 inst✝ : (i : ι) → Inhabited (Γ i) i : ι L : ListBlank ((i : ι) → Γ i) n : ℕ ⊢ PointedMap.f (proj i) (ListBlank.nth L n) = ListBlank.nth L n i [PROOFSTEP] rfl [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' F : PointedMap Γ Γ' f : Γ → Γ f' : Γ' → Γ' H : ∀ (x : Γ), PointedMap.f F (f x) = f' (PointedMap.f F x) n : ℕ L : ListBlank Γ ⊢ map F (modifyNth f n L) = modifyNth f' n (map F L) [PROOFSTEP] induction' n with n IH generalizing L [GOAL] case zero Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' F : PointedMap Γ Γ' f : Γ → Γ f' : Γ' → Γ' H : ∀ (x : Γ), PointedMap.f F (f x) = f' (PointedMap.f F x) L✝ L : ListBlank Γ ⊢ map F (modifyNth f Nat.zero L) = modifyNth f' Nat.zero (map F L) [PROOFSTEP] simp only [*, ListBlank.head_map, ListBlank.modifyNth, ListBlank.map_cons, ListBlank.tail_map] [GOAL] case succ Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' F : PointedMap Γ Γ' f : Γ → Γ f' : Γ' → Γ' H : ∀ (x : Γ), PointedMap.f F (f x) = f' (PointedMap.f F x) L✝ : ListBlank Γ n : ℕ IH : ∀ (L : ListBlank Γ), map F (modifyNth f n L) = modifyNth f' n (map F L) L : ListBlank Γ ⊢ map F (modifyNth f (Nat.succ n) L) = modifyNth f' (Nat.succ n) (map F L) [PROOFSTEP] simp only [*, ListBlank.head_map, ListBlank.modifyNth, ListBlank.map_cons, ListBlank.tail_map] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ ⊢ append l₁ (mk l₂) = mk (l₁ ++ l₂) [PROOFSTEP] induction l₁ [GOAL] case nil Γ : Type u_1 inst✝ : Inhabited Γ l₂ : List Γ ⊢ append [] (mk l₂) = mk ([] ++ l₂) [PROOFSTEP] simp only [*, ListBlank.append, List.nil_append, List.cons_append, ListBlank.cons_mk] [GOAL] case cons Γ : Type u_1 inst✝ : Inhabited Γ l₂ : List Γ head✝ : Γ tail✝ : List Γ tail_ih✝ : append tail✝ (mk l₂) = mk (tail✝ ++ l₂) ⊢ append (head✝ :: tail✝) (mk l₂) = mk (head✝ :: tail✝ ++ l₂) [PROOFSTEP] simp only [*, ListBlank.append, List.nil_append, List.cons_append, ListBlank.cons_mk] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ l₃ : ListBlank Γ ⊢ append (l₁ ++ l₂) l₃ = append l₁ (append l₂ l₃) [PROOFSTEP] refine' l₃.inductionOn fun l ↦ _ -- Porting note: Added `suffices` to get `simp` to work. [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ l₃ : ListBlank Γ l : List Γ ⊢ append (l₁ ++ l₂) (Quotient.mk (BlankRel.setoid Γ) l) = append l₁ (append l₂ (Quotient.mk (BlankRel.setoid Γ) l)) [PROOFSTEP] suffices append (l₁ ++ l₂) (mk l) = append l₁ (append l₂ (mk l)) by exact this [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ l₃ : ListBlank Γ l : List Γ this : append (l₁ ++ l₂) (mk l) = append l₁ (append l₂ (mk l)) ⊢ append (l₁ ++ l₂) (Quotient.mk (BlankRel.setoid Γ) l) = append l₁ (append l₂ (Quotient.mk (BlankRel.setoid Γ) l)) [PROOFSTEP] exact this [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ l₃ : ListBlank Γ l : List Γ ⊢ append (l₁ ++ l₂) (mk l) = append l₁ (append l₂ (mk l)) [PROOFSTEP] simp only [ListBlank.append_mk, List.append_assoc] [GOAL] Γ : Type ?u.36140 Γ' : Type ?u.36152 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' l : ListBlank Γ f : Γ → List Γ' hf : ∃ n, f default = List.replicate n default ⊢ ListBlank Γ' [PROOFSTEP] apply l.liftOn (fun l ↦ ListBlank.mk (List.bind l f)) [GOAL] Γ : Type ?u.36140 Γ' : Type ?u.36152 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' l : ListBlank Γ f : Γ → List Γ' hf : ∃ n, f default = List.replicate n default ⊢ ∀ (a b : List Γ), BlankExtends a b → mk (List.bind a f) = mk (List.bind b f) [PROOFSTEP] rintro l _ ⟨i, rfl⟩ [GOAL] case intro Γ : Type ?u.36140 Γ' : Type ?u.36152 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' l✝ : ListBlank Γ f : Γ → List Γ' hf : ∃ n, f default = List.replicate n default l : List Γ i : ℕ ⊢ mk (List.bind l f) = mk (List.bind (l ++ List.replicate i default) f) [PROOFSTEP] cases' hf with n e [GOAL] case intro.intro Γ : Type ?u.36140 Γ' : Type ?u.36152 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' l✝ : ListBlank Γ f : Γ → List Γ' l : List Γ i n : ℕ e : f default = List.replicate n default ⊢ mk (List.bind l f) = mk (List.bind (l ++ List.replicate i default) f) [PROOFSTEP] refine' Quotient.sound' (Or.inl ⟨i * n, _⟩) [GOAL] case intro.intro Γ : Type ?u.36140 Γ' : Type ?u.36152 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' l✝ : ListBlank Γ f : Γ → List Γ' l : List Γ i n : ℕ e : f default = List.replicate n default ⊢ List.bind (l ++ List.replicate i default) f = List.bind l f ++ List.replicate (i * n) default [PROOFSTEP] rw [List.append_bind, mul_comm] [GOAL] case intro.intro Γ : Type ?u.36140 Γ' : Type ?u.36152 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' l✝ : ListBlank Γ f : Γ → List Γ' l : List Γ i n : ℕ e : f default = List.replicate n default ⊢ List.bind l f ++ List.bind (List.replicate i default) f = List.bind l f ++ List.replicate (n * i) default [PROOFSTEP] congr [GOAL] case intro.intro.e_a Γ : Type ?u.36140 Γ' : Type ?u.36152 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' l✝ : ListBlank Γ f : Γ → List Γ' l : List Γ i n : ℕ e : f default = List.replicate n default ⊢ List.bind (List.replicate i default) f = List.replicate (n * i) default [PROOFSTEP] induction' i with i IH [GOAL] case intro.intro.e_a.zero Γ : Type ?u.36140 Γ' : Type ?u.36152 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' l✝ : ListBlank Γ f : Γ → List Γ' l : List Γ n : ℕ e : f default = List.replicate n default ⊢ List.bind (List.replicate Nat.zero default) f = List.replicate (n * Nat.zero) default case intro.intro.e_a.succ Γ : Type ?u.36140 Γ' : Type ?u.36152 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' l✝ : ListBlank Γ f : Γ → List Γ' l : List Γ n : ℕ e : f default = List.replicate n default i : ℕ IH : List.bind (List.replicate i default) f = List.replicate (n * i) default ⊢ List.bind (List.replicate (Nat.succ i) default) f = List.replicate (n * Nat.succ i) default [PROOFSTEP] rfl [GOAL] case intro.intro.e_a.succ Γ : Type ?u.36140 Γ' : Type ?u.36152 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' l✝ : ListBlank Γ f : Γ → List Γ' l : List Γ n : ℕ e : f default = List.replicate n default i : ℕ IH : List.bind (List.replicate i default) f = List.replicate (n * i) default ⊢ List.bind (List.replicate (Nat.succ i) default) f = List.replicate (n * Nat.succ i) default [PROOFSTEP] simp only [IH, e, List.replicate_add, Nat.mul_succ, add_comm, List.replicate_succ, List.cons_bind] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' a : Γ l : ListBlank Γ f : Γ → List Γ' hf : ∃ n, f default = List.replicate n default ⊢ bind (cons a l) f hf = append (f a) (bind l f hf) [PROOFSTEP] refine' l.inductionOn fun l ↦ _ -- Porting note: Added `suffices` to get `simp` to work. [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' a : Γ l✝ : ListBlank Γ f : Γ → List Γ' hf : ∃ n, f default = List.replicate n default l : List Γ ⊢ bind (cons a (Quotient.mk (BlankRel.setoid Γ) l)) f hf = append (f a) (bind (Quotient.mk (BlankRel.setoid Γ) l) f hf) [PROOFSTEP] suffices ((mk l).cons a).bind f hf = ((mk l).bind f hf).append (f a) by exact this [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' a : Γ l✝ : ListBlank Γ f : Γ → List Γ' hf : ∃ n, f default = List.replicate n default l : List Γ this : bind (cons a (mk l)) f hf = append (f a) (bind (mk l) f hf) ⊢ bind (cons a (Quotient.mk (BlankRel.setoid Γ) l)) f hf = append (f a) (bind (Quotient.mk (BlankRel.setoid Γ) l) f hf) [PROOFSTEP] exact this [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' a : Γ l✝ : ListBlank Γ f : Γ → List Γ' hf : ∃ n, f default = List.replicate n default l : List Γ ⊢ bind (cons a (mk l)) f hf = append (f a) (bind (mk l) f hf) [PROOFSTEP] simp only [ListBlank.append_mk, ListBlank.bind_mk, ListBlank.cons_mk, List.cons_bind] [GOAL] Γ : Type ?u.39827 inst✝ : Inhabited Γ ⊢ Tape Γ [PROOFSTEP] constructor [GOAL] case head Γ : Type ?u.39827 inst✝ : Inhabited Γ ⊢ Γ [PROOFSTEP] apply default [GOAL] case left Γ : Type ?u.39827 inst✝ : Inhabited Γ ⊢ ListBlank Γ [PROOFSTEP] apply default [GOAL] case right Γ : Type ?u.39827 inst✝ : Inhabited Γ ⊢ ListBlank Γ [PROOFSTEP] apply default [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ ⊢ move Dir.right (move Dir.left T) = T [PROOFSTEP] cases T [GOAL] case mk Γ : Type u_1 inst✝ : Inhabited Γ head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ move Dir.right (move Dir.left { head := head✝, left := left✝, right := right✝ }) = { head := head✝, left := left✝, right := right✝ } [PROOFSTEP] simp [Tape.move] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ ⊢ move Dir.left (move Dir.right T) = T [PROOFSTEP] cases T [GOAL] case mk Γ : Type u_1 inst✝ : Inhabited Γ head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ move Dir.left (move Dir.right { head := head✝, left := left✝, right := right✝ }) = { head := head✝, left := left✝, right := right✝ } [PROOFSTEP] simp [Tape.move] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ ⊢ mk' T.left (right₀ T) = T [PROOFSTEP] cases T [GOAL] case mk Γ : Type u_1 inst✝ : Inhabited Γ head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ mk' { head := head✝, left := left✝, right := right✝ }.left (right₀ { head := head✝, left := left✝, right := right✝ }) = { head := head✝, left := left✝, right := right✝ } [PROOFSTEP] simp only [Tape.right₀, Tape.mk', ListBlank.head_cons, ListBlank.tail_cons, eq_self_iff_true, and_self_iff] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ L R : ListBlank Γ ⊢ move Dir.left (mk' L R) = mk' (ListBlank.tail L) (ListBlank.cons (ListBlank.head L) R) [PROOFSTEP] simp only [Tape.move, Tape.mk', ListBlank.head_cons, eq_self_iff_true, ListBlank.cons_head_tail, and_self_iff, ListBlank.tail_cons] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ L R : ListBlank Γ ⊢ move Dir.right (mk' L R) = mk' (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R) [PROOFSTEP] simp only [Tape.move, Tape.mk', ListBlank.head_cons, eq_self_iff_true, ListBlank.cons_head_tail, and_self_iff, ListBlank.tail_cons] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ n : ℕ ⊢ ListBlank.nth (right₀ T) n = nth T ↑n [PROOFSTEP] cases n [GOAL] case zero Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ ⊢ ListBlank.nth (right₀ T) Nat.zero = nth T ↑Nat.zero [PROOFSTEP] simp only [Tape.nth, Tape.right₀, Int.ofNat_zero, ListBlank.nth_zero, ListBlank.nth_succ, ListBlank.head_cons, ListBlank.tail_cons, Nat.zero_eq] [GOAL] case succ Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ n✝ : ℕ ⊢ ListBlank.nth (right₀ T) (Nat.succ n✝) = nth T ↑(Nat.succ n✝) [PROOFSTEP] simp only [Tape.nth, Tape.right₀, Int.ofNat_zero, ListBlank.nth_zero, ListBlank.nth_succ, ListBlank.head_cons, ListBlank.tail_cons, Nat.zero_eq] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ L R : ListBlank Γ n : ℕ ⊢ nth (mk' L R) ↑n = ListBlank.nth R n [PROOFSTEP] rw [← Tape.right₀_nth, Tape.mk'_right₀] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ a : Γ L R : ListBlank Γ n : ℕ ⊢ nth (move Dir.left { head := a, left := L, right := R }) (↑(n + 1) + 1) = nth { head := a, left := L, right := R } (↑(n + 1) + 1 - 1) [PROOFSTEP] rw [add_sub_cancel] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ a : Γ L R : ListBlank Γ n : ℕ ⊢ nth (move Dir.left { head := a, left := L, right := R }) (↑(n + 1) + 1) = nth { head := a, left := L, right := R } ↑(n + 1) [PROOFSTEP] change (R.cons a).nth (n + 1) = R.nth n [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ a : Γ L R : ListBlank Γ n : ℕ ⊢ ListBlank.nth (ListBlank.cons a R) (n + 1) = ListBlank.nth R n [PROOFSTEP] rw [ListBlank.nth_succ, ListBlank.tail_cons] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ i : ℤ ⊢ nth (move Dir.right T) i = nth T (i + 1) [PROOFSTEP] conv => rhs; rw [← T.move_right_left] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ i : ℤ | nth (move Dir.right T) i = nth T (i + 1) [PROOFSTEP] rhs; rw [← T.move_right_left] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ i : ℤ | nth (move Dir.right T) i = nth T (i + 1) [PROOFSTEP] rhs; rw [← T.move_right_left] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ i : ℤ | nth (move Dir.right T) i = nth T (i + 1) [PROOFSTEP] rhs [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ i : ℤ | nth T (i + 1) [PROOFSTEP] rw [← T.move_right_left] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ i : ℤ ⊢ nth (move Dir.right T) i = nth (move Dir.left (move Dir.right T)) (i + 1) [PROOFSTEP] rw [Tape.move_left_nth, add_sub_cancel] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ i : ℕ ⊢ ((move Dir.right)^[i] T).head = nth T ↑i [PROOFSTEP] induction i generalizing T [GOAL] case zero Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ ⊢ ((move Dir.right)^[Nat.zero] T).head = nth T ↑Nat.zero [PROOFSTEP] rfl [GOAL] case succ Γ : Type u_1 inst✝ : Inhabited Γ n✝ : ℕ n_ih✝ : ∀ (T : Tape Γ), ((move Dir.right)^[n✝] T).head = nth T ↑n✝ T : Tape Γ ⊢ ((move Dir.right)^[Nat.succ n✝] T).head = nth T ↑(Nat.succ n✝) [PROOFSTEP] simp only [*, Tape.move_right_nth, Int.ofNat_succ, iterate_succ, Function.comp_apply] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ ⊢ ∀ (T : Tape Γ), write T.head T = T [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk Γ : Type u_1 inst✝ : Inhabited Γ head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ write { head := head✝, left := left✝, right := right✝ }.head { head := head✝, left := left✝, right := right✝ } = { head := head✝, left := left✝, right := right✝ } [PROOFSTEP] rfl [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ a b : Γ L R : ListBlank Γ ⊢ write b (mk' L (ListBlank.cons a R)) = mk' L (ListBlank.cons b R) [PROOFSTEP] simp only [Tape.write, Tape.mk', ListBlank.head_cons, ListBlank.tail_cons, eq_self_iff_true, and_self_iff] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' ⊢ ∀ (T : Tape Γ), (map f T).head = PointedMap.f f T.head [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ (map f { head := head✝, left := left✝, right := right✝ }).head = PointedMap.f f { head := head✝, left := left✝, right := right✝ }.head [PROOFSTEP] rfl [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' b : Γ ⊢ ∀ (T : Tape Γ), map f (write b T) = write (PointedMap.f f b) (map f T) [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' b head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ map f (write b { head := head✝, left := left✝, right := right✝ }) = write (PointedMap.f f b) (map f { head := head✝, left := left✝, right := right✝ }) [PROOFSTEP] rfl [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ L R : ListBlank Γ n : ℕ ⊢ write (f (ListBlank.nth R n)) ((move Dir.right)^[n] (mk' L R)) = (move Dir.right)^[n] (mk' L (ListBlank.modifyNth f n R)) [PROOFSTEP] induction' n with n IH generalizing L R [GOAL] case zero Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ L✝ R✝ L R : ListBlank Γ ⊢ write (f (ListBlank.nth R Nat.zero)) ((move Dir.right)^[Nat.zero] (mk' L R)) = (move Dir.right)^[Nat.zero] (mk' L (ListBlank.modifyNth f Nat.zero R)) [PROOFSTEP] simp only [ListBlank.nth_zero, ListBlank.modifyNth, iterate_zero_apply, Nat.zero_eq] [GOAL] case zero Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ L✝ R✝ L R : ListBlank Γ ⊢ write (f (ListBlank.head R)) (mk' L R) = mk' L (ListBlank.cons (f (ListBlank.head R)) (ListBlank.tail R)) [PROOFSTEP] rw [← Tape.write_mk', ListBlank.cons_head_tail] [GOAL] case succ Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ L✝ R✝ : ListBlank Γ n : ℕ IH : ∀ (L R : ListBlank Γ), write (f (ListBlank.nth R n)) ((move Dir.right)^[n] (mk' L R)) = (move Dir.right)^[n] (mk' L (ListBlank.modifyNth f n R)) L R : ListBlank Γ ⊢ write (f (ListBlank.nth R (Nat.succ n))) ((move Dir.right)^[Nat.succ n] (mk' L R)) = (move Dir.right)^[Nat.succ n] (mk' L (ListBlank.modifyNth f (Nat.succ n) R)) [PROOFSTEP] simp only [ListBlank.head_cons, ListBlank.nth_succ, ListBlank.modifyNth, Tape.move_right_mk', ListBlank.tail_cons, iterate_succ_apply, IH] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' T : Tape Γ d : Dir ⊢ map f (move d T) = move d (map f T) [PROOFSTEP] cases T [GOAL] case mk Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' d : Dir head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ map f (move d { head := head✝, left := left✝, right := right✝ }) = move d (map f { head := head✝, left := left✝, right := right✝ }) [PROOFSTEP] cases d [GOAL] case mk.left Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ map f (move Dir.left { head := head✝, left := left✝, right := right✝ }) = move Dir.left (map f { head := head✝, left := left✝, right := right✝ }) [PROOFSTEP] simp only [Tape.move, Tape.map, ListBlank.head_map, eq_self_iff_true, ListBlank.map_cons, and_self_iff, ListBlank.tail_map] [GOAL] case mk.right Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ map f (move Dir.right { head := head✝, left := left✝, right := right✝ }) = move Dir.right (map f { head := head✝, left := left✝, right := right✝ }) [PROOFSTEP] simp only [Tape.move, Tape.map, ListBlank.head_map, eq_self_iff_true, ListBlank.map_cons, and_self_iff, ListBlank.tail_map] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' L R : ListBlank Γ ⊢ map f (mk' L R) = mk' (ListBlank.map f L) (ListBlank.map f R) [PROOFSTEP] simp only [Tape.mk', Tape.map, ListBlank.head_map, eq_self_iff_true, and_self_iff, ListBlank.tail_map] [GOAL] Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' L R : List Γ ⊢ map f (mk₂ L R) = mk₂ (List.map f.f L) (List.map f.f R) [PROOFSTEP] simp only [Tape.mk₂, Tape.map_mk', ListBlank.map_mk] [GOAL] σ : Type u_1 f : σ → Option σ a b c : σ h : f a = f b ⊢ (∃ b_1, b_1 ∈ f b ∧ ReflTransGen (fun a b => b ∈ f a) b_1 c) ↔ ∃ b, b ∈ f a ∧ ReflTransGen (fun a b => b ∈ f a) b c [PROOFSTEP] rw [h] [GOAL] σ : Type u_1 f : σ → Option σ a b c : σ h₁ : Reaches₁ f a c h₂ : b ∈ f a ⊢ Reaches f b c [PROOFSTEP] rcases TransGen.head'_iff.1 h₁ with ⟨b', hab, hbc⟩ [GOAL] case intro.intro σ : Type u_1 f : σ → Option σ a b c : σ h₁ : Reaches₁ f a c h₂ : b ∈ f a b' : σ hab : b' ∈ f a hbc : ReflTransGen (fun a b => b ∈ f a) b' c ⊢ Reaches f b c [PROOFSTEP] cases Option.mem_unique hab h₂ [GOAL] case intro.intro.refl σ : Type u_1 f : σ → Option σ a b c : σ h₁ : Reaches₁ f a c h₂ hab : b ∈ f a hbc : ReflTransGen (fun a b => b ∈ f a) b c ⊢ Reaches f b c [PROOFSTEP] exact hbc [GOAL] σ : Type ?u.63381 f : σ → Option σ b : σ C : σ → Sort u_1 a : σ h : b ∈ eval f a H : (a : σ) → b ∈ eval f a → ((a' : σ) → f a = some a' → C a') → C a a' : σ ha' : b ∈ PFun.fix (fun s => Part.some (Option.elim (f s) (Sum.inl s) Sum.inr)) a' h' : (a'' : σ) → Sum.inr a'' ∈ Part.some (Option.elim (f a') (Sum.inl a') Sum.inr) → C a'' b' : σ e : f a' = some b' ⊢ Sum.inr b' = Option.elim (f a') (Sum.inl a') Sum.inr [PROOFSTEP] rw [e] [GOAL] σ : Type ?u.63381 f : σ → Option σ b : σ C : σ → Sort u_1 a : σ h : b ∈ eval f a H : (a : σ) → b ∈ eval f a → ((a' : σ) → f a = some a' → C a') → C a a' : σ ha' : b ∈ PFun.fix (fun s => Part.some (Option.elim (f s) (Sum.inl s) Sum.inr)) a' h' : (a'' : σ) → Sum.inr a'' ∈ Part.some (Option.elim (f a') (Sum.inl a') Sum.inr) → C a'' b' : σ e : f a' = some b' ⊢ Sum.inr b' = Option.elim (some b') (Sum.inl a') Sum.inr [PROOFSTEP] rfl [GOAL] σ : Type u_1 f : σ → Option σ a b : σ ⊢ b ∈ eval f a ↔ Reaches f a b ∧ f b = none [PROOFSTEP] refine' ⟨fun h ↦ _, fun ⟨h₁, h₂⟩ ↦ _⟩ [GOAL] case refine'_1 σ : Type u_1 f : σ → Option σ a b : σ h : b ∈ eval f a ⊢ Reaches f a b ∧ f b = none [PROOFSTEP] refine' @evalInduction _ _ _ (fun a ↦ Reaches f a b ∧ f b = none) _ h fun a h IH ↦ _ [GOAL] case refine'_1 σ : Type u_1 f : σ → Option σ a✝ b : σ h✝ : b ∈ eval f a✝ a : σ h : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' ⊢ (fun a => Reaches f a b ∧ f b = none) a [PROOFSTEP] cases' e : f a with a' [GOAL] case refine'_1.none σ : Type u_1 f : σ → Option σ a✝ b : σ h✝ : b ∈ eval f a✝ a : σ h : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' e : f a = none ⊢ Reaches f a b ∧ f b = none [PROOFSTEP] rw [Part.mem_unique h (PFun.mem_fix_iff.2 <| Or.inl <| Part.mem_some_iff.2 <| by rw [e] <;> rfl)] [GOAL] σ : Type u_1 f : σ → Option σ a✝ b : σ h✝ : b ∈ eval f a✝ a : σ h : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' e : f a = none ⊢ Sum.inl ?m.64287 = Option.elim (f a) (Sum.inl a) Sum.inr [PROOFSTEP] rw [e] [GOAL] σ : Type u_1 f : σ → Option σ a✝ b : σ h✝ : b ∈ eval f a✝ a : σ h : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' e : f a = none ⊢ Sum.inl ?m.64287 = Option.elim none (Sum.inl a) Sum.inr [PROOFSTEP] rfl [GOAL] case refine'_1.none σ : Type u_1 f : σ → Option σ a✝ b : σ h✝ : b ∈ eval f a✝ a : σ h : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' e : f a = none ⊢ Reaches f a a ∧ f a = none [PROOFSTEP] exact ⟨ReflTransGen.refl, e⟩ [GOAL] case refine'_1.some σ : Type u_1 f : σ → Option σ a✝ b : σ h✝ : b ∈ eval f a✝ a : σ h : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' a' : σ e : f a = some a' ⊢ Reaches f a b ∧ f b = none [PROOFSTEP] rcases PFun.mem_fix_iff.1 h with (h | ⟨_, h, _⟩) [GOAL] case refine'_1.some.inl σ : Type u_1 f : σ → Option σ a✝ b : σ h✝¹ : b ∈ eval f a✝ a : σ h✝ : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' a' : σ e : f a = some a' h : Sum.inl b ∈ Part.some (Option.elim (f a) (Sum.inl a) Sum.inr) ⊢ Reaches f a b ∧ f b = none [PROOFSTEP] rw [e] at h [GOAL] case refine'_1.some.inr.intro.intro σ : Type u_1 f : σ → Option σ a✝ b : σ h✝¹ : b ∈ eval f a✝ a : σ h✝ : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' a' : σ e : f a = some a' w✝ : σ h : Sum.inr w✝ ∈ Part.some (Option.elim (f a) (Sum.inl a) Sum.inr) right✝ : b ∈ PFun.fix (fun s => Part.some (Option.elim (f s) (Sum.inl s) Sum.inr)) w✝ ⊢ Reaches f a b ∧ f b = none [PROOFSTEP] rw [e] at h [GOAL] case refine'_1.some.inl σ : Type u_1 f : σ → Option σ a✝ b : σ h✝¹ : b ∈ eval f a✝ a : σ h✝ : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' a' : σ e : f a = some a' h : Sum.inl b ∈ Part.some (Option.elim (some a') (Sum.inl a) Sum.inr) ⊢ Reaches f a b ∧ f b = none [PROOFSTEP] cases Part.mem_some_iff.1 h [GOAL] case refine'_1.some.inr.intro.intro σ : Type u_1 f : σ → Option σ a✝ b : σ h✝¹ : b ∈ eval f a✝ a : σ h✝ : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' a' : σ e : f a = some a' w✝ : σ h : Sum.inr w✝ ∈ Part.some (Option.elim (some a') (Sum.inl a) Sum.inr) right✝ : b ∈ PFun.fix (fun s => Part.some (Option.elim (f s) (Sum.inl s) Sum.inr)) w✝ ⊢ Reaches f a b ∧ f b = none [PROOFSTEP] cases Part.mem_some_iff.1 h [GOAL] case refine'_1.some.inr.intro.intro.refl σ : Type u_1 f : σ → Option σ a✝ b : σ h✝¹ : b ∈ eval f a✝ a : σ h✝ : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' a' : σ e : f a = some a' h : Sum.inr a' ∈ Part.some (Option.elim (some a') (Sum.inl a) Sum.inr) right✝ : b ∈ PFun.fix (fun s => Part.some (Option.elim (f s) (Sum.inl s) Sum.inr)) a' ⊢ Reaches f a b ∧ f b = none [PROOFSTEP] cases' IH a' e with h₁ h₂ [GOAL] case refine'_1.some.inr.intro.intro.refl.intro σ : Type u_1 f : σ → Option σ a✝ b : σ h✝¹ : b ∈ eval f a✝ a : σ h✝ : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' a' : σ e : f a = some a' h : Sum.inr a' ∈ Part.some (Option.elim (some a') (Sum.inl a) Sum.inr) right✝ : b ∈ PFun.fix (fun s => Part.some (Option.elim (f s) (Sum.inl s) Sum.inr)) a' h₁ : Reaches f a' b h₂ : f b = none ⊢ Reaches f a b ∧ f b = none [PROOFSTEP] exact ⟨ReflTransGen.head e h₁, h₂⟩ [GOAL] case refine'_2 σ : Type u_1 f : σ → Option σ a b : σ x✝ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none ⊢ b ∈ eval f a [PROOFSTEP] refine' ReflTransGen.head_induction_on h₁ _ fun h _ IH ↦ _ [GOAL] case refine'_2.refine'_1 σ : Type u_1 f : σ → Option σ a b : σ x✝ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none ⊢ b ∈ eval f b [PROOFSTEP] refine' PFun.mem_fix_iff.2 (Or.inl _) [GOAL] case refine'_2.refine'_1 σ : Type u_1 f : σ → Option σ a b : σ x✝ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none ⊢ Sum.inl b ∈ Part.some (Option.elim (f b) (Sum.inl b) Sum.inr) [PROOFSTEP] rw [h₂] [GOAL] case refine'_2.refine'_1 σ : Type u_1 f : σ → Option σ a b : σ x✝ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none ⊢ Sum.inl b ∈ Part.some (Option.elim none (Sum.inl b) Sum.inr) [PROOFSTEP] apply Part.mem_some [GOAL] case refine'_2.refine'_2 σ : Type u_1 f : σ → Option σ a b : σ x✝¹ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none a✝ c✝ : σ h : c✝ ∈ f a✝ x✝ : ReflTransGen (fun a b => b ∈ f a) c✝ b IH : b ∈ eval f c✝ ⊢ b ∈ eval f a✝ [PROOFSTEP] refine' PFun.mem_fix_iff.2 (Or.inr ⟨_, _, IH⟩) [GOAL] case refine'_2.refine'_2 σ : Type u_1 f : σ → Option σ a b : σ x✝¹ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none a✝ c✝ : σ h : c✝ ∈ f a✝ x✝ : ReflTransGen (fun a b => b ∈ f a) c✝ b IH : b ∈ eval f c✝ ⊢ Sum.inr c✝ ∈ Part.some (Option.elim (f a✝) (Sum.inl a✝) Sum.inr) [PROOFSTEP] rw [h] [GOAL] case refine'_2.refine'_2 σ : Type u_1 f : σ → Option σ a b : σ x✝¹ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none a✝ c✝ : σ h : c✝ ∈ f a✝ x✝ : ReflTransGen (fun a b => b ∈ f a) c✝ b IH : b ∈ eval f c✝ ⊢ Sum.inr c✝ ∈ Part.some (Option.elim (some c✝) (Sum.inl a✝) Sum.inr) [PROOFSTEP] apply Part.mem_some [GOAL] σ : Type u_1 f : σ → Option σ a b : σ h : b ∈ eval f a c : σ x✝ : Reaches₁ f b c bc : Reaches₁ f b c := x✝ ⊢ False [PROOFSTEP] let ⟨_, b0⟩ := mem_eval.1 h [GOAL] σ : Type u_1 f : σ → Option σ a b : σ h : b ∈ eval f a c : σ x✝ : Reaches₁ f b c bc : Reaches₁ f b c := x✝ left✝ : Reaches f a b b0 : f b = none ⊢ False [PROOFSTEP] let ⟨b', h', _⟩ := TransGen.head'_iff.1 bc [GOAL] σ : Type u_1 f : σ → Option σ a b : σ h : b ∈ eval f a c : σ x✝ : Reaches₁ f b c bc : Reaches₁ f b c := x✝ left✝ : Reaches f a b b0 : f b = none b' : σ h' : b' ∈ f b right✝ : ReflTransGen (fun a b => b ∈ f a) b' c ⊢ False [PROOFSTEP] cases b0.symm.trans h' [GOAL] σ : Type u_1 f : σ → Option σ a b : σ h : b ∈ eval f a c : σ left✝ : Reaches f a b b0 : f b = none b' : σ h' : b' ∈ f b ⊢ False [PROOFSTEP] cases b0.symm.trans h' [GOAL] σ : Type u_1 f : σ → Option σ a b : σ ab : Reaches f a b ⊢ eval f a = eval f b [PROOFSTEP] refine' Part.ext fun _ ↦ ⟨fun h ↦ _, fun h ↦ _⟩ [GOAL] case refine'_1 σ : Type u_1 f : σ → Option σ a b : σ ab : Reaches f a b x✝ : σ h : x✝ ∈ eval f a ⊢ x✝ ∈ eval f b [PROOFSTEP] have ⟨ac, c0⟩ := mem_eval.1 h [GOAL] case refine'_1 σ : Type u_1 f : σ → Option σ a b : σ ab : Reaches f a b x✝ : σ h : x✝ ∈ eval f a ac : Reaches f a x✝ c0 : f x✝ = none ⊢ x✝ ∈ eval f b [PROOFSTEP] exact mem_eval.2 ⟨(or_iff_left_of_imp fun cb ↦ (eval_maximal h).1 cb ▸ ReflTransGen.refl).1 (reaches_total ab ac), c0⟩ [GOAL] case refine'_2 σ : Type u_1 f : σ → Option σ a b : σ ab : Reaches f a b x✝ : σ h : x✝ ∈ eval f b ⊢ x✝ ∈ eval f a [PROOFSTEP] have ⟨bc, c0⟩ := mem_eval.1 h [GOAL] case refine'_2 σ : Type u_1 f : σ → Option σ a b : σ ab : Reaches f a b x✝ : σ h : x✝ ∈ eval f b bc : Reaches f b x✝ c0 : f x✝ = none ⊢ x✝ ∈ eval f a [PROOFSTEP] exact mem_eval.2 ⟨ab.trans bc, c0⟩ [GOAL] σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ : σ₁ ab : Reaches₁ f₁ a₁ b₁ ⊢ ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ [PROOFSTEP] induction' ab with c₁ ac c₁ d₁ _ cd IH [GOAL] case single σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ : σ₁ ac : c₁ ∈ f₁ a₁ ⊢ ∃ b₂, tr c₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ [PROOFSTEP] have := H aa [GOAL] case single σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ : σ₁ ac : c₁ ∈ f₁ a₁ this : match f₁ a₁ with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ | none => f₂ a₂ = none ⊢ ∃ b₂, tr c₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ [PROOFSTEP] rwa [show f₁ a₁ = _ from ac] at this [GOAL] case tail σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ d₁ : σ₁ a✝ : TransGen (fun a b => b ∈ f₁ a) a₁ c₁ cd : d₁ ∈ f₁ c₁ IH : ∃ b₂, tr c₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ ⊢ ∃ b₂, tr d₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ [PROOFSTEP] rcases IH with ⟨c₂, cc, ac₂⟩ [GOAL] case tail.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ d₁ : σ₁ a✝ : TransGen (fun a b => b ∈ f₁ a) a₁ c₁ cd : d₁ ∈ f₁ c₁ c₂ : σ₂ cc : tr c₁ c₂ ac₂ : Reaches₁ f₂ a₂ c₂ ⊢ ∃ b₂, tr d₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ [PROOFSTEP] have := H cc [GOAL] case tail.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ d₁ : σ₁ a✝ : TransGen (fun a b => b ∈ f₁ a) a₁ c₁ cd : d₁ ∈ f₁ c₁ c₂ : σ₂ cc : tr c₁ c₂ ac₂ : Reaches₁ f₂ a₂ c₂ this : match f₁ c₁ with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ c₂ b₂ | none => f₂ c₂ = none ⊢ ∃ b₂, tr d₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ [PROOFSTEP] rw [show f₁ c₁ = _ from cd] at this [GOAL] case tail.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ d₁ : σ₁ a✝ : TransGen (fun a b => b ∈ f₁ a) a₁ c₁ cd : d₁ ∈ f₁ c₁ c₂ : σ₂ cc : tr c₁ c₂ ac₂ : Reaches₁ f₂ a₂ c₂ this : match some d₁ with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ c₂ b₂ | none => f₂ c₂ = none ⊢ ∃ b₂, tr d₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ [PROOFSTEP] rcases this with ⟨d₂, dd, cd₂⟩ [GOAL] case tail.intro.intro.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ d₁ : σ₁ a✝ : TransGen (fun a b => b ∈ f₁ a) a₁ c₁ cd : d₁ ∈ f₁ c₁ c₂ : σ₂ cc : tr c₁ c₂ ac₂ : Reaches₁ f₂ a₂ c₂ d₂ : σ₂ dd : tr d₁ d₂ cd₂ : Reaches₁ f₂ c₂ d₂ ⊢ ∃ b₂, tr d₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ [PROOFSTEP] exact ⟨_, dd, ac₂.trans cd₂⟩ [GOAL] σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ : σ₁ ab : Reaches f₁ a₁ b₁ ⊢ ∃ b₂, tr b₁ b₂ ∧ Reaches f₂ a₂ b₂ [PROOFSTEP] rcases reflTransGen_iff_eq_or_transGen.1 ab with (rfl | ab) [GOAL] case inl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₂ : σ₂ b₁ : σ₁ aa : tr b₁ a₂ ab : Reaches f₁ b₁ b₁ ⊢ ∃ b₂, tr b₁ b₂ ∧ Reaches f₂ a₂ b₂ [PROOFSTEP] exact ⟨_, aa, ReflTransGen.refl⟩ [GOAL] case inr σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ : σ₁ ab✝ : Reaches f₁ a₁ b₁ ab : TransGen (fun a b => b ∈ f₁ a) a₁ b₁ ⊢ ∃ b₂, tr b₁ b₂ ∧ Reaches f₂ a₂ b₂ [PROOFSTEP] have ⟨b₂, bb, h⟩ := tr_reaches₁ H aa ab [GOAL] case inr σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ : σ₁ ab✝ : Reaches f₁ a₁ b₁ ab : TransGen (fun a b => b ∈ f₁ a) a₁ b₁ b₂ : σ₂ bb : tr b₁ b₂ h : Reaches₁ f₂ a₂ b₂ ⊢ ∃ b₂, tr b₁ b₂ ∧ Reaches f₂ a₂ b₂ [PROOFSTEP] exact ⟨b₂, bb, h.to_reflTransGen⟩ [GOAL] σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ : σ₂ ab : Reaches f₂ a₂ b₂ ⊢ ∃ c₁ c₂, Reaches f₂ b₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] induction' ab with c₂ d₂ _ cd IH [GOAL] case refl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ : σ₂ ⊢ ∃ c₁ c₂, Reaches f₂ a₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] exact ⟨_, _, ReflTransGen.refl, aa, ReflTransGen.refl⟩ [GOAL] case tail σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ IH : ∃ c₁ c₂_1, Reaches f₂ c₂ c₂_1 ∧ tr c₁ c₂_1 ∧ Reaches f₁ a₁ c₁ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] rcases IH with ⟨e₁, e₂, ce, ee, ae⟩ [GOAL] case tail.intro.intro.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ e₂ : σ₂ ce : Reaches f₂ c₂ e₂ ee : tr e₁ e₂ ae : Reaches f₁ a₁ e₁ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] rcases ReflTransGen.cases_head ce with (rfl | ⟨d', cd', de⟩) [GOAL] case tail.intro.intro.intro.intro.inl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] have := H ee [GOAL] case tail.intro.intro.intro.intro.inl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ this : match f₁ e₁ with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ c₂ b₂ | none => f₂ c₂ = none ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] revert this [GOAL] case tail.intro.intro.intro.intro.inl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ ⊢ (match f₁ e₁ with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ c₂ b₂ | none => f₂ c₂ = none) → ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] cases' eg : f₁ e₁ with g₁ [GOAL] case tail.intro.intro.intro.intro.inl.none σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ eg : f₁ e₁ = none ⊢ (match none with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ c₂ b₂ | none => f₂ c₂ = none) → ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] simp only [Respects, and_imp, exists_imp] [GOAL] case tail.intro.intro.intro.intro.inl.some σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ g₁ : σ₁ eg : f₁ e₁ = some g₁ ⊢ (match some g₁ with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ c₂ b₂ | none => f₂ c₂ = none) → ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] simp only [Respects, and_imp, exists_imp] [GOAL] case tail.intro.intro.intro.intro.inl.none σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ eg : f₁ e₁ = none ⊢ f₂ c₂ = none → ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] intro c0 [GOAL] case tail.intro.intro.intro.intro.inl.none σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ eg : f₁ e₁ = none c0 : f₂ c₂ = none ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] cases cd.symm.trans c0 [GOAL] case tail.intro.intro.intro.intro.inl.some σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ g₁ : σ₁ eg : f₁ e₁ = some g₁ ⊢ ∀ (x : σ₂), tr g₁ x → Reaches₁ f₂ c₂ x → ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] intro g₂ gg cg [GOAL] case tail.intro.intro.intro.intro.inl.some σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ g₁ : σ₁ eg : f₁ e₁ = some g₁ g₂ : σ₂ gg : tr g₁ g₂ cg : Reaches₁ f₂ c₂ g₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] rcases TransGen.head'_iff.1 cg with ⟨d', cd', dg⟩ [GOAL] case tail.intro.intro.intro.intro.inl.some.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ g₁ : σ₁ eg : f₁ e₁ = some g₁ g₂ : σ₂ gg : tr g₁ g₂ cg : Reaches₁ f₂ c₂ g₂ d' : σ₂ cd' : d' ∈ f₂ c₂ dg : ReflTransGen (fun a b => b ∈ f₂ a) d' g₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] cases Option.mem_unique cd cd' [GOAL] case tail.intro.intro.intro.intro.inl.some.intro.intro.refl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ g₁ : σ₁ eg : f₁ e₁ = some g₁ g₂ : σ₂ gg : tr g₁ g₂ cg : Reaches₁ f₂ c₂ g₂ cd' : d₂ ∈ f₂ c₂ dg : ReflTransGen (fun a b => b ∈ f₂ a) d₂ g₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] exact ⟨_, _, dg, gg, ae.tail eg⟩ [GOAL] case tail.intro.intro.intro.intro.inr.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ e₂ : σ₂ ce : Reaches f₂ c₂ e₂ ee : tr e₁ e₂ ae : Reaches f₁ a₁ e₁ d' : σ₂ cd' : d' ∈ f₂ c₂ de : ReflTransGen (fun a b => b ∈ f₂ a) d' e₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] cases Option.mem_unique cd cd' [GOAL] case tail.intro.intro.intro.intro.inr.intro.intro.refl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ e₂ : σ₂ ce : Reaches f₂ c₂ e₂ ee : tr e₁ e₂ ae : Reaches f₁ a₁ e₁ cd' : d₂ ∈ f₂ c₂ de : ReflTransGen (fun a b => b ∈ f₂ a) d₂ e₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ [PROOFSTEP] exact ⟨_, _, de, ee, ae⟩ [GOAL] σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ b₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ ab : b₁ ∈ eval f₁ a₁ ⊢ ∃ b₂, tr b₁ b₂ ∧ b₂ ∈ eval f₂ a₂ [PROOFSTEP] cases' mem_eval.1 ab with ab b0 [GOAL] case intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ b₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ ab✝ : b₁ ∈ eval f₁ a₁ ab : Reaches f₁ a₁ b₁ b0 : f₁ b₁ = none ⊢ ∃ b₂, tr b₁ b₂ ∧ b₂ ∈ eval f₂ a₂ [PROOFSTEP] rcases tr_reaches H aa ab with ⟨b₂, bb, ab⟩ [GOAL] case intro.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ b₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ ab✝¹ : b₁ ∈ eval f₁ a₁ ab✝ : Reaches f₁ a₁ b₁ b0 : f₁ b₁ = none b₂ : σ₂ bb : tr b₁ b₂ ab : Reaches f₂ a₂ b₂ ⊢ ∃ b₂, tr b₁ b₂ ∧ b₂ ∈ eval f₂ a₂ [PROOFSTEP] refine' ⟨_, bb, mem_eval.2 ⟨ab, _⟩⟩ [GOAL] case intro.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ b₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ ab✝¹ : b₁ ∈ eval f₁ a₁ ab✝ : Reaches f₁ a₁ b₁ b0 : f₁ b₁ = none b₂ : σ₂ bb : tr b₁ b₂ ab : Reaches f₂ a₂ b₂ ⊢ f₂ b₂ = none [PROOFSTEP] have := H bb [GOAL] case intro.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ b₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ ab✝¹ : b₁ ∈ eval f₁ a₁ ab✝ : Reaches f₁ a₁ b₁ b0 : f₁ b₁ = none b₂ : σ₂ bb : tr b₁ b₂ ab : Reaches f₂ a₂ b₂ this : match f₁ b₁ with | some b₁ => ∃ b₂_1, tr b₁ b₂_1 ∧ Reaches₁ f₂ b₂ b₂_1 | none => f₂ b₂ = none ⊢ f₂ b₂ = none [PROOFSTEP] rwa [b0] at this [GOAL] σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ b₂ a₂ : σ₂ aa : tr a₁ a₂ ab : b₂ ∈ eval f₂ a₂ ⊢ ∃ b₁, tr b₁ b₂ ∧ b₁ ∈ eval f₁ a₁ [PROOFSTEP] cases' mem_eval.1 ab with ab b0 [GOAL] case intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ b₂ a₂ : σ₂ aa : tr a₁ a₂ ab✝ : b₂ ∈ eval f₂ a₂ ab : Reaches f₂ a₂ b₂ b0 : f₂ b₂ = none ⊢ ∃ b₁, tr b₁ b₂ ∧ b₁ ∈ eval f₁ a₁ [PROOFSTEP] rcases tr_reaches_rev H aa ab with ⟨c₁, c₂, bc, cc, ac⟩ [GOAL] case intro.intro.intro.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ b₂ a₂ : σ₂ aa : tr a₁ a₂ ab✝ : b₂ ∈ eval f₂ a₂ ab : Reaches f₂ a₂ b₂ b0 : f₂ b₂ = none c₁ : σ₁ c₂ : σ₂ bc : Reaches f₂ b₂ c₂ cc : tr c₁ c₂ ac : Reaches f₁ a₁ c₁ ⊢ ∃ b₁, tr b₁ b₂ ∧ b₁ ∈ eval f₁ a₁ [PROOFSTEP] cases (reflTransGen_iff_eq (Option.eq_none_iff_forall_not_mem.1 b0)).1 bc [GOAL] case intro.intro.intro.intro.intro.refl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ b₂ a₂ : σ₂ aa : tr a₁ a₂ ab✝ : b₂ ∈ eval f₂ a₂ ab : Reaches f₂ a₂ b₂ b0 : f₂ b₂ = none c₁ : σ₁ ac : Reaches f₁ a₁ c₁ bc : Reaches f₂ b₂ b₂ cc : tr c₁ b₂ ⊢ ∃ b₁, tr b₁ b₂ ∧ b₁ ∈ eval f₁ a₁ [PROOFSTEP] refine' ⟨_, cc, mem_eval.2 ⟨ac, _⟩⟩ [GOAL] case intro.intro.intro.intro.intro.refl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ b₂ a₂ : σ₂ aa : tr a₁ a₂ ab✝ : b₂ ∈ eval f₂ a₂ ab : Reaches f₂ a₂ b₂ b0 : f₂ b₂ = none c₁ : σ₁ ac : Reaches f₁ a₁ c₁ bc : Reaches f₂ b₂ b₂ cc : tr c₁ b₂ ⊢ f₁ c₁ = none [PROOFSTEP] have := H cc [GOAL] case intro.intro.intro.intro.intro.refl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ b₂ a₂ : σ₂ aa : tr a₁ a₂ ab✝ : b₂ ∈ eval f₂ a₂ ab : Reaches f₂ a₂ b₂ b0 : f₂ b₂ = none c₁ : σ₁ ac : Reaches f₁ a₁ c₁ bc : Reaches f₂ b₂ b₂ cc : tr c₁ b₂ this : match f₁ c₁ with | some b₁ => ∃ b₂_1, tr b₁ b₂_1 ∧ Reaches₁ f₂ b₂ b₂_1 | none => f₂ b₂ = none ⊢ f₁ c₁ = none [PROOFSTEP] cases' hfc : f₁ c₁ with d₁ [GOAL] case intro.intro.intro.intro.intro.refl.none σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ b₂ a₂ : σ₂ aa : tr a₁ a₂ ab✝ : b₂ ∈ eval f₂ a₂ ab : Reaches f₂ a₂ b₂ b0 : f₂ b₂ = none c₁ : σ₁ ac : Reaches f₁ a₁ c₁ bc : Reaches f₂ b₂ b₂ cc : tr c₁ b₂ this : match f₁ c₁ with | some b₁ => ∃ b₂_1, tr b₁ b₂_1 ∧ Reaches₁ f₂ b₂ b₂_1 | none => f₂ b₂ = none hfc : f₁ c₁ = none ⊢ none = none [PROOFSTEP] rfl [GOAL] case intro.intro.intro.intro.intro.refl.some σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ b₂ a₂ : σ₂ aa : tr a₁ a₂ ab✝ : b₂ ∈ eval f₂ a₂ ab : Reaches f₂ a₂ b₂ b0 : f₂ b₂ = none c₁ : σ₁ ac : Reaches f₁ a₁ c₁ bc : Reaches f₂ b₂ b₂ cc : tr c₁ b₂ this : match f₁ c₁ with | some b₁ => ∃ b₂_1, tr b₁ b₂_1 ∧ Reaches₁ f₂ b₂ b₂_1 | none => f₂ b₂ = none d₁ : σ₁ hfc : f₁ c₁ = some d₁ ⊢ some d₁ = none [PROOFSTEP] rw [hfc] at this [GOAL] case intro.intro.intro.intro.intro.refl.some σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ b₂ a₂ : σ₂ aa : tr a₁ a₂ ab✝ : b₂ ∈ eval f₂ a₂ ab : Reaches f₂ a₂ b₂ b0 : f₂ b₂ = none c₁ : σ₁ ac : Reaches f₁ a₁ c₁ bc : Reaches f₂ b₂ b₂ cc : tr c₁ b₂ d₁ : σ₁ this : match some d₁ with | some b₁ => ∃ b₂_1, tr b₁ b₂_1 ∧ Reaches₁ f₂ b₂ b₂_1 | none => f₂ b₂ = none hfc : f₁ c₁ = some d₁ ⊢ some d₁ = none [PROOFSTEP] rcases this with ⟨d₂, _, bd⟩ [GOAL] case intro.intro.intro.intro.intro.refl.some.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ b₂ a₂ : σ₂ aa : tr a₁ a₂ ab✝ : b₂ ∈ eval f₂ a₂ ab : Reaches f₂ a₂ b₂ b0 : f₂ b₂ = none c₁ : σ₁ ac : Reaches f₁ a₁ c₁ bc : Reaches f₂ b₂ b₂ cc : tr c₁ b₂ d₁ : σ₁ hfc : f₁ c₁ = some d₁ d₂ : σ₂ left✝ : tr d₁ d₂ bd : Reaches₁ f₂ b₂ d₂ ⊢ some d₁ = none [PROOFSTEP] rcases TransGen.head'_iff.1 bd with ⟨e, h, _⟩ [GOAL] case intro.intro.intro.intro.intro.refl.some.intro.intro.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ b₂ a₂ : σ₂ aa : tr a₁ a₂ ab✝ : b₂ ∈ eval f₂ a₂ ab : Reaches f₂ a₂ b₂ b0 : f₂ b₂ = none c₁ : σ₁ ac : Reaches f₁ a₁ c₁ bc : Reaches f₂ b₂ b₂ cc : tr c₁ b₂ d₁ : σ₁ hfc : f₁ c₁ = some d₁ d₂ : σ₂ left✝ : tr d₁ d₂ bd : Reaches₁ f₂ b₂ d₂ e : σ₂ h : e ∈ f₂ b₂ right✝ : ReflTransGen (fun a b => b ∈ f₂ a) e d₂ ⊢ some d₁ = none [PROOFSTEP] cases b0.symm.trans h [GOAL] σ₁ : Type u_1 σ₂ : Type u_2 f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ a₂ b₂ : σ₂ h : f₂ a₂ = f₂ b₂ ⊢ FRespects f₂ tr a₂ none ↔ FRespects f₂ tr b₂ none [PROOFSTEP] unfold FRespects [GOAL] σ₁ : Type u_1 σ₂ : Type u_2 f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ a₂ b₂ : σ₂ h : f₂ a₂ = f₂ b₂ ⊢ (match none with | some b₁ => Reaches₁ f₂ a₂ (tr b₁) | none => f₂ a₂ = none) ↔ match none with | some b₁ => Reaches₁ f₂ b₂ (tr b₁) | none => f₂ b₂ = none [PROOFSTEP] rw [h] [GOAL] σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ a₁ : σ₁ ⊢ (∀ ⦃a₂ : σ₂⦄, (fun a b => tr a = b) a₁ a₂ → match f₁ a₁ with | some b₁ => ∃ b₂, (fun a b => tr a = b) b₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ | none => f₂ a₂ = none) ↔ FRespects f₂ tr (tr a₁) (f₁ a₁) [PROOFSTEP] cases f₁ a₁ [GOAL] case none σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ a₁ : σ₁ ⊢ (∀ ⦃a₂ : σ₂⦄, (fun a b => tr a = b) a₁ a₂ → match none with | some b₁ => ∃ b₂, (fun a b => tr a = b) b₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ | none => f₂ a₂ = none) ↔ FRespects f₂ tr (tr a₁) none [PROOFSTEP] simp only [FRespects, Respects, exists_eq_left', forall_eq'] [GOAL] case some σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ a₁ val✝ : σ₁ ⊢ (∀ ⦃a₂ : σ₂⦄, (fun a b => tr a = b) a₁ a₂ → match some val✝ with | some b₁ => ∃ b₂, (fun a b => tr a = b) b₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ | none => f₂ a₂ = none) ↔ FRespects f₂ tr (tr a₁) (some val✝) [PROOFSTEP] simp only [FRespects, Respects, exists_eq_left', forall_eq'] [GOAL] σ₁ σ₂ : Type u_1 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ H : Respects f₁ f₂ fun a b => tr a = b a₁ : σ₁ b₂ : σ₂ h : b₂ ∈ tr <$> eval f₁ a₁ ⊢ b₂ ∈ eval f₂ (tr a₁) [PROOFSTEP] rcases(Part.mem_map_iff _).1 h with ⟨b₁, ab, bb⟩ [GOAL] case intro.intro σ₁ σ₂ : Type u_1 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ H : Respects f₁ f₂ fun a b => tr a = b a₁ : σ₁ b₂ : σ₂ h : b₂ ∈ tr <$> eval f₁ a₁ b₁ : σ₁ ab : b₁ ∈ eval f₁ a₁ bb : tr b₁ = b₂ ⊢ b₂ ∈ eval f₂ (tr a₁) [PROOFSTEP] rcases tr_eval H rfl ab with ⟨_, rfl, h⟩ [GOAL] case intro.intro.intro.intro σ₁ σ₂ : Type u_1 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ H : Respects f₁ f₂ fun a b => tr a = b a₁ : σ₁ b₂ : σ₂ h✝ : b₂ ∈ tr <$> eval f₁ a₁ b₁ : σ₁ ab : b₁ ∈ eval f₁ a₁ bb : tr b₁ = b₂ h : tr b₁ ∈ eval f₂ (tr a₁) ⊢ b₂ ∈ eval f₂ (tr a₁) [PROOFSTEP] rwa [bb] at h [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ ⊢ Inhabited Machine₀ [PROOFSTEP] unfold Machine [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ ⊢ Inhabited (Λ → Γ → Option (Λ × Stmt₀)) [PROOFSTEP] infer_instance [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ S : Set Λ ss : Supports M S ⊢ ∀ {c c' : Cfg₀}, c' ∈ step M c → c.q ∈ S → c'.q ∈ S [PROOFSTEP] intro ⟨q, T⟩ c' h₁ h₂ [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ S : Set Λ ss : Supports M S q : Λ T : Tape Γ c' : Cfg₀ h₁ : c' ∈ step M { q := q, Tape := T } h₂ : { q := q, Tape := T }.q ∈ S ⊢ c'.q ∈ S [PROOFSTEP] rcases Option.map_eq_some'.1 h₁ with ⟨⟨q', a⟩, h, rfl⟩ [GOAL] case intro.mk.intro Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ S : Set Λ ss : Supports M S q : Λ T : Tape Γ h₂ : { q := q, Tape := T }.q ∈ S q' : Λ a : Stmt₀ h : M q T.head = some (q', a) h₁ : (fun x => match x with | (q', a) => { q := q', Tape := match a with | Stmt.move d => Tape.move d T | Stmt.write a => Tape.write a T }) (q', a) ∈ step M { q := q, Tape := T } ⊢ ((fun x => match x with | (q', a) => { q := q', Tape := match a with | Stmt.move d => Tape.move d T | Stmt.write a => Tape.write a T }) (q', a)).q ∈ S [PROOFSTEP] exact ss.2 h h₂ [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ ⊢ Supports M Set.univ [PROOFSTEP] constructor [GOAL] case left Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ ⊢ default ∈ Set.univ [PROOFSTEP] intros [GOAL] case right Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ ⊢ ∀ {q : Λ} {a : Γ} {q' : Λ} {s : Stmt₀}, (q', s) ∈ M q a → q ∈ Set.univ → q' ∈ Set.univ [PROOFSTEP] intros [GOAL] case left Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ ⊢ default ∈ Set.univ [PROOFSTEP] apply Set.mem_univ [GOAL] case right Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ q✝ : Λ a✝² : Γ q'✝ : Λ s✝ : Stmt₀ a✝¹ : (q'✝, s✝) ∈ M q✝ a✝² a✝ : q✝ ∈ Set.univ ⊢ q'✝ ∈ Set.univ [PROOFSTEP] apply Set.mem_univ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁ : Λ → Λ' g₂ : Λ' → Λ S : Set Λ f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (g₁ q) = q q : Λ T : Tape Γ h : { q := q, Tape := T }.q ∈ S ⊢ Option.map (Cfg.map f₁ g₁) (step M { q := q, Tape := T }) = step (map M f₁ f₂ g₁ g₂) (Cfg.map f₁ g₁ { q := q, Tape := T }) [PROOFSTEP] unfold step Machine.map Cfg.map [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁ : Λ → Λ' g₂ : Λ' → Λ S : Set Λ f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (g₁ q) = q q : Λ T : Tape Γ h : { q := q, Tape := T }.q ∈ S ⊢ Option.map (fun x => match x with | { q := q, Tape := T } => { q := g₁ q, Tape := Tape.map f₁ T }) (match { q := q, Tape := T } with | { q := q, Tape := T } => Option.map (fun x => match x with | (q', a) => { q := q', Tape := match a with | Stmt.move d => Tape.move d T | Stmt.write a => Tape.write a T }) (M q T.head)) = match match { q := q, Tape := T } with | { q := q, Tape := T } => { q := g₁ q, Tape := Tape.map f₁ T } with | { q := q, Tape := T } => Option.map (fun x => match x with | (q', a) => { q := q', Tape := match a with | Stmt.move d => Tape.move d T | Stmt.write a => Tape.write a T }) (match q, T.head with | q, l => Option.map (Prod.map g₁ (Stmt.map f₁)) (M (g₂ q) (PointedMap.f f₂ l))) [PROOFSTEP] simp only [Turing.Tape.map_fst, g₂₁ q h, f₂₁ _] [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁ : Λ → Λ' g₂ : Λ' → Λ S : Set Λ f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (g₁ q) = q q : Λ T : Tape Γ h : { q := q, Tape := T }.q ∈ S ⊢ Option.map (fun x => { q := g₁ x.q, Tape := Tape.map f₁ x.Tape }) (Option.map (fun x => { q := x.fst, Tape := match x.snd with | Stmt.move d => Tape.move d T | Stmt.write a => Tape.write a T }) (M q T.head)) = Option.map (fun x => { q := x.fst, Tape := match x.snd with | Stmt.move d => Tape.move d (Tape.map f₁ T) | Stmt.write a => Tape.write a (Tape.map f₁ T) }) (Option.map (Prod.map g₁ (Stmt.map f₁)) (M q T.head)) [PROOFSTEP] rcases M q T.1 with (_ | ⟨q', d | a⟩) [GOAL] case none Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁ : Λ → Λ' g₂ : Λ' → Λ S : Set Λ f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (g₁ q) = q q : Λ T : Tape Γ h : { q := q, Tape := T }.q ∈ S ⊢ Option.map (fun x => { q := g₁ x.q, Tape := Tape.map f₁ x.Tape }) (Option.map (fun x => { q := x.fst, Tape := match x.snd with | Stmt.move d => Tape.move d T | Stmt.write a => Tape.write a T }) none) = Option.map (fun x => { q := x.fst, Tape := match x.snd with | Stmt.move d => Tape.move d (Tape.map f₁ T) | Stmt.write a => Tape.write a (Tape.map f₁ T) }) (Option.map (Prod.map g₁ (Stmt.map f₁)) none) [PROOFSTEP] rfl [GOAL] case some.mk.move Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁ : Λ → Λ' g₂ : Λ' → Λ S : Set Λ f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (g₁ q) = q q : Λ T : Tape Γ h : { q := q, Tape := T }.q ∈ S q' : Λ d : Dir ⊢ Option.map (fun x => { q := g₁ x.q, Tape := Tape.map f₁ x.Tape }) (Option.map (fun x => { q := x.fst, Tape := match x.snd with | Stmt.move d => Tape.move d T | Stmt.write a => Tape.write a T }) (some (q', Stmt.move d))) = Option.map (fun x => { q := x.fst, Tape := match x.snd with | Stmt.move d => Tape.move d (Tape.map f₁ T) | Stmt.write a => Tape.write a (Tape.map f₁ T) }) (Option.map (Prod.map g₁ (Stmt.map f₁)) (some (q', Stmt.move d))) [PROOFSTEP] simp only [step, Cfg.map, Option.map_some', Tape.map_move f₁] [GOAL] case some.mk.move Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁ : Λ → Λ' g₂ : Λ' → Λ S : Set Λ f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (g₁ q) = q q : Λ T : Tape Γ h : { q := q, Tape := T }.q ∈ S q' : Λ d : Dir ⊢ some { q := g₁ q', Tape := Tape.move d (Tape.map f₁ T) } = some { q := (Prod.map g₁ (Stmt.map f₁) (q', Stmt.move d)).fst, Tape := match (Prod.map g₁ (Stmt.map f₁) (q', Stmt.move d)).snd with | Stmt.move d => Tape.move d (Tape.map f₁ T) | Stmt.write a => Tape.write a (Tape.map f₁ T) } [PROOFSTEP] rfl [GOAL] case some.mk.write Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁ : Λ → Λ' g₂ : Λ' → Λ S : Set Λ f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (g₁ q) = q q : Λ T : Tape Γ h : { q := q, Tape := T }.q ∈ S q' : Λ a : Γ ⊢ Option.map (fun x => { q := g₁ x.q, Tape := Tape.map f₁ x.Tape }) (Option.map (fun x => { q := x.fst, Tape := match x.snd with | Stmt.move d => Tape.move d T | Stmt.write a => Tape.write a T }) (some (q', Stmt.write a))) = Option.map (fun x => { q := x.fst, Tape := match x.snd with | Stmt.move d => Tape.move d (Tape.map f₁ T) | Stmt.write a => Tape.write a (Tape.map f₁ T) }) (Option.map (Prod.map g₁ (Stmt.map f₁)) (some (q', Stmt.write a))) [PROOFSTEP] simp only [step, Cfg.map, Option.map_some', Tape.map_write] [GOAL] case some.mk.write Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁ : Λ → Λ' g₂ : Λ' → Λ S : Set Λ f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (g₁ q) = q q : Λ T : Tape Γ h : { q := q, Tape := T }.q ∈ S q' : Λ a : Γ ⊢ some { q := g₁ q', Tape := Tape.write (PointedMap.f f₁ a) (Tape.map f₁ T) } = some { q := (Prod.map g₁ (Stmt.map f₁) (q', Stmt.write a)).fst, Tape := match (Prod.map g₁ (Stmt.map f₁) (q', Stmt.write a)).snd with | Stmt.move d => Tape.move d (Tape.map f₁ T) | Stmt.write a => Tape.write a (Tape.map f₁ T) } [PROOFSTEP] rfl [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁✝ : Λ → Λ' g₂✝ : Λ' → Λ g₁ : PointedMap Λ Λ' g₂ : Λ' → Λ S : Set Λ ss : Supports M S f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (PointedMap.f g₁ q) = q ⊢ Respects (step M) (step (map M f₁ f₂ g₁.f g₂)) fun a b => a.q ∈ S ∧ Cfg.map f₁ g₁.f a = b [PROOFSTEP] intro c _ ⟨cs, rfl⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁✝ : Λ → Λ' g₂✝ : Λ' → Λ g₁ : PointedMap Λ Λ' g₂ : Λ' → Λ S : Set Λ ss : Supports M S f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (PointedMap.f g₁ q) = q c : Cfg Γ Λ a₂✝ : Cfg Γ' Λ' cs : c.q ∈ S ⊢ match step M c with | some b₁ => ∃ b₂, (fun a b => a.q ∈ S ∧ Cfg.map f₁ g₁.f a = b) b₁ b₂ ∧ Reaches₁ (step (map M f₁ f₂ g₁.f g₂)) (Cfg.map f₁ g₁.f c) b₂ | none => step (map M f₁ f₂ g₁.f g₂) (Cfg.map f₁ g₁.f c) = none [PROOFSTEP] cases e : step M c [GOAL] case none Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁✝ : Λ → Λ' g₂✝ : Λ' → Λ g₁ : PointedMap Λ Λ' g₂ : Λ' → Λ S : Set Λ ss : Supports M S f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (PointedMap.f g₁ q) = q c : Cfg Γ Λ a₂✝ : Cfg Γ' Λ' cs : c.q ∈ S e : step M c = none ⊢ match none with | some b₁ => ∃ b₂, (fun a b => a.q ∈ S ∧ Cfg.map f₁ g₁.f a = b) b₁ b₂ ∧ Reaches₁ (step (map M f₁ f₂ g₁.f g₂)) (Cfg.map f₁ g₁.f c) b₂ | none => step (map M f₁ f₂ g₁.f g₂) (Cfg.map f₁ g₁.f c) = none [PROOFSTEP] rw [← M.map_step f₁ f₂ g₁ g₂ f₂₁ g₂₁ _ cs, e] [GOAL] case none Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁✝ : Λ → Λ' g₂✝ : Λ' → Λ g₁ : PointedMap Λ Λ' g₂ : Λ' → Λ S : Set Λ ss : Supports M S f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (PointedMap.f g₁ q) = q c : Cfg Γ Λ a₂✝ : Cfg Γ' Λ' cs : c.q ∈ S e : step M c = none ⊢ match none with | some b₁ => ∃ b₂, (fun a b => a.q ∈ S ∧ Cfg.map f₁ g₁.f a = b) b₁ b₂ ∧ Reaches₁ (step (map M f₁ f₂ g₁.f g₂)) (Cfg.map f₁ g₁.f c) b₂ | none => Option.map (Cfg.map f₁ g₁.f) none = none [PROOFSTEP] rfl [GOAL] case some Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁✝ : Λ → Λ' g₂✝ : Λ' → Λ g₁ : PointedMap Λ Λ' g₂ : Λ' → Λ S : Set Λ ss : Supports M S f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (PointedMap.f g₁ q) = q c : Cfg Γ Λ a₂✝ : Cfg Γ' Λ' cs : c.q ∈ S val✝ : Cfg Γ Λ e : step M c = some val✝ ⊢ match some val✝ with | some b₁ => ∃ b₂, (fun a b => a.q ∈ S ∧ Cfg.map f₁ g₁.f a = b) b₁ b₂ ∧ Reaches₁ (step (map M f₁ f₂ g₁.f g₂)) (Cfg.map f₁ g₁.f c) b₂ | none => step (map M f₁ f₂ g₁.f g₂) (Cfg.map f₁ g₁.f c) = none [PROOFSTEP] refine' ⟨_, ⟨step_supports M ss e cs, rfl⟩, TransGen.single _⟩ [GOAL] case some Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁✝ : Λ → Λ' g₂✝ : Λ' → Λ g₁ : PointedMap Λ Λ' g₂ : Λ' → Λ S : Set Λ ss : Supports M S f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (PointedMap.f g₁ q) = q c : Cfg Γ Λ a₂✝ : Cfg Γ' Λ' cs : c.q ∈ S val✝ : Cfg Γ Λ e : step M c = some val✝ ⊢ Cfg.map f₁ g₁.f val✝ ∈ step (map M f₁ f₂ g₁.f g₂) (Cfg.map f₁ g₁.f c) [PROOFSTEP] rw [← M.map_step f₁ f₂ g₁ g₂ f₂₁ g₂₁ _ cs, e] [GOAL] case some Γ : Type u_1 inst✝³ : Inhabited Γ Γ' : Type u_2 inst✝² : Inhabited Γ' Λ : Type u_3 inst✝¹ : Inhabited Λ Λ' : Type u_4 inst✝ : Inhabited Λ' M : Machine Γ Λ f₁ : PointedMap Γ Γ' f₂ : PointedMap Γ' Γ g₁✝ : Λ → Λ' g₂✝ : Λ' → Λ g₁ : PointedMap Λ Λ' g₂ : Λ' → Λ S : Set Λ ss : Supports M S f₂₁ : Function.RightInverse f₁.f f₂.f g₂₁ : ∀ (q : Λ), q ∈ S → g₂ (PointedMap.f g₁ q) = q c : Cfg Γ Λ a₂✝ : Cfg Γ' Λ' cs : c.q ∈ S val✝ : Cfg Γ Λ e : step M c = some val✝ ⊢ Cfg.map f₁ g₁.f val✝ ∈ Option.map (Cfg.map f₁ g₁.f) (some val✝) [PROOFSTEP] rfl [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q : Stmt₁ ⊢ q ∈ stmts₁ q [PROOFSTEP] cases q [GOAL] case move Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 a✝¹ : Dir a✝ : Stmt₁ ⊢ move a✝¹ a✝ ∈ stmts₁ (move a✝¹ a✝) [PROOFSTEP] simp only [stmts₁, Finset.mem_insert_self, Finset.mem_singleton_self] [GOAL] case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 a✝¹ : Γ → σ → Γ a✝ : Stmt₁ ⊢ write a✝¹ a✝ ∈ stmts₁ (write a✝¹ a✝) [PROOFSTEP] simp only [stmts₁, Finset.mem_insert_self, Finset.mem_singleton_self] [GOAL] case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 a✝¹ : Γ → σ → σ a✝ : Stmt₁ ⊢ load a✝¹ a✝ ∈ stmts₁ (load a✝¹ a✝) [PROOFSTEP] simp only [stmts₁, Finset.mem_insert_self, Finset.mem_singleton_self] [GOAL] case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ ⊢ branch a✝² a✝¹ a✝ ∈ stmts₁ (branch a✝² a✝¹ a✝) [PROOFSTEP] simp only [stmts₁, Finset.mem_insert_self, Finset.mem_singleton_self] [GOAL] case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 a✝ : Γ → σ → Λ ⊢ goto a✝ ∈ stmts₁ (goto a✝) [PROOFSTEP] simp only [stmts₁, Finset.mem_insert_self, Finset.mem_singleton_self] [GOAL] case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 ⊢ halt ∈ stmts₁ halt [PROOFSTEP] simp only [stmts₁, Finset.mem_insert_self, Finset.mem_singleton_self] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ ⊢ q₁ ∈ stmts₁ q₂ → stmts₁ q₁ ⊆ stmts₁ q₂ [PROOFSTEP] intro h₁₂ q₀ h₀₁ [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ ⊢ q₀ ∈ stmts₁ q₂ [PROOFSTEP] induction' q₂ with _ q IH _ q IH _ q IH [GOAL] case move Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Dir q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ (move a✝ q) ⊢ q₀ ∈ stmts₁ (move a✝ q) [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ (write a✝ q) ⊢ q₀ ∈ stmts₁ (write a✝ q) [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ (load a✝ q) ⊢ q₀ ∈ stmts₁ (load a✝ q) [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ ∈ stmts₁ (branch a✝² a✝¹ a✝) ⊢ q₀ ∈ stmts₁ (branch a✝² a✝¹ a✝) [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Λ h₁₂ : q₁ ∈ stmts₁ (goto a✝) ⊢ q₀ ∈ stmts₁ (goto a✝) [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ ∈ stmts₁ halt ⊢ q₀ ∈ stmts₁ halt [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case move Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Dir q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ insert (move a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (move a✝ q) (stmts₁ q) [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h₁₂ [GOAL] case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ insert (write a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (write a✝ q) (stmts₁ q) [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h₁₂ [GOAL] case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ insert (load a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h₁₂ [GOAL] case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h₁₂ [GOAL] case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Λ h₁₂ : q₁ ∈ {goto a✝} ⊢ q₀ ∈ {goto a✝} [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h₁₂ [GOAL] case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ ∈ {halt} ⊢ q₀ ∈ {halt} [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h₁₂ [GOAL] case move Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Dir q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = move a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (move a✝ q) (stmts₁ q) case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = write a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (write a✝ q) (stmts₁ q) case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] iterate 3 rcases h₁₂ with (rfl | h₁₂) · unfold stmts₁ at h₀₁ exact h₀₁ · exact Finset.mem_insert_of_mem (IH h₁₂) [GOAL] case move Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Dir q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = move a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (move a✝ q) (stmts₁ q) case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = write a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (write a✝ q) (stmts₁ q) case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] rcases h₁₂ with (rfl | h₁₂) [GOAL] case move.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ a✝ : Dir q : Stmt₁ h₁₂ : move a✝ q ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (move a✝ q) IH : move a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q ⊢ q₀ ∈ insert (move a✝ q) (stmts₁ q) [PROOFSTEP] unfold stmts₁ at h₀₁ [GOAL] case move.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ a✝ : Dir q : Stmt₁ h₁₂ : move a✝ q ∈ stmts₁ q₂ IH : move a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q h₀₁ : q₀ ∈ insert (move a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (move a✝ q) (stmts₁ q) [PROOFSTEP] exact h₀₁ [GOAL] case move.inr Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Dir q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (move a✝ q) (stmts₁ q) [PROOFSTEP] exact Finset.mem_insert_of_mem (IH h₁₂) [GOAL] case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = write a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (write a✝ q) (stmts₁ q) case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] rcases h₁₂ with (rfl | h₁₂) [GOAL] case write.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ a✝ : Γ → σ → Γ q : Stmt₁ h₁₂ : write a✝ q ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (write a✝ q) IH : write a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q ⊢ q₀ ∈ insert (write a✝ q) (stmts₁ q) [PROOFSTEP] unfold stmts₁ at h₀₁ [GOAL] case write.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ a✝ : Γ → σ → Γ q : Stmt₁ h₁₂ : write a✝ q ∈ stmts₁ q₂ IH : write a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q h₀₁ : q₀ ∈ insert (write a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (write a✝ q) (stmts₁ q) [PROOFSTEP] exact h₀₁ [GOAL] case write.inr Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (write a✝ q) (stmts₁ q) [PROOFSTEP] exact Finset.mem_insert_of_mem (IH h₁₂) [GOAL] case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] rcases h₁₂ with (rfl | h₁₂) [GOAL] case load.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ a✝ : Γ → σ → σ q : Stmt₁ h₁₂ : load a✝ q ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (load a✝ q) IH : load a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) [PROOFSTEP] unfold stmts₁ at h₀₁ [GOAL] case load.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ a✝ : Γ → σ → σ q : Stmt₁ h₁₂ : load a✝ q ∈ stmts₁ q₂ IH : load a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q h₀₁ : q₀ ∈ insert (load a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) [PROOFSTEP] exact h₀₁ [GOAL] case load.inr Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) [PROOFSTEP] exact Finset.mem_insert_of_mem (IH h₁₂) [GOAL] case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => rcases h₁₂ with (rfl | h₁₂ | h₁₂) · unfold stmts₁ at h₀₁ exact h₀₁ · exact Finset.mem_insert_of_mem (Finset.mem_union_left _ <| IH₁ h₁₂) · exact Finset.mem_insert_of_mem (Finset.mem_union_right _ <| IH₂ h₁₂) [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁✝ q₂✝ : Stmt₁ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ = branch p q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => rcases h₁₂ with (rfl | h₁₂ | h₁₂) · unfold stmts₁ at h₀₁ exact h₀₁ · exact Finset.mem_insert_of_mem (Finset.mem_union_left _ <| IH₁ h₁₂) · exact Finset.mem_insert_of_mem (Finset.mem_union_right _ <| IH₂ h₁₂) [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁✝ q₂✝ : Stmt₁ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ = branch p q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] rcases h₁₂ with (rfl | h₁₂ | h₁₂) [GOAL] case inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂✝ q₀ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ h₁₂ : branch p q₁ q₂ ∈ stmts₁ q₂✝ h₀₁ : q₀ ∈ stmts₁ (branch p q₁ q₂) IH₁ : branch p q₁ q₂ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : branch p q₁ q₂ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] unfold stmts₁ at h₀₁ [GOAL] case inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂✝ q₀ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ h₁₂ : branch p q₁ q₂ ∈ stmts₁ q₂✝ IH₁ : branch p q₁ q₂ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : branch p q₁ q₂ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₀₁ : q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ⊢ q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] exact h₀₁ [GOAL] case inr.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁✝ q₂✝ : Stmt₁ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ ∈ stmts₁ q₁ ⊢ q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] exact Finset.mem_insert_of_mem (Finset.mem_union_left _ <| IH₁ h₁₂) [GOAL] case inr.inr Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁✝ q₂✝ : Stmt₁ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] exact Finset.mem_insert_of_mem (Finset.mem_union_right _ <| IH₂ h₁₂) [GOAL] case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] case goto l => subst h₁₂; exact h₀₁ [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ l : Γ → σ → Λ h₁₂ : q₁ = goto l ⊢ q₀ ∈ {goto l} [PROOFSTEP] case goto l => subst h₁₂; exact h₀₁ [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ l : Γ → σ → Λ h₁₂ : q₁ = goto l ⊢ q₀ ∈ {goto l} [PROOFSTEP] subst h₁₂ [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ l : Γ → σ → Λ h₁₂ : goto l ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (goto l) ⊢ q₀ ∈ {goto l} [PROOFSTEP] exact h₀₁ [GOAL] case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] case halt => subst h₁₂; exact h₀₁ [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] case halt => subst h₁₂; exact h₀₁ [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] subst h₁₂ [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ h₁₂ : halt ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ halt ⊢ q₀ ∈ {halt} [PROOFSTEP] exact h₀₁ [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h : q₁ ∈ stmts₁ q₂ hs : SupportsStmt S q₂ ⊢ SupportsStmt S q₁ [PROOFSTEP] induction' q₂ with _ q IH _ q IH _ q IH [GOAL] case move Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Dir q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ h : q₁ ∈ stmts₁ (move a✝ q) hs : SupportsStmt S (move a✝ q) ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ h : q₁ ∈ stmts₁ (write a✝ q) hs : SupportsStmt S (write a✝ q) ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ h : q₁ ∈ stmts₁ (load a✝ q) hs : SupportsStmt S (load a✝ q) ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ h : q₁ ∈ stmts₁ (branch a✝² a✝¹ a✝) hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Λ h : q₁ ∈ stmts₁ (goto a✝) hs : SupportsStmt S (goto a✝) ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ h : q₁ ∈ stmts₁ halt hs : SupportsStmt S halt ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case move Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Dir q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = move a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = write a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), a✝ a v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] iterate 3 rcases h with (rfl | h) <;> [exact hs; exact IH h hs] [GOAL] case move Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Dir q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = move a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = write a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), a✝ a v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) <;> [exact hs; exact IH h hs] [GOAL] case move Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Dir q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = move a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) [GOAL] case move.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₂ : Stmt₁ hs✝ : SupportsStmt S q₂ a✝ : Dir q : Stmt₁ hs : SupportsStmt S q h : move a✝ q ∈ stmts₁ q₂ IH : move a✝ q ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S (move a✝ q) ⊢ SupportsStmt S (move a✝ q) [PROOFSTEP] exact hs [GOAL] case move.inr Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Dir q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] exact IH h hs [GOAL] case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = write a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), a✝ a v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) <;> [exact hs; exact IH h hs] [GOAL] case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = write a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) [GOAL] case write.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₂ : Stmt₁ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Γ q : Stmt₁ hs : SupportsStmt S q h : write a✝ q ∈ stmts₁ q₂ IH : write a✝ q ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S (write a✝ q) ⊢ SupportsStmt S (write a✝ q) [PROOFSTEP] exact hs [GOAL] case write.inr Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] exact IH h hs [GOAL] case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), a✝ a v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) <;> [exact hs; exact IH h hs] [GOAL] case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) [GOAL] case load.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₂ : Stmt₁ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → σ q : Stmt₁ hs : SupportsStmt S q h : load a✝ q ∈ stmts₁ q₂ IH : load a✝ q ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S (load a✝ q) ⊢ SupportsStmt S (load a✝ q) [PROOFSTEP] exact hs [GOAL] case load.inr Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] exact IH h hs [GOAL] case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), a✝ a v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => rcases h with (rfl | h | h); exacts [hs, IH₁ h hs.1, IH₂ h hs.2] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁✝ q₂✝ : Stmt₁ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ = branch p q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ SupportsStmt S q₁✝ [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => rcases h with (rfl | h | h); exacts [hs, IH₁ h hs.1, IH₂ h hs.2] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁✝ q₂✝ : Stmt₁ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ = branch p q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ SupportsStmt S q₁✝ [PROOFSTEP] rcases h with (rfl | h | h) [GOAL] case inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₂✝ : Stmt₁ hs✝ : SupportsStmt S q₂✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : branch p q₁ q₂ ∈ stmts₁ q₂✝ IH₁ : branch p q₁ q₂ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S (branch p q₁ q₂) IH₂ : branch p q₁ q₂ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S (branch p q₁ q₂) ⊢ SupportsStmt S (branch p q₁ q₂) case inr.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁✝ q₂✝ : Stmt₁ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ ∈ stmts₁ q₁ ⊢ SupportsStmt S q₁✝ case inr.inr Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁✝ q₂✝ : Stmt₁ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ ∈ stmts₁ q₂ ⊢ SupportsStmt S q₁✝ [PROOFSTEP] exacts [hs, IH₁ h hs.1, IH₂ h hs.2] [GOAL] case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), a✝ a v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] case goto l => subst h; exact hs [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ l : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), l a v ∈ S h : q₁ = goto l ⊢ SupportsStmt S q₁ [PROOFSTEP] case goto l => subst h; exact hs [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ l : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), l a v ∈ S h : q₁ = goto l ⊢ SupportsStmt S q₁ [PROOFSTEP] subst h [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₂ : Stmt₁ hs✝ : SupportsStmt S q₂ l : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), l a v ∈ S h : goto l ∈ stmts₁ q₂ ⊢ SupportsStmt S (goto l) [PROOFSTEP] exact hs [GOAL] case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] case halt => subst h; trivial [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] case halt => subst h; trivial [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] subst h [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₂ : Stmt₁ hs✝ : SupportsStmt S q₂ hs : True h : halt ∈ stmts₁ q₂ ⊢ SupportsStmt S halt [PROOFSTEP] trivial [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 M : Λ → Stmt₁ S : Finset Λ q₁ q₂ : Stmt₁ h₁ : q₁ ∈ stmts₁ q₂ ⊢ some q₂ ∈ stmts M S → some q₁ ∈ stmts M S [PROOFSTEP] simp only [stmts, Finset.mem_insertNone, Finset.mem_biUnion, Option.mem_def, Option.some.injEq, forall_eq', exists_imp, and_imp] [GOAL] Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 M : Λ → Stmt₁ S : Finset Λ q₁ q₂ : Stmt₁ h₁ : q₁ ∈ stmts₁ q₂ ⊢ ∀ (x : Λ), x ∈ S → q₂ ∈ stmts₁ (M x) → ∃ a, a ∈ S ∧ q₁ ∈ stmts₁ (M a) [PROOFSTEP] exact fun l ls h₂ ↦ ⟨_, ls, stmts₁_trans h₂ h₁⟩ [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ q : Stmt₁ ss : Supports M S ⊢ some q ∈ stmts M S → SupportsStmt S q [PROOFSTEP] simp only [stmts, Finset.mem_insertNone, Finset.mem_biUnion, Option.mem_def, Option.some.injEq, forall_eq', exists_imp, and_imp] [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ q : Stmt₁ ss : Supports M S ⊢ ∀ (x : Λ), x ∈ S → q ∈ stmts₁ (M x) → SupportsStmt S q [PROOFSTEP] exact fun l ls h ↦ stmts₁_supportsStmt_mono h (ss.2 _ ls) [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : Tape Γ c' : Cfg₁ h₁ : c' ∈ step M { l := some l₁, var := v, Tape := T } h₂ : { l := some l₁, var := v, Tape := T }.l ∈ ↑Finset.insertNone S ⊢ c'.l ∈ ↑Finset.insertNone S [PROOFSTEP] replace h₂ := ss.2 _ (Finset.some_mem_insertNone.1 h₂) [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : Tape Γ c' : Cfg₁ h₁ : c' ∈ step M { l := some l₁, var := v, Tape := T } h₂ : SupportsStmt S (M l₁) ⊢ c'.l ∈ ↑Finset.insertNone S [PROOFSTEP] simp only [step, Option.mem_def, Option.some.injEq] at h₁ [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : Tape Γ c' : Cfg₁ h₂ : SupportsStmt S (M l₁) h₁ : stepAux (M l₁) v T = c' ⊢ c'.l ∈ ↑Finset.insertNone S [PROOFSTEP] subst c' [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : Tape Γ h₂ : SupportsStmt S (M l₁) ⊢ (stepAux (M l₁) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] revert h₂ [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : Tape Γ ⊢ SupportsStmt S (M l₁) → (stepAux (M l₁) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] induction' M l₁ with _ q IH _ q IH _ q IH generalizing v T [GOAL] case move Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Dir q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ ⊢ SupportsStmt S (move a✝ q) → (stepAux (move a✝ q) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case write Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ ⊢ SupportsStmt S (write a✝ q) → (stepAux (write a✝ q) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case load Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ ⊢ SupportsStmt S (load a✝ q) → (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case branch Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ ⊢ SupportsStmt S (branch a✝² a✝¹ a✝) → (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case goto Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ ⊢ SupportsStmt S (goto a✝) → (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ ⊢ SupportsStmt S halt → (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case move Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Dir q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (move a✝ q) ⊢ (stepAux (move a✝ q) v T).l ∈ ↑Finset.insertNone S case write Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (write a✝ q) ⊢ (stepAux (write a✝ q) v T).l ∈ ↑Finset.insertNone S case load Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] iterate 3 exact IH _ _ hs [GOAL] case move Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Dir q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (move a✝ q) ⊢ (stepAux (move a✝ q) v T).l ∈ ↑Finset.insertNone S case write Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (write a✝ q) ⊢ (stepAux (write a✝ q) v T).l ∈ ↑Finset.insertNone S case load Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact IH _ _ hs [GOAL] case write Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (write a✝ q) ⊢ (stepAux (write a✝ q) v T).l ∈ ↑Finset.insertNone S case load Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact IH _ _ hs [GOAL] case load Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact IH _ _ hs [GOAL] case branch Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case branch p q₁' q₂' IH₁ IH₂ => unfold stepAux; cases p T.1 v · exact IH₂ _ _ hs.2 · exact IH₁ _ _ hs.1 [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ p : Γ → σ → Bool q₁' q₂' : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch p q₁' q₂') ⊢ (stepAux (branch p q₁' q₂') v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case branch p q₁' q₂' IH₁ IH₂ => unfold stepAux; cases p T.1 v · exact IH₂ _ _ hs.2 · exact IH₁ _ _ hs.1 [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ p : Γ → σ → Bool q₁' q₂' : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch p q₁' q₂') ⊢ (stepAux (branch p q₁' q₂') v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] unfold stepAux [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ p : Γ → σ → Bool q₁' q₂' : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif p T.head v then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] cases p T.1 v [GOAL] case false Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ p : Γ → σ → Bool q₁' q₂' : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif false then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact IH₂ _ _ hs.2 [GOAL] case true Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ p : Γ → σ → Bool q₁' q₂' : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif true then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact IH₁ _ _ hs.1 [GOAL] case goto Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case goto => exact Finset.some_mem_insertNone.2 (hs _ _) [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case goto => exact Finset.some_mem_insertNone.2 (hs _ _) [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact Finset.some_mem_insertNone.2 (hs _ _) [GOAL] case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case halt => apply Multiset.mem_cons_self [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case halt => apply Multiset.mem_cons_self [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] apply Multiset.mem_cons_self [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ l₁ : Option Λ v : σ T : Tape Γ ⊢ FRespects (TM0.step (tr M)) (fun c₁ => trCfg M c₁) (trCfg M { l := l₁, var := v, Tape := T }) (TM1.step M { l := l₁, var := v, Tape := T }) [PROOFSTEP] cases' l₁ with l₁ [GOAL] case none Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v : σ T : Tape Γ ⊢ FRespects (TM0.step (tr M)) (fun c₁ => trCfg M c₁) (trCfg M { l := none, var := v, Tape := T }) (TM1.step M { l := none, var := v, Tape := T }) [PROOFSTEP] exact rfl [GOAL] case some Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v : σ T : Tape Γ l₁ : Λ ⊢ FRespects (TM0.step (tr M)) (fun c₁ => trCfg M c₁) (trCfg M { l := some l₁, var := v, Tape := T }) (TM1.step M { l := some l₁, var := v, Tape := T }) [PROOFSTEP] simp only [trCfg, TM1.step, FRespects, Option.map] [GOAL] case some Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v : σ T : Tape Γ l₁ : Λ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (M l₁), v), Tape := T } { q := (match (TM1.stepAux (M l₁) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (M l₁) v T).var), Tape := (TM1.stepAux (M l₁) v T).Tape } [PROOFSTEP] induction' M l₁ with _ q IH _ q IH _ q IH generalizing v T [GOAL] case some.move Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Dir q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.move a✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.move a✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.move a✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.move a✝ q) v T).Tape } case some.write Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.write a✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.write a✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.write a✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.write a✝ q) v T).Tape } case some.load Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.load a✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.load a✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.load a✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.load a✝ q) v T).Tape } case some.branch Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some a✝¹, v), Tape := T } { q := (match (TM1.stepAux a✝¹ v T).l with | some x => some (M x) | none => none, (TM1.stepAux a✝¹ v T).var), Tape := (TM1.stepAux a✝¹ v T).Tape } a_ih✝ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some a✝, v), Tape := T } { q := (match (TM1.stepAux a✝ v T).l with | some x => some (M x) | none => none, (TM1.stepAux a✝ v T).var), Tape := (TM1.stepAux a✝ v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.branch a✝² a✝¹ a✝), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).var), Tape := (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).Tape } case some.goto Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Γ → σ → Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.goto a✝), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.goto a✝) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.goto a✝) v T).var), Tape := (TM1.stepAux (TM1.Stmt.goto a✝) v T).Tape } case some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some TM1.Stmt.halt, v), Tape := T } { q := (match (TM1.stepAux TM1.Stmt.halt v T).l with | some x => some (M x) | none => none, (TM1.stepAux TM1.Stmt.halt v T).var), Tape := (TM1.stepAux TM1.Stmt.halt v T).Tape } [PROOFSTEP] case move d q IH => exact TransGen.head rfl (IH _ _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ d : σ q✝ : Tape Γ l₁ : Λ IH✝ : Dir q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.move IH✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.move IH✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.move IH✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.move IH✝ q) v T).Tape } [PROOFSTEP] case move d q IH => exact TransGen.head rfl (IH _ _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ d : σ q✝ : Tape Γ l₁ : Λ IH✝ : Dir q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.move IH✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.move IH✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.move IH✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.move IH✝ q) v T).Tape } [PROOFSTEP] exact TransGen.head rfl (IH _ _) [GOAL] case some.write Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.write a✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.write a✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.write a✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.write a✝ q) v T).Tape } case some.load Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.load a✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.load a✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.load a✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.load a✝ q) v T).Tape } case some.branch Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some a✝¹, v), Tape := T } { q := (match (TM1.stepAux a✝¹ v T).l with | some x => some (M x) | none => none, (TM1.stepAux a✝¹ v T).var), Tape := (TM1.stepAux a✝¹ v T).Tape } a_ih✝ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some a✝, v), Tape := T } { q := (match (TM1.stepAux a✝ v T).l with | some x => some (M x) | none => none, (TM1.stepAux a✝ v T).var), Tape := (TM1.stepAux a✝ v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.branch a✝² a✝¹ a✝), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).var), Tape := (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).Tape } case some.goto Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Γ → σ → Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.goto a✝), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.goto a✝) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.goto a✝) v T).var), Tape := (TM1.stepAux (TM1.Stmt.goto a✝) v T).Tape } case some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some TM1.Stmt.halt, v), Tape := T } { q := (match (TM1.stepAux TM1.Stmt.halt v T).l with | some x => some (M x) | none => none, (TM1.stepAux TM1.Stmt.halt v T).var), Tape := (TM1.stepAux TM1.Stmt.halt v T).Tape } [PROOFSTEP] case write a q IH => exact TransGen.head rfl (IH _ _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ a : σ q✝ : Tape Γ l₁ : Λ IH✝ : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.write IH✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.write IH✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.write IH✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.write IH✝ q) v T).Tape } [PROOFSTEP] case write a q IH => exact TransGen.head rfl (IH _ _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ a : σ q✝ : Tape Γ l₁ : Λ IH✝ : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.write IH✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.write IH✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.write IH✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.write IH✝ q) v T).Tape } [PROOFSTEP] exact TransGen.head rfl (IH _ _) [GOAL] case some.load Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.load a✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.load a✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.load a✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.load a✝ q) v T).Tape } case some.branch Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some a✝¹, v), Tape := T } { q := (match (TM1.stepAux a✝¹ v T).l with | some x => some (M x) | none => none, (TM1.stepAux a✝¹ v T).var), Tape := (TM1.stepAux a✝¹ v T).Tape } a_ih✝ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some a✝, v), Tape := T } { q := (match (TM1.stepAux a✝ v T).l with | some x => some (M x) | none => none, (TM1.stepAux a✝ v T).var), Tape := (TM1.stepAux a✝ v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.branch a✝² a✝¹ a✝), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).var), Tape := (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).Tape } case some.goto Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Γ → σ → Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.goto a✝), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.goto a✝) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.goto a✝) v T).var), Tape := (TM1.stepAux (TM1.Stmt.goto a✝) v T).Tape } case some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some TM1.Stmt.halt, v), Tape := T } { q := (match (TM1.stepAux TM1.Stmt.halt v T).l with | some x => some (M x) | none => none, (TM1.stepAux TM1.Stmt.halt v T).var), Tape := (TM1.stepAux TM1.Stmt.halt v T).Tape } [PROOFSTEP] case load a q IH => exact (reaches₁_eq (by rfl)).2 (IH _ _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ a : σ q✝ : Tape Γ l₁ : Λ IH✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.load IH✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.load IH✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.load IH✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.load IH✝ q) v T).Tape } [PROOFSTEP] case load a q IH => exact (reaches₁_eq (by rfl)).2 (IH _ _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ a : σ q✝ : Tape Γ l₁ : Λ IH✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.load IH✝ q), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.load IH✝ q) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.load IH✝ q) v T).var), Tape := (TM1.stepAux (TM1.Stmt.load IH✝ q) v T).Tape } [PROOFSTEP] exact (reaches₁_eq (by rfl)).2 (IH _ _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ a : σ q✝ : Tape Γ l₁ : Λ IH✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q, v), Tape := T } { q := (match (TM1.stepAux q v T).l with | some x => some (M x) | none => none, (TM1.stepAux q v T).var), Tape := (TM1.stepAux q v T).Tape } v : σ T : Tape Γ ⊢ TM0.step (tr M) { q := (some (TM1.Stmt.load IH✝ q), v), Tape := T } = TM0.step (tr M) { q := (some q, IH✝ T.head v), Tape := T } [PROOFSTEP] rfl [GOAL] case some.branch Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some a✝¹, v), Tape := T } { q := (match (TM1.stepAux a✝¹ v T).l with | some x => some (M x) | none => none, (TM1.stepAux a✝¹ v T).var), Tape := (TM1.stepAux a✝¹ v T).Tape } a_ih✝ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some a✝, v), Tape := T } { q := (match (TM1.stepAux a✝ v T).l with | some x => some (M x) | none => none, (TM1.stepAux a✝ v T).var), Tape := (TM1.stepAux a✝ v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.branch a✝² a✝¹ a✝), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).var), Tape := (TM1.stepAux (TM1.Stmt.branch a✝² a✝¹ a✝) v T).Tape } case some.goto Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Γ → σ → Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.goto a✝), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.goto a✝) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.goto a✝) v T).var), Tape := (TM1.stepAux (TM1.Stmt.goto a✝) v T).Tape } case some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some TM1.Stmt.halt, v), Tape := T } { q := (match (TM1.stepAux TM1.Stmt.halt v T).l with | some x => some (M x) | none => none, (TM1.stepAux TM1.Stmt.halt v T).var), Tape := (TM1.stepAux TM1.Stmt.halt v T).Tape } [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => unfold TM1.stepAux; cases e : p T.1 v · exact (reaches₁_eq (by simp only [TM0.step, tr, trAux, e]; rfl)).2 (IH₂ _ _) · exact (reaches₁_eq (by simp only [TM0.step, tr, trAux, e]; rfl)).2 (IH₁ _ _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₁, v), Tape := T } { q := (match (TM1.stepAux q₁ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₁ v T).var), Tape := (TM1.stepAux q₁ v T).Tape } IH₂ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₂, v), Tape := T } { q := (match (TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₂ v T).var), Tape := (TM1.stepAux q₂ v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.branch p q₁ q₂), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.branch p q₁ q₂) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.branch p q₁ q₂) v T).var), Tape := (TM1.stepAux (TM1.Stmt.branch p q₁ q₂) v T).Tape } [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => unfold TM1.stepAux; cases e : p T.1 v · exact (reaches₁_eq (by simp only [TM0.step, tr, trAux, e]; rfl)).2 (IH₂ _ _) · exact (reaches₁_eq (by simp only [TM0.step, tr, trAux, e]; rfl)).2 (IH₁ _ _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₁, v), Tape := T } { q := (match (TM1.stepAux q₁ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₁ v T).var), Tape := (TM1.stepAux q₁ v T).Tape } IH₂ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₂, v), Tape := T } { q := (match (TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₂ v T).var), Tape := (TM1.stepAux q₂ v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.branch p q₁ q₂), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.branch p q₁ q₂) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.branch p q₁ q₂) v T).var), Tape := (TM1.stepAux (TM1.Stmt.branch p q₁ q₂) v T).Tape } [PROOFSTEP] unfold TM1.stepAux [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₁, v), Tape := T } { q := (match (TM1.stepAux q₁ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₁ v T).var), Tape := (TM1.stepAux q₁ v T).Tape } IH₂ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₂, v), Tape := T } { q := (match (TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₂ v T).var), Tape := (TM1.stepAux q₂ v T).Tape } v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.branch p q₁ q₂), v), Tape := T } { q := (match (bif p T.head v then TM1.stepAux q₁ v T else TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (bif p T.head v then TM1.stepAux q₁ v T else TM1.stepAux q₂ v T).var), Tape := (bif p T.head v then TM1.stepAux q₁ v T else TM1.stepAux q₂ v T).Tape } [PROOFSTEP] cases e : p T.1 v [GOAL] case false Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₁, v), Tape := T } { q := (match (TM1.stepAux q₁ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₁ v T).var), Tape := (TM1.stepAux q₁ v T).Tape } IH₂ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₂, v), Tape := T } { q := (match (TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₂ v T).var), Tape := (TM1.stepAux q₂ v T).Tape } v : σ T : Tape Γ e : p T.head v = false ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.branch p q₁ q₂), v), Tape := T } { q := (match (bif false then TM1.stepAux q₁ v T else TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (bif false then TM1.stepAux q₁ v T else TM1.stepAux q₂ v T).var), Tape := (bif false then TM1.stepAux q₁ v T else TM1.stepAux q₂ v T).Tape } [PROOFSTEP] exact (reaches₁_eq (by simp only [TM0.step, tr, trAux, e]; rfl)).2 (IH₂ _ _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₁, v), Tape := T } { q := (match (TM1.stepAux q₁ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₁ v T).var), Tape := (TM1.stepAux q₁ v T).Tape } IH₂ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₂, v), Tape := T } { q := (match (TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₂ v T).var), Tape := (TM1.stepAux q₂ v T).Tape } v : σ T : Tape Γ e : p T.head v = false ⊢ TM0.step (tr M) { q := (some (TM1.Stmt.branch p q₁ q₂), v), Tape := T } = TM0.step (tr M) { q := (some q₂, v), Tape := T } [PROOFSTEP] simp only [TM0.step, tr, trAux, e] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₁, v), Tape := T } { q := (match (TM1.stepAux q₁ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₁ v T).var), Tape := (TM1.stepAux q₁ v T).Tape } IH₂ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₂, v), Tape := T } { q := (match (TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₂ v T).var), Tape := (TM1.stepAux q₂ v T).Tape } v : σ T : Tape Γ e : p T.head v = false ⊢ Option.map (fun x => { q := x.fst, Tape := match x.snd with | move d => Tape.move d T | write a => Tape.write a T }) (some (bif false then trAux M T.head q₁ v else trAux M T.head q₂ v)) = Option.map (fun x => { q := x.fst, Tape := match x.snd with | move d => Tape.move d T | write a => Tape.write a T }) (some (trAux M T.head q₂ v)) [PROOFSTEP] rfl [GOAL] case true Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₁, v), Tape := T } { q := (match (TM1.stepAux q₁ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₁ v T).var), Tape := (TM1.stepAux q₁ v T).Tape } IH₂ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₂, v), Tape := T } { q := (match (TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₂ v T).var), Tape := (TM1.stepAux q₂ v T).Tape } v : σ T : Tape Γ e : p T.head v = true ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.branch p q₁ q₂), v), Tape := T } { q := (match (bif true then TM1.stepAux q₁ v T else TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (bif true then TM1.stepAux q₁ v T else TM1.stepAux q₂ v T).var), Tape := (bif true then TM1.stepAux q₁ v T else TM1.stepAux q₂ v T).Tape } [PROOFSTEP] exact (reaches₁_eq (by simp only [TM0.step, tr, trAux, e]; rfl)).2 (IH₁ _ _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₁, v), Tape := T } { q := (match (TM1.stepAux q₁ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₁ v T).var), Tape := (TM1.stepAux q₁ v T).Tape } IH₂ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₂, v), Tape := T } { q := (match (TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₂ v T).var), Tape := (TM1.stepAux q₂ v T).Tape } v : σ T : Tape Γ e : p T.head v = true ⊢ TM0.step (tr M) { q := (some (TM1.Stmt.branch p q₁ q₂), v), Tape := T } = TM0.step (tr M) { q := (some q₁, v), Tape := T } [PROOFSTEP] simp only [TM0.step, tr, trAux, e] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₁, v), Tape := T } { q := (match (TM1.stepAux q₁ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₁ v T).var), Tape := (TM1.stepAux q₁ v T).Tape } IH₂ : ∀ (v : σ) (T : Tape Γ), Reaches₁ (TM0.step (tr M)) { q := (some q₂, v), Tape := T } { q := (match (TM1.stepAux q₂ v T).l with | some x => some (M x) | none => none, (TM1.stepAux q₂ v T).var), Tape := (TM1.stepAux q₂ v T).Tape } v : σ T : Tape Γ e : p T.head v = true ⊢ Option.map (fun x => { q := x.fst, Tape := match x.snd with | move d => Tape.move d T | write a => Tape.write a T }) (some (bif true then trAux M T.head q₁ v else trAux M T.head q₂ v)) = Option.map (fun x => { q := x.fst, Tape := match x.snd with | move d => Tape.move d T | write a => Tape.write a T }) (some (trAux M T.head q₁ v)) [PROOFSTEP] rfl [GOAL] case some.goto Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Γ → σ → Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.goto a✝), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.goto a✝) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.goto a✝) v T).var), Tape := (TM1.stepAux (TM1.Stmt.goto a✝) v T).Tape } case some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some TM1.Stmt.halt, v), Tape := T } { q := (match (TM1.stepAux TM1.Stmt.halt v T).l with | some x => some (M x) | none => none, (TM1.stepAux TM1.Stmt.halt v T).var), Tape := (TM1.stepAux TM1.Stmt.halt v T).Tape } [PROOFSTEP] iterate 2 exact TransGen.single (congr_arg some (congr (congr_arg TM0.Cfg.mk rfl) (Tape.write_self T))) [GOAL] case some.goto Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ a✝ : Γ → σ → Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some (TM1.Stmt.goto a✝), v), Tape := T } { q := (match (TM1.stepAux (TM1.Stmt.goto a✝) v T).l with | some x => some (M x) | none => none, (TM1.stepAux (TM1.Stmt.goto a✝) v T).var), Tape := (TM1.stepAux (TM1.Stmt.goto a✝) v T).Tape } case some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some TM1.Stmt.halt, v), Tape := T } { q := (match (TM1.stepAux TM1.Stmt.halt v T).l with | some x => some (M x) | none => none, (TM1.stepAux TM1.Stmt.halt v T).var), Tape := (TM1.stepAux TM1.Stmt.halt v T).Tape } [PROOFSTEP] exact TransGen.single (congr_arg some (congr (congr_arg TM0.Cfg.mk rfl) (Tape.write_self T))) [GOAL] case some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ x✝ : Cfg₁ v✝ : σ T✝ : Tape Γ l₁ : Λ v : σ T : Tape Γ ⊢ Reaches₁ (TM0.step (tr M)) { q := (some TM1.Stmt.halt, v), Tape := T } { q := (match (TM1.stepAux TM1.Stmt.halt v T).l with | some x => some (M x) | none => none, (TM1.stepAux TM1.Stmt.halt v T).var), Tape := (TM1.stepAux TM1.Stmt.halt v T).Tape } [PROOFSTEP] exact TransGen.single (congr_arg some (congr (congr_arg TM0.Cfg.mk rfl) (Tape.write_self T))) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ l : List Γ ⊢ Part.map (fun c => Tape.right₀ c.Tape) ((fun a => trCfg M a) <$> eval (TM1.step M) { l := some default, var := default, Tape := Tape.mk₁ l }) = TM1.eval M l [PROOFSTEP] rw [Part.map_eq_map, Part.map_map, TM1.eval] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ M : Λ → Stmt₁ l : List Γ ⊢ Part.map ((fun c => Tape.right₀ c.Tape) ∘ fun a => trCfg M a) (eval (TM1.step M) { l := some default, var := default, Tape := Tape.mk₁ l }) = Part.map (fun c => Tape.right₀ c.Tape) (eval (TM1.step M) (TM1.init l)) [PROOFSTEP] congr with ⟨⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S ⊢ TM0.Supports (tr M) ↑(trStmts M S) [PROOFSTEP] constructor [GOAL] case left Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S ⊢ default ∈ ↑(trStmts M S) [PROOFSTEP] apply Finset.mem_product.2 [GOAL] case left Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S ⊢ default.fst ∈ TM1.stmts M S ∧ default.snd ∈ Finset.univ [PROOFSTEP] constructor [GOAL] case left.left Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S ⊢ default.fst ∈ TM1.stmts M S [PROOFSTEP] simp only [default, TM1.stmts, Finset.mem_insertNone, Option.mem_def, Option.some_inj, forall_eq', Finset.mem_biUnion] [GOAL] case left.left Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S ⊢ ∃ a, a ∈ S ∧ M default ∈ TM1.stmts₁ (M a) [PROOFSTEP] exact ⟨_, ss.1, TM1.stmts₁_self⟩ [GOAL] case left.right Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S ⊢ default.snd ∈ Finset.univ [PROOFSTEP] apply Finset.mem_univ [GOAL] case right Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S ⊢ ∀ {q : Λ'₁₀} {a : Γ} {q' : Λ'₁₀} {s : Stmt₀}, (q', s) ∈ tr M q a → q ∈ ↑(trStmts M S) → q' ∈ ↑(trStmts M S) [PROOFSTEP] intro q a q' s h₁ h₂ [GOAL] case right Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S q : Λ'₁₀ a : Γ q' : Λ'₁₀ s : Stmt₀ h₁ : (q', s) ∈ tr M q a h₂ : q ∈ ↑(trStmts M S) ⊢ q' ∈ ↑(trStmts M S) [PROOFSTEP] rcases q with ⟨_ | q, v⟩ [GOAL] case right.mk.none Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ q' : Λ'₁₀ s : Stmt₀ v : σ h₁ : (q', s) ∈ tr M (none, v) a h₂ : (none, v) ∈ ↑(trStmts M S) ⊢ q' ∈ ↑(trStmts M S) [PROOFSTEP] cases h₁ [GOAL] case right.mk.some Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ q' : Λ'₁₀ s : Stmt₀ v : σ q : Stmt₁ h₁ : (q', s) ∈ tr M (some q, v) a h₂ : (some q, v) ∈ ↑(trStmts M S) ⊢ q' ∈ ↑(trStmts M S) [PROOFSTEP] cases' q' with q' v' [GOAL] case right.mk.some.mk Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v : σ q : Stmt₁ h₂ : (some q, v) ∈ ↑(trStmts M S) q' : Option Stmt₁ v' : σ h₁ : ((q', v'), s) ∈ tr M (some q, v) a ⊢ (q', v') ∈ ↑(trStmts M S) [PROOFSTEP] simp only [trStmts, Finset.mem_coe] at h₂ ⊢ [GOAL] case right.mk.some.mk Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v : σ q : Stmt₁ q' : Option Stmt₁ v' : σ h₁ : ((q', v'), s) ∈ tr M (some q, v) a h₂ : (some q, v) ∈ TM1.stmts M S ×ˢ Finset.univ ⊢ (q', v') ∈ TM1.stmts M S ×ˢ Finset.univ [PROOFSTEP] rw [Finset.mem_product] at h₂ ⊢ [GOAL] case right.mk.some.mk Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v : σ q : Stmt₁ q' : Option Stmt₁ v' : σ h₁ : ((q', v'), s) ∈ tr M (some q, v) a h₂ : (some q, v).fst ∈ TM1.stmts M S ∧ (some q, v).snd ∈ Finset.univ ⊢ (q', v').fst ∈ TM1.stmts M S ∧ (q', v').snd ∈ Finset.univ [PROOFSTEP] simp only [Finset.mem_univ, and_true_iff] at h₂ ⊢ [GOAL] case right.mk.some.mk Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v : σ q : Stmt₁ q' : Option Stmt₁ v' : σ h₁ : ((q', v'), s) ∈ tr M (some q, v) a h₂ : some q ∈ TM1.stmts M S ⊢ q' ∈ TM1.stmts M S [PROOFSTEP] cases q' [GOAL] case right.mk.some.mk.none Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v : σ q : Stmt₁ v' : σ h₂ : some q ∈ TM1.stmts M S h₁ : ((none, v'), s) ∈ tr M (some q, v) a ⊢ none ∈ TM1.stmts M S [PROOFSTEP] exact Multiset.mem_cons_self _ _ [GOAL] case right.mk.some.mk.some Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v : σ q : Stmt₁ v' : σ h₂ : some q ∈ TM1.stmts M S val✝ : Stmt₁ h₁ : ((some val✝, v'), s) ∈ tr M (some q, v) a ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] simp only [tr, Option.mem_def] at h₁ [GOAL] case right.mk.some.mk.some Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v : σ q : Stmt₁ v' : σ h₂ : some q ∈ TM1.stmts M S val✝ : Stmt₁ h₁ : some (trAux M a q v) = some ((some val✝, v'), s) ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] have := TM1.stmts_supportsStmt ss h₂ [GOAL] case right.mk.some.mk.some Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v : σ q : Stmt₁ v' : σ h₂ : some q ∈ TM1.stmts M S val✝ : Stmt₁ h₁ : some (trAux M a q v) = some ((some val✝, v'), s) this : TM1.SupportsStmt S q ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] revert this [GOAL] case right.mk.some.mk.some Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v : σ q : Stmt₁ v' : σ h₂ : some q ∈ TM1.stmts M S val✝ : Stmt₁ h₁ : some (trAux M a q v) = some ((some val✝, v'), s) ⊢ TM1.SupportsStmt S q → some val✝ ∈ TM1.stmts M S [PROOFSTEP] induction q generalizing v [GOAL] case right.mk.some.mk.some.move Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝¹ : Dir a✝ : Stmt₁ a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.move a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.move a✝¹ a✝) v) = some ((some val✝, v'), s) ⊢ TM1.SupportsStmt S (TM1.Stmt.move a✝¹ a✝) → some val✝ ∈ TM1.stmts M S [PROOFSTEP] intro hs [GOAL] case right.mk.some.mk.some.write Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝¹ : Γ → σ → Γ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.write a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.write a✝¹ a✝) v) = some ((some val✝, v'), s) ⊢ TM1.SupportsStmt S (TM1.Stmt.write a✝¹ a✝) → some val✝ ∈ TM1.stmts M S [PROOFSTEP] intro hs [GOAL] case right.mk.some.mk.some.load Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝¹ : Γ → σ → σ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.load a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.load a✝¹ a✝) v) = some ((some val✝, v'), s) ⊢ TM1.SupportsStmt S (TM1.Stmt.load a✝¹ a✝) → some val✝ ∈ TM1.stmts M S [PROOFSTEP] intro hs [GOAL] case right.mk.some.mk.some.branch Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ), some a✝¹ ∈ TM1.stmts M S → some (trAux M a a✝¹ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝¹ → some val✝ ∈ TM1.stmts M S a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch a✝² a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.branch a✝² a✝¹ a✝) v) = some ((some val✝, v'), s) ⊢ TM1.SupportsStmt S (TM1.Stmt.branch a✝² a✝¹ a✝) → some val✝ ∈ TM1.stmts M S [PROOFSTEP] intro hs [GOAL] case right.mk.some.mk.some.goto Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝ : Γ → σ → Λ v : σ h₂ : some (TM1.Stmt.goto a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.goto a✝) v) = some ((some val✝, v'), s) ⊢ TM1.SupportsStmt S (TM1.Stmt.goto a✝) → some val✝ ∈ TM1.stmts M S [PROOFSTEP] intro hs [GOAL] case right.mk.some.mk.some.halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ v : σ h₂ : some TM1.Stmt.halt ∈ TM1.stmts M S h₁ : some (trAux M a TM1.Stmt.halt v) = some ((some val✝, v'), s) ⊢ TM1.SupportsStmt S TM1.Stmt.halt → some val✝ ∈ TM1.stmts M S [PROOFSTEP] intro hs [GOAL] case right.mk.some.mk.some.move Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝¹ : Dir a✝ : Stmt₁ a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.move a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.move a✝¹ a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.move a✝¹ a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.write Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝¹ : Γ → σ → Γ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.write a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.write a✝¹ a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.write a✝¹ a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.load Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝¹ : Γ → σ → σ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.load a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.load a✝¹ a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.load a✝¹ a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.branch Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ), some a✝¹ ∈ TM1.stmts M S → some (trAux M a a✝¹ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝¹ → some val✝ ∈ TM1.stmts M S a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch a✝² a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.branch a✝² a✝¹ a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch a✝² a✝¹ a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.goto Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝ : Γ → σ → Λ v : σ h₂ : some (TM1.Stmt.goto a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.goto a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.goto a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ v : σ h₂ : some TM1.Stmt.halt ∈ TM1.stmts M S h₁ : some (trAux M a TM1.Stmt.halt v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S TM1.Stmt.halt ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case move d q => cases h₁; refine' TM1.stmts_trans _ h₂ unfold TM1.stmts₁ exact Finset.mem_insert_of_mem TM1.stmts₁_self [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝ : Dir d : Stmt₁ q : ∀ (v : σ), some d ∈ TM1.stmts M S → some (trAux M a d v) = some ((some val✝, v'), s) → TM1.SupportsStmt S d → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.move a✝ d) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.move a✝ d) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.move a✝ d) ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case move d q => cases h₁; refine' TM1.stmts_trans _ h₂ unfold TM1.stmts₁ exact Finset.mem_insert_of_mem TM1.stmts₁_self [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝ : Dir d : Stmt₁ q : ∀ (v : σ), some d ∈ TM1.stmts M S → some (trAux M a d v) = some ((some val✝, v'), s) → TM1.SupportsStmt S d → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.move a✝ d) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.move a✝ d) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.move a✝ d) ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] cases h₁ [GOAL] case refl Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ v' : σ val✝ : Stmt₁ a✝ : Dir h₂ : some (TM1.Stmt.move a✝ val✝) ∈ TM1.stmts M S hs : TM1.SupportsStmt S (TM1.Stmt.move a✝ val✝) q : ∀ (v : σ), some val✝ ∈ TM1.stmts M S → some (trAux M a val✝ v) = some ((some val✝, v'), move a✝) → TM1.SupportsStmt S val✝ → some val✝ ∈ TM1.stmts M S ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] refine' TM1.stmts_trans _ h₂ [GOAL] case refl Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ v' : σ val✝ : Stmt₁ a✝ : Dir h₂ : some (TM1.Stmt.move a✝ val✝) ∈ TM1.stmts M S hs : TM1.SupportsStmt S (TM1.Stmt.move a✝ val✝) q : ∀ (v : σ), some val✝ ∈ TM1.stmts M S → some (trAux M a val✝ v) = some ((some val✝, v'), move a✝) → TM1.SupportsStmt S val✝ → some val✝ ∈ TM1.stmts M S ⊢ val✝ ∈ TM1.stmts₁ (TM1.Stmt.move a✝ val✝) [PROOFSTEP] unfold TM1.stmts₁ [GOAL] case refl Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ v' : σ val✝ : Stmt₁ a✝ : Dir h₂ : some (TM1.Stmt.move a✝ val✝) ∈ TM1.stmts M S hs : TM1.SupportsStmt S (TM1.Stmt.move a✝ val✝) q : ∀ (v : σ), some val✝ ∈ TM1.stmts M S → some (trAux M a val✝ v) = some ((some val✝, v'), move a✝) → TM1.SupportsStmt S val✝ → some val✝ ∈ TM1.stmts M S ⊢ val✝ ∈ insert (TM1.Stmt.move a✝ val✝) (TM1.stmts₁ val✝) [PROOFSTEP] exact Finset.mem_insert_of_mem TM1.stmts₁_self [GOAL] case right.mk.some.mk.some.write Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝¹ : Γ → σ → Γ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.write a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.write a✝¹ a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.write a✝¹ a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.load Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝¹ : Γ → σ → σ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.load a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.load a✝¹ a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.load a✝¹ a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.branch Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ), some a✝¹ ∈ TM1.stmts M S → some (trAux M a a✝¹ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝¹ → some val✝ ∈ TM1.stmts M S a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch a✝² a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.branch a✝² a✝¹ a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch a✝² a✝¹ a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.goto Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝ : Γ → σ → Λ v : σ h₂ : some (TM1.Stmt.goto a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.goto a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.goto a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ v : σ h₂ : some TM1.Stmt.halt ∈ TM1.stmts M S h₁ : some (trAux M a TM1.Stmt.halt v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S TM1.Stmt.halt ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case write b q => cases h₁; refine' TM1.stmts_trans _ h₂ unfold TM1.stmts₁ exact Finset.mem_insert_of_mem TM1.stmts₁_self [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝ : Γ → σ → Γ b : Stmt₁ q : ∀ (v : σ), some b ∈ TM1.stmts M S → some (trAux M a b v) = some ((some val✝, v'), s) → TM1.SupportsStmt S b → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.write a✝ b) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.write a✝ b) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.write a✝ b) ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case write b q => cases h₁; refine' TM1.stmts_trans _ h₂ unfold TM1.stmts₁ exact Finset.mem_insert_of_mem TM1.stmts₁_self [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝ : Γ → σ → Γ b : Stmt₁ q : ∀ (v : σ), some b ∈ TM1.stmts M S → some (trAux M a b v) = some ((some val✝, v'), s) → TM1.SupportsStmt S b → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.write a✝ b) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.write a✝ b) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.write a✝ b) ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] cases h₁ [GOAL] case refl Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ v' : σ val✝ : Stmt₁ a✝ : Γ → σ → Γ h₂ : some (TM1.Stmt.write a✝ val✝) ∈ TM1.stmts M S hs : TM1.SupportsStmt S (TM1.Stmt.write a✝ val✝) q : ∀ (v : σ), some val✝ ∈ TM1.stmts M S → some (trAux M a val✝ v) = some ((some val✝, v'), write (a✝ a v')) → TM1.SupportsStmt S val✝ → some val✝ ∈ TM1.stmts M S ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] refine' TM1.stmts_trans _ h₂ [GOAL] case refl Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ v' : σ val✝ : Stmt₁ a✝ : Γ → σ → Γ h₂ : some (TM1.Stmt.write a✝ val✝) ∈ TM1.stmts M S hs : TM1.SupportsStmt S (TM1.Stmt.write a✝ val✝) q : ∀ (v : σ), some val✝ ∈ TM1.stmts M S → some (trAux M a val✝ v) = some ((some val✝, v'), write (a✝ a v')) → TM1.SupportsStmt S val✝ → some val✝ ∈ TM1.stmts M S ⊢ val✝ ∈ TM1.stmts₁ (TM1.Stmt.write a✝ val✝) [PROOFSTEP] unfold TM1.stmts₁ [GOAL] case refl Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ v' : σ val✝ : Stmt₁ a✝ : Γ → σ → Γ h₂ : some (TM1.Stmt.write a✝ val✝) ∈ TM1.stmts M S hs : TM1.SupportsStmt S (TM1.Stmt.write a✝ val✝) q : ∀ (v : σ), some val✝ ∈ TM1.stmts M S → some (trAux M a val✝ v) = some ((some val✝, v'), write (a✝ a v')) → TM1.SupportsStmt S val✝ → some val✝ ∈ TM1.stmts M S ⊢ val✝ ∈ insert (TM1.Stmt.write a✝ val✝) (TM1.stmts₁ val✝) [PROOFSTEP] exact Finset.mem_insert_of_mem TM1.stmts₁_self [GOAL] case right.mk.some.mk.some.load Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝¹ : Γ → σ → σ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.load a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.load a✝¹ a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.load a✝¹ a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.branch Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ), some a✝¹ ∈ TM1.stmts M S → some (trAux M a a✝¹ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝¹ → some val✝ ∈ TM1.stmts M S a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch a✝² a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.branch a✝² a✝¹ a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch a✝² a✝¹ a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.goto Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝ : Γ → σ → Λ v : σ h₂ : some (TM1.Stmt.goto a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.goto a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.goto a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ v : σ h₂ : some TM1.Stmt.halt ∈ TM1.stmts M S h₁ : some (trAux M a TM1.Stmt.halt v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S TM1.Stmt.halt ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case load b q IH => refine' IH _ (TM1.stmts_trans _ h₂) h₁ hs unfold TM1.stmts₁ exact Finset.mem_insert_of_mem TM1.stmts₁_self [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ b : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ), some q ∈ TM1.stmts M S → some (trAux M a q v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.load b q) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.load b q) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.load b q) ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case load b q IH => refine' IH _ (TM1.stmts_trans _ h₂) h₁ hs unfold TM1.stmts₁ exact Finset.mem_insert_of_mem TM1.stmts₁_self [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ b : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ), some q ∈ TM1.stmts M S → some (trAux M a q v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.load b q) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.load b q) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.load b q) ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] refine' IH _ (TM1.stmts_trans _ h₂) h₁ hs [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ b : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ), some q ∈ TM1.stmts M S → some (trAux M a q v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.load b q) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.load b q) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.load b q) ⊢ q ∈ TM1.stmts₁ (TM1.Stmt.load b q) [PROOFSTEP] unfold TM1.stmts₁ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ b : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ), some q ∈ TM1.stmts M S → some (trAux M a q v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.load b q) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.load b q) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.load b q) ⊢ q ∈ insert (TM1.Stmt.load b q) (TM1.stmts₁ q) [PROOFSTEP] exact Finset.mem_insert_of_mem TM1.stmts₁_self [GOAL] case right.mk.some.mk.some.branch Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ), some a✝¹ ∈ TM1.stmts M S → some (trAux M a a✝¹ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝¹ → some val✝ ∈ TM1.stmts M S a_ih✝ : ∀ (v : σ), some a✝ ∈ TM1.stmts M S → some (trAux M a a✝ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S a✝ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch a✝² a✝¹ a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.branch a✝² a✝¹ a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch a✝² a✝¹ a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.goto Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝ : Γ → σ → Λ v : σ h₂ : some (TM1.Stmt.goto a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.goto a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.goto a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ v : σ h₂ : some TM1.Stmt.halt ∈ TM1.stmts M S h₁ : some (trAux M a TM1.Stmt.halt v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S TM1.Stmt.halt ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => cases h : p a v <;> rw [trAux, h] at h₁ · refine' IH₂ _ (TM1.stmts_trans _ h₂) h₁ hs.2 unfold TM1.stmts₁ exact Finset.mem_insert_of_mem (Finset.mem_union_right _ TM1.stmts₁_self) · refine' IH₁ _ (TM1.stmts_trans _ h₂) h₁ hs.1 unfold TM1.stmts₁ exact Finset.mem_insert_of_mem (Finset.mem_union_left _ TM1.stmts₁_self) [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ), some q₁ ∈ TM1.stmts M S → some (trAux M a q₁ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₁ → some val✝ ∈ TM1.stmts M S IH₂ : ∀ (v : σ), some q₂ ∈ TM1.stmts M S → some (trAux M a q₂ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₂ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch p q₁ q₂) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.branch p q₁ q₂) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch p q₁ q₂) ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => cases h : p a v <;> rw [trAux, h] at h₁ · refine' IH₂ _ (TM1.stmts_trans _ h₂) h₁ hs.2 unfold TM1.stmts₁ exact Finset.mem_insert_of_mem (Finset.mem_union_right _ TM1.stmts₁_self) · refine' IH₁ _ (TM1.stmts_trans _ h₂) h₁ hs.1 unfold TM1.stmts₁ exact Finset.mem_insert_of_mem (Finset.mem_union_left _ TM1.stmts₁_self) [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ), some q₁ ∈ TM1.stmts M S → some (trAux M a q₁ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₁ → some val✝ ∈ TM1.stmts M S IH₂ : ∀ (v : σ), some q₂ ∈ TM1.stmts M S → some (trAux M a q₂ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₂ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch p q₁ q₂) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.branch p q₁ q₂) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch p q₁ q₂) ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] cases h : p a v [GOAL] case false Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ), some q₁ ∈ TM1.stmts M S → some (trAux M a q₁ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₁ → some val✝ ∈ TM1.stmts M S IH₂ : ∀ (v : σ), some q₂ ∈ TM1.stmts M S → some (trAux M a q₂ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₂ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch p q₁ q₂) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.branch p q₁ q₂) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch p q₁ q₂) h : p a v = false ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] rw [trAux, h] at h₁ [GOAL] case true Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ), some q₁ ∈ TM1.stmts M S → some (trAux M a q₁ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₁ → some val✝ ∈ TM1.stmts M S IH₂ : ∀ (v : σ), some q₂ ∈ TM1.stmts M S → some (trAux M a q₂ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₂ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch p q₁ q₂) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.branch p q₁ q₂) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch p q₁ q₂) h : p a v = true ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] rw [trAux, h] at h₁ [GOAL] case false Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ), some q₁ ∈ TM1.stmts M S → some (trAux M a q₁ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₁ → some val✝ ∈ TM1.stmts M S IH₂ : ∀ (v : σ), some q₂ ∈ TM1.stmts M S → some (trAux M a q₂ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₂ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch p q₁ q₂) ∈ TM1.stmts M S h₁ : some (bif false then trAux M a q₁ v else trAux M a q₂ v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch p q₁ q₂) h : p a v = false ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] refine' IH₂ _ (TM1.stmts_trans _ h₂) h₁ hs.2 [GOAL] case false Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ), some q₁ ∈ TM1.stmts M S → some (trAux M a q₁ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₁ → some val✝ ∈ TM1.stmts M S IH₂ : ∀ (v : σ), some q₂ ∈ TM1.stmts M S → some (trAux M a q₂ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₂ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch p q₁ q₂) ∈ TM1.stmts M S h₁ : some (bif false then trAux M a q₁ v else trAux M a q₂ v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch p q₁ q₂) h : p a v = false ⊢ q₂ ∈ TM1.stmts₁ (TM1.Stmt.branch p q₁ q₂) [PROOFSTEP] unfold TM1.stmts₁ [GOAL] case false Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ), some q₁ ∈ TM1.stmts M S → some (trAux M a q₁ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₁ → some val✝ ∈ TM1.stmts M S IH₂ : ∀ (v : σ), some q₂ ∈ TM1.stmts M S → some (trAux M a q₂ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₂ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch p q₁ q₂) ∈ TM1.stmts M S h₁ : some (bif false then trAux M a q₁ v else trAux M a q₂ v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch p q₁ q₂) h : p a v = false ⊢ q₂ ∈ insert (TM1.Stmt.branch p q₁ q₂) (TM1.stmts₁ q₁ ∪ TM1.stmts₁ q₂) [PROOFSTEP] exact Finset.mem_insert_of_mem (Finset.mem_union_right _ TM1.stmts₁_self) [GOAL] case true Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ), some q₁ ∈ TM1.stmts M S → some (trAux M a q₁ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₁ → some val✝ ∈ TM1.stmts M S IH₂ : ∀ (v : σ), some q₂ ∈ TM1.stmts M S → some (trAux M a q₂ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₂ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch p q₁ q₂) ∈ TM1.stmts M S h₁ : some (bif true then trAux M a q₁ v else trAux M a q₂ v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch p q₁ q₂) h : p a v = true ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] refine' IH₁ _ (TM1.stmts_trans _ h₂) h₁ hs.1 [GOAL] case true Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ), some q₁ ∈ TM1.stmts M S → some (trAux M a q₁ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₁ → some val✝ ∈ TM1.stmts M S IH₂ : ∀ (v : σ), some q₂ ∈ TM1.stmts M S → some (trAux M a q₂ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₂ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch p q₁ q₂) ∈ TM1.stmts M S h₁ : some (bif true then trAux M a q₁ v else trAux M a q₂ v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch p q₁ q₂) h : p a v = true ⊢ q₁ ∈ TM1.stmts₁ (TM1.Stmt.branch p q₁ q₂) [PROOFSTEP] unfold TM1.stmts₁ [GOAL] case true Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ), some q₁ ∈ TM1.stmts M S → some (trAux M a q₁ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₁ → some val✝ ∈ TM1.stmts M S IH₂ : ∀ (v : σ), some q₂ ∈ TM1.stmts M S → some (trAux M a q₂ v) = some ((some val✝, v'), s) → TM1.SupportsStmt S q₂ → some val✝ ∈ TM1.stmts M S v : σ h₂ : some (TM1.Stmt.branch p q₁ q₂) ∈ TM1.stmts M S h₁ : some (bif true then trAux M a q₁ v else trAux M a q₂ v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.branch p q₁ q₂) h : p a v = true ⊢ q₁ ∈ insert (TM1.Stmt.branch p q₁ q₂) (TM1.stmts₁ q₁ ∪ TM1.stmts₁ q₂) [PROOFSTEP] exact Finset.mem_insert_of_mem (Finset.mem_union_left _ TM1.stmts₁_self) [GOAL] case right.mk.some.mk.some.goto Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ a✝ : Γ → σ → Λ v : σ h₂ : some (TM1.Stmt.goto a✝) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.goto a✝) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.goto a✝) ⊢ some val✝ ∈ TM1.stmts M S case right.mk.some.mk.some.halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ v : σ h₂ : some TM1.Stmt.halt ∈ TM1.stmts M S h₁ : some (trAux M a TM1.Stmt.halt v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S TM1.Stmt.halt ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case goto l => cases h₁ exact Finset.some_mem_insertNone.2 (Finset.mem_biUnion.2 ⟨_, hs _ _, TM1.stmts₁_self⟩) [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ l : Γ → σ → Λ v : σ h₂ : some (TM1.Stmt.goto l) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.goto l) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.goto l) ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case goto l => cases h₁ exact Finset.some_mem_insertNone.2 (Finset.mem_biUnion.2 ⟨_, hs _ _, TM1.stmts₁_self⟩) [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ l : Γ → σ → Λ v : σ h₂ : some (TM1.Stmt.goto l) ∈ TM1.stmts M S h₁ : some (trAux M a (TM1.Stmt.goto l) v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S (TM1.Stmt.goto l) ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] cases h₁ [GOAL] case refl Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ v' : σ l : Γ → σ → Λ h₂ : some (TM1.Stmt.goto l) ∈ TM1.stmts M S hs : TM1.SupportsStmt S (TM1.Stmt.goto l) ⊢ some (M (l a v')) ∈ TM1.stmts M S [PROOFSTEP] exact Finset.some_mem_insertNone.2 (Finset.mem_biUnion.2 ⟨_, hs _ _, TM1.stmts₁_self⟩) [GOAL] case right.mk.some.mk.some.halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ v : σ h₂ : some TM1.Stmt.halt ∈ TM1.stmts M S h₁ : some (trAux M a TM1.Stmt.halt v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S TM1.Stmt.halt ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case halt => cases h₁ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ v : σ h₂ : some TM1.Stmt.halt ∈ TM1.stmts M S h₁ : some (trAux M a TM1.Stmt.halt v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S TM1.Stmt.halt ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] case halt => cases h₁ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → Stmt₁ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : Stmt₀ v' : σ val✝ : Stmt₁ v : σ h₂ : some TM1.Stmt.halt ∈ TM1.stmts M S h₁ : some (trAux M a TM1.Stmt.halt v) = some ((some val✝, v'), s) hs : TM1.SupportsStmt S TM1.Stmt.halt ⊢ some val✝ ∈ TM1.stmts M S [PROOFSTEP] cases h₁ [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ inst✝ : Fintype Γ ⊢ ∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a [PROOFSTEP] letI := Classical.decEq Γ [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ inst✝ : Fintype Γ this : DecidableEq Γ := Classical.decEq Γ ⊢ ∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a [PROOFSTEP] let n := Fintype.card Γ [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ inst✝ : Fintype Γ this : DecidableEq Γ := Classical.decEq Γ n : ℕ := Fintype.card Γ ⊢ ∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a [PROOFSTEP] obtain ⟨F⟩ := Fintype.truncEquivFin Γ [GOAL] case mk Γ : Type u_1 inst✝¹ : Inhabited Γ inst✝ : Fintype Γ this : DecidableEq Γ := Classical.decEq Γ n : ℕ := Fintype.card Γ x✝ : Trunc (Γ ≃ Fin (Fintype.card Γ)) F : Γ ≃ Fin (Fintype.card Γ) ⊢ ∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a [PROOFSTEP] let G : Fin n ↪ Fin n → Bool := ⟨fun a b ↦ a = b, fun a b h ↦ Bool.of_decide_true <| (congr_fun h b).trans <| Bool.decide_true rfl⟩ [GOAL] case mk Γ : Type u_1 inst✝¹ : Inhabited Γ inst✝ : Fintype Γ this : DecidableEq Γ := Classical.decEq Γ n : ℕ := Fintype.card Γ x✝ : Trunc (Γ ≃ Fin (Fintype.card Γ)) F : Γ ≃ Fin (Fintype.card Γ) G : Fin n ↪ Fin n → Bool := { toFun := fun a b => decide (a = b), inj' := (_ : ∀ (a b : Fin n), (fun a b => decide (a = b)) a = (fun a b => decide (a = b)) b → a = b) } ⊢ ∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a [PROOFSTEP] let H := (F.toEmbedding.trans G).trans (Equiv.vectorEquivFin _ _).symm.toEmbedding [GOAL] case mk Γ : Type u_1 inst✝¹ : Inhabited Γ inst✝ : Fintype Γ this : DecidableEq Γ := Classical.decEq Γ n : ℕ := Fintype.card Γ x✝ : Trunc (Γ ≃ Fin (Fintype.card Γ)) F : Γ ≃ Fin (Fintype.card Γ) G : Fin n ↪ Fin n → Bool := { toFun := fun a b => decide (a = b), inj' := (_ : ∀ (a b : Fin n), (fun a b => decide (a = b)) a = (fun a b => decide (a = b)) b → a = b) } H : Γ ↪ Vector Bool n := Function.Embedding.trans (Function.Embedding.trans (Equiv.toEmbedding F) G) (Equiv.toEmbedding (Equiv.vectorEquivFin Bool n).symm) ⊢ ∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a [PROOFSTEP] classical let enc := H.setValue default (Vector.replicate n false) exact ⟨_, enc, Function.invFun enc, H.setValue_eq _ _, Function.leftInverse_invFun enc.2⟩ [GOAL] case mk Γ : Type u_1 inst✝¹ : Inhabited Γ inst✝ : Fintype Γ this : DecidableEq Γ := Classical.decEq Γ n : ℕ := Fintype.card Γ x✝ : Trunc (Γ ≃ Fin (Fintype.card Γ)) F : Γ ≃ Fin (Fintype.card Γ) G : Fin n ↪ Fin n → Bool := { toFun := fun a b => decide (a = b), inj' := (_ : ∀ (a b : Fin n), (fun a b => decide (a = b)) a = (fun a b => decide (a = b)) b → a = b) } H : Γ ↪ Vector Bool n := Function.Embedding.trans (Function.Embedding.trans (Equiv.toEmbedding F) G) (Equiv.toEmbedding (Equiv.vectorEquivFin Bool n).symm) ⊢ ∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a [PROOFSTEP] let enc := H.setValue default (Vector.replicate n false) [GOAL] case mk Γ : Type u_1 inst✝¹ : Inhabited Γ inst✝ : Fintype Γ this : DecidableEq Γ := Classical.decEq Γ n : ℕ := Fintype.card Γ x✝ : Trunc (Γ ≃ Fin (Fintype.card Γ)) F : Γ ≃ Fin (Fintype.card Γ) G : Fin n ↪ Fin n → Bool := { toFun := fun a b => decide (a = b), inj' := (_ : ∀ (a b : Fin n), (fun a b => decide (a = b)) a = (fun a b => decide (a = b)) b → a = b) } H : Γ ↪ Vector Bool n := Function.Embedding.trans (Function.Embedding.trans (Equiv.toEmbedding F) G) (Equiv.toEmbedding (Equiv.vectorEquivFin Bool n).symm) enc : Γ ↪ Vector Bool n := Function.Embedding.setValue H default (Vector.replicate n false) ⊢ ∃ n enc dec, enc default = Vector.replicate n false ∧ ∀ (a : Γ), dec (enc a) = a [PROOFSTEP] exact ⟨_, enc, Function.invFun enc, H.setValue_eq _ _, Function.leftInverse_invFun enc.2⟩ [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T : Tape Bool ⊢ stepAux (move d q) v T = stepAux q v ((Tape.move d)^[n] T) [PROOFSTEP] suffices : ∀ i, stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T : Tape Bool this : ∀ (i : ℕ), stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) ⊢ stepAux (move d q) v T = stepAux q v ((Tape.move d)^[n] T) case this Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T : Tape Bool ⊢ ∀ (i : ℕ), stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) [PROOFSTEP] exact this n [GOAL] case this Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T : Tape Bool ⊢ ∀ (i : ℕ), stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) [PROOFSTEP] intro i [GOAL] case this Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T : Tape Bool i : ℕ ⊢ stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) [PROOFSTEP] induction' i with i IH generalizing T [GOAL] case this.zero Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T✝ T : Tape Bool ⊢ stepAux ((Stmt.move d)^[Nat.zero] q) v T = stepAux q v ((Tape.move d)^[Nat.zero] T) [PROOFSTEP] rfl [GOAL] case this.succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T✝ : Tape Bool i : ℕ IH : ∀ (T : Tape Bool), stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) T : Tape Bool ⊢ stepAux ((Stmt.move d)^[Nat.succ i] q) v T = stepAux q v ((Tape.move d)^[Nat.succ i] T) [PROOFSTEP] rw [iterate_succ', iterate_succ] [GOAL] case this.succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T✝ : Tape Bool i : ℕ IH : ∀ (T : Tape Bool), stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) T : Tape Bool ⊢ stepAux ((Stmt.move d ∘ (Stmt.move d)^[i]) q) v T = stepAux q v (((Tape.move d)^[i] ∘ Tape.move d) T) [PROOFSTEP] simp only [stepAux, Function.comp_apply] [GOAL] case this.succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T✝ : Tape Bool i : ℕ IH : ∀ (T : Tape Bool), stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) T : Tape Bool ⊢ stepAux ((Stmt.move d)^[i] q) v (Tape.move d T) = stepAux q v ((Tape.move d)^[i] (Tape.move d T)) [PROOFSTEP] rw [IH] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' d : Dir q : Stmt Bool Λ' σ ⊢ SupportsStmt S (move d q) = SupportsStmt S q [PROOFSTEP] suffices ∀ {i}, SupportsStmt S ((Stmt.move d)^[i] q) = _ from this [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' d : Dir q : Stmt Bool Λ' σ ⊢ ∀ {i : ℕ}, SupportsStmt S ((Stmt.move d)^[i] q) = SupportsStmt S q [PROOFSTEP] intro i [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' d : Dir q : Stmt Bool Λ' σ i : ℕ ⊢ SupportsStmt S ((Stmt.move d)^[i] q) = SupportsStmt S q [PROOFSTEP] induction i generalizing q [GOAL] case zero Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' d : Dir q : Stmt Bool Λ' σ ⊢ SupportsStmt S ((Stmt.move d)^[Nat.zero] q) = SupportsStmt S q [PROOFSTEP] simp only [*, iterate] [GOAL] case succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' d : Dir n✝ : ℕ n_ih✝ : ∀ {q : Stmt Bool Λ' σ}, SupportsStmt S ((Stmt.move d)^[n✝] q) = SupportsStmt S q q : Stmt Bool Λ' σ ⊢ SupportsStmt S ((Stmt.move d)^[Nat.succ n✝] q) = SupportsStmt S q [PROOFSTEP] simp only [*, iterate] [GOAL] case succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' d : Dir n✝ : ℕ n_ih✝ : ∀ {q : Stmt Bool Λ' σ}, SupportsStmt S ((Stmt.move d)^[n✝] q) = SupportsStmt S q q : Stmt Bool Λ' σ ⊢ SupportsStmt S (Stmt.move d q) = SupportsStmt S q [PROOFSTEP] rfl [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' l : List Bool q : Stmt Bool Λ' σ ⊢ SupportsStmt S (write l q) = SupportsStmt S q [PROOFSTEP] induction' l with _ l IH [GOAL] case nil Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' q : Stmt Bool Λ' σ ⊢ SupportsStmt S (write [] q) = SupportsStmt S q [PROOFSTEP] simp only [write, SupportsStmt, *] [GOAL] case cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' q : Stmt Bool Λ' σ head✝ : Bool l : List Bool IH : SupportsStmt S (write l q) = SupportsStmt S q ⊢ SupportsStmt S (write (head✝ :: l) q) = SupportsStmt S q [PROOFSTEP] simp only [write, SupportsStmt, *] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝ : Γ → Stmt Bool Λ' σ i : ℕ f : Vector Bool i → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool i), SupportsStmt S (f v) ⊢ SupportsStmt S (readAux i f) [PROOFSTEP] induction' i with i IH [GOAL] case zero Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝¹ : Γ → Stmt Bool Λ' σ i : ℕ f✝ : Vector Bool i → Stmt Bool Λ' σ hf✝ : ∀ (v : Vector Bool i), SupportsStmt S (f✝ v) f : Vector Bool Nat.zero → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool Nat.zero), SupportsStmt S (f v) ⊢ SupportsStmt S (readAux Nat.zero f) [PROOFSTEP] exact hf _ [GOAL] case succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝¹ : Γ → Stmt Bool Λ' σ i✝ : ℕ f✝ : Vector Bool i✝ → Stmt Bool Λ' σ hf✝ : ∀ (v : Vector Bool i✝), SupportsStmt S (f✝ v) i : ℕ IH : ∀ (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) f : Vector Bool (Nat.succ i) → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool (Nat.succ i)), SupportsStmt S (f v) ⊢ SupportsStmt S (readAux (Nat.succ i) f) [PROOFSTEP] constructor [GOAL] case succ.left Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝¹ : Γ → Stmt Bool Λ' σ i✝ : ℕ f✝ : Vector Bool i✝ → Stmt Bool Λ' σ hf✝ : ∀ (v : Vector Bool i✝), SupportsStmt S (f✝ v) i : ℕ IH : ∀ (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) f : Vector Bool (Nat.succ i) → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool (Nat.succ i)), SupportsStmt S (f v) ⊢ SupportsStmt S (Stmt.move Dir.right (readAux i fun v => f (true ::ᵥ v))) [PROOFSTEP] apply IH [GOAL] case succ.right Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝¹ : Γ → Stmt Bool Λ' σ i✝ : ℕ f✝ : Vector Bool i✝ → Stmt Bool Λ' σ hf✝ : ∀ (v : Vector Bool i✝), SupportsStmt S (f✝ v) i : ℕ IH : ∀ (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) f : Vector Bool (Nat.succ i) → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool (Nat.succ i)), SupportsStmt S (f v) ⊢ SupportsStmt S (Stmt.move Dir.right (readAux i fun v => f (false ::ᵥ v))) [PROOFSTEP] apply IH [GOAL] case succ.left.hf Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝¹ : Γ → Stmt Bool Λ' σ i✝ : ℕ f✝ : Vector Bool i✝ → Stmt Bool Λ' σ hf✝ : ∀ (v : Vector Bool i✝), SupportsStmt S (f✝ v) i : ℕ IH : ∀ (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) f : Vector Bool (Nat.succ i) → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool (Nat.succ i)), SupportsStmt S (f v) ⊢ ∀ (v : Vector Bool i), SupportsStmt S (f (true ::ᵥ v)) [PROOFSTEP] intro [GOAL] case succ.right.hf Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝¹ : Γ → Stmt Bool Λ' σ i✝ : ℕ f✝ : Vector Bool i✝ → Stmt Bool Λ' σ hf✝ : ∀ (v : Vector Bool i✝), SupportsStmt S (f✝ v) i : ℕ IH : ∀ (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) f : Vector Bool (Nat.succ i) → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool (Nat.succ i)), SupportsStmt S (f v) ⊢ ∀ (v : Vector Bool i), SupportsStmt S (f (false ::ᵥ v)) [PROOFSTEP] intro [GOAL] case succ.left.hf Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝¹ : Γ → Stmt Bool Λ' σ i✝ : ℕ f✝ : Vector Bool i✝ → Stmt Bool Λ' σ hf✝ : ∀ (v : Vector Bool i✝), SupportsStmt S (f✝ v) i : ℕ IH : ∀ (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) f : Vector Bool (Nat.succ i) → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool (Nat.succ i)), SupportsStmt S (f v) v✝ : Vector Bool i ⊢ SupportsStmt S (f (true ::ᵥ v✝)) [PROOFSTEP] apply hf [GOAL] case succ.right.hf Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝¹ : Γ → Stmt Bool Λ' σ i✝ : ℕ f✝ : Vector Bool i✝ → Stmt Bool Λ' σ hf✝ : ∀ (v : Vector Bool i✝), SupportsStmt S (f✝ v) i : ℕ IH : ∀ (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) f : Vector Bool (Nat.succ i) → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool (Nat.succ i)), SupportsStmt S (f v) v✝ : Vector Bool i ⊢ SupportsStmt S (f (false ::ᵥ v✝)) [PROOFSTEP] apply hf [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝ : Γ → Stmt Bool Λ' σ this : ∀ (i : ℕ) (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) hf : ∀ (a : Γ), SupportsStmt S (f✝ a) ⊢ ∀ (v : Vector Bool n), SupportsStmt S (move Dir.left (f✝ (dec v))) [PROOFSTEP] intro [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝ : Γ → Stmt Bool Λ' σ this : ∀ (i : ℕ) (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) hf : ∀ (a : Γ), SupportsStmt S (f✝ a) v✝ : Vector Bool n ⊢ SupportsStmt S (move Dir.left (f✝ (dec v✝))) [PROOFSTEP] simp only [supportsStmt_move, hf] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false L R : ListBlank Γ ⊢ Tape Bool [PROOFSTEP] refine' Tape.mk' (L.bind (fun x ↦ (enc x).toList.reverse) ⟨n, _⟩) (R.bind (fun x ↦ (enc x).toList) ⟨n, _⟩) [GOAL] case refine'_1 Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false L R : ListBlank Γ ⊢ (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n default [PROOFSTEP] simp only [enc0, Vector.replicate, List.reverse_replicate, Bool.default_bool, Vector.toList_mk] [GOAL] case refine'_2 Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false L R : ListBlank Γ ⊢ (fun x => Vector.toList (enc x)) default = List.replicate n default [PROOFSTEP] simp only [enc0, Vector.replicate, List.reverse_replicate, Bool.default_bool, Vector.toList_mk] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false L R : ListBlank Γ ⊢ trTape enc0 (Tape.mk' L R) = trTape' enc0 L R [PROOFSTEP] simp only [trTape, Tape.mk'_left, Tape.mk'_right₀] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ ⊢ (Tape.move Dir.left)^[n] (trTape' enc0 L R) = trTape' enc0 (ListBlank.tail L) (ListBlank.cons (ListBlank.head L) R) [PROOFSTEP] obtain ⟨a, L, rfl⟩ := L.exists_cons [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ ⊢ (Tape.move Dir.left)^[n] (trTape' enc0 (ListBlank.cons a L) R) = trTape' enc0 (ListBlank.tail (ListBlank.cons a L)) (ListBlank.cons (ListBlank.head (ListBlank.cons a L)) R) [PROOFSTEP] simp only [trTape', ListBlank.cons_bind, ListBlank.head_cons, ListBlank.tail_cons] [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ ⊢ (Tape.move Dir.left)^[n] (Tape.mk' (ListBlank.append (List.reverse (Vector.toList (enc a))) (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default))) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) = Tape.mk' (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default)) (ListBlank.append (Vector.toList (enc a)) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) [PROOFSTEP] suffices ∀ {L' R' l₁ l₂} (_ : Vector.toList (enc a) = List.reverseAux l₁ l₂), (Tape.move Dir.left)^[l₁.length] (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = Tape.mk' L' (ListBlank.append (Vector.toList (enc a)) R') by simpa only [List.length_reverse, Vector.toList_length] using this (List.reverse_reverse _).symm [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ this : ∀ {L' R' : ListBlank Bool} {l₁ l₂ : List Bool}, Vector.toList (enc a) = List.reverseAux l₁ l₂ → (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = Tape.mk' L' (ListBlank.append (Vector.toList (enc a)) R') ⊢ (Tape.move Dir.left)^[n] (Tape.mk' (ListBlank.append (List.reverse (Vector.toList (enc a))) (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default))) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) = Tape.mk' (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default)) (ListBlank.append (Vector.toList (enc a)) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) [PROOFSTEP] simpa only [List.length_reverse, Vector.toList_length] using this (List.reverse_reverse _).symm [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ ⊢ ∀ {L' R' : ListBlank Bool} {l₁ l₂ : List Bool}, Vector.toList (enc a) = List.reverseAux l₁ l₂ → (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = Tape.mk' L' (ListBlank.append (Vector.toList (enc a)) R') [PROOFSTEP] intro _ _ l₁ l₂ e [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁ l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux l₁ l₂ ⊢ (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) [PROOFSTEP] induction' l₁ with b l₁ IH generalizing l₂ [GOAL] case intro.intro.nil Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁ l₂✝ : List Bool e✝ : Vector.toList (enc a) = List.reverseAux l₁ l₂✝ l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux [] l₂ ⊢ (Tape.move Dir.left)^[List.length []] (Tape.mk' (ListBlank.append [] L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) [PROOFSTEP] cases e [GOAL] case intro.intro.nil.refl Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁ l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux l₁ l₂ ⊢ (Tape.move Dir.left)^[List.length []] (Tape.mk' (ListBlank.append [] L'✝) (ListBlank.append (enc a).1 R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) [PROOFSTEP] rfl [GOAL] case intro.intro.cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁✝ l₂✝ : List Bool e✝ : Vector.toList (enc a) = List.reverseAux l₁✝ l₂✝ b : Bool l₁ : List Bool IH : ∀ {l₂ : List Bool}, Vector.toList (enc a) = List.reverseAux l₁ l₂ → (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux (b :: l₁) l₂ ⊢ (Tape.move Dir.left)^[List.length (b :: l₁)] (Tape.mk' (ListBlank.append (b :: l₁) L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) [PROOFSTEP] simp only [List.length, List.cons_append, iterate_succ_apply] [GOAL] case intro.intro.cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁✝ l₂✝ : List Bool e✝ : Vector.toList (enc a) = List.reverseAux l₁✝ l₂✝ b : Bool l₁ : List Bool IH : ∀ {l₂ : List Bool}, Vector.toList (enc a) = List.reverseAux l₁ l₂ → (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux (b :: l₁) l₂ ⊢ (Tape.move Dir.left)^[List.length l₁] (Tape.move Dir.left (Tape.mk' (ListBlank.append (b :: l₁) L'✝) (ListBlank.append l₂ R'✝))) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) [PROOFSTEP] convert IH e [GOAL] case h.e'_2.h.e'_4 Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁✝ l₂✝ : List Bool e✝ : Vector.toList (enc a) = List.reverseAux l₁✝ l₂✝ b : Bool l₁ : List Bool IH : ∀ {l₂ : List Bool}, Vector.toList (enc a) = List.reverseAux l₁ l₂ → (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux (b :: l₁) l₂ ⊢ Tape.move Dir.left (Tape.mk' (ListBlank.append (b :: l₁) L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' (ListBlank.append l₁ L'✝) (ListBlank.append (b :: l₂) R'✝) [PROOFSTEP] simp only [ListBlank.tail_cons, ListBlank.append, Tape.move_left_mk', ListBlank.head_cons] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ ⊢ (Tape.move Dir.right)^[n] (trTape' enc0 L R) = trTape' enc0 (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R) [PROOFSTEP] suffices ∀ i L, (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L) = L by refine' (Eq.symm _).trans (this n _) simp only [trTape'_move_left, ListBlank.cons_head_tail, ListBlank.head_cons, ListBlank.tail_cons] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ this : ∀ (i : ℕ) (L : Tape (?m.366455 i)), (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L) = L ⊢ (Tape.move Dir.right)^[n] (trTape' enc0 L R) = trTape' enc0 (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R) [PROOFSTEP] refine' (Eq.symm _).trans (this n _) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ this : ∀ (i : ℕ) (L : Tape Bool), (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L) = L ⊢ (Tape.move Dir.right)^[n] ((Tape.move Dir.left)^[n] (trTape' enc0 (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R))) = (Tape.move Dir.right)^[n] (trTape' enc0 L R) [PROOFSTEP] simp only [trTape'_move_left, ListBlank.cons_head_tail, ListBlank.head_cons, ListBlank.tail_cons] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ ⊢ ∀ (i : ℕ) (L : Tape Bool), (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L) = L [PROOFSTEP] intro i _ [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ i : ℕ L✝ : Tape Bool ⊢ (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L✝) = L✝ [PROOFSTEP] induction' i with i IH [GOAL] case zero Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ L✝ : Tape Bool ⊢ (Tape.move Dir.right)^[Nat.zero] ((Tape.move Dir.left)^[Nat.zero] L✝) = L✝ [PROOFSTEP] rfl [GOAL] case succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ L✝ : Tape Bool i : ℕ IH : (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L✝) = L✝ ⊢ (Tape.move Dir.right)^[Nat.succ i] ((Tape.move Dir.left)^[Nat.succ i] L✝) = L✝ [PROOFSTEP] rw [iterate_succ_apply, iterate_succ_apply', Tape.move_left_right, IH] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ a b : Γ L R : ListBlank Γ ⊢ stepAux (write (Vector.toList (enc a)) q) v (trTape' enc0 L (ListBlank.cons b R)) = stepAux q v (trTape' enc0 (ListBlank.cons a L) R) [PROOFSTEP] simp only [trTape', ListBlank.cons_bind] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ a b : Γ L R : ListBlank Γ ⊢ stepAux (write (Vector.toList (enc a)) q) v (Tape.mk' (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default)) (ListBlank.append (Vector.toList (enc b)) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default)))) = stepAux q v (Tape.mk' (ListBlank.append (List.reverse (Vector.toList (enc a))) (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default))) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) [PROOFSTEP] suffices ∀ {L' R'} (l₁ l₂ l₂' : List Bool) (_ : l₂'.length = l₂.length), stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (L'.append (List.reverseAux l₂ l₁)) R') by refine' this [] _ _ ((enc b).2.trans (enc a).2.symm) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ a b : Γ L R : ListBlank Γ this : ∀ {L' R' : ListBlank Bool} (l₁ l₂ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') ⊢ stepAux (write (Vector.toList (enc a)) q) v (Tape.mk' (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default)) (ListBlank.append (Vector.toList (enc b)) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default)))) = stepAux q v (Tape.mk' (ListBlank.append (List.reverse (Vector.toList (enc a))) (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default))) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) [PROOFSTEP] refine' this [] _ _ ((enc b).2.trans (enc a).2.symm) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ a b : Γ L R : ListBlank Γ ⊢ ∀ {L' R' : ListBlank Bool} (l₁ l₂ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') [PROOFSTEP] clear a b L R [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ ⊢ ∀ {L' R' : ListBlank Bool} (l₁ l₂ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') [PROOFSTEP] intro L' R' l₁ l₂ l₂' e [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁ l₂ l₂' : List Bool e : List.length l₂' = List.length l₂ ⊢ stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') [PROOFSTEP] induction' l₂ with a l₂ IH generalizing l₁ l₂' [GOAL] case nil Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂ l₂'✝ : List Bool e✝ : List.length l₂'✝ = List.length l₂ l₁ l₂' : List Bool e : List.length l₂' = List.length [] ⊢ stepAux (write [] q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux [] l₁) L') R') [PROOFSTEP] cases List.length_eq_zero.1 e [GOAL] case nil.refl Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂ l₂' : List Bool e✝ : List.length l₂' = List.length l₂ l₁ : List Bool e : List.length [] = List.length [] ⊢ stepAux (write [] q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append [] R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux [] l₁) L') R') [PROOFSTEP] rfl [GOAL] case cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂✝ l₂'✝ : List Bool e✝ : List.length l₂'✝ = List.length l₂✝ a : Bool l₂ : List Bool IH : ∀ (l₁ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ l₂' : List Bool e : List.length l₂' = List.length (a :: l₂) ⊢ stepAux (write (a :: l₂) q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux (a :: l₂) l₁) L') R') [PROOFSTEP] cases' l₂' with b l₂' [GOAL] case cons.nil Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂✝ l₂' : List Bool e✝ : List.length l₂' = List.length l₂✝ a : Bool l₂ : List Bool IH : ∀ (l₁ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool e : List.length [] = List.length (a :: l₂) ⊢ stepAux (write (a :: l₂) q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append [] R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux (a :: l₂) l₁) L') R') [PROOFSTEP] simp only [List.length_nil, List.length_cons, Nat.succ_inj'] at e [GOAL] case cons.cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂✝ l₂'✝ : List Bool e✝ : List.length l₂'✝ = List.length l₂✝ a : Bool l₂ : List Bool IH : ∀ (l₁ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool b : Bool l₂' : List Bool e : List.length (b :: l₂') = List.length (a :: l₂) ⊢ stepAux (write (a :: l₂) q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append (b :: l₂') R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux (a :: l₂) l₁) L') R') [PROOFSTEP] simp only [List.length_nil, List.length_cons, Nat.succ_inj'] at e [GOAL] case cons.cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂✝ l₂'✝ : List Bool e✝ : List.length l₂'✝ = List.length l₂✝ a : Bool l₂ : List Bool IH : ∀ (l₁ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool b : Bool l₂' : List Bool e : List.length l₂' = List.length l₂ ⊢ stepAux (write (a :: l₂) q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append (b :: l₂') R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux (a :: l₂) l₁) L') R') [PROOFSTEP] rw [List.reverseAux, ← IH (a :: l₁) l₂' e] [GOAL] case cons.cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂✝ l₂'✝ : List Bool e✝ : List.length l₂'✝ = List.length l₂✝ a : Bool l₂ : List Bool IH : ∀ (l₁ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool b : Bool l₂' : List Bool e : List.length l₂' = List.length l₂ ⊢ stepAux (write (a :: l₂) q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append (b :: l₂') R')) = stepAux (write l₂ q) v (Tape.mk' (ListBlank.append (a :: l₁) L') (ListBlank.append l₂' R')) [PROOFSTEP] simp only [stepAux, ListBlank.append, Tape.write_mk', Tape.move_right_mk', ListBlank.head_cons, ListBlank.tail_cons] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a f : Γ → Stmt Bool Λ' σ v : σ L R : ListBlank Γ ⊢ stepAux (read dec f) v (trTape' enc0 L R) = stepAux (f (ListBlank.head R)) v (trTape' enc0 L R) [PROOFSTEP] suffices ∀ f, stepAux (readAux n f) v (trTape' enc0 L R) = stepAux (f (enc R.head)) v (trTape' enc0 (L.cons R.head) R.tail) by rw [read, this, stepAux_move, encdec, trTape'_move_left enc0] simp only [ListBlank.head_cons, ListBlank.cons_head_tail, ListBlank.tail_cons] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a f : Γ → Stmt Bool Λ' σ v : σ L R : ListBlank Γ this : ∀ (f : Vector Bool n → Stmt Bool Λ' σ), stepAux (readAux n f) v (trTape' enc0 L R) = stepAux (f (enc (ListBlank.head R))) v (trTape' enc0 (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R)) ⊢ stepAux (read dec f) v (trTape' enc0 L R) = stepAux (f (ListBlank.head R)) v (trTape' enc0 L R) [PROOFSTEP] rw [read, this, stepAux_move, encdec, trTape'_move_left enc0] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a f : Γ → Stmt Bool Λ' σ v : σ L R : ListBlank Γ this : ∀ (f : Vector Bool n → Stmt Bool Λ' σ), stepAux (readAux n f) v (trTape' enc0 L R) = stepAux (f (enc (ListBlank.head R))) v (trTape' enc0 (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R)) ⊢ stepAux (f (ListBlank.head R)) v (trTape' enc0 (ListBlank.tail (ListBlank.cons (ListBlank.head R) L)) (ListBlank.cons (ListBlank.head (ListBlank.cons (ListBlank.head R) L)) (ListBlank.tail R))) = stepAux (f (ListBlank.head R)) v (trTape' enc0 L R) [PROOFSTEP] simp only [ListBlank.head_cons, ListBlank.cons_head_tail, ListBlank.tail_cons] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a f : Γ → Stmt Bool Λ' σ v : σ L R : ListBlank Γ ⊢ ∀ (f : Vector Bool n → Stmt Bool Λ' σ), stepAux (readAux n f) v (trTape' enc0 L R) = stepAux (f (enc (ListBlank.head R))) v (trTape' enc0 (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R)) [PROOFSTEP] obtain ⟨a, R, rfl⟩ := R.exists_cons [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a f : Γ → Stmt Bool Λ' σ v : σ L : ListBlank Γ a : Γ R : ListBlank Γ ⊢ ∀ (f : Vector Bool n → Stmt Bool Λ' σ), stepAux (readAux n f) v (trTape' enc0 L (ListBlank.cons a R)) = stepAux (f (enc (ListBlank.head (ListBlank.cons a R)))) v (trTape' enc0 (ListBlank.cons (ListBlank.head (ListBlank.cons a R)) L) (ListBlank.tail (ListBlank.cons a R))) [PROOFSTEP] simp only [ListBlank.head_cons, ListBlank.tail_cons, trTape', ListBlank.cons_bind, ListBlank.append_assoc] [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a f : Γ → Stmt Bool Λ' σ v : σ L : ListBlank Γ a : Γ R : ListBlank Γ ⊢ ∀ (f : Vector Bool n → Stmt Bool Λ' σ), stepAux (readAux n f) v (Tape.mk' (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default)) (ListBlank.append (Vector.toList (enc a)) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default)))) = stepAux (f (enc a)) v (Tape.mk' (ListBlank.append (List.reverse (Vector.toList (enc a))) (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default))) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) [PROOFSTEP] suffices ∀ i f L' R' l₁ l₂ h, stepAux (readAux i f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f ⟨l₂, h⟩) v (Tape.mk' (ListBlank.append (l₂.reverseAux l₁) L') R') by intro f exact this n f (L.bind (fun x => (enc x).1.reverse) _) (R.bind (fun x => (enc x).1) _) [] _ (enc a).2 [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a f : Γ → Stmt Bool Λ' σ v : σ L : ListBlank Γ a : Γ R : ListBlank Γ this : ∀ (i : ℕ) (f : Vector Bool i → Stmt Bool Λ' σ) (L' R' : ListBlank Bool) (l₁ l₂ : List Bool) (h : List.length l₂ = i), stepAux (readAux i f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := h }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') ⊢ ∀ (f : Vector Bool n → Stmt Bool Λ' σ), stepAux (readAux n f) v (Tape.mk' (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default)) (ListBlank.append (Vector.toList (enc a)) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default)))) = stepAux (f (enc a)) v (Tape.mk' (ListBlank.append (List.reverse (Vector.toList (enc a))) (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default))) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) [PROOFSTEP] intro f [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a f✝ : Γ → Stmt Bool Λ' σ v : σ L : ListBlank Γ a : Γ R : ListBlank Γ this : ∀ (i : ℕ) (f : Vector Bool i → Stmt Bool Λ' σ) (L' R' : ListBlank Bool) (l₁ l₂ : List Bool) (h : List.length l₂ = i), stepAux (readAux i f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := h }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') f : Vector Bool n → Stmt Bool Λ' σ ⊢ stepAux (readAux n f) v (Tape.mk' (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default)) (ListBlank.append (Vector.toList (enc a)) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default)))) = stepAux (f (enc a)) v (Tape.mk' (ListBlank.append (List.reverse (Vector.toList (enc a))) (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default))) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) [PROOFSTEP] exact this n f (L.bind (fun x => (enc x).1.reverse) _) (R.bind (fun x => (enc x).1) _) [] _ (enc a).2 [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a f : Γ → Stmt Bool Λ' σ v : σ L : ListBlank Γ a : Γ R : ListBlank Γ ⊢ ∀ (i : ℕ) (f : Vector Bool i → Stmt Bool Λ' σ) (L' R' : ListBlank Bool) (l₁ l₂ : List Bool) (h : List.length l₂ = i), stepAux (readAux i f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := h }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') [PROOFSTEP] clear f L a R [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ ⊢ ∀ (i : ℕ) (f : Vector Bool i → Stmt Bool Λ' σ) (L' R' : ListBlank Bool) (l₁ l₂ : List Bool) (h : List.length l₂ = i), stepAux (readAux i f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := h }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') [PROOFSTEP] intro i f L' R' l₁ l₂ _ [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ i : ℕ f : Vector Bool i → Stmt Bool Λ' σ L' R' : ListBlank Bool l₁ l₂ : List Bool h✝ : List.length l₂ = i ⊢ stepAux (readAux i f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := h✝ }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') [PROOFSTEP] subst i [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ L' R' : ListBlank Bool l₁ l₂ : List Bool f : Vector Bool (List.length l₂) → Stmt Bool Λ' σ ⊢ stepAux (readAux (List.length l₂) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := (_ : List.length l₂ = List.length l₂) }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') [PROOFSTEP] induction' l₂ with a l₂ IH generalizing l₁ [GOAL] case intro.intro.nil Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ L' R' : ListBlank Bool l₁✝ l₂ : List Bool f✝ : Vector Bool (List.length l₂) → Stmt Bool Λ' σ l₁ : List Bool f : Vector Bool (List.length []) → Stmt Bool Λ' σ ⊢ stepAux (readAux (List.length []) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append [] R')) = stepAux (f { val := [], property := (_ : List.length [] = List.length []) }) v (Tape.mk' (ListBlank.append (List.reverseAux [] l₁) L') R') [PROOFSTEP] rfl [GOAL] case intro.intro.cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ L' R' : ListBlank Bool l₁✝ l₂✝ : List Bool f✝ : Vector Bool (List.length l₂✝) → Stmt Bool Λ' σ a : Bool l₂ : List Bool IH : ∀ (l₁ : List Bool) (f : Vector Bool (List.length l₂) → Stmt Bool Λ' σ), stepAux (readAux (List.length l₂) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := (_ : List.length l₂ = List.length l₂) }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool f : Vector Bool (List.length (a :: l₂)) → Stmt Bool Λ' σ ⊢ stepAux (readAux (List.length (a :: l₂)) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append (a :: l₂) R')) = stepAux (f { val := a :: l₂, property := (_ : List.length (a :: l₂) = List.length (a :: l₂)) }) v (Tape.mk' (ListBlank.append (List.reverseAux (a :: l₂) l₁) L') R') [PROOFSTEP] trans stepAux (readAux l₂.length fun v ↦ f (a ::ᵥ v)) v (Tape.mk' ((L'.append l₁).cons a) (R'.append l₂)) [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ L' R' : ListBlank Bool l₁✝ l₂✝ : List Bool f✝ : Vector Bool (List.length l₂✝) → Stmt Bool Λ' σ a : Bool l₂ : List Bool IH : ∀ (l₁ : List Bool) (f : Vector Bool (List.length l₂) → Stmt Bool Λ' σ), stepAux (readAux (List.length l₂) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := (_ : List.length l₂ = List.length l₂) }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool f : Vector Bool (List.length (a :: l₂)) → Stmt Bool Λ' σ ⊢ stepAux (readAux (List.length (a :: l₂)) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append (a :: l₂) R')) = stepAux (readAux (List.length l₂) fun v => f (a ::ᵥ v)) v (Tape.mk' (ListBlank.cons a (ListBlank.append l₁ L')) (ListBlank.append l₂ R')) [PROOFSTEP] dsimp [readAux, stepAux] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ L' R' : ListBlank Bool l₁✝ l₂✝ : List Bool f✝ : Vector Bool (List.length l₂✝) → Stmt Bool Λ' σ a : Bool l₂ : List Bool IH : ∀ (l₁ : List Bool) (f : Vector Bool (List.length l₂) → Stmt Bool Λ' σ), stepAux (readAux (List.length l₂) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := (_ : List.length l₂ = List.length l₂) }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool f : Vector Bool (List.length (a :: l₂)) → Stmt Bool Λ' σ ⊢ (bif ListBlank.head (ListBlank.cons a (ListBlank.append l₂ R')) then stepAux (readAux (List.length l₂) fun v => f (true ::ᵥ v)) v (Tape.move Dir.right (Tape.mk' (ListBlank.append l₁ L') (ListBlank.cons a (ListBlank.append l₂ R')))) else stepAux (readAux (List.length l₂) fun v => f (false ::ᵥ v)) v (Tape.move Dir.right (Tape.mk' (ListBlank.append l₁ L') (ListBlank.cons a (ListBlank.append l₂ R'))))) = stepAux (readAux (List.length l₂) fun v => f (a ::ᵥ v)) v (Tape.mk' (ListBlank.cons a (ListBlank.append l₁ L')) (ListBlank.append l₂ R')) [PROOFSTEP] simp [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ L' R' : ListBlank Bool l₁✝ l₂✝ : List Bool f✝ : Vector Bool (List.length l₂✝) → Stmt Bool Λ' σ a : Bool l₂ : List Bool IH : ∀ (l₁ : List Bool) (f : Vector Bool (List.length l₂) → Stmt Bool Λ' σ), stepAux (readAux (List.length l₂) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := (_ : List.length l₂ = List.length l₂) }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool f : Vector Bool (List.length (a :: l₂)) → Stmt Bool Λ' σ ⊢ (bif a then stepAux (readAux (List.length l₂) fun v => f (true ::ᵥ v)) v (Tape.mk' (ListBlank.cons a (ListBlank.append l₁ L')) (ListBlank.append l₂ R')) else stepAux (readAux (List.length l₂) fun v => f (false ::ᵥ v)) v (Tape.mk' (ListBlank.cons a (ListBlank.append l₁ L')) (ListBlank.append l₂ R'))) = stepAux (readAux (List.length l₂) fun v => f (a ::ᵥ v)) v (Tape.mk' (ListBlank.cons a (ListBlank.append l₁ L')) (ListBlank.append l₂ R')) [PROOFSTEP] cases a [GOAL] case false Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ L' R' : ListBlank Bool l₁✝ l₂✝ : List Bool f✝ : Vector Bool (List.length l₂✝) → Stmt Bool Λ' σ l₂ : List Bool IH : ∀ (l₁ : List Bool) (f : Vector Bool (List.length l₂) → Stmt Bool Λ' σ), stepAux (readAux (List.length l₂) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := (_ : List.length l₂ = List.length l₂) }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool f : Vector Bool (List.length (false :: l₂)) → Stmt Bool Λ' σ ⊢ (bif false then stepAux (readAux (List.length l₂) fun v => f (true ::ᵥ v)) v (Tape.mk' (ListBlank.cons false (ListBlank.append l₁ L')) (ListBlank.append l₂ R')) else stepAux (readAux (List.length l₂) fun v => f (false ::ᵥ v)) v (Tape.mk' (ListBlank.cons false (ListBlank.append l₁ L')) (ListBlank.append l₂ R'))) = stepAux (readAux (List.length l₂) fun v => f (false ::ᵥ v)) v (Tape.mk' (ListBlank.cons false (ListBlank.append l₁ L')) (ListBlank.append l₂ R')) [PROOFSTEP] rfl [GOAL] case true Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ L' R' : ListBlank Bool l₁✝ l₂✝ : List Bool f✝ : Vector Bool (List.length l₂✝) → Stmt Bool Λ' σ l₂ : List Bool IH : ∀ (l₁ : List Bool) (f : Vector Bool (List.length l₂) → Stmt Bool Λ' σ), stepAux (readAux (List.length l₂) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := (_ : List.length l₂ = List.length l₂) }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool f : Vector Bool (List.length (true :: l₂)) → Stmt Bool Λ' σ ⊢ (bif true then stepAux (readAux (List.length l₂) fun v => f (true ::ᵥ v)) v (Tape.mk' (ListBlank.cons true (ListBlank.append l₁ L')) (ListBlank.append l₂ R')) else stepAux (readAux (List.length l₂) fun v => f (false ::ᵥ v)) v (Tape.mk' (ListBlank.cons true (ListBlank.append l₁ L')) (ListBlank.append l₂ R'))) = stepAux (readAux (List.length l₂) fun v => f (true ::ᵥ v)) v (Tape.mk' (ListBlank.cons true (ListBlank.append l₁ L')) (ListBlank.append l₂ R')) [PROOFSTEP] rfl [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ L' R' : ListBlank Bool l₁✝ l₂✝ : List Bool f✝ : Vector Bool (List.length l₂✝) → Stmt Bool Λ' σ a : Bool l₂ : List Bool IH : ∀ (l₁ : List Bool) (f : Vector Bool (List.length l₂) → Stmt Bool Λ' σ), stepAux (readAux (List.length l₂) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := (_ : List.length l₂ = List.length l₂) }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool f : Vector Bool (List.length (a :: l₂)) → Stmt Bool Λ' σ ⊢ stepAux (readAux (List.length l₂) fun v => f (a ::ᵥ v)) v (Tape.mk' (ListBlank.cons a (ListBlank.append l₁ L')) (ListBlank.append l₂ R')) = stepAux (f { val := a :: l₂, property := (_ : List.length (a :: l₂) = List.length (a :: l₂)) }) v (Tape.mk' (ListBlank.append (List.reverseAux (a :: l₂) l₁) L') R') [PROOFSTEP] rw [← ListBlank.append, IH] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a v : σ L' R' : ListBlank Bool l₁✝ l₂✝ : List Bool f✝ : Vector Bool (List.length l₂✝) → Stmt Bool Λ' σ a : Bool l₂ : List Bool IH : ∀ (l₁ : List Bool) (f : Vector Bool (List.length l₂) → Stmt Bool Λ' σ), stepAux (readAux (List.length l₂) f) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = stepAux (f { val := l₂, property := (_ : List.length l₂ = List.length l₂) }) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool f : Vector Bool (List.length (a :: l₂)) → Stmt Bool Λ' σ ⊢ stepAux (f (a ::ᵥ { val := l₂, property := (_ : List.length l₂ = List.length l₂) })) v (Tape.mk' (ListBlank.append (List.reverseAux l₂ (a :: l₁)) L') R') = stepAux (f { val := a :: l₂, property := (_ : List.length (a :: l₂) = List.length (a :: l₂)) }) v (Tape.mk' (ListBlank.append (List.reverseAux (a :: l₂) l₁) L') R') [PROOFSTEP] rfl [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ l₁ : Option Λ v : σ T : Tape Γ ⊢ FRespects (step (tr enc dec M)) (fun c₁ => trCfg enc enc₀ c₁) (trCfg enc enc₀ { l := l₁, var := v, Tape := T }) (step M { l := l₁, var := v, Tape := T }) [PROOFSTEP] obtain ⟨L, R, rfl⟩ := T.exists_mk' [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ l₁ : Option Λ v : σ L R : ListBlank Γ ⊢ FRespects (step (tr enc dec M)) (fun c₁ => trCfg enc enc₀ c₁) (trCfg enc enc₀ { l := l₁, var := v, Tape := Tape.mk' L R }) (step M { l := l₁, var := v, Tape := Tape.mk' L R }) [PROOFSTEP] cases' l₁ with l₁ [GOAL] case intro.intro.none Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v : σ L R : ListBlank Γ ⊢ FRespects (step (tr enc dec M)) (fun c₁ => trCfg enc enc₀ c₁) (trCfg enc enc₀ { l := none, var := v, Tape := Tape.mk' L R }) (step M { l := none, var := v, Tape := Tape.mk' L R }) [PROOFSTEP] exact rfl [GOAL] case intro.intro.some Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v : σ L R : ListBlank Γ l₁ : Λ ⊢ FRespects (step (tr enc dec M)) (fun c₁ => trCfg enc enc₀ c₁) (trCfg enc enc₀ { l := some l₁, var := v, Tape := Tape.mk' L R }) (step M { l := some l₁, var := v, Tape := Tape.mk' L R }) [PROOFSTEP] suffices ∀ q R, Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) by refine' TransGen.head' rfl _ rw [trTape_mk'] exact this _ R [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v : σ L R : ListBlank Γ l₁ : Λ this : ∀ (q : Stmt₁) (R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) ⊢ FRespects (step (tr enc dec M)) (fun c₁ => trCfg enc enc₀ c₁) (trCfg enc enc₀ { l := some l₁, var := v, Tape := Tape.mk' L R }) (step M { l := some l₁, var := v, Tape := Tape.mk' L R }) [PROOFSTEP] refine' TransGen.head' rfl _ [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v : σ L R : ListBlank Γ l₁ : Λ this : ∀ (q : Stmt₁) (R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) ⊢ ReflTransGen (fun a b => b ∈ step (tr enc dec M) a) (stepAux (tr enc dec M (Λ'.normal l₁)) v (trTape enc₀ (Tape.mk' L R))) ((fun c₁ => trCfg enc enc₀ c₁) (stepAux (M l₁) v (Tape.mk' L R))) [PROOFSTEP] rw [trTape_mk'] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v : σ L R : ListBlank Γ l₁ : Λ this : ∀ (q : Stmt₁) (R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) ⊢ ReflTransGen (fun a b => b ∈ step (tr enc dec M) a) (stepAux (tr enc dec M (Λ'.normal l₁)) v (trTape' enc₀ L R)) ((fun c₁ => trCfg enc enc₀ c₁) (stepAux (M l₁) v (Tape.mk' L R))) [PROOFSTEP] exact this _ R [GOAL] case intro.intro.some Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v : σ L R : ListBlank Γ l₁ : Λ ⊢ ∀ (q : Stmt₁) (R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) [PROOFSTEP] clear R l₁ [GOAL] case intro.intro.some Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v : σ L : ListBlank Γ ⊢ ∀ (q : Stmt₁) (R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) [PROOFSTEP] intro q R [GOAL] case intro.intro.some Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v : σ L : ListBlank Γ q : Stmt₁ R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) [PROOFSTEP] induction' q generalizing v L R [GOAL] case intro.intro.some.move Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝¹ : Dir a✝ : Stmt₁ a_ih✝ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.move a✝¹ a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.move a✝¹ a✝) v (Tape.mk' L R))) case intro.intro.some.write Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝¹ : Γ → σ → Γ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.write a✝¹ a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.write a✝¹ a✝) v (Tape.mk' L R))) case intro.intro.some.load Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝¹ : Γ → σ → σ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.load a✝¹ a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.load a✝¹ a✝) v (Tape.mk' L R))) case intro.intro.some.branch Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝¹) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝¹ v (Tape.mk' L R))) a_ih✝ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.branch a✝² a✝¹ a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.branch a✝² a✝¹ a✝) v (Tape.mk' L R))) case intro.intro.some.goto Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝ : Γ → σ → Λ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.goto a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.goto a✝) v (Tape.mk' L R))) case intro.intro.some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec Stmt.halt) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux Stmt.halt v (Tape.mk' L R))) [PROOFSTEP] case move d q IH => cases d <;> simp only [trNormal, iterate, stepAux_move, stepAux, ListBlank.head_cons, Tape.move_left_mk', ListBlank.cons_head_tail, ListBlank.tail_cons, trTape'_move_left enc0, trTape'_move_right enc0] <;> apply IH [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ d : Dir q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.move d q)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.move d q) v (Tape.mk' L R))) [PROOFSTEP] case move d q IH => cases d <;> simp only [trNormal, iterate, stepAux_move, stepAux, ListBlank.head_cons, Tape.move_left_mk', ListBlank.cons_head_tail, ListBlank.tail_cons, trTape'_move_left enc0, trTape'_move_right enc0] <;> apply IH [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ d : Dir q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.move d q)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.move d q) v (Tape.mk' L R))) [PROOFSTEP] cases d [GOAL] case left Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.move Dir.left q)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.move Dir.left q) v (Tape.mk' L R))) [PROOFSTEP] simp only [trNormal, iterate, stepAux_move, stepAux, ListBlank.head_cons, Tape.move_left_mk', ListBlank.cons_head_tail, ListBlank.tail_cons, trTape'_move_left enc0, trTape'_move_right enc0] [GOAL] case right Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.move Dir.right q)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.move Dir.right q) v (Tape.mk' L R))) [PROOFSTEP] simp only [trNormal, iterate, stepAux_move, stepAux, ListBlank.head_cons, Tape.move_left_mk', ListBlank.cons_head_tail, ListBlank.tail_cons, trTape'_move_left enc0, trTape'_move_right enc0] [GOAL] case left Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 (ListBlank.tail L) (ListBlank.cons (ListBlank.head L) R))) (trCfg enc enc0 (stepAux q v (Tape.mk' (ListBlank.tail L) (ListBlank.cons (ListBlank.head L) R)))) [PROOFSTEP] apply IH [GOAL] case right Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R))) (trCfg enc enc0 (stepAux q v (Tape.move Dir.right (Tape.mk' L R)))) [PROOFSTEP] apply IH [GOAL] case intro.intro.some.write Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝¹ : Γ → σ → Γ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.write a✝¹ a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.write a✝¹ a✝) v (Tape.mk' L R))) case intro.intro.some.load Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝¹ : Γ → σ → σ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.load a✝¹ a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.load a✝¹ a✝) v (Tape.mk' L R))) case intro.intro.some.branch Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝¹) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝¹ v (Tape.mk' L R))) a_ih✝ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.branch a✝² a✝¹ a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.branch a✝² a✝¹ a✝) v (Tape.mk' L R))) case intro.intro.some.goto Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝ : Γ → σ → Λ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.goto a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.goto a✝) v (Tape.mk' L R))) case intro.intro.some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec Stmt.halt) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux Stmt.halt v (Tape.mk' L R))) [PROOFSTEP] case write f q IH => simp only [trNormal, stepAux_read dec enc0 encdec, stepAux] refine' ReflTransGen.head rfl _ obtain ⟨a, R, rfl⟩ := R.exists_cons rw [tr, Tape.mk'_head, stepAux_write, ListBlank.head_cons, stepAux_move, trTape'_move_left enc0, ListBlank.head_cons, ListBlank.tail_cons, Tape.write_mk'] apply IH [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ f : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.write f q)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.write f q) v (Tape.mk' L R))) [PROOFSTEP] case write f q IH => simp only [trNormal, stepAux_read dec enc0 encdec, stepAux] refine' ReflTransGen.head rfl _ obtain ⟨a, R, rfl⟩ := R.exists_cons rw [tr, Tape.mk'_head, stepAux_write, ListBlank.head_cons, stepAux_move, trTape'_move_left enc0, ListBlank.head_cons, ListBlank.tail_cons, Tape.write_mk'] apply IH [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ f : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.write f q)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.write f q) v (Tape.mk' L R))) [PROOFSTEP] simp only [trNormal, stepAux_read dec enc0 encdec, stepAux] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ f : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) { l := some (Λ'.write (f (ListBlank.head R) v) q), var := v, Tape := trTape' enc0 L R } (trCfg enc enc0 (stepAux q v (Tape.write (f (Tape.mk' L R).head v) (Tape.mk' L R)))) [PROOFSTEP] refine' ReflTransGen.head rfl _ [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ f : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ ReflTransGen (fun a b => b ∈ step (tr enc dec M) a) (stepAux (tr enc dec M (Λ'.write (f (ListBlank.head R) v) q)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.write (f (Tape.mk' L R).head v) (Tape.mk' L R)))) [PROOFSTEP] obtain ⟨a, R, rfl⟩ := R.exists_cons [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ f : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L : ListBlank Γ a : Γ R : ListBlank Γ ⊢ ReflTransGen (fun a b => b ∈ step (tr enc dec M) a) (stepAux (tr enc dec M (Λ'.write (f (ListBlank.head (ListBlank.cons a R)) v) q)) v (trTape' enc0 L (ListBlank.cons a R))) (trCfg enc enc0 (stepAux q v (Tape.write (f (Tape.mk' L (ListBlank.cons a R)).head v) (Tape.mk' L (ListBlank.cons a R))))) [PROOFSTEP] rw [tr, Tape.mk'_head, stepAux_write, ListBlank.head_cons, stepAux_move, trTape'_move_left enc0, ListBlank.head_cons, ListBlank.tail_cons, Tape.write_mk'] [GOAL] case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ f : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L : ListBlank Γ a : Γ R : ListBlank Γ ⊢ ReflTransGen (fun a b => b ∈ step (tr enc dec M) a) (stepAux (trNormal dec q) v (trTape' enc0 L (ListBlank.cons (f a v) R))) (trCfg enc enc0 (stepAux q v (Tape.mk' L (ListBlank.cons (f a v) R)))) [PROOFSTEP] apply IH [GOAL] case intro.intro.some.load Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝¹ : Γ → σ → σ a✝ : Stmt₁ a_ih✝ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.load a✝¹ a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.load a✝¹ a✝) v (Tape.mk' L R))) case intro.intro.some.branch Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝¹) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝¹ v (Tape.mk' L R))) a_ih✝ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.branch a✝² a✝¹ a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.branch a✝² a✝¹ a✝) v (Tape.mk' L R))) case intro.intro.some.goto Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝ : Γ → σ → Λ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.goto a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.goto a✝) v (Tape.mk' L R))) case intro.intro.some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec Stmt.halt) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux Stmt.halt v (Tape.mk' L R))) [PROOFSTEP] case load a q IH => simp only [trNormal, stepAux_read dec enc0 encdec] apply IH [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.load a q)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.load a q) v (Tape.mk' L R))) [PROOFSTEP] case load a q IH => simp only [trNormal, stepAux_read dec enc0 encdec] apply IH [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.load a q)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.load a q) v (Tape.mk' L R))) [PROOFSTEP] simp only [trNormal, stepAux_read dec enc0 encdec] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (Stmt.load (fun x s => a (ListBlank.head R) s) (trNormal dec q)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.load a q) v (Tape.mk' L R))) [PROOFSTEP] apply IH [GOAL] case intro.intro.some.branch Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝¹) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝¹ v (Tape.mk' L R))) a_ih✝ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec a✝) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux a✝ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.branch a✝² a✝¹ a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.branch a✝² a✝¹ a✝) v (Tape.mk' L R))) case intro.intro.some.goto Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝ : Γ → σ → Λ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.goto a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.goto a✝) v (Tape.mk' L R))) case intro.intro.some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec Stmt.halt) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux Stmt.halt v (Tape.mk' L R))) [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => simp only [trNormal, stepAux_read dec enc0 encdec, stepAux] cases p R.head v <;> [apply IH₂; apply IH₁] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₁) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₁ v (Tape.mk' L R))) IH₂ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₂) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₂ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.branch p q₁ q₂)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.branch p q₁ q₂) v (Tape.mk' L R))) [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => simp only [trNormal, stepAux_read dec enc0 encdec, stepAux] cases p R.head v <;> [apply IH₂; apply IH₁] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₁) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₁ v (Tape.mk' L R))) IH₂ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₂) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₂ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.branch p q₁ q₂)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.branch p q₁ q₂) v (Tape.mk' L R))) [PROOFSTEP] simp only [trNormal, stepAux_read dec enc0 encdec, stepAux] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₁) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₁ v (Tape.mk' L R))) IH₂ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₂) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₂ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (bif p (ListBlank.head R) v then stepAux (trNormal dec q₁) v (trTape' enc0 L R) else stepAux (trNormal dec q₂) v (trTape' enc0 L R)) (trCfg enc enc0 (bif p (Tape.mk' L R).head v then stepAux q₁ v (Tape.mk' L R) else stepAux q₂ v (Tape.mk' L R))) [PROOFSTEP] cases p R.head v <;> [apply IH₂; apply IH₁] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₁) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₁ v (Tape.mk' L R))) IH₂ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₂) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₂ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (bif p (ListBlank.head R) v then stepAux (trNormal dec q₁) v (trTape' enc0 L R) else stepAux (trNormal dec q₂) v (trTape' enc0 L R)) (trCfg enc enc0 (bif p (Tape.mk' L R).head v then stepAux q₁ v (Tape.mk' L R) else stepAux q₂ v (Tape.mk' L R))) [PROOFSTEP] cases p R.head v [GOAL] case false Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₁) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₁ v (Tape.mk' L R))) IH₂ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₂) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₂ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (bif false then stepAux (trNormal dec q₁) v (trTape' enc0 L R) else stepAux (trNormal dec q₂) v (trTape' enc0 L R)) (trCfg enc enc0 (bif false then stepAux q₁ v (Tape.mk' L R) else stepAux q₂ v (Tape.mk' L R))) [PROOFSTEP] apply IH₂ [GOAL] case true Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₁) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₁ v (Tape.mk' L R))) IH₂ : ∀ (v : σ) (L R : ListBlank Γ), Reaches (step (tr enc dec M)) (stepAux (trNormal dec q₂) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q₂ v (Tape.mk' L R))) v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (bif true then stepAux (trNormal dec q₁) v (trTape' enc0 L R) else stepAux (trNormal dec q₂) v (trTape' enc0 L R)) (trCfg enc enc0 (bif true then stepAux q₁ v (Tape.mk' L R) else stepAux q₂ v (Tape.mk' L R))) [PROOFSTEP] apply IH₁ [GOAL] case intro.intro.some.goto Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ a✝ : Γ → σ → Λ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.goto a✝)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.goto a✝) v (Tape.mk' L R))) case intro.intro.some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec Stmt.halt) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux Stmt.halt v (Tape.mk' L R))) [PROOFSTEP] case goto l => simp only [trNormal, stepAux_read dec enc0 encdec, stepAux, trCfg, trTape_mk'] apply ReflTransGen.refl [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ l : Γ → σ → Λ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.goto l)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.goto l) v (Tape.mk' L R))) [PROOFSTEP] case goto l => simp only [trNormal, stepAux_read dec enc0 encdec, stepAux, trCfg, trTape_mk'] apply ReflTransGen.refl [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ l : Γ → σ → Λ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec (Stmt.goto l)) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux (Stmt.goto l) v (Tape.mk' L R))) [PROOFSTEP] simp only [trNormal, stepAux_read dec enc0 encdec, stepAux, trCfg, trTape_mk'] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ l : Γ → σ → Λ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) { l := some (Λ'.normal (l (ListBlank.head R) v)), var := v, Tape := trTape' enc0 L R } { l := Option.map Λ'.normal (some (l (Tape.mk' L R).head v)), var := v, Tape := trTape' enc0 L R } [PROOFSTEP] apply ReflTransGen.refl [GOAL] case intro.intro.some.halt Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec Stmt.halt) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux Stmt.halt v (Tape.mk' L R))) [PROOFSTEP] case halt => simp only [trNormal, stepAux, trCfg, stepAux_move, trTape'_move_left enc0, trTape'_move_right enc0, trTape_mk'] apply ReflTransGen.refl [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec Stmt.halt) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux Stmt.halt v (Tape.mk' L R))) [PROOFSTEP] case halt => simp only [trNormal, stepAux, trCfg, stepAux_move, trTape'_move_left enc0, trTape'_move_right enc0, trTape_mk'] apply ReflTransGen.refl [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) (stepAux (trNormal dec Stmt.halt) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux Stmt.halt v (Tape.mk' L R))) [PROOFSTEP] simp only [trNormal, stepAux, trCfg, stepAux_move, trTape'_move_left enc0, trTape'_move_right enc0, trTape_mk'] [GOAL] Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a enc₀ : enc default = Vector.replicate n false x✝ : Cfg₁ v✝ : σ L✝ R✝ : ListBlank Γ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) { l := none, var := v, Tape := trTape' enc0 L R } { l := Option.map Λ'.normal none, var := v, Tape := trTape' enc0 L R } [PROOFSTEP] apply ReflTransGen.refl [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (tr enc dec M q) [PROOFSTEP] suffices ∀ q, SupportsStmt S q → (∀ q' ∈ writes q, q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ q' ∈ writes q, SupportsStmt (trSupp M S) (tr enc dec M q') by rcases Finset.mem_biUnion.1 h with ⟨l, hl, h⟩ have := this _ (ss.2 _ hl) fun q' hq ↦ Finset.mem_biUnion.2 ⟨_, hl, Finset.mem_insert_of_mem hq⟩ rcases Finset.mem_insert.1 h with (rfl | h) exacts [this.1, this.2 _ h] [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S this : ∀ (q : Stmt₁), SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') ⊢ SupportsStmt (trSupp M S) (tr enc dec M q) [PROOFSTEP] rcases Finset.mem_biUnion.1 h with ⟨l, hl, h⟩ [GOAL] case intro.intro Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h✝ : q ∈ trSupp M S this : ∀ (q : Stmt₁), SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') l : Λ hl : l ∈ S h : q ∈ insert (Λ'.normal l) (writes (M l)) ⊢ SupportsStmt (trSupp M S) (tr enc dec M q) [PROOFSTEP] have := this _ (ss.2 _ hl) fun q' hq ↦ Finset.mem_biUnion.2 ⟨_, hl, Finset.mem_insert_of_mem hq⟩ [GOAL] case intro.intro Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h✝ : q ∈ trSupp M S this✝ : ∀ (q : Stmt₁), SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') l : Λ hl : l ∈ S h : q ∈ insert (Λ'.normal l) (writes (M l)) this : SupportsStmt (trSupp M S) (trNormal dec (M l)) ∧ ∀ (q' : Λ'), q' ∈ writes (M l) → SupportsStmt (trSupp M S) (tr enc dec M q') ⊢ SupportsStmt (trSupp M S) (tr enc dec M q) [PROOFSTEP] rcases Finset.mem_insert.1 h with (rfl | h) [GOAL] case intro.intro.inl Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S this✝ : ∀ (q : Stmt₁), SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') l : Λ hl : l ∈ S this : SupportsStmt (trSupp M S) (trNormal dec (M l)) ∧ ∀ (q' : Λ'), q' ∈ writes (M l) → SupportsStmt (trSupp M S) (tr enc dec M q') h✝ : Λ'.normal l ∈ trSupp M S h : Λ'.normal l ∈ insert (Λ'.normal l) (writes (M l)) ⊢ SupportsStmt (trSupp M S) (tr enc dec M (Λ'.normal l)) case intro.intro.inr Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h✝¹ : q ∈ trSupp M S this✝ : ∀ (q : Stmt₁), SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') l : Λ hl : l ∈ S h✝ : q ∈ insert (Λ'.normal l) (writes (M l)) this : SupportsStmt (trSupp M S) (trNormal dec (M l)) ∧ ∀ (q' : Λ'), q' ∈ writes (M l) → SupportsStmt (trSupp M S) (tr enc dec M q') h : q ∈ writes (M l) ⊢ SupportsStmt (trSupp M S) (tr enc dec M q) [PROOFSTEP] exacts [this.1, this.2 _ h] [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S ⊢ ∀ (q : Stmt₁), SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] intro q hs hw [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S q : Stmt₁ hs : SupportsStmt S q hw : ∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] induction q [GOAL] case move Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝¹ : Dir a✝ : Stmt₁ a_ih✝ : SupportsStmt S a✝ → (∀ (q' : Λ'), q' ∈ writes a✝ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝) ∧ ∀ (q' : Λ'), q' ∈ writes a✝ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.move a✝¹ a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.move a✝¹ a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.move a✝¹ a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.move a✝¹ a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case write Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝¹ : Γ → σ → Γ a✝ : Stmt₁ a_ih✝ : SupportsStmt S a✝ → (∀ (q' : Λ'), q' ∈ writes a✝ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝) ∧ ∀ (q' : Λ'), q' ∈ writes a✝ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.write a✝¹ a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.write a✝¹ a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.write a✝¹ a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.write a✝¹ a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case load Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝¹ : Γ → σ → σ a✝ : Stmt₁ a_ih✝ : SupportsStmt S a✝ → (∀ (q' : Λ'), q' ∈ writes a✝ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝) ∧ ∀ (q' : Λ'), q' ∈ writes a✝ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.load a✝¹ a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.load a✝¹ a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.load a✝¹ a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.load a✝¹ a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case branch Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : SupportsStmt S a✝¹ → (∀ (q' : Λ'), q' ∈ writes a✝¹ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝¹) ∧ ∀ (q' : Λ'), q' ∈ writes a✝¹ → SupportsStmt (trSupp M S) (tr enc dec M q') a_ih✝ : SupportsStmt S a✝ → (∀ (q' : Λ'), q' ∈ writes a✝ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝) ∧ ∀ (q' : Λ'), q' ∈ writes a✝ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.branch a✝² a✝¹ a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.branch a✝² a✝¹ a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch a✝² a✝¹ a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.branch a✝² a✝¹ a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case goto Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝ : Γ → σ → Λ hs : SupportsStmt S (Stmt.goto a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.goto a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.goto a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.goto a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S hs : SupportsStmt S Stmt.halt hw : ∀ (q' : Λ'), q' ∈ writes Stmt.halt → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec Stmt.halt) ∧ ∀ (q' : Λ'), q' ∈ writes Stmt.halt → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case move d q IH => unfold writes at hw ⊢ replace IH := IH hs hw; refine' ⟨_, IH.2⟩ cases d <;> simp only [trNormal, iterate, supportsStmt_move, IH] [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S d : Dir q : Stmt₁ IH : SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.move d q) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.move d q) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.move d q)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.move d q) → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case move d q IH => unfold writes at hw ⊢ replace IH := IH hs hw; refine' ⟨_, IH.2⟩ cases d <;> simp only [trNormal, iterate, supportsStmt_move, IH] [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S d : Dir q : Stmt₁ IH : SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.move d q) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.move d q) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.move d q)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.move d q) → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] unfold writes at hw ⊢ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S d : Dir q : Stmt₁ IH : SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.move d q) hw : ∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.move d q)) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] replace IH := IH hs hw [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S d : Dir q : Stmt₁ hs : SupportsStmt S (Stmt.move d q) hw : ∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.move d q)) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] refine' ⟨_, IH.2⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S d : Dir q : Stmt₁ hs : SupportsStmt S (Stmt.move d q) hw : ∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.move d q)) [PROOFSTEP] cases d [GOAL] case left Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S q : Stmt₁ hw : ∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.move Dir.left q) ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.move Dir.left q)) [PROOFSTEP] simp only [trNormal, iterate, supportsStmt_move, IH] [GOAL] case right Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S q : Stmt₁ hw : ∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.move Dir.right q) ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.move Dir.right q)) [PROOFSTEP] simp only [trNormal, iterate, supportsStmt_move, IH] [GOAL] case write Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝¹ : Γ → σ → Γ a✝ : Stmt₁ a_ih✝ : SupportsStmt S a✝ → (∀ (q' : Λ'), q' ∈ writes a✝ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝) ∧ ∀ (q' : Λ'), q' ∈ writes a✝ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.write a✝¹ a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.write a✝¹ a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.write a✝¹ a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.write a✝¹ a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case load Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝¹ : Γ → σ → σ a✝ : Stmt₁ a_ih✝ : SupportsStmt S a✝ → (∀ (q' : Λ'), q' ∈ writes a✝ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝) ∧ ∀ (q' : Λ'), q' ∈ writes a✝ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.load a✝¹ a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.load a✝¹ a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.load a✝¹ a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.load a✝¹ a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case branch Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : SupportsStmt S a✝¹ → (∀ (q' : Λ'), q' ∈ writes a✝¹ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝¹) ∧ ∀ (q' : Λ'), q' ∈ writes a✝¹ → SupportsStmt (trSupp M S) (tr enc dec M q') a_ih✝ : SupportsStmt S a✝ → (∀ (q' : Λ'), q' ∈ writes a✝ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝) ∧ ∀ (q' : Λ'), q' ∈ writes a✝ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.branch a✝² a✝¹ a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.branch a✝² a✝¹ a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch a✝² a✝¹ a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.branch a✝² a✝¹ a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case goto Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝ : Γ → σ → Λ hs : SupportsStmt S (Stmt.goto a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.goto a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.goto a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.goto a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S hs : SupportsStmt S Stmt.halt hw : ∀ (q' : Λ'), q' ∈ writes Stmt.halt → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec Stmt.halt) ∧ ∀ (q' : Λ'), q' ∈ writes Stmt.halt → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case write f q IH => unfold writes at hw ⊢ simp only [Finset.mem_image, Finset.mem_union, Finset.mem_univ, exists_prop, true_and_iff] at hw ⊢ replace IH := IH hs fun q hq ↦ hw q (Or.inr hq) refine' ⟨supportsStmt_read _ fun a _ s ↦ hw _ (Or.inl ⟨_, rfl⟩), fun q' hq ↦ _⟩ rcases hq with (⟨a, q₂, rfl⟩ | hq) · simp only [tr, supportsStmt_write, supportsStmt_move, IH.1] · exact IH.2 _ hq [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S f : Γ → σ → Γ q : Stmt₁ IH : SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.write f q) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.write f q) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.write f q)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.write f q) → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case write f q IH => unfold writes at hw ⊢ simp only [Finset.mem_image, Finset.mem_union, Finset.mem_univ, exists_prop, true_and_iff] at hw ⊢ replace IH := IH hs fun q hq ↦ hw q (Or.inr hq) refine' ⟨supportsStmt_read _ fun a _ s ↦ hw _ (Or.inl ⟨_, rfl⟩), fun q' hq ↦ _⟩ rcases hq with (⟨a, q₂, rfl⟩ | hq) · simp only [tr, supportsStmt_write, supportsStmt_move, IH.1] · exact IH.2 _ hq [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S f : Γ → σ → Γ q : Stmt₁ IH : SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.write f q) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.write f q) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.write f q)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.write f q) → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] unfold writes at hw ⊢ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S f : Γ → σ → Γ q : Stmt₁ IH : SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.write f q) hw : ∀ (q' : Λ'), q' ∈ Finset.image (fun a => Λ'.write a q) Finset.univ ∪ writes q → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.write f q)) ∧ ∀ (q' : Λ'), q' ∈ Finset.image (fun a => Λ'.write a q) Finset.univ ∪ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] simp only [Finset.mem_image, Finset.mem_union, Finset.mem_univ, exists_prop, true_and_iff] at hw ⊢ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S f : Γ → σ → Γ q : Stmt₁ IH : SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.write f q) hw : ∀ (q' : Λ'), (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.write f q)) ∧ ∀ (q' : Λ'), (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] replace IH := IH hs fun q hq ↦ hw q (Or.inr hq) [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S f : Γ → σ → Γ q : Stmt₁ hs : SupportsStmt S (Stmt.write f q) hw : ∀ (q' : Λ'), (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.write f q)) ∧ ∀ (q' : Λ'), (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] refine' ⟨supportsStmt_read _ fun a _ s ↦ hw _ (Or.inl ⟨_, rfl⟩), fun q' hq ↦ _⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S f : Γ → σ → Γ q : Stmt₁ hs : SupportsStmt S (Stmt.write f q) hw : ∀ (q' : Λ'), (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') q' : Λ' hq : (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q ⊢ SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] rcases hq with (⟨a, q₂, rfl⟩ | hq) [GOAL] case inl.intro.refl Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S f : Γ → σ → Γ q : Stmt₁ hs : SupportsStmt S (Stmt.write f q) hw : ∀ (q' : Λ'), (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') a : Γ ⊢ SupportsStmt (trSupp M S) (tr enc dec M (Λ'.write a q)) [PROOFSTEP] simp only [tr, supportsStmt_write, supportsStmt_move, IH.1] [GOAL] case inr Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S f : Γ → σ → Γ q : Stmt₁ hs : SupportsStmt S (Stmt.write f q) hw : ∀ (q' : Λ'), (∃ a, Λ'.write a q = q') ∨ q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') q' : Λ' hq : q' ∈ writes q ⊢ SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] exact IH.2 _ hq [GOAL] case load Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝¹ : Γ → σ → σ a✝ : Stmt₁ a_ih✝ : SupportsStmt S a✝ → (∀ (q' : Λ'), q' ∈ writes a✝ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝) ∧ ∀ (q' : Λ'), q' ∈ writes a✝ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.load a✝¹ a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.load a✝¹ a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.load a✝¹ a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.load a✝¹ a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case branch Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : SupportsStmt S a✝¹ → (∀ (q' : Λ'), q' ∈ writes a✝¹ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝¹) ∧ ∀ (q' : Λ'), q' ∈ writes a✝¹ → SupportsStmt (trSupp M S) (tr enc dec M q') a_ih✝ : SupportsStmt S a✝ → (∀ (q' : Λ'), q' ∈ writes a✝ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝) ∧ ∀ (q' : Λ'), q' ∈ writes a✝ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.branch a✝² a✝¹ a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.branch a✝² a✝¹ a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch a✝² a✝¹ a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.branch a✝² a✝¹ a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case goto Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝ : Γ → σ → Λ hs : SupportsStmt S (Stmt.goto a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.goto a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.goto a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.goto a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S hs : SupportsStmt S Stmt.halt hw : ∀ (q' : Λ'), q' ∈ writes Stmt.halt → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec Stmt.halt) ∧ ∀ (q' : Λ'), q' ∈ writes Stmt.halt → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case load a q IH => unfold writes at hw ⊢ replace IH := IH hs hw refine' ⟨supportsStmt_read _ fun _ ↦ IH.1, IH.2⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S a : Γ → σ → σ q : Stmt₁ IH : SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.load a q) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.load a q) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.load a q)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.load a q) → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case load a q IH => unfold writes at hw ⊢ replace IH := IH hs hw refine' ⟨supportsStmt_read _ fun _ ↦ IH.1, IH.2⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S a : Γ → σ → σ q : Stmt₁ IH : SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.load a q) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.load a q) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.load a q)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.load a q) → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] unfold writes at hw ⊢ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S a : Γ → σ → σ q : Stmt₁ IH : SupportsStmt S q → (∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.load a q) hw : ∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.load a q)) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] replace IH := IH hs hw [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q✝ : Λ' h : q✝ ∈ trSupp M S a : Γ → σ → σ q : Stmt₁ hs : SupportsStmt S (Stmt.load a q) hw : ∀ (q' : Λ'), q' ∈ writes q → q' ∈ trSupp M S IH : SupportsStmt (trSupp M S) (trNormal dec q) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.load a q)) ∧ ∀ (q' : Λ'), q' ∈ writes q → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] refine' ⟨supportsStmt_read _ fun _ ↦ IH.1, IH.2⟩ [GOAL] case branch Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : SupportsStmt S a✝¹ → (∀ (q' : Λ'), q' ∈ writes a✝¹ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝¹) ∧ ∀ (q' : Λ'), q' ∈ writes a✝¹ → SupportsStmt (trSupp M S) (tr enc dec M q') a_ih✝ : SupportsStmt S a✝ → (∀ (q' : Λ'), q' ∈ writes a✝ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec a✝) ∧ ∀ (q' : Λ'), q' ∈ writes a✝ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.branch a✝² a✝¹ a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.branch a✝² a✝¹ a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch a✝² a✝¹ a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.branch a✝² a✝¹ a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case goto Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝ : Γ → σ → Λ hs : SupportsStmt S (Stmt.goto a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.goto a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.goto a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.goto a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S hs : SupportsStmt S Stmt.halt hw : ∀ (q' : Λ'), q' ∈ writes Stmt.halt → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec Stmt.halt) ∧ ∀ (q' : Λ'), q' ∈ writes Stmt.halt → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => unfold writes at hw ⊢ simp only [Finset.mem_union] at hw ⊢ replace IH₁ := IH₁ hs.1 fun q hq ↦ hw q (Or.inl hq) replace IH₂ := IH₂ hs.2 fun q hq ↦ hw q (Or.inr hq) exact ⟨supportsStmt_read _ fun _ ↦ ⟨IH₁.1, IH₂.1⟩, fun q ↦ Or.rec (IH₁.2 _) (IH₂.2 _)⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : SupportsStmt S q₁ → (∀ (q' : Λ'), q' ∈ writes q₁ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₁) ∧ ∀ (q' : Λ'), q' ∈ writes q₁ → SupportsStmt (trSupp M S) (tr enc dec M q') IH₂ : SupportsStmt S q₂ → (∀ (q' : Λ'), q' ∈ writes q₂ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₂) ∧ ∀ (q' : Λ'), q' ∈ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.branch p q₁ q₂) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.branch p q₁ q₂) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch p q₁ q₂)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.branch p q₁ q₂) → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case branch p q₁ q₂ IH₁ IH₂ => unfold writes at hw ⊢ simp only [Finset.mem_union] at hw ⊢ replace IH₁ := IH₁ hs.1 fun q hq ↦ hw q (Or.inl hq) replace IH₂ := IH₂ hs.2 fun q hq ↦ hw q (Or.inr hq) exact ⟨supportsStmt_read _ fun _ ↦ ⟨IH₁.1, IH₂.1⟩, fun q ↦ Or.rec (IH₁.2 _) (IH₂.2 _)⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : SupportsStmt S q₁ → (∀ (q' : Λ'), q' ∈ writes q₁ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₁) ∧ ∀ (q' : Λ'), q' ∈ writes q₁ → SupportsStmt (trSupp M S) (tr enc dec M q') IH₂ : SupportsStmt S q₂ → (∀ (q' : Λ'), q' ∈ writes q₂ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₂) ∧ ∀ (q' : Λ'), q' ∈ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.branch p q₁ q₂) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.branch p q₁ q₂) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch p q₁ q₂)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.branch p q₁ q₂) → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] unfold writes at hw ⊢ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : SupportsStmt S q₁ → (∀ (q' : Λ'), q' ∈ writes q₁ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₁) ∧ ∀ (q' : Λ'), q' ∈ writes q₁ → SupportsStmt (trSupp M S) (tr enc dec M q') IH₂ : SupportsStmt S q₂ → (∀ (q' : Λ'), q' ∈ writes q₂ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₂) ∧ ∀ (q' : Λ'), q' ∈ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.branch p q₁ q₂) hw : ∀ (q' : Λ'), q' ∈ writes q₁ ∪ writes q₂ → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch p q₁ q₂)) ∧ ∀ (q' : Λ'), q' ∈ writes q₁ ∪ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] simp only [Finset.mem_union] at hw ⊢ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : SupportsStmt S q₁ → (∀ (q' : Λ'), q' ∈ writes q₁ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₁) ∧ ∀ (q' : Λ'), q' ∈ writes q₁ → SupportsStmt (trSupp M S) (tr enc dec M q') IH₂ : SupportsStmt S q₂ → (∀ (q' : Λ'), q' ∈ writes q₂ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₂) ∧ ∀ (q' : Λ'), q' ∈ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.branch p q₁ q₂) hw : ∀ (q' : Λ'), q' ∈ writes q₁ ∨ q' ∈ writes q₂ → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch p q₁ q₂)) ∧ ∀ (q' : Λ'), q' ∈ writes q₁ ∨ q' ∈ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] replace IH₁ := IH₁ hs.1 fun q hq ↦ hw q (Or.inl hq) [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₂ : SupportsStmt S q₂ → (∀ (q' : Λ'), q' ∈ writes q₂ → q' ∈ trSupp M S) → SupportsStmt (trSupp M S) (trNormal dec q₂) ∧ ∀ (q' : Λ'), q' ∈ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q') hs : SupportsStmt S (Stmt.branch p q₁ q₂) hw : ∀ (q' : Λ'), q' ∈ writes q₁ ∨ q' ∈ writes q₂ → q' ∈ trSupp M S IH₁ : SupportsStmt (trSupp M S) (trNormal dec q₁) ∧ ∀ (q' : Λ'), q' ∈ writes q₁ → SupportsStmt (trSupp M S) (tr enc dec M q') ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch p q₁ q₂)) ∧ ∀ (q' : Λ'), q' ∈ writes q₁ ∨ q' ∈ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] replace IH₂ := IH₂ hs.2 fun q hq ↦ hw q (Or.inr hq) [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S p : Γ → σ → Bool q₁ q₂ : Stmt₁ hs : SupportsStmt S (Stmt.branch p q₁ q₂) hw : ∀ (q' : Λ'), q' ∈ writes q₁ ∨ q' ∈ writes q₂ → q' ∈ trSupp M S IH₁ : SupportsStmt (trSupp M S) (trNormal dec q₁) ∧ ∀ (q' : Λ'), q' ∈ writes q₁ → SupportsStmt (trSupp M S) (tr enc dec M q') IH₂ : SupportsStmt (trSupp M S) (trNormal dec q₂) ∧ ∀ (q' : Λ'), q' ∈ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q') ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.branch p q₁ q₂)) ∧ ∀ (q' : Λ'), q' ∈ writes q₁ ∨ q' ∈ writes q₂ → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] exact ⟨supportsStmt_read _ fun _ ↦ ⟨IH₁.1, IH₂.1⟩, fun q ↦ Or.rec (IH₁.2 _) (IH₂.2 _)⟩ [GOAL] case goto Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S a✝ : Γ → σ → Λ hs : SupportsStmt S (Stmt.goto a✝) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.goto a✝) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.goto a✝)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.goto a✝) → SupportsStmt (trSupp M S) (tr enc dec M q') case halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S hs : SupportsStmt S Stmt.halt hw : ∀ (q' : Λ'), q' ∈ writes Stmt.halt → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec Stmt.halt) ∧ ∀ (q' : Λ'), q' ∈ writes Stmt.halt → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case goto l => simp only [writes, Finset.not_mem_empty]; refine' ⟨_, fun _ ↦ False.elim⟩ refine' supportsStmt_read _ fun a _ s ↦ _ exact Finset.mem_biUnion.2 ⟨_, hs _ _, Finset.mem_insert_self _ _⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S l : Γ → σ → Λ hs : SupportsStmt S (Stmt.goto l) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.goto l) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.goto l)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.goto l) → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case goto l => simp only [writes, Finset.not_mem_empty]; refine' ⟨_, fun _ ↦ False.elim⟩ refine' supportsStmt_read _ fun a _ s ↦ _ exact Finset.mem_biUnion.2 ⟨_, hs _ _, Finset.mem_insert_self _ _⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S l : Γ → σ → Λ hs : SupportsStmt S (Stmt.goto l) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.goto l) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.goto l)) ∧ ∀ (q' : Λ'), q' ∈ writes (Stmt.goto l) → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] simp only [writes, Finset.not_mem_empty] [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S l : Γ → σ → Λ hs : SupportsStmt S (Stmt.goto l) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.goto l) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.goto l)) ∧ ∀ (q' : Λ'), False → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] refine' ⟨_, fun _ ↦ False.elim⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S l : Γ → σ → Λ hs : SupportsStmt S (Stmt.goto l) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.goto l) → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec (Stmt.goto l)) [PROOFSTEP] refine' supportsStmt_read _ fun a _ s ↦ _ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S l : Γ → σ → Λ hs : SupportsStmt S (Stmt.goto l) hw : ∀ (q' : Λ'), q' ∈ writes (Stmt.goto l) → q' ∈ trSupp M S a : Γ x✝ : Bool s : σ ⊢ (fun x s => Λ'.normal (l a s)) x✝ s ∈ trSupp M S [PROOFSTEP] exact Finset.mem_biUnion.2 ⟨_, hs _ _, Finset.mem_insert_self _ _⟩ [GOAL] case halt Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S hs : SupportsStmt S Stmt.halt hw : ∀ (q' : Λ'), q' ∈ writes Stmt.halt → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec Stmt.halt) ∧ ∀ (q' : Λ'), q' ∈ writes Stmt.halt → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case halt => simp only [writes, Finset.not_mem_empty]; refine' ⟨_, fun _ ↦ False.elim⟩ simp only [SupportsStmt, supportsStmt_move, trNormal] [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S hs : SupportsStmt S Stmt.halt hw : ∀ (q' : Λ'), q' ∈ writes Stmt.halt → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec Stmt.halt) ∧ ∀ (q' : Λ'), q' ∈ writes Stmt.halt → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] case halt => simp only [writes, Finset.not_mem_empty]; refine' ⟨_, fun _ ↦ False.elim⟩ simp only [SupportsStmt, supportsStmt_move, trNormal] [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S hs : SupportsStmt S Stmt.halt hw : ∀ (q' : Λ'), q' ∈ writes Stmt.halt → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec Stmt.halt) ∧ ∀ (q' : Λ'), q' ∈ writes Stmt.halt → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] simp only [writes, Finset.not_mem_empty] [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S hs : SupportsStmt S Stmt.halt hw : ∀ (q' : Λ'), q' ∈ writes Stmt.halt → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec Stmt.halt) ∧ ∀ (q' : Λ'), False → SupportsStmt (trSupp M S) (tr enc dec M q') [PROOFSTEP] refine' ⟨_, fun _ ↦ False.elim⟩ [GOAL] Γ : Type u_1 inst✝³ : Inhabited Γ Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ encdec : ∀ (a : Γ), dec (enc a) = a inst✝ : Fintype Γ S : Finset Λ ss : Supports M S q : Λ' h : q ∈ trSupp M S hs : SupportsStmt S Stmt.halt hw : ∀ (q' : Λ'), q' ∈ writes Stmt.halt → q' ∈ trSupp M S ⊢ SupportsStmt (trSupp M S) (trNormal dec Stmt.halt) [PROOFSTEP] simp only [SupportsStmt, supportsStmt_move, trNormal] [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ ⊢ FRespects (TM1.step (tr M)) (fun a => trCfg M a) (trCfg M { q := q, Tape := T }) (TM0.step M { q := q, Tape := T }) [PROOFSTEP] cases' e : M q T.1 with val [GOAL] case none Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ e : M q T.head = none ⊢ FRespects (TM1.step (tr M)) (fun a => trCfg M a) (trCfg M { q := q, Tape := T }) (TM0.step M { q := q, Tape := T }) [PROOFSTEP] simp only [TM0.step, trCfg, e] [GOAL] case none Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ e : M q T.head = none ⊢ FRespects (TM1.step (tr M)) (fun a => { l := bif Option.isSome (M a.q a.Tape.head) then some (Λ'.normal a.q) else none, var := (), Tape := a.Tape }) { l := bif Option.isSome none then some (Λ'.normal q) else none, var := (), Tape := T } (Option.map (fun x => { q := x.fst, Tape := match x.snd with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T }) none) [PROOFSTEP] exact Eq.refl none [GOAL] case some Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ val : Λ × TM0.Stmt Γ e : M q T.head = some val ⊢ FRespects (TM1.step (tr M)) (fun a => trCfg M a) (trCfg M { q := q, Tape := T }) (TM0.step M { q := q, Tape := T }) [PROOFSTEP] cases' val with q' s [GOAL] case some.mk Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ e : M q T.head = some (q', s) ⊢ FRespects (TM1.step (tr M)) (fun a => trCfg M a) (trCfg M { q := q, Tape := T }) (TM0.step M { q := q, Tape := T }) [PROOFSTEP] simp only [FRespects, TM0.step, trCfg, e, Option.isSome, cond, Option.map_some'] [GOAL] case some.mk Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ e : M q T.head = some (q', s) ⊢ Reaches₁ (TM1.step (tr M)) { l := some (Λ'.normal q), var := (), Tape := T } { l := match match M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head with | some val => true | none => false with | true => some (Λ'.normal q') | false => none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } [PROOFSTEP] revert e [GOAL] case some.mk Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ ⊢ M q T.head = some (q', s) → Reaches₁ (TM1.step (tr M)) { l := some (Λ'.normal q), var := (), Tape := T } { l := match match M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head with | some val => true | none => false with | true => some (Λ'.normal q') | false => none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } [PROOFSTEP] have : TM1.step (tr M) ⟨some (Λ'.act s q'), (), T⟩ = some ⟨some (Λ'.normal q'), (), match s with | TM0.Stmt.move d => T.move d | TM0.Stmt.write a => T.write a⟩ := by cases' s with d a <;> rfl [GOAL] Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ ⊢ TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } [PROOFSTEP] cases' s with d a [GOAL] case move Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ d : Dir ⊢ TM1.step (tr M) { l := some (Λ'.act (TM0.Stmt.move d) q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match TM0.Stmt.move d with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } [PROOFSTEP] rfl [GOAL] case write Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ a : Γ ⊢ TM1.step (tr M) { l := some (Λ'.act (TM0.Stmt.write a) q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match TM0.Stmt.write a with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } [PROOFSTEP] rfl [GOAL] case some.mk Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ this : TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } ⊢ M q T.head = some (q', s) → Reaches₁ (TM1.step (tr M)) { l := some (Λ'.normal q), var := (), Tape := T } { l := match match M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head with | some val => true | none => false with | true => some (Λ'.normal q') | false => none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } [PROOFSTEP] intro e [GOAL] case some.mk Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ this : TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } e : M q T.head = some (q', s) ⊢ Reaches₁ (TM1.step (tr M)) { l := some (Λ'.normal q), var := (), Tape := T } { l := match match M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head with | some val => true | none => false with | true => some (Λ'.normal q') | false => none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } [PROOFSTEP] refine' TransGen.head _ (TransGen.head' this _) [GOAL] case some.mk.refine'_1 Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ this : TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } e : M q T.head = some (q', s) ⊢ { l := some (Λ'.act s q'), var := (), Tape := T } ∈ TM1.step (tr M) { l := some (Λ'.normal q), var := (), Tape := T } [PROOFSTEP] simp only [TM1.step, TM1.stepAux] [GOAL] case some.mk.refine'_1 Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ this : TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } e : M q T.head = some (q', s) ⊢ { l := some (Λ'.act s q'), var := (), Tape := T } ∈ some (bif Option.isNone (M q T.head) then { l := none, var := (), Tape := T } else { l := some (match M q T.head with | none => default | some (q', s) => Λ'.act s q'), var := (), Tape := T }) [PROOFSTEP] rw [e] [GOAL] case some.mk.refine'_1 Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ this : TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } e : M q T.head = some (q', s) ⊢ { l := some (Λ'.act s q'), var := (), Tape := T } ∈ some (bif Option.isNone (some (q', s)) then { l := none, var := (), Tape := T } else { l := some (match some (q', s) with | none => default | some (q', s) => Λ'.act s q'), var := (), Tape := T }) [PROOFSTEP] rfl [GOAL] case some.mk.refine'_2 Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ this : TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } e : M q T.head = some (q', s) ⊢ ReflTransGen (fun a b => b ∈ TM1.step (tr M) a) { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } { l := match match M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head with | some val => true | none => false with | true => some (Λ'.normal q') | false => none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } [PROOFSTEP] cases e' : M q' _ [GOAL] case some.mk.refine'_2.none Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ this : TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } e : M q T.head = some (q', s) e' : M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head = none ⊢ ReflTransGen (fun a b => b ∈ TM1.step (tr M) a) { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } { l := match match none with | some val => true | none => false with | true => some (Λ'.normal q') | false => none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } [PROOFSTEP] apply ReflTransGen.single [GOAL] case some.mk.refine'_2.none.hab Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ this : TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } e : M q T.head = some (q', s) e' : M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head = none ⊢ { l := match match none with | some val => true | none => false with | true => some (Λ'.normal q') | false => none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } ∈ TM1.step (tr M) { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } [PROOFSTEP] simp only [TM1.step, TM1.stepAux] [GOAL] case some.mk.refine'_2.none.hab Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ this : TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } e : M q T.head = some (q', s) e' : M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head = none ⊢ { l := none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } ∈ some (bif Option.isNone (M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head) then { l := none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } else { l := some (match M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head with | none => default | some (q', s) => Λ'.act s q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T }) [PROOFSTEP] rw [e'] [GOAL] case some.mk.refine'_2.none.hab Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ this : TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } e : M q T.head = some (q', s) e' : M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head = none ⊢ { l := none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } ∈ some (bif Option.isNone none then { l := none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } else { l := some (match none with | none => default | some (q', s) => Λ'.act s q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T }) [PROOFSTEP] rfl [GOAL] case some.mk.refine'_2.some Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : TM0.Machine Γ Λ x✝ : Cfg₀ q : Λ T : Tape Γ q' : Λ s : TM0.Stmt Γ this : TM1.step (tr M) { l := some (Λ'.act s q'), var := (), Tape := T } = some { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } e : M q T.head = some (q', s) val✝ : Λ × TM0.Stmt Γ e' : M q' (match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T).head = some val✝ ⊢ ReflTransGen (fun a b => b ∈ TM1.step (tr M) a) { l := some (Λ'.normal q'), var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } { l := match match some val✝ with | some val => true | none => false with | true => some (Λ'.normal q') | false => none, var := (), Tape := match s with | TM0.Stmt.move d => Tape.move d T | TM0.Stmt.write a => Tape.write a T } [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q : Stmt₂ ⊢ q ∈ stmts₁ q [PROOFSTEP] cases q [GOAL] case push K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 k✝ : K a✝¹ : σ → Γ k✝ a✝ : Stmt₂ ⊢ push k✝ a✝¹ a✝ ∈ stmts₁ (push k✝ a✝¹ a✝) [PROOFSTEP] simp only [Finset.mem_insert_self, Finset.mem_singleton_self, stmts₁] [GOAL] case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 k✝ : K a✝¹ : σ → Option (Γ k✝) → σ a✝ : Stmt₂ ⊢ peek k✝ a✝¹ a✝ ∈ stmts₁ (peek k✝ a✝¹ a✝) [PROOFSTEP] simp only [Finset.mem_insert_self, Finset.mem_singleton_self, stmts₁] [GOAL] case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 k✝ : K a✝¹ : σ → Option (Γ k✝) → σ a✝ : Stmt₂ ⊢ pop k✝ a✝¹ a✝ ∈ stmts₁ (pop k✝ a✝¹ a✝) [PROOFSTEP] simp only [Finset.mem_insert_self, Finset.mem_singleton_self, stmts₁] [GOAL] case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 a✝¹ : σ → σ a✝ : Stmt₂ ⊢ load a✝¹ a✝ ∈ stmts₁ (load a✝¹ a✝) [PROOFSTEP] simp only [Finset.mem_insert_self, Finset.mem_singleton_self, stmts₁] [GOAL] case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 a✝² : σ → Bool a✝¹ a✝ : Stmt₂ ⊢ branch a✝² a✝¹ a✝ ∈ stmts₁ (branch a✝² a✝¹ a✝) [PROOFSTEP] simp only [Finset.mem_insert_self, Finset.mem_singleton_self, stmts₁] [GOAL] case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 a✝ : σ → Λ ⊢ goto a✝ ∈ stmts₁ (goto a✝) [PROOFSTEP] simp only [Finset.mem_insert_self, Finset.mem_singleton_self, stmts₁] [GOAL] case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 ⊢ halt ∈ stmts₁ halt [PROOFSTEP] simp only [Finset.mem_insert_self, Finset.mem_singleton_self, stmts₁] [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ ⊢ q₁ ∈ stmts₁ q₂ → stmts₁ q₁ ⊆ stmts₁ q₂ [PROOFSTEP] intro h₁₂ q₀ h₀₁ [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ ⊢ q₀ ∈ stmts₁ q₂ [PROOFSTEP] induction' q₂ with _ _ q IH _ _ q IH _ _ q IH _ q IH [GOAL] case push K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ (push k✝ a✝ q) ⊢ q₀ ∈ stmts₁ (push k✝ a✝ q) [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ (peek k✝ a✝ q) ⊢ q₀ ∈ stmts₁ (peek k✝ a✝ q) [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ (pop k✝ a✝ q) ⊢ q₀ ∈ stmts₁ (pop k✝ a✝ q) [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ (load a✝ q) ⊢ q₀ ∈ stmts₁ (load a✝ q) [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ ∈ stmts₁ (branch a✝² a✝¹ a✝) ⊢ q₀ ∈ stmts₁ (branch a✝² a✝¹ a✝) [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → Λ h₁₂ : q₁ ∈ stmts₁ (goto a✝) ⊢ q₀ ∈ stmts₁ (goto a✝) [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ ∈ stmts₁ halt ⊢ q₀ ∈ stmts₁ halt [PROOFSTEP] simp only [stmts₁] at h₁₂ ⊢ [GOAL] case push K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ insert (push k✝ a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (push k✝ a✝ q) (stmts₁ q) [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_singleton, Finset.mem_union] at h₁₂ [GOAL] case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ insert (peek k✝ a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (peek k✝ a✝ q) (stmts₁ q) [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_singleton, Finset.mem_union] at h₁₂ [GOAL] case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ insert (pop k✝ a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (pop k✝ a✝ q) (stmts₁ q) [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_singleton, Finset.mem_union] at h₁₂ [GOAL] case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ insert (load a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_singleton, Finset.mem_union] at h₁₂ [GOAL] case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_singleton, Finset.mem_union] at h₁₂ [GOAL] case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → Λ h₁₂ : q₁ ∈ {goto a✝} ⊢ q₀ ∈ {goto a✝} [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_singleton, Finset.mem_union] at h₁₂ [GOAL] case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ ∈ {halt} ⊢ q₀ ∈ {halt} [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_singleton, Finset.mem_union] at h₁₂ [GOAL] case push K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = push k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (push k✝ a✝ q) (stmts₁ q) case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = peek k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (peek k✝ a✝ q) (stmts₁ q) case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = pop k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (pop k✝ a✝ q) (stmts₁ q) case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] iterate 4 rcases h₁₂ with (rfl | h₁₂) · unfold stmts₁ at h₀₁ exact h₀₁ · exact Finset.mem_insert_of_mem (IH h₁₂) [GOAL] case push K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = push k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (push k✝ a✝ q) (stmts₁ q) case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = peek k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (peek k✝ a✝ q) (stmts₁ q) case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = pop k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (pop k✝ a✝ q) (stmts₁ q) case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] rcases h₁₂ with (rfl | h₁₂) [GOAL] case push.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ h₁₂ : push k✝ a✝ q ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (push k✝ a✝ q) IH : push k✝ a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q ⊢ q₀ ∈ insert (push k✝ a✝ q) (stmts₁ q) [PROOFSTEP] unfold stmts₁ at h₀₁ [GOAL] case push.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ h₁₂ : push k✝ a✝ q ∈ stmts₁ q₂ IH : push k✝ a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q h₀₁ : q₀ ∈ insert (push k✝ a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (push k✝ a✝ q) (stmts₁ q) [PROOFSTEP] exact h₀₁ [GOAL] case push.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (push k✝ a✝ q) (stmts₁ q) [PROOFSTEP] exact Finset.mem_insert_of_mem (IH h₁₂) [GOAL] case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = peek k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (peek k✝ a✝ q) (stmts₁ q) case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = pop k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (pop k✝ a✝ q) (stmts₁ q) case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] rcases h₁₂ with (rfl | h₁₂) [GOAL] case peek.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ h₁₂ : peek k✝ a✝ q ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (peek k✝ a✝ q) IH : peek k✝ a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q ⊢ q₀ ∈ insert (peek k✝ a✝ q) (stmts₁ q) [PROOFSTEP] unfold stmts₁ at h₀₁ [GOAL] case peek.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ h₁₂ : peek k✝ a✝ q ∈ stmts₁ q₂ IH : peek k✝ a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q h₀₁ : q₀ ∈ insert (peek k✝ a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (peek k✝ a✝ q) (stmts₁ q) [PROOFSTEP] exact h₀₁ [GOAL] case peek.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (peek k✝ a✝ q) (stmts₁ q) [PROOFSTEP] exact Finset.mem_insert_of_mem (IH h₁₂) [GOAL] case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = pop k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (pop k✝ a✝ q) (stmts₁ q) case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] rcases h₁₂ with (rfl | h₁₂) [GOAL] case pop.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ h₁₂ : pop k✝ a✝ q ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (pop k✝ a✝ q) IH : pop k✝ a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q ⊢ q₀ ∈ insert (pop k✝ a✝ q) (stmts₁ q) [PROOFSTEP] unfold stmts₁ at h₀₁ [GOAL] case pop.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ h₁₂ : pop k✝ a✝ q ∈ stmts₁ q₂ IH : pop k✝ a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q h₀₁ : q₀ ∈ insert (pop k✝ a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (pop k✝ a✝ q) (stmts₁ q) [PROOFSTEP] exact h₀₁ [GOAL] case pop.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (pop k✝ a✝ q) (stmts₁ q) [PROOFSTEP] exact Finset.mem_insert_of_mem (IH h₁₂) [GOAL] case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] rcases h₁₂ with (rfl | h₁₂) [GOAL] case load.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ a✝ : σ → σ q : Stmt₂ h₁₂ : load a✝ q ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (load a✝ q) IH : load a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) [PROOFSTEP] unfold stmts₁ at h₀₁ [GOAL] case load.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ a✝ : σ → σ q : Stmt₂ h₁₂ : load a✝ q ∈ stmts₁ q₂ IH : load a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q h₀₁ : q₀ ∈ insert (load a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) [PROOFSTEP] exact h₀₁ [GOAL] case load.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) [PROOFSTEP] exact Finset.mem_insert_of_mem (IH h₁₂) [GOAL] case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] case branch f q₁ q₂ IH₁ IH₂ => rcases h₁₂ with (rfl | h₁₂ | h₁₂) · unfold stmts₁ at h₀₁ exact h₀₁ · exact Finset.mem_insert_of_mem (Finset.mem_union_left _ (IH₁ h₁₂)) · exact Finset.mem_insert_of_mem (Finset.mem_union_right _ (IH₂ h₁₂)) [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁✝ q₂✝ : Stmt₂ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ = branch f q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] case branch f q₁ q₂ IH₁ IH₂ => rcases h₁₂ with (rfl | h₁₂ | h₁₂) · unfold stmts₁ at h₀₁ exact h₀₁ · exact Finset.mem_insert_of_mem (Finset.mem_union_left _ (IH₁ h₁₂)) · exact Finset.mem_insert_of_mem (Finset.mem_union_right _ (IH₂ h₁₂)) [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁✝ q₂✝ : Stmt₂ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ = branch f q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] rcases h₁₂ with (rfl | h₁₂ | h₁₂) [GOAL] case inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂✝ q₀ : Stmt₂ f : σ → Bool q₁ q₂ : Stmt₂ h₁₂ : branch f q₁ q₂ ∈ stmts₁ q₂✝ h₀₁ : q₀ ∈ stmts₁ (branch f q₁ q₂) IH₁ : branch f q₁ q₂ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : branch f q₁ q₂ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] unfold stmts₁ at h₀₁ [GOAL] case inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂✝ q₀ : Stmt₂ f : σ → Bool q₁ q₂ : Stmt₂ h₁₂ : branch f q₁ q₂ ∈ stmts₁ q₂✝ IH₁ : branch f q₁ q₂ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : branch f q₁ q₂ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₀₁ : q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ⊢ q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] exact h₀₁ [GOAL] case inr.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁✝ q₂✝ : Stmt₂ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ ∈ stmts₁ q₁ ⊢ q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] exact Finset.mem_insert_of_mem (Finset.mem_union_left _ (IH₁ h₁₂)) [GOAL] case inr.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁✝ q₂✝ : Stmt₂ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) [PROOFSTEP] exact Finset.mem_insert_of_mem (Finset.mem_union_right _ (IH₂ h₁₂)) [GOAL] case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] case goto l => subst h₁₂; exact h₀₁ [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ l : σ → Λ h₁₂ : q₁ = goto l ⊢ q₀ ∈ {goto l} [PROOFSTEP] case goto l => subst h₁₂; exact h₀₁ [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ l : σ → Λ h₁₂ : q₁ = goto l ⊢ q₀ ∈ {goto l} [PROOFSTEP] subst h₁₂ [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ l : σ → Λ h₁₂ : goto l ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (goto l) ⊢ q₀ ∈ {goto l} [PROOFSTEP] exact h₀₁ [GOAL] case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] case halt => subst h₁₂; exact h₀₁ [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] case halt => subst h₁₂; exact h₀₁ [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} [PROOFSTEP] subst h₁₂ [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ h₁₂ : halt ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ halt ⊢ q₀ ∈ {halt} [PROOFSTEP] exact h₀₁ [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h : q₁ ∈ stmts₁ q₂ hs : SupportsStmt S q₂ ⊢ SupportsStmt S q₁ [PROOFSTEP] induction' q₂ with _ _ q IH _ _ q IH _ _ q IH _ q IH [GOAL] case push K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ h : q₁ ∈ stmts₁ (push k✝ a✝ q) hs : SupportsStmt S (push k✝ a✝ q) ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ h : q₁ ∈ stmts₁ (peek k✝ a✝ q) hs : SupportsStmt S (peek k✝ a✝ q) ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ h : q₁ ∈ stmts₁ (pop k✝ a✝ q) hs : SupportsStmt S (pop k✝ a✝ q) ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ h : q₁ ∈ stmts₁ (load a✝ q) hs : SupportsStmt S (load a✝ q) ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ h : q₁ ∈ stmts₁ (branch a✝² a✝¹ a✝) hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ h : q₁ ∈ stmts₁ (goto a✝) hs : SupportsStmt S (goto a✝) ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ h : q₁ ∈ stmts₁ halt hs : SupportsStmt S halt ⊢ SupportsStmt S q₁ [PROOFSTEP] simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h hs [GOAL] case push K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = push k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = peek k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = pop k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ hs : ∀ (v : σ), a✝ v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] iterate 4 rcases h with (rfl | h) <;> [exact hs; exact IH h hs] [GOAL] case push K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = push k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = peek k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = pop k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ hs : ∀ (v : σ), a✝ v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) <;> [exact hs; exact IH h hs] [GOAL] case push K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = push k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) [GOAL] case push.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₂ : Stmt₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ hs : SupportsStmt S q h : push k✝ a✝ q ∈ stmts₁ q₂ IH : push k✝ a✝ q ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S (push k✝ a✝ q) ⊢ SupportsStmt S (push k✝ a✝ q) [PROOFSTEP] exact hs [GOAL] case push.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] exact IH h hs [GOAL] case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = peek k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = pop k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ hs : ∀ (v : σ), a✝ v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) <;> [exact hs; exact IH h hs] [GOAL] case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = peek k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) [GOAL] case peek.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₂ : Stmt₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ hs : SupportsStmt S q h : peek k✝ a✝ q ∈ stmts₁ q₂ IH : peek k✝ a✝ q ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S (peek k✝ a✝ q) ⊢ SupportsStmt S (peek k✝ a✝ q) [PROOFSTEP] exact hs [GOAL] case peek.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] exact IH h hs [GOAL] case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = pop k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ hs : ∀ (v : σ), a✝ v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) <;> [exact hs; exact IH h hs] [GOAL] case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = pop k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) [GOAL] case pop.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₂ : Stmt₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ hs : SupportsStmt S q h : pop k✝ a✝ q ∈ stmts₁ q₂ IH : pop k✝ a✝ q ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S (pop k✝ a✝ q) ⊢ SupportsStmt S (pop k✝ a✝ q) [PROOFSTEP] exact hs [GOAL] case pop.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] exact IH h hs [GOAL] case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ hs : ∀ (v : σ), a✝ v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) <;> [exact hs; exact IH h hs] [GOAL] case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] rcases h with (rfl | h) [GOAL] case load.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₂ : Stmt₂ hs✝ : SupportsStmt S q₂ a✝ : σ → σ q : Stmt₂ hs : SupportsStmt S q h : load a✝ q ∈ stmts₁ q₂ IH : load a✝ q ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S (load a✝ q) ⊢ SupportsStmt S (load a✝ q) [PROOFSTEP] exact hs [GOAL] case load.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ [PROOFSTEP] exact IH h hs [GOAL] case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ hs : ∀ (v : σ), a✝ v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] case branch f q₁ q₂ IH₁ IH₂ => rcases h with (rfl | h | h); exacts [hs, IH₁ h hs.1, IH₂ h hs.2] [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁✝ q₂✝ : Stmt₂ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ = branch f q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ SupportsStmt S q₁✝ [PROOFSTEP] case branch f q₁ q₂ IH₁ IH₂ => rcases h with (rfl | h | h); exacts [hs, IH₁ h hs.1, IH₂ h hs.2] [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁✝ q₂✝ : Stmt₂ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ = branch f q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ SupportsStmt S q₁✝ [PROOFSTEP] rcases h with (rfl | h | h) [GOAL] case inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₂✝ : Stmt₂ hs✝ : SupportsStmt S q₂✝ f : σ → Bool q₁ q₂ : Stmt₂ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : branch f q₁ q₂ ∈ stmts₁ q₂✝ IH₁ : branch f q₁ q₂ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S (branch f q₁ q₂) IH₂ : branch f q₁ q₂ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S (branch f q₁ q₂) ⊢ SupportsStmt S (branch f q₁ q₂) case inr.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁✝ q₂✝ : Stmt₂ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ ∈ stmts₁ q₁ ⊢ SupportsStmt S q₁✝ case inr.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁✝ q₂✝ : Stmt₂ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ ∈ stmts₁ q₂ ⊢ SupportsStmt S q₁✝ [PROOFSTEP] exacts [hs, IH₁ h hs.1, IH₂ h hs.2] [GOAL] case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ hs : ∀ (v : σ), a✝ v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] case goto l => subst h; exact hs [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ l : σ → Λ hs : ∀ (v : σ), l v ∈ S h : q₁ = goto l ⊢ SupportsStmt S q₁ [PROOFSTEP] case goto l => subst h; exact hs [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ l : σ → Λ hs : ∀ (v : σ), l v ∈ S h : q₁ = goto l ⊢ SupportsStmt S q₁ [PROOFSTEP] subst h [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₂ : Stmt₂ hs✝ : SupportsStmt S q₂ l : σ → Λ hs : ∀ (v : σ), l v ∈ S h : goto l ∈ stmts₁ q₂ ⊢ SupportsStmt S (goto l) [PROOFSTEP] exact hs [GOAL] case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] case halt => subst h; trivial [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] case halt => subst h; trivial [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ [PROOFSTEP] subst h [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₂ : Stmt₂ hs✝ : SupportsStmt S q₂ hs : True h : halt ∈ stmts₁ q₂ ⊢ SupportsStmt S halt [PROOFSTEP] trivial [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 M : Λ → Stmt₂ S : Finset Λ q₁ q₂ : Stmt₂ h₁ : q₁ ∈ stmts₁ q₂ ⊢ some q₂ ∈ stmts M S → some q₁ ∈ stmts M S [PROOFSTEP] simp only [stmts, Finset.mem_insertNone, Finset.mem_biUnion, Option.mem_def, Option.some.injEq, forall_eq', exists_imp, and_imp] [GOAL] K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 M : Λ → Stmt₂ S : Finset Λ q₁ q₂ : Stmt₂ h₁ : q₁ ∈ stmts₁ q₂ ⊢ ∀ (x : Λ), x ∈ S → q₂ ∈ stmts₁ (M x) → ∃ a, a ∈ S ∧ q₁ ∈ stmts₁ (M a) [PROOFSTEP] exact fun l ls h₂ ↦ ⟨_, ls, stmts₁_trans h₂ h₁⟩ [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ q : Stmt₂ ss : Supports M S ⊢ some q ∈ stmts M S → SupportsStmt S q [PROOFSTEP] simp only [stmts, Finset.mem_insertNone, Finset.mem_biUnion, Option.mem_def, Option.some.injEq, forall_eq', exists_imp, and_imp] [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ q : Stmt₂ ss : Supports M S ⊢ ∀ (x : Λ), x ∈ S → q ∈ stmts₁ (M x) → SupportsStmt S q [PROOFSTEP] exact fun l ls h ↦ stmts₁_supportsStmt_mono h (ss.2 _ ls) [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : (k : K) → List (Γ k) c' : Cfg₂ h₁ : c' ∈ step M { l := some l₁, var := v, stk := T } h₂ : { l := some l₁, var := v, stk := T }.l ∈ ↑Finset.insertNone S ⊢ c'.l ∈ ↑Finset.insertNone S [PROOFSTEP] replace h₂ := ss.2 _ (Finset.some_mem_insertNone.1 h₂) [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : (k : K) → List (Γ k) c' : Cfg₂ h₁ : c' ∈ step M { l := some l₁, var := v, stk := T } h₂ : SupportsStmt S (M l₁) ⊢ c'.l ∈ ↑Finset.insertNone S [PROOFSTEP] simp only [step, Option.mem_def, Option.some.injEq] at h₁ [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : (k : K) → List (Γ k) c' : Cfg₂ h₂ : SupportsStmt S (M l₁) h₁ : stepAux (M l₁) v T = c' ⊢ c'.l ∈ ↑Finset.insertNone S [PROOFSTEP] subst c' [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : (k : K) → List (Γ k) h₂ : SupportsStmt S (M l₁) ⊢ (stepAux (M l₁) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] revert h₂ [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : (k : K) → List (Γ k) ⊢ SupportsStmt S (M l₁) → (stepAux (M l₁) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] induction' M l₁ with _ _ q IH _ _ q IH _ _ q IH _ q IH generalizing v T [GOAL] case push K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) ⊢ SupportsStmt S (push k✝ a✝ q) → (stepAux (push k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case peek K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) ⊢ SupportsStmt S (peek k✝ a✝ q) → (stepAux (peek k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case pop K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) ⊢ SupportsStmt S (pop k✝ a✝ q) → (stepAux (pop k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case load K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) ⊢ SupportsStmt S (load a✝ q) → (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case branch K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) ⊢ SupportsStmt S (branch a✝² a✝¹ a✝) → (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case goto K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) ⊢ SupportsStmt S (goto a✝) → (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) ⊢ SupportsStmt S halt → (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] intro hs [GOAL] case push K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (push k✝ a✝ q) ⊢ (stepAux (push k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case peek K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (peek k✝ a✝ q) ⊢ (stepAux (peek k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case pop K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (pop k✝ a✝ q) ⊢ (stepAux (pop k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case load K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] iterate 4 exact IH _ _ hs [GOAL] case push K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (push k✝ a✝ q) ⊢ (stepAux (push k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case peek K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (peek k✝ a✝ q) ⊢ (stepAux (peek k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case pop K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (pop k✝ a✝ q) ⊢ (stepAux (pop k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case load K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact IH _ _ hs [GOAL] case peek K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (peek k✝ a✝ q) ⊢ (stepAux (peek k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case pop K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (pop k✝ a✝ q) ⊢ (stepAux (pop k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case load K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact IH _ _ hs [GOAL] case pop K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (pop k✝ a✝ q) ⊢ (stepAux (pop k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case load K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact IH _ _ hs [GOAL] case load K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact IH _ _ hs [GOAL] case branch K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case branch p q₁' q₂' IH₁ IH₂ => unfold stepAux; cases p v · exact IH₂ _ _ hs.2 · exact IH₁ _ _ hs.1 [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) p : σ → Bool q₁' q₂' : Stmt₂ IH₁ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch p q₁' q₂') ⊢ (stepAux (branch p q₁' q₂') v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case branch p q₁' q₂' IH₁ IH₂ => unfold stepAux; cases p v · exact IH₂ _ _ hs.2 · exact IH₁ _ _ hs.1 [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) p : σ → Bool q₁' q₂' : Stmt₂ IH₁ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch p q₁' q₂') ⊢ (stepAux (branch p q₁' q₂') v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] unfold stepAux [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) p : σ → Bool q₁' q₂' : Stmt₂ IH₁ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif p v then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] cases p v [GOAL] case false K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) p : σ → Bool q₁' q₂' : Stmt₂ IH₁ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif false then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact IH₂ _ _ hs.2 [GOAL] case true K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) p : σ → Bool q₁' q₂' : Stmt₂ IH₁ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif true then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact IH₁ _ _ hs.1 [GOAL] case goto K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case goto => exact Finset.some_mem_insertNone.2 (hs _) [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case goto => exact Finset.some_mem_insertNone.2 (hs _) [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] exact Finset.some_mem_insertNone.2 (hs _) [GOAL] case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case halt => apply Multiset.mem_cons_self [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] case halt => apply Multiset.mem_cons_self [GOAL] K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S [PROOFSTEP] apply Multiset.mem_cons_self [GOAL] K : Type u_1 Γ : K → Type u_2 L : ListBlank ((k : K) → Option (Γ k)) k : K S : List (Γ k) n : ℕ hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) ⊢ ListBlank.nth L n k = List.get? (List.reverse S) n [PROOFSTEP] rw [← proj_map_nth, hL, ← List.map_reverse, ListBlank.nth_mk, List.getI_eq_iget_get?, List.get?_map] [GOAL] K : Type u_1 Γ : K → Type u_2 L : ListBlank ((k : K) → Option (Γ k)) k : K S : List (Γ k) n : ℕ hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) ⊢ Option.iget (Option.map some (List.get? (List.reverse S) n)) = List.get? (List.reverse S) n [PROOFSTEP] cases S.reverse.get? n [GOAL] case none K : Type u_1 Γ : K → Type u_2 L : ListBlank ((k : K) → Option (Γ k)) k : K S : List (Γ k) n : ℕ hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) ⊢ Option.iget (Option.map some none) = none [PROOFSTEP] rfl [GOAL] case some K : Type u_1 Γ : K → Type u_2 L : ListBlank ((k : K) → Option (Γ k)) k : K S : List (Γ k) n : ℕ hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) val✝ : Γ k ⊢ Option.iget (Option.map some (some val✝)) = some val✝ [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) ⊢ default.snd = default [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) ⊢ ListBlank.map { f := Prod.snd, map_pt' := (_ : default.snd = default.snd) } (addBottom L) = L [PROOFSTEP] simp only [addBottom, ListBlank.map_cons] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) ⊢ ListBlank.cons (ListBlank.head L) (ListBlank.map { f := Prod.snd, map_pt' := (_ : default.snd = default.snd) } (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.tail L))) = L [PROOFSTEP] convert ListBlank.cons_head_tail L [GOAL] case h.e'_2.h.e'_4 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) ⊢ ListBlank.map { f := Prod.snd, map_pt' := (_ : default.snd = default.snd) } (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.tail L)) = ListBlank.tail L [PROOFSTEP] generalize ListBlank.tail L = L' [GOAL] case h.e'_2.h.e'_4 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L L' : ListBlank ((k : K) → Option (Γ k)) ⊢ ListBlank.map { f := Prod.snd, map_pt' := (_ : default.snd = default.snd) } (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } L') = L' [PROOFSTEP] refine' L'.induction_on fun l ↦ _ [GOAL] case h.e'_2.h.e'_4 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L L' : ListBlank ((k : K) → Option (Γ k)) l : List ((k : K) → Option (Γ k)) ⊢ ListBlank.map { f := Prod.snd, map_pt' := (_ : default.snd = default.snd) } (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.mk l)) = ListBlank.mk l [PROOFSTEP] simp [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ f : ((k : K) → Option (Γ k)) → (k : K) → Option (Γ k) L : ListBlank ((k : K) → Option (Γ k)) n : ℕ ⊢ ListBlank.modifyNth (fun a => (a.fst, f a.snd)) n (addBottom L) = addBottom (ListBlank.modifyNth f n L) [PROOFSTEP] cases n [GOAL] case zero K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ f : ((k : K) → Option (Γ k)) → (k : K) → Option (Γ k) L : ListBlank ((k : K) → Option (Γ k)) ⊢ ListBlank.modifyNth (fun a => (a.fst, f a.snd)) Nat.zero (addBottom L) = addBottom (ListBlank.modifyNth f Nat.zero L) [PROOFSTEP] simp only [addBottom, ListBlank.head_cons, ListBlank.modifyNth, ListBlank.tail_cons] [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ f : ((k : K) → Option (Γ k)) → (k : K) → Option (Γ k) L : ListBlank ((k : K) → Option (Γ k)) n✝ : ℕ ⊢ ListBlank.modifyNth (fun a => (a.fst, f a.snd)) (Nat.succ n✝) (addBottom L) = addBottom (ListBlank.modifyNth f (Nat.succ n✝) L) [PROOFSTEP] simp only [addBottom, ListBlank.head_cons, ListBlank.modifyNth, ListBlank.tail_cons] [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ f : ((k : K) → Option (Γ k)) → (k : K) → Option (Γ k) L : ListBlank ((k : K) → Option (Γ k)) n✝ : ℕ ⊢ ListBlank.cons (true, ListBlank.head L) (ListBlank.modifyNth (fun a => (a.fst, f a.snd)) n✝ (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.tail L))) = ListBlank.cons (true, ListBlank.head L) (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.modifyNth f n✝ (ListBlank.tail L))) [PROOFSTEP] congr [GOAL] case succ.e_l K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ f : ((k : K) → Option (Γ k)) → (k : K) → Option (Γ k) L : ListBlank ((k : K) → Option (Γ k)) n✝ : ℕ ⊢ ListBlank.modifyNth (fun a => (a.fst, f a.snd)) n✝ (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.tail L)) = ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.modifyNth f n✝ (ListBlank.tail L)) [PROOFSTEP] symm [GOAL] case succ.e_l K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ f : ((k : K) → Option (Γ k)) → (k : K) → Option (Γ k) L : ListBlank ((k : K) → Option (Γ k)) n✝ : ℕ ⊢ ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.modifyNth f n✝ (ListBlank.tail L)) = ListBlank.modifyNth (fun a => (a.fst, f a.snd)) n✝ (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.tail L)) [PROOFSTEP] apply ListBlank.map_modifyNth [GOAL] case succ.e_l.H K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ f : ((k : K) → Option (Γ k)) → (k : K) → Option (Γ k) L : ListBlank ((k : K) → Option (Γ k)) n✝ : ℕ ⊢ ∀ (x : (k : K) → Option (Γ k)), PointedMap.f { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (f x) = ((PointedMap.f { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } x).fst, f (PointedMap.f { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } x).snd) [PROOFSTEP] intro [GOAL] case succ.e_l.H K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ f : ((k : K) → Option (Γ k)) → (k : K) → Option (Γ k) L : ListBlank ((k : K) → Option (Γ k)) n✝ : ℕ x✝ : (k : K) → Option (Γ k) ⊢ PointedMap.f { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (f x✝) = ((PointedMap.f { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } x✝).fst, f (PointedMap.f { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } x✝).snd) [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ ⊢ (ListBlank.nth (addBottom L) n).snd = ListBlank.nth L n [PROOFSTEP] conv => rhs; rw [← addBottom_map L, ListBlank.nth_map] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ | (ListBlank.nth (addBottom L) n).snd = ListBlank.nth L n [PROOFSTEP] rhs; rw [← addBottom_map L, ListBlank.nth_map] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ | (ListBlank.nth (addBottom L) n).snd = ListBlank.nth L n [PROOFSTEP] rhs; rw [← addBottom_map L, ListBlank.nth_map] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ | (ListBlank.nth (addBottom L) n).snd = ListBlank.nth L n [PROOFSTEP] rhs [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ | ListBlank.nth L n [PROOFSTEP] rw [← addBottom_map L, ListBlank.nth_map] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ ⊢ (ListBlank.nth (addBottom L) (n + 1)).fst = false [PROOFSTEP] rw [ListBlank.nth_succ, addBottom, ListBlank.tail_cons, ListBlank.nth_map] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) ⊢ (ListBlank.head (addBottom L)).fst = true [PROOFSTEP] rw [addBottom, ListBlank.head_cons] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ S : Finset Λ k : K s : StAct k q : Stmt₂ ⊢ TM2.SupportsStmt S (stRun s q) ↔ TM2.SupportsStmt S q [PROOFSTEP] cases s [GOAL] case push K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ S : Finset Λ k : K q : Stmt₂ a✝ : σ → Γ k ⊢ TM2.SupportsStmt S (stRun (push a✝) q) ↔ TM2.SupportsStmt S q [PROOFSTEP] rfl [GOAL] case peek K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ S : Finset Λ k : K q : Stmt₂ a✝ : σ → Option (Γ k) → σ ⊢ TM2.SupportsStmt S (stRun (peek a✝) q) ↔ TM2.SupportsStmt S q [PROOFSTEP] rfl [GOAL] case pop K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ S : Finset Λ k : K q : Stmt₂ a✝ : σ → Option (Γ k) → σ ⊢ TM2.SupportsStmt S (stRun (pop a✝) q) ↔ TM2.SupportsStmt S q [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : Stmt₂ v : σ S : (k : K) → List (Γ k) f : σ → Option (Γ k) → σ ⊢ TM2.stepAux (stRun (StAct.peek f) q) v S = TM2.stepAux q (stVar v (S k) (StAct.peek f)) (update S k (stWrite v (S k) (StAct.peek f))) [PROOFSTEP] unfold stWrite [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : Stmt₂ v : σ S : (k : K) → List (Γ k) f : σ → Option (Γ k) → σ ⊢ TM2.stepAux (stRun (StAct.peek f) q) v S = TM2.stepAux q (stVar v (S k) (StAct.peek f)) (update S k (match StAct.peek f with | StAct.push f => f v :: S k | StAct.peek a => S k | StAct.pop a => List.tail (S k))) [PROOFSTEP] rw [Function.update_eq_self] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : Stmt₂ v : σ S : (k : K) → List (Γ k) f : σ → Option (Γ k) → σ ⊢ TM2.stepAux (stRun (StAct.peek f) q) v S = TM2.stepAux q (stVar v (S k) (StAct.peek f)) S [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K s : StAct k q : Stmt₂ ⊢ trNormal (stRun s q) = goto fun x x => go k s q [PROOFSTEP] cases s [GOAL] case push K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : Stmt₂ a✝ : σ → Γ k ⊢ trNormal (stRun (StAct.push a✝) q) = goto fun x x => go k (StAct.push a✝) q [PROOFSTEP] rfl [GOAL] case peek K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : Stmt₂ a✝ : σ → Option (Γ k) → σ ⊢ trNormal (stRun (StAct.peek a✝) q) = goto fun x x => go k (StAct.peek a✝) q [PROOFSTEP] rfl [GOAL] case pop K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : Stmt₂ a✝ : σ → Option (Γ k) → σ ⊢ trNormal (stRun (StAct.pop a✝) q) = goto fun x x => go k (StAct.pop a✝) q [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K s : StAct k q : Stmt₂ ⊢ trStmts₁ (stRun s q) = {go k s q, ret q} ∪ trStmts₁ q [PROOFSTEP] cases s [GOAL] case push K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : Stmt₂ a✝ : σ → Γ k ⊢ trStmts₁ (stRun (StAct.push a✝) q) = {go k (StAct.push a✝) q, ret q} ∪ trStmts₁ q [PROOFSTEP] simp only [trStmts₁] [GOAL] case peek K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : Stmt₂ a✝ : σ → Option (Γ k) → σ ⊢ trStmts₁ (stRun (StAct.peek a✝) q) = {go k (StAct.peek a✝) q, ret q} ∪ trStmts₁ q [PROOFSTEP] simp only [trStmts₁] [GOAL] case pop K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : Stmt₂ a✝ : σ → Option (Γ k) → σ ⊢ trStmts₁ (stRun (StAct.pop a✝) q) = {go k (StAct.pop a✝) q, ret q} ∪ trStmts₁ q [PROOFSTEP] simp only [trStmts₁] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k ⊢ let v' := stVar v (S k) o; let Sk' := stWrite v (S k) o; let S' := update S k Sk'; ∃ L', (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S' k)))) ∧ TM1.stepAux (trStAct q o) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) = TM1.stepAux q v' ((Tape.move Dir.right)^[List.length (S' k)] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] dsimp only [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (stWrite v (S k) o) k_1)))) ∧ TM1.stepAux (trStAct q o) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) = TM1.stepAux q (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (update S k (stWrite v (S k) o) k)] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] simp [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (stWrite v (S k) o) k_1)))) ∧ TM1.stepAux (trStAct q o) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) = TM1.stepAux q (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (stWrite v (S k) o)] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] cases o [GOAL] case push K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) a✝ : σ → Γ k ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (stWrite v (S k) (StAct.push a✝)) k_1)))) ∧ TM1.stepAux (trStAct q (StAct.push a✝)) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) = TM1.stepAux q (stVar v (S k) (StAct.push a✝)) ((Tape.move Dir.right)^[List.length (stWrite v (S k) (StAct.push a✝))] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] simp only [stWrite, stVar, trStAct, TM1.stepAux] [GOAL] case peek K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) a✝ : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (stWrite v (S k) (StAct.peek a✝)) k_1)))) ∧ TM1.stepAux (trStAct q (StAct.peek a✝)) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) = TM1.stepAux q (stVar v (S k) (StAct.peek a✝)) ((Tape.move Dir.right)^[List.length (stWrite v (S k) (StAct.peek a✝))] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] simp only [stWrite, stVar, trStAct, TM1.stepAux] [GOAL] case pop K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) a✝ : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (stWrite v (S k) (StAct.pop a✝)) k_1)))) ∧ TM1.stepAux (trStAct q (StAct.pop a✝)) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) = TM1.stepAux q (stVar v (S k) (StAct.pop a✝)) ((Tape.move Dir.right)^[List.length (stWrite v (S k) (StAct.pop a✝))] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] simp only [stWrite, stVar, trStAct, TM1.stepAux] [GOAL] case push K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) a✝ : σ → Γ k ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (a✝ v :: S k) k_1)))) ∧ TM1.stepAux q v (Tape.move Dir.right (Tape.write (((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.fst, update ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.snd k (some (a✝ v))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q v ((Tape.move Dir.right)^[List.length (a✝ v :: S k)] (Tape.mk' ∅ (addBottom L'))) case peek K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) a✝ : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (S k) k_1)))) ∧ TM1.stepAux q (a✝ v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.move Dir.right (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q (a✝ v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L'))) case pop K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) a✝ : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (List.tail (S k)) k_1)))) ∧ (bif ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.fst then TM1.stepAux q (a✝ v none) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (a✝ v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.fst, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.snd k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (a✝ v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (List.tail (S k))] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] case push f => have := Tape.write_move_right_n fun a : Γ' ↦ (a.1, update a.2 k (some (f v))) refine' ⟨_, fun k' ↦ _, by -- Porting note: `rw [...]` to `erw [...]; rfl`. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [Tape.move_right_n_head, List.length, Tape.mk'_nth_nat, this, addBottom_modifyNth fun a ↦ update a k (some (f v)), Nat.add_one, iterate_succ'] rfl⟩ refine' ListBlank.ext fun i ↦ _ rw [ListBlank.nth_map, ListBlank.nth_modifyNth, proj, PointedMap.mk_val] by_cases h' : k' = k · subst k' split_ifs with h <;> simp only [List.reverse_cons, Function.update_same, ListBlank.nth_mk, List.map] -- Porting note: `le_refl` is required. · rw [List.getI_eq_get, List.get_append_right'] <;> simp only [h, List.get_singleton, List.length_map, List.length_reverse, Nat.succ_pos', List.length_append, lt_add_iff_pos_right, List.length, le_refl] rw [← proj_map_nth, hL, ListBlank.nth_mk] cases' lt_or_gt_of_ne h with h h · rw [List.getI_append] simpa only [List.length_map, List.length_reverse] using h · rw [gt_iff_lt] at h rw [List.getI_eq_default, List.getI_eq_default] <;> simp only [Nat.add_one_le_iff, h, List.length, le_of_lt, List.length_reverse, List.length_append, List.length_map] · split_ifs <;> rw [Function.update_noteq h', ← proj_map_nth, hL] rw [Function.update_noteq h'] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k_1)))) ∧ TM1.stepAux q v (Tape.move Dir.right (Tape.write (((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.fst, update ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.snd k (some (f v))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q v ((Tape.move Dir.right)^[List.length (f v :: S k)] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] case push f => have := Tape.write_move_right_n fun a : Γ' ↦ (a.1, update a.2 k (some (f v))) refine' ⟨_, fun k' ↦ _, by -- Porting note: `rw [...]` to `erw [...]; rfl`. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [Tape.move_right_n_head, List.length, Tape.mk'_nth_nat, this, addBottom_modifyNth fun a ↦ update a k (some (f v)), Nat.add_one, iterate_succ'] rfl⟩ refine' ListBlank.ext fun i ↦ _ rw [ListBlank.nth_map, ListBlank.nth_modifyNth, proj, PointedMap.mk_val] by_cases h' : k' = k · subst k' split_ifs with h <;> simp only [List.reverse_cons, Function.update_same, ListBlank.nth_mk, List.map] -- Porting note: `le_refl` is required. · rw [List.getI_eq_get, List.get_append_right'] <;> simp only [h, List.get_singleton, List.length_map, List.length_reverse, Nat.succ_pos', List.length_append, lt_add_iff_pos_right, List.length, le_refl] rw [← proj_map_nth, hL, ListBlank.nth_mk] cases' lt_or_gt_of_ne h with h h · rw [List.getI_append] simpa only [List.length_map, List.length_reverse] using h · rw [gt_iff_lt] at h rw [List.getI_eq_default, List.getI_eq_default] <;> simp only [Nat.add_one_le_iff, h, List.length, le_of_lt, List.length_reverse, List.length_append, List.length_map] · split_ifs <;> rw [Function.update_noteq h', ← proj_map_nth, hL] rw [Function.update_noteq h'] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k_1)))) ∧ TM1.stepAux q v (Tape.move Dir.right (Tape.write (((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.fst, update ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.snd k (some (f v))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q v ((Tape.move Dir.right)^[List.length (f v :: S k)] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] have := Tape.write_move_right_n fun a : Γ' ↦ (a.1, update a.2 k (some (f v))) [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k_1)))) ∧ TM1.stepAux q v (Tape.move Dir.right (Tape.write (((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.fst, update ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.snd k (some (f v))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q v ((Tape.move Dir.right)^[List.length (f v :: S k)] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] refine' ⟨_, fun k' ↦ _, by -- Porting note: `rw [...]` to `erw [...]; rfl`. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [Tape.move_right_n_head, List.length, Tape.mk'_nth_nat, this, addBottom_modifyNth fun a ↦ update a k (some (f v)), Nat.add_one, iterate_succ'] rfl⟩ [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) ⊢ TM1.stepAux q v (Tape.move Dir.right (Tape.write (((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.fst, update ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.snd k (some (f v))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q v ((Tape.move Dir.right)^[List.length (f v :: S k)] (Tape.mk' ∅ (addBottom ?m.655566))) [PROOFSTEP] erw [Tape.move_right_n_head, List.length, Tape.mk'_nth_nat, this, addBottom_modifyNth fun a ↦ update a k (some (f v)), Nat.add_one, iterate_succ'] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) ⊢ TM1.stepAux q v (Tape.move Dir.right ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom (ListBlank.modifyNth (fun a => update a k (some (f v))) (List.length (S k)) L))))) = TM1.stepAux q v ((Tape.move Dir.right ∘ (Tape.move Dir.right)^[List.length (S k)]) (Tape.mk' ∅ (addBottom ?m.655566))) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) k' : K ⊢ ListBlank.map (proj k') (ListBlank.modifyNth (fun a => update a k (some (f v))) (List.length (S k)) L) = ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k'))) [PROOFSTEP] refine' ListBlank.ext fun i ↦ _ [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) k' : K i : ℕ ⊢ ListBlank.nth (ListBlank.map (proj k') (ListBlank.modifyNth (fun a => update a k (some (f v))) (List.length (S k)) L)) i = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i [PROOFSTEP] rw [ListBlank.nth_map, ListBlank.nth_modifyNth, proj, PointedMap.mk_val] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) k' : K i : ℕ ⊢ ite (i = List.length (S k)) (update (ListBlank.nth L i) k (some (f v))) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i [PROOFSTEP] by_cases h' : k' = k [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) k' : K i : ℕ h' : k' = k ⊢ ite (i = List.length (S k)) (update (ListBlank.nth L i) k (some (f v))) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i [PROOFSTEP] subst k' [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ ⊢ ite (i = List.length (S k)) (update (ListBlank.nth L i) k (some (f v))) (ListBlank.nth L i) k = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k)))) i [PROOFSTEP] split_ifs with h [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h : i = List.length (S k) ⊢ update (ListBlank.nth L i) k (some (f v)) k = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k)))) i [PROOFSTEP] simp only [List.reverse_cons, Function.update_same, ListBlank.nth_mk, List.map] -- Porting note: `le_refl` is required. [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h : ¬i = List.length (S k) ⊢ ListBlank.nth L i k = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k)))) i [PROOFSTEP] simp only [List.reverse_cons, Function.update_same, ListBlank.nth_mk, List.map] -- Porting note: `le_refl` is required. [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h : i = List.length (S k) ⊢ some (f v) = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i [PROOFSTEP] rw [List.getI_eq_get, List.get_append_right'] [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h : i = List.length (S k) ⊢ some (f v) = List.get [some (f v)] { val := i - List.length (List.reverse (List.map some (S k))), isLt := (_ : i - List.length (List.reverse (List.map some (S k))) < List.length [some (f v)]) } [PROOFSTEP] simp only [h, List.get_singleton, List.length_map, List.length_reverse, Nat.succ_pos', List.length_append, lt_add_iff_pos_right, List.length, le_refl] [GOAL] case pos.h₁ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h : i = List.length (S k) ⊢ List.length (List.reverse (List.map some (S k))) ≤ i [PROOFSTEP] simp only [h, List.get_singleton, List.length_map, List.length_reverse, Nat.succ_pos', List.length_append, lt_add_iff_pos_right, List.length, le_refl] [GOAL] case pos.h₂ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h : i = List.length (S k) ⊢ i < List.length (List.reverse (List.map some (S k)) ++ [some (f v)]) [PROOFSTEP] simp only [h, List.get_singleton, List.length_map, List.length_reverse, Nat.succ_pos', List.length_append, lt_add_iff_pos_right, List.length, le_refl] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h : ¬i = List.length (S k) ⊢ ListBlank.nth L i k = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i [PROOFSTEP] rw [← proj_map_nth, hL, ListBlank.nth_mk] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h : ¬i = List.length (S k) ⊢ List.getI (List.reverse (List.map some (S k))) i = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i [PROOFSTEP] cases' lt_or_gt_of_ne h with h h [GOAL] case neg.inl K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h✝ : ¬i = List.length (S k) h : i < List.length (S k) ⊢ List.getI (List.reverse (List.map some (S k))) i = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i [PROOFSTEP] rw [List.getI_append] [GOAL] case neg.inl.h K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h✝ : ¬i = List.length (S k) h : i < List.length (S k) ⊢ i < List.length (List.reverse (List.map some (S k))) [PROOFSTEP] simpa only [List.length_map, List.length_reverse] using h [GOAL] case neg.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h✝ : ¬i = List.length (S k) h : i > List.length (S k) ⊢ List.getI (List.reverse (List.map some (S k))) i = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i [PROOFSTEP] rw [gt_iff_lt] at h [GOAL] case neg.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h✝ : ¬i = List.length (S k) h : List.length (S k) < i ⊢ List.getI (List.reverse (List.map some (S k))) i = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i [PROOFSTEP] rw [List.getI_eq_default, List.getI_eq_default] [GOAL] case neg.inr.hn K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h✝ : ¬i = List.length (S k) h : List.length (S k) < i ⊢ List.length (List.reverse (List.map some (S k)) ++ [some (f v)]) ≤ i [PROOFSTEP] simp only [Nat.add_one_le_iff, h, List.length, le_of_lt, List.length_reverse, List.length_append, List.length_map] [GOAL] case neg.inr.hn K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) i : ℕ h✝ : ¬i = List.length (S k) h : List.length (S k) < i ⊢ List.length (List.reverse (List.map some (S k))) ≤ i [PROOFSTEP] simp only [Nat.add_one_le_iff, h, List.length, le_of_lt, List.length_reverse, List.length_append, List.length_map] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) k' : K i : ℕ h' : ¬k' = k ⊢ ite (i = List.length (S k)) (update (ListBlank.nth L i) k (some (f v))) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i [PROOFSTEP] split_ifs [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) k' : K i : ℕ h' : ¬k' = k h✝ : i = List.length (S k) ⊢ update (ListBlank.nth L i) k (some (f v)) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i [PROOFSTEP] rw [Function.update_noteq h', ← proj_map_nth, hL] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) k' : K i : ℕ h' : ¬k' = k h✝ : ¬i = List.length (S k) ⊢ ListBlank.nth L i k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i [PROOFSTEP] rw [Function.update_noteq h', ← proj_map_nth, hL] [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).fst, update (ListBlank.nth R n).snd k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.fst, update a.snd k (some (f v)))) n R)) k' : K i : ℕ h' : ¬k' = k h✝ : i = List.length (S k) ⊢ ListBlank.nth (ListBlank.mk (List.reverse (List.map some (S k')))) i = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i [PROOFSTEP] rw [Function.update_noteq h'] [GOAL] case peek K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) a✝ : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (S k) k_1)))) ∧ TM1.stepAux q (a✝ v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.move Dir.right (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q (a✝ v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L'))) case pop K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) a✝ : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (List.tail (S k)) k_1)))) ∧ (bif ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.fst then TM1.stepAux q (a✝ v none) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (a✝ v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.fst, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.snd k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (a✝ v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (List.tail (S k))] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] case peek f => rw [Function.update_eq_self] use L, hL; rw [Tape.move_left_right]; congr cases e : S k; · rfl rw [List.length_cons, iterate_succ', Function.comp, Tape.move_right_left, Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_snd, stk_nth_val _ (hL k), e, List.reverse_cons, ← List.length_reverse, List.get?_concat_length] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (S k) k_1)))) ∧ TM1.stepAux q (f v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.move Dir.right (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] case peek f => rw [Function.update_eq_self] use L, hL; rw [Tape.move_left_right]; congr cases e : S k; · rfl rw [List.length_cons, iterate_succ', Function.comp, Tape.move_right_left, Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_snd, stk_nth_val _ (hL k), e, List.reverse_cons, ← List.length_reverse, List.get?_concat_length] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (S k) k_1)))) ∧ TM1.stepAux q (f v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.move Dir.right (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] rw [Function.update_eq_self] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ TM1.stepAux q (f v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.move Dir.right (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] use L, hL [GOAL] case right K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ TM1.stepAux q (f v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.move Dir.right (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) [PROOFSTEP] rw [Tape.move_left_right] [GOAL] case right K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ TM1.stepAux q (f v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) [PROOFSTEP] congr [GOAL] case right.e_a.e_a K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k = List.head? (S k) [PROOFSTEP] cases e : S k [GOAL] case right.e_a.e_a.nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ e : S k = [] ⊢ Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L)))).head k = List.head? [] [PROOFSTEP] rfl [GOAL] case right.e_a.e_a.cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ head✝ : Γ k tail✝ : List (Γ k) e : S k = head✝ :: tail✝ ⊢ Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (head✝ :: tail✝)] (Tape.mk' ∅ (addBottom L)))).head k = List.head? (head✝ :: tail✝) [PROOFSTEP] rw [List.length_cons, iterate_succ', Function.comp, Tape.move_right_left, Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_snd, stk_nth_val _ (hL k), e, List.reverse_cons, ← List.length_reverse, List.get?_concat_length] [GOAL] case right.e_a.e_a.cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ head✝ : Γ k tail✝ : List (Γ k) e : S k = head✝ :: tail✝ ⊢ some head✝ = List.head? (head✝ :: tail✝) [PROOFSTEP] rfl [GOAL] case pop K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) a✝ : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (List.tail (S k)) k_1)))) ∧ (bif ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.fst then TM1.stepAux q (a✝ v none) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (a✝ v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.fst, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.snd k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (a✝ v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (List.tail (S k))] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] case pop f => cases' e : S k with hd tl · simp only [Tape.mk'_head, ListBlank.head_cons, Tape.move_left_mk', List.length, Tape.write_mk', List.head?, iterate_zero_apply, List.tail_nil] rw [← e, Function.update_eq_self] exact ⟨L, hL, by rw [addBottom_head_fst, cond]⟩ · refine' ⟨_, fun k' ↦ _, by erw [List.length_cons, Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_succ_fst, cond, iterate_succ', Function.comp, Tape.move_right_left, Tape.move_right_n_head, Tape.mk'_nth_nat, Tape.write_move_right_n fun a : Γ' ↦ (a.1, update a.2 k none), addBottom_modifyNth fun a ↦ update a k none, addBottom_nth_snd, stk_nth_val _ (hL k), e, show (List.cons hd tl).reverse.get? tl.length = some hd by rw [List.reverse_cons, ← List.length_reverse, List.get?_concat_length], List.head?, List.tail]⟩ refine' ListBlank.ext fun i ↦ _ rw [ListBlank.nth_map, ListBlank.nth_modifyNth, proj, PointedMap.mk_val] by_cases h' : k' = k · subst k' split_ifs with h <;> simp only [Function.update_same, ListBlank.nth_mk, List.tail] · rw [List.getI_eq_default] · rfl rw [h, List.length_reverse, List.length_map] rw [← proj_map_nth, hL, ListBlank.nth_mk, e, List.map, List.reverse_cons] cases' lt_or_gt_of_ne h with h h · rw [List.getI_append] simpa only [List.length_map, List.length_reverse] using h · rw [gt_iff_lt] at h rw [List.getI_eq_default, List.getI_eq_default] <;> simp only [Nat.add_one_le_iff, h, List.length, le_of_lt, List.length_reverse, List.length_append, List.length_map] · split_ifs <;> rw [Function.update_noteq h', ← proj_map_nth, hL] rw [Function.update_noteq h'] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (List.tail (S k)) k_1)))) ∧ (bif ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.fst then TM1.stepAux q (f v none) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (f v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.fst, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.snd k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (List.tail (S k))] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] case pop f => cases' e : S k with hd tl · simp only [Tape.mk'_head, ListBlank.head_cons, Tape.move_left_mk', List.length, Tape.write_mk', List.head?, iterate_zero_apply, List.tail_nil] rw [← e, Function.update_eq_self] exact ⟨L, hL, by rw [addBottom_head_fst, cond]⟩ · refine' ⟨_, fun k' ↦ _, by erw [List.length_cons, Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_succ_fst, cond, iterate_succ', Function.comp, Tape.move_right_left, Tape.move_right_n_head, Tape.mk'_nth_nat, Tape.write_move_right_n fun a : Γ' ↦ (a.1, update a.2 k none), addBottom_modifyNth fun a ↦ update a k none, addBottom_nth_snd, stk_nth_val _ (hL k), e, show (List.cons hd tl).reverse.get? tl.length = some hd by rw [List.reverse_cons, ← List.length_reverse, List.get?_concat_length], List.head?, List.tail]⟩ refine' ListBlank.ext fun i ↦ _ rw [ListBlank.nth_map, ListBlank.nth_modifyNth, proj, PointedMap.mk_val] by_cases h' : k' = k · subst k' split_ifs with h <;> simp only [Function.update_same, ListBlank.nth_mk, List.tail] · rw [List.getI_eq_default] · rfl rw [h, List.length_reverse, List.length_map] rw [← proj_map_nth, hL, ListBlank.nth_mk, e, List.map, List.reverse_cons] cases' lt_or_gt_of_ne h with h h · rw [List.getI_append] simpa only [List.length_map, List.length_reverse] using h · rw [gt_iff_lt] at h rw [List.getI_eq_default, List.getI_eq_default] <;> simp only [Nat.add_one_le_iff, h, List.length, le_of_lt, List.length_reverse, List.length_append, List.length_map] · split_ifs <;> rw [Function.update_noteq h', ← proj_map_nth, hL] rw [Function.update_noteq h'] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (List.tail (S k)) k_1)))) ∧ (bif ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.fst then TM1.stepAux q (f v none) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (f v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.fst, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.snd k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (List.tail (S k))] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] cases' e : S k with hd tl [GOAL] case nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ e : S k = [] ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (List.tail []) k_1)))) ∧ (bif ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L))).head.fst then TM1.stepAux q (f v none) ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (f v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L)))).head.fst, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L)))).head.snd k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (f v (List.head? [])) ((Tape.move Dir.right)^[List.length (List.tail [])] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] simp only [Tape.mk'_head, ListBlank.head_cons, Tape.move_left_mk', List.length, Tape.write_mk', List.head?, iterate_zero_apply, List.tail_nil] [GOAL] case nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ e : S k = [] ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k [] k_1)))) ∧ (bif (ListBlank.head (addBottom L)).fst then TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L)) else TM1.stepAux q (f v (Prod.snd (ListBlank.head ∅) k)) (Tape.mk' (ListBlank.tail ∅) (ListBlank.cons ((ListBlank.head ∅).fst, update (ListBlank.head ∅).snd k none) (addBottom L)))) = TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L')) [PROOFSTEP] rw [← e, Function.update_eq_self] [GOAL] case nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ e : S k = [] ⊢ ∃ L', (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ (bif (ListBlank.head (addBottom L)).fst then TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L)) else TM1.stepAux q (f v (Prod.snd (ListBlank.head ∅) k)) (Tape.mk' (ListBlank.tail ∅) (ListBlank.cons ((ListBlank.head ∅).fst, update (ListBlank.head ∅).snd k none) (addBottom L)))) = TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L')) [PROOFSTEP] exact ⟨L, hL, by rw [addBottom_head_fst, cond]⟩ [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ e : S k = [] ⊢ (bif (ListBlank.head (addBottom L)).fst then TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L)) else TM1.stepAux q (f v (Prod.snd (ListBlank.head ∅) k)) (Tape.mk' (ListBlank.tail ∅) (ListBlank.cons ((ListBlank.head ∅).fst, update (ListBlank.head ∅).snd k none) (addBottom L)))) = TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L)) [PROOFSTEP] rw [addBottom_head_fst, cond] [GOAL] case cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k_1)))) ∧ (bif ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L))).head.fst then TM1.stepAux q (f v none) ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (f v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head.fst, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head.snd k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (f v (List.head? (hd :: tl))) ((Tape.move Dir.right)^[List.length (List.tail (hd :: tl))] (Tape.mk' ∅ (addBottom L'))) [PROOFSTEP] refine' ⟨_, fun k' ↦ _, by erw [List.length_cons, Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_succ_fst, cond, iterate_succ', Function.comp, Tape.move_right_left, Tape.move_right_n_head, Tape.mk'_nth_nat, Tape.write_move_right_n fun a : Γ' ↦ (a.1, update a.2 k none), addBottom_modifyNth fun a ↦ update a k none, addBottom_nth_snd, stk_nth_val _ (hL k), e, show (List.cons hd tl).reverse.get? tl.length = some hd by rw [List.reverse_cons, ← List.length_reverse, List.get?_concat_length], List.head?, List.tail]⟩ [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl ⊢ (bif ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L))).head.fst then TM1.stepAux q (f v none) ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (f v (Prod.snd (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head.fst, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head.snd k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (f v (List.head? (hd :: tl))) ((Tape.move Dir.right)^[List.length (List.tail (hd :: tl))] (Tape.mk' ∅ (addBottom ?m.672274))) [PROOFSTEP] erw [List.length_cons, Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_succ_fst, cond, iterate_succ', Function.comp, Tape.move_right_left, Tape.move_right_n_head, Tape.mk'_nth_nat, Tape.write_move_right_n fun a : Γ' ↦ (a.1, update a.2 k none), addBottom_modifyNth fun a ↦ update a k none, addBottom_nth_snd, stk_nth_val _ (hL k), e, show (List.cons hd tl).reverse.get? tl.length = some hd by rw [List.reverse_cons, ← List.length_reverse, List.get?_concat_length], List.head?, List.tail] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl ⊢ List.get? (List.reverse (hd :: tl)) (List.length tl) = some hd [PROOFSTEP] rw [List.reverse_cons, ← List.length_reverse, List.get?_concat_length] [GOAL] case cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K ⊢ ListBlank.map (proj k') (ListBlank.modifyNth (fun a => update a k none) (List.length tl) L) = ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k'))) [PROOFSTEP] refine' ListBlank.ext fun i ↦ _ [GOAL] case cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ ⊢ ListBlank.nth (ListBlank.map (proj k') (ListBlank.modifyNth (fun a => update a k none) (List.length tl) L)) i = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i [PROOFSTEP] rw [ListBlank.nth_map, ListBlank.nth_modifyNth, proj, PointedMap.mk_val] [GOAL] case cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ ⊢ ite (i = List.length tl) (update (ListBlank.nth L i) k none) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i [PROOFSTEP] by_cases h' : k' = k [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ h' : k' = k ⊢ ite (i = List.length tl) (update (ListBlank.nth L i) k none) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i [PROOFSTEP] subst k' [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ ⊢ ite (i = List.length tl) (update (ListBlank.nth L i) k none) (ListBlank.nth L i) k = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k)))) i [PROOFSTEP] split_ifs with h [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : i = List.length tl ⊢ update (ListBlank.nth L i) k none k = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k)))) i [PROOFSTEP] simp only [Function.update_same, ListBlank.nth_mk, List.tail] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : ¬i = List.length tl ⊢ ListBlank.nth L i k = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k)))) i [PROOFSTEP] simp only [Function.update_same, ListBlank.nth_mk, List.tail] [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : i = List.length tl ⊢ none = List.getI (List.reverse (List.map some tl)) i [PROOFSTEP] rw [List.getI_eq_default] [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : i = List.length tl ⊢ none = default [PROOFSTEP] rfl [GOAL] case pos.hn K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : i = List.length tl ⊢ List.length (List.reverse (List.map some tl)) ≤ i [PROOFSTEP] rw [h, List.length_reverse, List.length_map] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : ¬i = List.length tl ⊢ ListBlank.nth L i k = List.getI (List.reverse (List.map some tl)) i [PROOFSTEP] rw [← proj_map_nth, hL, ListBlank.nth_mk, e, List.map, List.reverse_cons] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : ¬i = List.length tl ⊢ List.getI (List.reverse (List.map some tl) ++ [some hd]) i = List.getI (List.reverse (List.map some tl)) i [PROOFSTEP] cases' lt_or_gt_of_ne h with h h [GOAL] case neg.inl K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h✝ : ¬i = List.length tl h : i < List.length tl ⊢ List.getI (List.reverse (List.map some tl) ++ [some hd]) i = List.getI (List.reverse (List.map some tl)) i [PROOFSTEP] rw [List.getI_append] [GOAL] case neg.inl.h K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h✝ : ¬i = List.length tl h : i < List.length tl ⊢ i < List.length (List.reverse (List.map some tl)) [PROOFSTEP] simpa only [List.length_map, List.length_reverse] using h [GOAL] case neg.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h✝ : ¬i = List.length tl h : i > List.length tl ⊢ List.getI (List.reverse (List.map some tl) ++ [some hd]) i = List.getI (List.reverse (List.map some tl)) i [PROOFSTEP] rw [gt_iff_lt] at h [GOAL] case neg.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h✝ : ¬i = List.length tl h : List.length tl < i ⊢ List.getI (List.reverse (List.map some tl) ++ [some hd]) i = List.getI (List.reverse (List.map some tl)) i [PROOFSTEP] rw [List.getI_eq_default, List.getI_eq_default] [GOAL] case neg.inr.hn K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h✝ : ¬i = List.length tl h : List.length tl < i ⊢ List.length (List.reverse (List.map some tl)) ≤ i [PROOFSTEP] simp only [Nat.add_one_le_iff, h, List.length, le_of_lt, List.length_reverse, List.length_append, List.length_map] [GOAL] case neg.inr.hn K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h✝ : ¬i = List.length tl h : List.length tl < i ⊢ List.length (List.reverse (List.map some tl) ++ [some hd]) ≤ i [PROOFSTEP] simp only [Nat.add_one_le_iff, h, List.length, le_of_lt, List.length_reverse, List.length_append, List.length_map] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ h' : ¬k' = k ⊢ ite (i = List.length tl) (update (ListBlank.nth L i) k none) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i [PROOFSTEP] split_ifs [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ h' : ¬k' = k h✝ : i = List.length tl ⊢ update (ListBlank.nth L i) k none k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i [PROOFSTEP] rw [Function.update_noteq h', ← proj_map_nth, hL] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ h' : ¬k' = k h✝ : ¬i = List.length tl ⊢ ListBlank.nth L i k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i [PROOFSTEP] rw [Function.update_noteq h', ← proj_map_nth, hL] [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ h' : ¬k' = k h✝ : i = List.length tl ⊢ ListBlank.nth (ListBlank.mk (List.reverse (List.map some (S k')))) i = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i [PROOFSTEP] rw [Function.update_noteq h'] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K o : StAct k q : Stmt₂ v : σ S : List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) n : ℕ H : n ≤ List.length S ⊢ Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom L) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } [PROOFSTEP] induction' n with n IH [GOAL] case zero K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K o : StAct k q : Stmt₂ v : σ S : List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) n : ℕ H✝ : n ≤ List.length S H : Nat.zero ≤ List.length S ⊢ Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom L) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[Nat.zero] (Tape.mk' ∅ (addBottom L)) } [PROOFSTEP] rfl [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K o : StAct k q : Stmt₂ v : σ S : List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) n✝ : ℕ H✝ : n✝ ≤ List.length S n : ℕ IH : n ≤ List.length S → Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom L) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } H : Nat.succ n ≤ List.length S ⊢ Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom L) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[Nat.succ n] (Tape.mk' ∅ (addBottom L)) } [PROOFSTEP] apply (IH (le_of_lt H)).tail [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K o : StAct k q : Stmt₂ v : σ S : List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) n✝ : ℕ H✝ : n✝ ≤ List.length S n : ℕ IH : n ≤ List.length S → Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom L) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } H : Nat.succ n ≤ List.length S ⊢ { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[Nat.succ n] (Tape.mk' ∅ (addBottom L)) } ∈ TM1.step (tr M) { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } [PROOFSTEP] rw [iterate_succ_apply'] [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K o : StAct k q : Stmt₂ v : σ S : List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) n✝ : ℕ H✝ : n✝ ≤ List.length S n : ℕ IH : n ≤ List.length S → Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom L) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } H : Nat.succ n ≤ List.length S ⊢ { l := some (go k o q), var := v, Tape := Tape.move Dir.right ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L))) } ∈ TM1.step (tr M) { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } [PROOFSTEP] simp only [TM1.step, TM1.stepAux, tr, Tape.mk'_nth_nat, Tape.move_right_n_head, addBottom_nth_snd, Option.mem_def] [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K o : StAct k q : Stmt₂ v : σ S : List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) n✝ : ℕ H✝ : n✝ ≤ List.length S n : ℕ IH : n ≤ List.length S → Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom L) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } H : Nat.succ n ≤ List.length S ⊢ some (bif Option.isNone (ListBlank.nth L n k) then TM1.stepAux (trStAct (goto fun x x => ret q) o) v ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L))) else { l := some (go k o q), var := v, Tape := Tape.move Dir.right ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L))) }) = some { l := some (go k o q), var := v, Tape := Tape.move Dir.right ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L))) } [PROOFSTEP] rw [stk_nth_val _ hL, List.get?_eq_get] [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K o : StAct k q : Stmt₂ v : σ S : List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) n✝ : ℕ H✝ : n✝ ≤ List.length S n : ℕ IH : n ≤ List.length S → Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom L) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } H : Nat.succ n ≤ List.length S ⊢ some (bif Option.isNone (some (List.get (List.reverse S) { val := n, isLt := ?succ })) then TM1.stepAux (trStAct (goto fun x x => ret q) o) v ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L))) else { l := some (go k o q), var := v, Tape := Tape.move Dir.right ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L))) }) = some { l := some (go k o q), var := v, Tape := Tape.move Dir.right ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L))) } case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K o : StAct k q : Stmt₂ v : σ S : List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) n✝ : ℕ H✝ : n✝ ≤ List.length S n : ℕ IH : n ≤ List.length S → Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom L) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } H : Nat.succ n ≤ List.length S ⊢ n < List.length (List.reverse S) [PROOFSTEP] rfl [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K o : StAct k q : Stmt₂ v : σ S : List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) n✝ : ℕ H✝ : n✝ ≤ List.length S n : ℕ IH : n ≤ List.length S → Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom L) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } H : Nat.succ n ≤ List.length S ⊢ n < List.length (List.reverse S) [PROOFSTEP] rwa [List.length_reverse] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : Stmt₂ v : σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ ⊢ Reaches₀ (TM1.step (tr M)) { l := some (ret q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) } [PROOFSTEP] induction' n with n IH [GOAL] case zero K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : Stmt₂ v : σ L : ListBlank ((k : K) → Option (Γ k)) ⊢ Reaches₀ (TM1.step (tr M)) { l := some (ret q), var := v, Tape := (Tape.move Dir.right)^[Nat.zero] (Tape.mk' ∅ (addBottom L)) } { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) } [PROOFSTEP] rfl [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : Stmt₂ v : σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ IH : Reaches₀ (TM1.step (tr M)) { l := some (ret q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) } ⊢ Reaches₀ (TM1.step (tr M)) { l := some (ret q), var := v, Tape := (Tape.move Dir.right)^[Nat.succ n] (Tape.mk' ∅ (addBottom L)) } { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) } [PROOFSTEP] refine' Reaches₀.head _ IH [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : Stmt₂ v : σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ IH : Reaches₀ (TM1.step (tr M)) { l := some (ret q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) } ⊢ { l := some (ret q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } ∈ TM1.step (tr M) { l := some (ret q), var := v, Tape := (Tape.move Dir.right)^[Nat.succ n] (Tape.mk' ∅ (addBottom L)) } [PROOFSTEP] simp only [Option.mem_def, TM1.step] [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : Stmt₂ v : σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ IH : Reaches₀ (TM1.step (tr M)) { l := some (ret q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) } ⊢ some (TM1.stepAux (tr M (ret q)) v ((Tape.move Dir.right)^[Nat.succ n] (Tape.mk' ∅ (addBottom L)))) = some { l := some (ret q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } [PROOFSTEP] rw [Option.some_inj, tr, TM1.stepAux, Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_succ_fst, TM1.stepAux, iterate_succ', Function.comp_apply, Tape.move_right_left] [GOAL] case succ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : Stmt₂ v : σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ IH : Reaches₀ (TM1.step (tr M)) { l := some (ret q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) } ⊢ (bif false then TM1.stepAux (trNormal q) v (Tape.move Dir.right ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)))) else TM1.stepAux (goto fun x x => ret q) v ((Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)))) = { l := some (ret q), var := v, Tape := (Tape.move Dir.right)^[n] (Tape.mk' ∅ (addBottom L)) } [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : TM2.Stmt (fun k => Γ k) Λ σ v : σ T : ListBlank ((i : K) → Option (Γ i)) k : K S : (k : K) → List (Γ k) hT : ∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} {T : ListBlank ((k : K) → Option (Γ k))}, (∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b ⊢ ∃ b, TrCfg (TM2.stepAux (stRun o q) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal (stRun o q)) v (Tape.mk' ∅ (addBottom T))) b [PROOFSTEP] simp only [trNormal_run, step_run] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : TM2.Stmt (fun k => Γ k) Λ σ v : σ T : ListBlank ((i : K) → Option (Γ i)) k : K S : (k : K) → List (Γ k) hT : ∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} {T : ListBlank ((k : K) → Option (Γ k))}, (∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b ⊢ ∃ b, TrCfg (TM2.stepAux q (stVar v (S k) o) (update S k (stWrite v (S k) o))) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (goto fun x x => go k o q) v (Tape.mk' ∅ (addBottom T))) b [PROOFSTEP] have hgo := tr_respects_aux₁ M o q v (hT k) _ le_rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : TM2.Stmt (fun k => Γ k) Λ σ v : σ T : ListBlank ((i : K) → Option (Γ i)) k : K S : (k : K) → List (Γ k) hT : ∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} {T : ListBlank ((k : K) → Option (Γ k))}, (∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b hgo : Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T)) } ⊢ ∃ b, TrCfg (TM2.stepAux q (stVar v (S k) o) (update S k (stWrite v (S k) o))) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (goto fun x x => go k o q) v (Tape.mk' ∅ (addBottom T))) b [PROOFSTEP] obtain ⟨T', hT', hrun⟩ := tr_respects_aux₂ hT o [GOAL] case intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : TM2.Stmt (fun k => Γ k) Λ σ v : σ T : ListBlank ((i : K) → Option (Γ i)) k : K S : (k : K) → List (Γ k) hT : ∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} {T : ListBlank ((k : K) → Option (Γ k))}, (∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b hgo : Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T)) } T' : ListBlank ((k : K) → Option (Γ k)) hT' : ∀ (k_1 : K), ListBlank.map (proj k_1) T' = ListBlank.mk (List.reverse (List.map some (update (fun k => S k) k (stWrite ?m.705248 (S k) o) k_1))) hrun : TM1.stepAux (trStAct ?m.705247 o) ?m.705248 ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T))) = TM1.stepAux ?m.705247 (stVar ?m.705248 (S k) o) ((Tape.move Dir.right)^[List.length (update (fun k => S k) k (stWrite ?m.705248 (S k) o) k)] (Tape.mk' ∅ (addBottom T'))) ⊢ ∃ b, TrCfg (TM2.stepAux q (stVar v (S k) o) (update S k (stWrite v (S k) o))) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (goto fun x x => go k o q) v (Tape.mk' ∅ (addBottom T))) b [PROOFSTEP] have := hgo.tail' rfl [GOAL] case intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : TM2.Stmt (fun k => Γ k) Λ σ v : σ T : ListBlank ((i : K) → Option (Γ i)) k : K S : (k : K) → List (Γ k) hT : ∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} {T : ListBlank ((k : K) → Option (Γ k))}, (∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b hgo : Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T)) } T' : ListBlank ((k : K) → Option (Γ k)) hT' : ∀ (k_1 : K), ListBlank.map (proj k_1) T' = ListBlank.mk (List.reverse (List.map some (update (fun k => S k) k (stWrite ?m.705248 (S k) o) k_1))) hrun : TM1.stepAux (trStAct ?m.705247 o) ?m.705248 ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T))) = TM1.stepAux ?m.705247 (stVar ?m.705248 (S k) o) ((Tape.move Dir.right)^[List.length (update (fun k => S k) k (stWrite ?m.705248 (S k) o) k)] (Tape.mk' ∅ (addBottom T'))) this : Reaches₁ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } (TM1.stepAux (tr M (go k o q)) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T)))) ⊢ ∃ b, TrCfg (TM2.stepAux q (stVar v (S k) o) (update S k (stWrite v (S k) o))) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (goto fun x x => go k o q) v (Tape.mk' ∅ (addBottom T))) b [PROOFSTEP] rw [tr, TM1.stepAux, Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_snd, stk_nth_val _ (hT k), List.get?_len_le (le_of_eq (List.length_reverse _)), Option.isNone, cond, hrun, TM1.stepAux] at this [GOAL] case intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : TM2.Stmt (fun k => Γ k) Λ σ v : σ T : ListBlank ((i : K) → Option (Γ i)) k : K S : (k : K) → List (Γ k) hT : ∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} {T : ListBlank ((k : K) → Option (Γ k))}, (∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b hgo : Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T)) } T' : ListBlank ((k : K) → Option (Γ k)) hT' : ∀ (k_1 : K), ListBlank.map (proj k_1) T' = ListBlank.mk (List.reverse (List.map some (update (fun k => S k) k (stWrite v (S k) o) k_1))) hrun : TM1.stepAux (trStAct (goto fun x x => ret q) o) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T))) = TM1.stepAux (goto fun x x => ret q) (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (update (fun k => S k) k (stWrite v (S k) o) k)] (Tape.mk' ∅ (addBottom T'))) this : Reaches₁ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } (match match none with | some val => false | none => true with | true => TM1.stepAux (goto fun x x => ret q) (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (update (fun k => S k) k (stWrite v (S k) o) k)] (Tape.mk' ∅ (addBottom T'))) | false => TM1.stepAux (goto fun x x => go k o q) v (Tape.move Dir.right ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T))))) ⊢ ∃ b, TrCfg (TM2.stepAux q (stVar v (S k) o) (update S k (stWrite v (S k) o))) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (goto fun x x => go k o q) v (Tape.mk' ∅ (addBottom T))) b [PROOFSTEP] obtain ⟨c, gc, rc⟩ := IH hT' [GOAL] case intro.intro.intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : TM2.Stmt (fun k => Γ k) Λ σ v : σ T : ListBlank ((i : K) → Option (Γ i)) k : K S : (k : K) → List (Γ k) hT : ∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} {T : ListBlank ((k : K) → Option (Γ k))}, (∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b hgo : Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T)) } T' : ListBlank ((k : K) → Option (Γ k)) hT' : ∀ (k_1 : K), ListBlank.map (proj k_1) T' = ListBlank.mk (List.reverse (List.map some (update (fun k => S k) k (stWrite v (S k) o) k_1))) hrun : TM1.stepAux (trStAct (goto fun x x => ret q) o) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T))) = TM1.stepAux (goto fun x x => ret q) (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (update (fun k => S k) k (stWrite v (S k) o) k)] (Tape.mk' ∅ (addBottom T'))) this : Reaches₁ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } (match match none with | some val => false | none => true with | true => TM1.stepAux (goto fun x x => ret q) (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (update (fun k => S k) k (stWrite v (S k) o) k)] (Tape.mk' ∅ (addBottom T'))) | false => TM1.stepAux (goto fun x x => go k o q) v (Tape.move Dir.right ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T))))) c : TM1.Cfg Γ' Λ' σ gc : TrCfg (TM2.stepAux q ?m.709134 fun k_1 => update (fun k => S k) k (stWrite v (S k) o) k_1) c rc : Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) ?m.709134 (Tape.mk' ∅ (addBottom T'))) c ⊢ ∃ b, TrCfg (TM2.stepAux q (stVar v (S k) o) (update S k (stWrite v (S k) o))) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (goto fun x x => go k o q) v (Tape.mk' ∅ (addBottom T))) b [PROOFSTEP] refine' ⟨c, gc, (this.to₀.trans (tr_respects_aux₃ M _) c (TransGen.head' rfl _)).to_reflTransGen⟩ [GOAL] case intro.intro.intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : TM2.Stmt (fun k => Γ k) Λ σ v : σ T : ListBlank ((i : K) → Option (Γ i)) k : K S : (k : K) → List (Γ k) hT : ∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} {T : ListBlank ((k : K) → Option (Γ k))}, (∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b hgo : Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T)) } T' : ListBlank ((k : K) → Option (Γ k)) hT' : ∀ (k_1 : K), ListBlank.map (proj k_1) T' = ListBlank.mk (List.reverse (List.map some (update (fun k => S k) k (stWrite v (S k) o) k_1))) hrun : TM1.stepAux (trStAct (goto fun x x => ret q) o) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T))) = TM1.stepAux (goto fun x x => ret q) (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (update (fun k => S k) k (stWrite v (S k) o) k)] (Tape.mk' ∅ (addBottom T'))) this : Reaches₁ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } (match match none with | some val => false | none => true with | true => TM1.stepAux (goto fun x x => ret q) (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (update (fun k => S k) k (stWrite v (S k) o) k)] (Tape.mk' ∅ (addBottom T'))) | false => TM1.stepAux (goto fun x x => go k o q) v (Tape.move Dir.right ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T))))) c : TM1.Cfg Γ' Λ' σ gc : TrCfg (TM2.stepAux q (stVar v (S k) o) fun k_1 => update (fun k => S k) k (stWrite v (S k) o) k_1) c rc : Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) (stVar v (S k) o) (Tape.mk' ∅ (addBottom T'))) c ⊢ ReflTransGen (fun a b => b ∈ TM1.step (tr M) a) (TM1.stepAux (tr M (ret q)) (stVar v (S k) o) (Tape.mk' ∅ (addBottom T'))) c [PROOFSTEP] rw [tr, TM1.stepAux, Tape.mk'_head, addBottom_head_fst] [GOAL] case intro.intro.intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ q : TM2.Stmt (fun k => Γ k) Λ σ v : σ T : ListBlank ((i : K) → Option (Γ i)) k : K S : (k : K) → List (Γ k) hT : ∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} {T : ListBlank ((k : K) → Option (Γ k))}, (∀ (k : K), ListBlank.map (proj k) T = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom T))) b hgo : Reaches₀ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } { l := some (go k o q), var := v, Tape := (Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T)) } T' : ListBlank ((k : K) → Option (Γ k)) hT' : ∀ (k_1 : K), ListBlank.map (proj k_1) T' = ListBlank.mk (List.reverse (List.map some (update (fun k => S k) k (stWrite v (S k) o) k_1))) hrun : TM1.stepAux (trStAct (goto fun x x => ret q) o) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T))) = TM1.stepAux (goto fun x x => ret q) (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (update (fun k => S k) k (stWrite v (S k) o) k)] (Tape.mk' ∅ (addBottom T'))) this : Reaches₁ (TM1.step (tr M)) { l := some (go k o q), var := v, Tape := Tape.mk' ∅ (addBottom T) } (match match none with | some val => false | none => true with | true => TM1.stepAux (goto fun x x => ret q) (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (update (fun k => S k) k (stWrite v (S k) o) k)] (Tape.mk' ∅ (addBottom T'))) | false => TM1.stepAux (goto fun x x => go k o q) v (Tape.move Dir.right ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom T))))) c : TM1.Cfg Γ' Λ' σ gc : TrCfg (TM2.stepAux q (stVar v (S k) o) fun k_1 => update (fun k => S k) k (stWrite v (S k) o) k_1) c rc : Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) (stVar v (S k) o) (Tape.mk' ∅ (addBottom T'))) c ⊢ ReflTransGen (fun a b => b ∈ TM1.step (tr M) a) (bif true then TM1.stepAux (trNormal q) (stVar v (S k) o) (Tape.mk' ∅ (addBottom T')) else TM1.stepAux (move Dir.left (goto fun x x => ret q)) (stVar v (S k) o) (Tape.mk' ∅ (addBottom T'))) c [PROOFSTEP] exact rc [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ ⊢ Respects (TM2.step M) (TM1.step (tr M)) TrCfg [PROOFSTEP] intro c₁ c₂ h [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ c₁ : Cfg₂ c₂ : TM1.Cfg Γ' Λ' σ h : TrCfg c₁ c₂ ⊢ match TM2.step M c₁ with | some b₁ => ∃ b₂, TrCfg b₁ b₂ ∧ Reaches₁ (TM1.step (tr M)) c₂ b₂ | none => TM1.step (tr M) c₂ = none [PROOFSTEP] cases' h with l v S L hT [GOAL] case mk K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Option Λ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ match TM2.step M { l := l, var := v, stk := S } with | some b₁ => ∃ b₂, TrCfg b₁ b₂ ∧ Reaches₁ (TM1.step (tr M)) { l := Option.map normal l, var := v, Tape := Tape.mk' ∅ (addBottom L) } b₂ | none => TM1.step (tr M) { l := Option.map normal l, var := v, Tape := Tape.mk' ∅ (addBottom L) } = none [PROOFSTEP] cases' l with l [GOAL] case mk.none K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ match TM2.step M { l := none, var := v, stk := S } with | some b₁ => ∃ b₂, TrCfg b₁ b₂ ∧ Reaches₁ (TM1.step (tr M)) { l := Option.map normal none, var := v, Tape := Tape.mk' ∅ (addBottom L) } b₂ | none => TM1.step (tr M) { l := Option.map normal none, var := v, Tape := Tape.mk' ∅ (addBottom L) } = none [PROOFSTEP] constructor [GOAL] case mk.some K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) l : Λ ⊢ match TM2.step M { l := some l, var := v, stk := S } with | some b₁ => ∃ b₂, TrCfg b₁ b₂ ∧ Reaches₁ (TM1.step (tr M)) { l := Option.map normal (some l), var := v, Tape := Tape.mk' ∅ (addBottom L) } b₂ | none => TM1.step (tr M) { l := Option.map normal (some l), var := v, Tape := Tape.mk' ∅ (addBottom L) } = none [PROOFSTEP] simp only [TM2.step, Respects, Option.map_some'] [GOAL] case mk.some K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) l : Λ ⊢ ∃ b₂, TrCfg (TM2.stepAux (M l) v S) b₂ ∧ Reaches₁ (TM1.step (tr M)) { l := some (normal l), var := v, Tape := Tape.mk' ∅ (addBottom L) } b₂ [PROOFSTEP] rsuffices ⟨b, c, r⟩ : ∃ b, _ ∧ Reaches (TM1.step (tr M)) _ _ [GOAL] case mk.some.intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) l : Λ b : ?m.714525 c : ?m.714852 b r : Reaches (TM1.step (tr M)) (?m.714853 b) (?m.714854 b) ⊢ ∃ b₂, TrCfg (TM2.stepAux (M l) v S) b₂ ∧ Reaches₁ (TM1.step (tr M)) { l := some (normal l), var := v, Tape := Tape.mk' ∅ (addBottom L) } b₂ [PROOFSTEP] exact ⟨b, c, TransGen.head' rfl r⟩ [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) l : Λ ⊢ ∃ b, TrCfg (TM2.stepAux (M l) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (tr M (normal l)) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] simp only [tr] -- Porting note: `refine'` failed because of implicit lambda, so `induction` is used. [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) l : Λ ⊢ ∃ b, TrCfg (TM2.stepAux (M l) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal (M l)) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] generalize M l = N [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) l : Λ N : Stmt₂ ⊢ ∃ b, TrCfg (TM2.stepAux N v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal N) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] induction N using stmtStRec generalizing v S L hT with | H₁ k s q IH => exact tr_respects_aux M hT s @IH | H₂ a _ IH => exact IH _ hT | H₃ p q₁ q₂ IH₁ IH₂ => unfold TM2.stepAux trNormal TM1.stepAux simp only [] cases p v <;> [exact IH₂ _ hT; exact IH₁ _ hT] | H₄ => exact ⟨_, ⟨_, hT⟩, ReflTransGen.refl⟩ | H₅ => exact ⟨_, ⟨_, hT⟩, ReflTransGen.refl⟩ [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) l : Λ N : Stmt₂ ⊢ ∃ b, TrCfg (TM2.stepAux N v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal N) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] induction N using stmtStRec generalizing v S L hT with | H₁ k s q IH => exact tr_respects_aux M hT s @IH | H₂ a _ IH => exact IH _ hT | H₃ p q₁ q₂ IH₁ IH₂ => unfold TM2.stepAux trNormal TM1.stepAux simp only [] cases p v <;> [exact IH₂ _ hT; exact IH₁ _ hT] | H₄ => exact ⟨_, ⟨_, hT⟩, ReflTransGen.refl⟩ | H₅ => exact ⟨_, ⟨_, hT⟩, ReflTransGen.refl⟩ [GOAL] case H₁ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ k : K s : StAct k q : Stmt₂ IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom L))) b v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (TM2.stepAux (stRun s q) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal (stRun s q)) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] | H₁ k s q IH => exact tr_respects_aux M hT s @IH [GOAL] case H₁ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ k : K s : StAct k q : Stmt₂ IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q) v (Tape.mk' ∅ (addBottom L))) b v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (TM2.stepAux (stRun s q) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal (stRun s q)) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] exact tr_respects_aux M hT s @IH [GOAL] case H₂ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ a : σ → σ q✝ : Stmt₂ IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q✝ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q✝) v (Tape.mk' ∅ (addBottom L))) b v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (TM2.stepAux (TM2.Stmt.load a q✝) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal (TM2.Stmt.load a q✝)) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] | H₂ a _ IH => exact IH _ hT [GOAL] case H₂ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ a : σ → σ q✝ : Stmt₂ IH : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q✝ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q✝) v (Tape.mk' ∅ (addBottom L))) b v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (TM2.stepAux (TM2.Stmt.load a q✝) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal (TM2.Stmt.load a q✝)) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] exact IH _ hT [GOAL] case H₃ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ p : σ → Bool q₁ q₂ : Stmt₂ IH₁ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₁ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L))) b IH₂ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (TM2.stepAux (TM2.Stmt.branch p q₁ q₂) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal (TM2.Stmt.branch p q₁ q₂)) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] | H₃ p q₁ q₂ IH₁ IH₂ => unfold TM2.stepAux trNormal TM1.stepAux simp only [] cases p v <;> [exact IH₂ _ hT; exact IH₁ _ hT] [GOAL] case H₃ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ p : σ → Bool q₁ q₂ : Stmt₂ IH₁ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₁ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L))) b IH₂ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (TM2.stepAux (TM2.Stmt.branch p q₁ q₂) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal (TM2.Stmt.branch p q₁ q₂)) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] unfold TM2.stepAux trNormal TM1.stepAux [GOAL] case H₃ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ p : σ → Bool q₁ q₂ : Stmt₂ IH₁ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₁ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L))) b IH₂ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (bif p v then TM2.stepAux q₁ v S else TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (bif (fun x => p) (Tape.mk' ∅ (addBottom L)).head v then TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L)) else TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] simp only [] [GOAL] case H₃ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ p : σ → Bool q₁ q₂ : Stmt₂ IH₁ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₁ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L))) b IH₂ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (bif p v then TM2.stepAux q₁ v S else TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (bif p v then TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L)) else TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] cases p v <;> [exact IH₂ _ hT; exact IH₁ _ hT] [GOAL] case H₃ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ p : σ → Bool q₁ q₂ : Stmt₂ IH₁ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₁ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L))) b IH₂ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (bif p v then TM2.stepAux q₁ v S else TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (bif p v then TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L)) else TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] cases p v [GOAL] case H₃.false K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ p : σ → Bool q₁ q₂ : Stmt₂ IH₁ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₁ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L))) b IH₂ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (bif false then TM2.stepAux q₁ v S else TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (bif false then TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L)) else TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] exact IH₂ _ hT [GOAL] case H₃.true K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ p : σ → Bool q₁ q₂ : Stmt₂ IH₁ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₁ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L))) b IH₂ : ∀ {v : σ} {S : (k : K) → List (Γ k)} (L : ListBlank ((k : K) → Option (Γ k))), (∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k)))) → ∃ b, TrCfg (TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (bif true then TM2.stepAux q₁ v S else TM2.stepAux q₂ v S) b ∧ Reaches (TM1.step (tr M)) (bif true then TM1.stepAux (trNormal q₁) v (Tape.mk' ∅ (addBottom L)) else TM1.stepAux (trNormal q₂) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] exact IH₁ _ hT [GOAL] case H₄ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ l✝ : σ → Λ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (TM2.stepAux (TM2.Stmt.goto l✝) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal (TM2.Stmt.goto l✝)) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] | H₄ => exact ⟨_, ⟨_, hT⟩, ReflTransGen.refl⟩ [GOAL] case H₄ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ l✝ : σ → Λ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (TM2.stepAux (TM2.Stmt.goto l✝) v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal (TM2.Stmt.goto l✝)) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] exact ⟨_, ⟨_, hT⟩, ReflTransGen.refl⟩ [GOAL] case H₅ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (TM2.stepAux TM2.Stmt.halt v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal TM2.Stmt.halt) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] | H₅ => exact ⟨_, ⟨_, hT⟩, ReflTransGen.refl⟩ [GOAL] case H₅ K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ l : Λ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) ⊢ ∃ b, TrCfg (TM2.stepAux TM2.Stmt.halt v S) b ∧ Reaches (TM1.step (tr M)) (TM1.stepAux (trNormal TM2.Stmt.halt) v (Tape.mk' ∅ (addBottom L))) b [PROOFSTEP] exact ⟨_, ⟨_, hT⟩, ReflTransGen.refl⟩ [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) ⊢ TrCfg (TM2.init k L) (TM1.init (trInit k L)) [PROOFSTEP] rw [(_ : TM1.init _ = _)] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) ⊢ TrCfg (TM2.init k L) ?m.724426 [PROOFSTEP] refine' ⟨ListBlank.mk (L.reverse.map fun a ↦ update default k (some a)), fun k' ↦ _⟩ [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K ⊢ ListBlank.map (proj k') (ListBlank.mk (List.map (fun a => update default k (some a)) (List.reverse L))) = ListBlank.mk (List.reverse (List.map some (update (fun x => []) k L k'))) [PROOFSTEP] refine' ListBlank.ext fun i ↦ _ [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K i : ℕ ⊢ ListBlank.nth (ListBlank.map (proj k') (ListBlank.mk (List.map (fun a => update default k (some a)) (List.reverse L)))) i = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update (fun x => []) k L k')))) i [PROOFSTEP] rw [ListBlank.map_mk, ListBlank.nth_mk, List.getI_eq_iget_get?, List.map_map] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K i : ℕ ⊢ Option.iget (List.get? (List.map ((proj k').f ∘ fun a => update default k (some a)) (List.reverse L)) i) = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update (fun x => []) k L k')))) i [PROOFSTEP] have : ((proj k').f ∘ fun a => update (β := fun k => Option (Γ k)) default k (some a)) = fun a => (proj k').f (update (β := fun k => Option (Γ k)) default k (some a)) := rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K i : ℕ this : ((proj k').f ∘ fun a => update default k (some a)) = fun a => PointedMap.f (proj k') (update default k (some a)) ⊢ Option.iget (List.get? (List.map ((proj k').f ∘ fun a => update default k (some a)) (List.reverse L)) i) = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update (fun x => []) k L k')))) i [PROOFSTEP] rw [this, List.get?_map, proj, PointedMap.mk_val] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K i : ℕ this : ((proj k').f ∘ fun a => update default k (some a)) = fun a => PointedMap.f (proj k') (update default k (some a)) ⊢ Option.iget (Option.map (fun a => update default k (some a) k') (List.get? (List.reverse L) i)) = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update (fun x => []) k L k')))) i [PROOFSTEP] simp only [] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K i : ℕ this : ((proj k').f ∘ fun a => update default k (some a)) = fun a => PointedMap.f (proj k') (update default k (some a)) ⊢ Option.iget (Option.map (fun a => update default k (some a) k') (List.get? (List.reverse L) i)) = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update (fun x => []) k L k')))) i [PROOFSTEP] by_cases h : k' = k [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K i : ℕ this : ((proj k').f ∘ fun a => update default k (some a)) = fun a => PointedMap.f (proj k') (update default k (some a)) h : k' = k ⊢ Option.iget (Option.map (fun a => update default k (some a) k') (List.get? (List.reverse L) i)) = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update (fun x => []) k L k')))) i [PROOFSTEP] subst k' [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) i : ℕ this : ((proj k).f ∘ fun a => update default k (some a)) = fun a => PointedMap.f (proj k) (update default k (some a)) ⊢ Option.iget (Option.map (fun a => update default k (some a) k) (List.get? (List.reverse L) i)) = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update (fun x => []) k L k)))) i [PROOFSTEP] simp only [Function.update_same] [GOAL] case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) i : ℕ this : ((proj k).f ∘ fun a => update default k (some a)) = fun a => PointedMap.f (proj k) (update default k (some a)) ⊢ Option.iget (Option.map (fun a => some a) (List.get? (List.reverse L) i)) = ListBlank.nth (ListBlank.mk (List.reverse (List.map some L))) i [PROOFSTEP] rw [ListBlank.nth_mk, List.getI_eq_iget_get?, ← List.map_reverse, List.get?_map] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K i : ℕ this : ((proj k').f ∘ fun a => update default k (some a)) = fun a => PointedMap.f (proj k') (update default k (some a)) h : ¬k' = k ⊢ Option.iget (Option.map (fun a => update default k (some a) k') (List.get? (List.reverse L) i)) = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update (fun x => []) k L k')))) i [PROOFSTEP] simp only [Function.update_noteq h] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K i : ℕ this : ((proj k').f ∘ fun a => update default k (some a)) = fun a => PointedMap.f (proj k') (update default k (some a)) h : ¬k' = k ⊢ Option.iget (Option.map (fun a => default k') (List.get? (List.reverse L) i)) = ListBlank.nth (ListBlank.mk (List.reverse (List.map some []))) i [PROOFSTEP] rw [ListBlank.nth_mk, List.getI_eq_iget_get?, List.map, List.reverse_nil] [GOAL] case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K i : ℕ this : ((proj k').f ∘ fun a => update default k (some a)) = fun a => PointedMap.f (proj k') (update default k (some a)) h : ¬k' = k ⊢ Option.iget (Option.map (fun a => default k') (List.get? (List.reverse L) i)) = Option.iget (List.get? [] i) [PROOFSTEP] cases L.reverse.get? i [GOAL] case neg.none K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K i : ℕ this : ((proj k').f ∘ fun a => update default k (some a)) = fun a => PointedMap.f (proj k') (update default k (some a)) h : ¬k' = k ⊢ Option.iget (Option.map (fun a => default k') none) = Option.iget (List.get? [] i) [PROOFSTEP] rfl [GOAL] case neg.some K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) k' : K i : ℕ this : ((proj k').f ∘ fun a => update default k (some a)) = fun a => PointedMap.f (proj k') (update default k (some a)) h : ¬k' = k val✝ : Γ k ⊢ Option.iget (Option.map (fun a => default k') (some val✝)) = Option.iget (List.get? [] i) [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) ⊢ TM1.init (trInit k L) = { l := Option.map normal (some default), var := default, Tape := Tape.mk' ∅ (addBottom (ListBlank.mk (List.map (fun a => update default k (some a)) (List.reverse L)))) } [PROOFSTEP] rw [trInit, TM1.init] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) ⊢ { l := some default, var := default, Tape := Tape.mk₁ (let L' := List.map (fun a => (false, update (fun x => none) k (some a))) (List.reverse L); (true, (List.headI L').snd) :: List.tail L') } = { l := Option.map normal (some default), var := default, Tape := Tape.mk' ∅ (addBottom (ListBlank.mk (List.map (fun a => update default k (some a)) (List.reverse L)))) } [PROOFSTEP] dsimp only [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) ⊢ { l := some default, var := default, Tape := Tape.mk₁ ((true, (List.headI (List.map (fun a => (false, update (fun x => none) k (some a))) (List.reverse L))).snd) :: List.tail (List.map (fun a => (false, update (fun x => none) k (some a))) (List.reverse L))) } = { l := Option.map normal (some default), var := default, Tape := Tape.mk' ∅ (addBottom (ListBlank.mk (List.map (fun a => update default k (some a)) (List.reverse L)))) } [PROOFSTEP] congr [GOAL] case e_Tape.e_l.e_head.e_snd K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) ⊢ (List.headI (List.map (fun a => (false, update (fun x => none) k (some a))) (List.reverse L))).snd = ListBlank.head (ListBlank.mk (List.map (fun a => update default k (some a)) (List.reverse L))) [PROOFSTEP] cases L.reverse [GOAL] case e_Tape.e_l.e_tail K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) ⊢ List.tail (List.map (fun a => (false, update (fun x => none) k (some a))) (List.reverse L)) = List.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) }.f (List.tail (List.map (fun a => update default k (some a)) (List.reverse L))) [PROOFSTEP] cases L.reverse [GOAL] case e_Tape.e_l.e_head.e_snd.nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) ⊢ (List.headI (List.map (fun a => (false, update (fun x => none) k (some a))) [])).snd = ListBlank.head (ListBlank.mk (List.map (fun a => update default k (some a)) [])) [PROOFSTEP] try rfl [GOAL] case e_Tape.e_l.e_head.e_snd.nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) ⊢ (List.headI (List.map (fun a => (false, update (fun x => none) k (some a))) [])).snd = ListBlank.head (ListBlank.mk (List.map (fun a => update default k (some a)) [])) [PROOFSTEP] rfl [GOAL] case e_Tape.e_l.e_head.e_snd.cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) head✝ : Γ k tail✝ : List (Γ k) ⊢ (List.headI (List.map (fun a => (false, update (fun x => none) k (some a))) (head✝ :: tail✝))).snd = ListBlank.head (ListBlank.mk (List.map (fun a => update default k (some a)) (head✝ :: tail✝))) [PROOFSTEP] try rfl [GOAL] case e_Tape.e_l.e_head.e_snd.cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) head✝ : Γ k tail✝ : List (Γ k) ⊢ (List.headI (List.map (fun a => (false, update (fun x => none) k (some a))) (head✝ :: tail✝))).snd = ListBlank.head (ListBlank.mk (List.map (fun a => update default k (some a)) (head✝ :: tail✝))) [PROOFSTEP] rfl [GOAL] case e_Tape.e_l.e_tail.nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) ⊢ List.tail (List.map (fun a => (false, update (fun x => none) k (some a))) []) = List.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) }.f (List.tail (List.map (fun a => update default k (some a)) [])) [PROOFSTEP] try rfl [GOAL] case e_Tape.e_l.e_tail.nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) ⊢ List.tail (List.map (fun a => (false, update (fun x => none) k (some a))) []) = List.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) }.f (List.tail (List.map (fun a => update default k (some a)) [])) [PROOFSTEP] rfl [GOAL] case e_Tape.e_l.e_tail.cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) head✝ : Γ k tail✝ : List (Γ k) ⊢ List.tail (List.map (fun a => (false, update (fun x => none) k (some a))) (head✝ :: tail✝)) = List.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) }.f (List.tail (List.map (fun a => update default k (some a)) (head✝ :: tail✝))) [PROOFSTEP] try rfl [GOAL] case e_Tape.e_l.e_tail.cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) head✝ : Γ k tail✝ : List (Γ k) ⊢ List.tail (List.map (fun a => (false, update (fun x => none) k (some a))) (head✝ :: tail✝)) = List.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) }.f (List.tail (List.map (fun a => update default k (some a)) (head✝ :: tail✝))) [PROOFSTEP] rfl [GOAL] case e_Tape.e_l.e_tail.cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) head✝ : Γ k tail✝ : List (Γ k) ⊢ List.tail (List.map (fun a => (false, update (fun x => none) k (some a))) (head✝ :: tail✝)) = List.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) }.f (List.tail (List.map (fun a => update default k (some a)) (head✝ :: tail✝))) [PROOFSTEP] simp only [List.map_map, List.tail_cons, List.map] [GOAL] case e_Tape.e_l.e_tail.cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) head✝ : Γ k tail✝ : List (Γ k) ⊢ List.map (fun a => (false, update (fun x => none) k (some a))) tail✝ = List.map (Prod.mk false ∘ fun a => update default k (some a)) tail✝ [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) L₁ : ListBlank Γ' L₂ : List (Γ k) H₁ : L₁ ∈ TM1.eval (tr M) (trInit k L) H₂ : L₂ ∈ TM2.eval M k L ⊢ ∃ S L', addBottom L' = L₁ ∧ (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ S k = L₂ [PROOFSTEP] obtain ⟨c₁, h₁, rfl⟩ := (Part.mem_map_iff _).1 H₁ [GOAL] case intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L L₂ : List (Γ k) H₂ : L₂ ∈ TM2.eval M k L c₁ : TM1.Cfg Γ' Λ' σ h₁ : c₁ ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) H₁ : Tape.right₀ c₁.Tape ∈ TM1.eval (tr M) (trInit k L) ⊢ ∃ S L', addBottom L' = Tape.right₀ c₁.Tape ∧ (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ S k = L₂ [PROOFSTEP] obtain ⟨c₂, h₂, rfl⟩ := (Part.mem_map_iff _).1 H₂ [GOAL] case intro.intro.intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) c₁ : TM1.Cfg Γ' Λ' σ h₁ : c₁ ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) H₁ : Tape.right₀ c₁.Tape ∈ TM1.eval (tr M) (trInit k L) c₂ : Cfg₂ h₂ : c₂ ∈ eval (TM2.step M) (TM2.init k L) H₂ : TM2.Cfg.stk c₂ k ∈ TM2.eval M k L ⊢ ∃ S L', addBottom L' = Tape.right₀ c₁.Tape ∧ (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ S k = TM2.Cfg.stk c₂ k [PROOFSTEP] obtain ⟨_, ⟨L', hT⟩, h₃⟩ := Turing.tr_eval (tr_respects M) (trCfg_init k L) h₂ [GOAL] case intro.intro.intro.intro.intro.intro.mk K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) c₁ : TM1.Cfg Γ' Λ' σ h₁ : c₁ ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) H₁ : Tape.right₀ c₁.Tape ∈ TM1.eval (tr M) (trInit k L) q✝ : Option Λ v✝ : σ S✝ : (k : K) → List (Γ k) L' : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S✝ k))) h₂ : { l := q✝, var := v✝, stk := S✝ } ∈ eval (TM2.step M) (TM2.init k L) H₂ : TM2.Cfg.stk { l := q✝, var := v✝, stk := S✝ } k ∈ TM2.eval M k L h₃ : { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') } ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) ⊢ ∃ S L', addBottom L' = Tape.right₀ c₁.Tape ∧ (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ S k = TM2.Cfg.stk { l := q✝, var := v✝, stk := S✝ } k [PROOFSTEP] cases Part.mem_unique h₁ h₃ [GOAL] case intro.intro.intro.intro.intro.intro.mk.refl K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) q✝ : Option Λ v✝ : σ S✝ : (k : K) → List (Γ k) L' : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S✝ k))) h₂ : { l := q✝, var := v✝, stk := S✝ } ∈ eval (TM2.step M) (TM2.init k L) H₂ : TM2.Cfg.stk { l := q✝, var := v✝, stk := S✝ } k ∈ TM2.eval M k L h₃ : { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') } ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) h₁ : { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') } ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) H₁ : Tape.right₀ { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') }.Tape ∈ TM1.eval (tr M) (trInit k L) ⊢ ∃ S L'_1, addBottom L'_1 = Tape.right₀ { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') }.Tape ∧ (∀ (k : K), ListBlank.map (proj k) L'_1 = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ S k = TM2.Cfg.stk { l := q✝, var := v✝, stk := S✝ } k [PROOFSTEP] exact ⟨_, L', by simp only [Tape.mk'_right₀], hT, rfl⟩ [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) q✝ : Option Λ v✝ : σ S✝ : (k : K) → List (Γ k) L' : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S✝ k))) h₂ : { l := q✝, var := v✝, stk := S✝ } ∈ eval (TM2.step M) (TM2.init k L) H₂ : TM2.Cfg.stk { l := q✝, var := v✝, stk := S✝ } k ∈ TM2.eval M k L h₃ : { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') } ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) h₁ : { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') } ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) H₁ : Tape.right₀ { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') }.Tape ∈ TM1.eval (tr M) (trInit k L) ⊢ addBottom L' = Tape.right₀ { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') }.Tape [PROOFSTEP] simp only [Tape.mk'_right₀] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S l' : Λ' h : l' ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] suffices ∀ (q) (_ : TM2.SupportsStmt S q) (_ : ∀ x ∈ trStmts₁ q, x ∈ trSupp M S), TM1.SupportsStmt (trSupp M S) (trNormal q) ∧ ∀ l' ∈ trStmts₁ q, TM1.SupportsStmt (trSupp M S) (tr M l') by rcases Finset.mem_biUnion.1 h with ⟨l, lS, h⟩ have := this _ (ss.2 l lS) fun x hx ↦ Finset.mem_biUnion.2 ⟨_, lS, Finset.mem_insert_of_mem hx⟩ rcases Finset.mem_insert.1 h with (rfl | h) <;> [exact this.1; exact this.2 _ h] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S l' : Λ' h : l' ∈ trSupp M S this : ∀ (q : Stmt₂), TM2.SupportsStmt S q → (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l') ⊢ TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] rcases Finset.mem_biUnion.1 h with ⟨l, lS, h⟩ [GOAL] case intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S l' : Λ' h✝ : l' ∈ trSupp M S this : ∀ (q : Stmt₂), TM2.SupportsStmt S q → (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ lS : l ∈ S h : l' ∈ insert (normal l) (trStmts₁ (M l)) ⊢ TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] have := this _ (ss.2 l lS) fun x hx ↦ Finset.mem_biUnion.2 ⟨_, lS, Finset.mem_insert_of_mem hx⟩ [GOAL] case intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S l' : Λ' h✝ : l' ∈ trSupp M S this✝ : ∀ (q : Stmt₂), TM2.SupportsStmt S q → (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ lS : l ∈ S h : l' ∈ insert (normal l) (trStmts₁ (M l)) this : TM1.SupportsStmt (trSupp M S) (trNormal (M l)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (M l) → TM1.SupportsStmt (trSupp M S) (tr M l') ⊢ TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] rcases Finset.mem_insert.1 h with (rfl | h) <;> [exact this.1; exact this.2 _ h] [GOAL] case intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S l' : Λ' h✝ : l' ∈ trSupp M S this✝ : ∀ (q : Stmt₂), TM2.SupportsStmt S q → (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ lS : l ∈ S h : l' ∈ insert (normal l) (trStmts₁ (M l)) this : TM1.SupportsStmt (trSupp M S) (trNormal (M l)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (M l) → TM1.SupportsStmt (trSupp M S) (tr M l') ⊢ TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] rcases Finset.mem_insert.1 h with (rfl | h) [GOAL] case intro.intro.inl K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S this✝ : ∀ (q : Stmt₂), TM2.SupportsStmt S q → (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ lS : l ∈ S this : TM1.SupportsStmt (trSupp M S) (trNormal (M l)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (M l) → TM1.SupportsStmt (trSupp M S) (tr M l') h✝ : normal l ∈ trSupp M S h : normal l ∈ insert (normal l) (trStmts₁ (M l)) ⊢ TM1.SupportsStmt (trSupp M S) (tr M (normal l)) [PROOFSTEP] exact this.1 [GOAL] case intro.intro.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S l' : Λ' h✝¹ : l' ∈ trSupp M S this✝ : ∀ (q : Stmt₂), TM2.SupportsStmt S q → (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ lS : l ∈ S h✝ : l' ∈ insert (normal l) (trStmts₁ (M l)) this : TM1.SupportsStmt (trSupp M S) (trNormal (M l)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (M l) → TM1.SupportsStmt (trSupp M S) (tr M l') h : l' ∈ trStmts₁ (M l) ⊢ TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] exact this.2 _ h [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S l' : Λ' h : l' ∈ trSupp M S ⊢ ∀ (q : Stmt₂), TM2.SupportsStmt S q → (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] clear h l' [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S ⊢ ∀ (q : Stmt₂), TM2.SupportsStmt S q → (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] refine' stmtStRec _ _ _ _ _ [GOAL] case refine'_1 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S ⊢ ∀ (k : K) (s : StAct k) (q : Stmt₂), (TM2.SupportsStmt S q → (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')) → TM2.SupportsStmt S (stRun s q) → (∀ (x : Λ'), x ∈ trStmts₁ (stRun s q) → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] intro _ s _ IH ss' sub [GOAL] case refine'_1 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (stRun s q✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ (stRun s q✝) → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] rw [TM2to1.supports_run] at ss' [GOAL] case refine'_1 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), x ∈ trStmts₁ (stRun s q✝) → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] simp only [TM2to1.trStmts₁_run, Finset.mem_union, Finset.mem_insert, Finset.mem_singleton] at sub [GOAL] case refine'_1 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] have hgo := sub _ (Or.inl <| Or.inl rfl) [GOAL] case refine'_1 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] have hret := sub _ (Or.inl <| Or.inr rfl) [GOAL] case refine'_1 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] cases' IH ss' fun x hx ↦ sub x <| Or.inr hx with IH₁ IH₂ [GOAL] case refine'_1.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (stRun s q✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] refine' ⟨by simp only [trNormal_run, TM1.SupportsStmt]; intros; exact hgo, fun l h ↦ _⟩ [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (stRun s q✝)) [PROOFSTEP] simp only [trNormal_run, TM1.SupportsStmt] [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ⊢ Γ' → σ → go k✝ s q✝ ∈ trSupp M S [PROOFSTEP] intros [GOAL] K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') a✝ : Γ' v✝ : σ ⊢ go k✝ s q✝ ∈ trSupp M S [PROOFSTEP] exact hgo [GOAL] case refine'_1.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ' h : l ∈ trStmts₁ (stRun s q✝) ⊢ TM1.SupportsStmt (trSupp M S) (tr M l) [PROOFSTEP] rw [trStmts₁_run] at h [GOAL] case refine'_1.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ' h : l ∈ {go k✝ s q✝, ret q✝} ∪ trStmts₁ q✝ ⊢ TM1.SupportsStmt (trSupp M S) (tr M l) [PROOFSTEP] simp only [TM2to1.trStmts₁_run, Finset.mem_union, Finset.mem_insert, Finset.mem_singleton] at h [GOAL] case refine'_1.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ' h : (l = go k✝ s q✝ ∨ l = ret q✝) ∨ l ∈ trStmts₁ q✝ ⊢ TM1.SupportsStmt (trSupp M S) (tr M l) [PROOFSTEP] rcases h with (⟨rfl | rfl⟩ | h) [GOAL] case refine'_1.intro.inl.inl K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ s q✝)) [PROOFSTEP] cases s [GOAL] case refine'_1.intro.inl.inl.push K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') a✝ : σ → Γ k✝ sub : ∀ (x : Λ'), (x = go k✝ (StAct.push a✝) q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ (StAct.push a✝) q✝ ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ (StAct.push a✝) q✝)) [PROOFSTEP] exact ⟨fun _ _ ↦ hret, fun _ _ ↦ hgo⟩ [GOAL] case refine'_1.intro.inl.inl.peek K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') a✝ : σ → Option (Γ k✝) → σ sub : ∀ (x : Λ'), (x = go k✝ (StAct.peek a✝) q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ (StAct.peek a✝) q✝ ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ (StAct.peek a✝) q✝)) [PROOFSTEP] exact ⟨fun _ _ ↦ hret, fun _ _ ↦ hgo⟩ [GOAL] case refine'_1.intro.inl.inl.pop K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') a✝ : σ → Option (Γ k✝) → σ sub : ∀ (x : Λ'), (x = go k✝ (StAct.pop a✝) q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ (StAct.pop a✝) q✝ ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (tr M (go k✝ (StAct.pop a✝) q✝)) [PROOFSTEP] exact ⟨⟨fun _ _ ↦ hret, fun _ _ ↦ hret⟩, fun _ _ ↦ hgo⟩ [GOAL] case refine'_1.intro.inl.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ⊢ TM1.SupportsStmt (trSupp M S) (tr M (ret q✝)) [PROOFSTEP] unfold TM1.SupportsStmt TM2to1.tr [GOAL] case refine'_1.intro.inl.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ⊢ match match ret q✝ with | normal q => trNormal (M q) | go k s q => branch (fun a x => Option.isNone (Prod.snd a k)) (trStAct (goto fun x x => ret q) s) (move Dir.right (goto fun x x => go k s q)) | ret q => branch (fun a x => a.fst) (trNormal q) (move Dir.left (goto fun x x => ret q)) with | move a q => TM1.SupportsStmt (trSupp M S) q | write a q => TM1.SupportsStmt (trSupp M S) q | load a q => TM1.SupportsStmt (trSupp M S) q | branch a q₁ q₂ => TM1.SupportsStmt (trSupp M S) q₁ ∧ TM1.SupportsStmt (trSupp M S) q₂ | goto l => ∀ (a : Γ') (v : σ), l a v ∈ trSupp M S | halt => True [PROOFSTEP] exact ⟨IH₁, fun _ _ ↦ hret⟩ [GOAL] case refine'_1.intro.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S k✝ : K s : StAct k✝ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S q✝ sub : ∀ (x : Λ'), (x = go k✝ s q✝ ∨ x = ret q✝) ∨ x ∈ trStmts₁ q✝ → x ∈ trSupp M S hgo : go k✝ s q✝ ∈ trSupp M S hret : ret q✝ ∈ trSupp M S IH₁ : TM1.SupportsStmt (trSupp M S) (trNormal q✝) IH₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ' h : l ∈ trStmts₁ q✝ ⊢ TM1.SupportsStmt (trSupp M S) (tr M l) [PROOFSTEP] exact IH₂ _ h [GOAL] case refine'_2 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S ⊢ ∀ (a : σ → σ) (q : Stmt₂), (TM2.SupportsStmt S q → (∀ (x : Λ'), x ∈ trStmts₁ q → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q → TM1.SupportsStmt (trSupp M S) (tr M l')) → TM2.SupportsStmt S (TM2.Stmt.load a q) → (∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.load a q) → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.load a q)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.load a q) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] intro _ _ IH ss' sub [GOAL] case refine'_2 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S a✝ : σ → σ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (TM2.Stmt.load a✝ q✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.load a✝ q✝) → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.load a✝ q✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.load a✝ q✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] unfold TM2to1.trStmts₁ at ss' sub ⊢ [GOAL] case refine'_2 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S a✝ : σ → σ q✝ : Stmt₂ IH : TM2.SupportsStmt S q✝ → (∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (TM2.Stmt.load a✝ q✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ q✝ → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.load a✝ q✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q✝ → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] exact IH ss' sub [GOAL] case refine'_3 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S ⊢ ∀ (p : σ → Bool) (q₁ q₂ : Stmt₂), (TM2.SupportsStmt S q₁ → (∀ (x : Λ'), x ∈ trStmts₁ q₁ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₁) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₁ → TM1.SupportsStmt (trSupp M S) (tr M l')) → (TM2.SupportsStmt S q₂ → (∀ (x : Λ'), x ∈ trStmts₁ q₂ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₂) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₂ → TM1.SupportsStmt (trSupp M S) (tr M l')) → TM2.SupportsStmt S (TM2.Stmt.branch p q₁ q₂) → (∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.branch p q₁ q₂) → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p q₁ q₂)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p q₁ q₂) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] intro _ _ _ IH₁ IH₂ ss' sub [GOAL] case refine'_3 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S p✝ : σ → Bool q₁✝ q₂✝ : Stmt₂ IH₁ : TM2.SupportsStmt S q₁✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂ : TM2.SupportsStmt S q₂✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] unfold TM2to1.trStmts₁ at sub [GOAL] case refine'_3 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S p✝ : σ → Bool q₁✝ q₂✝ : Stmt₂ IH₁ : TM2.SupportsStmt S q₁✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂ : TM2.SupportsStmt S q₂✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] cases' IH₁ ss'.1 fun x hx ↦ sub x <| Finset.mem_union_left _ hx with IH₁₁ IH₁₂ [GOAL] case refine'_3.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S p✝ : σ → Bool q₁✝ q₂✝ : Stmt₂ IH₁ : TM2.SupportsStmt S q₁✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂ : TM2.SupportsStmt S q₂✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S IH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) IH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] cases' IH₂ ss'.2 fun x hx ↦ sub x <| Finset.mem_union_right _ hx with IH₂₁ IH₂₂ [GOAL] case refine'_3.intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S p✝ : σ → Bool q₁✝ q₂✝ : Stmt₂ IH₁ : TM2.SupportsStmt S q₁✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂ : TM2.SupportsStmt S q₂✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S IH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) IH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) IH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.branch p✝ q₁✝ q₂✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] refine' ⟨⟨IH₁₁, IH₂₁⟩, fun l h ↦ _⟩ [GOAL] case refine'_3.intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S p✝ : σ → Bool q₁✝ q₂✝ : Stmt₂ IH₁ : TM2.SupportsStmt S q₁✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂ : TM2.SupportsStmt S q₂✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S IH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) IH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) IH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ' h : l ∈ trStmts₁ (TM2.Stmt.branch p✝ q₁✝ q₂✝) ⊢ TM1.SupportsStmt (trSupp M S) (tr M l) [PROOFSTEP] rw [trStmts₁] at h [GOAL] case refine'_3.intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S p✝ : σ → Bool q₁✝ q₂✝ : Stmt₂ IH₁ : TM2.SupportsStmt S q₁✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂ : TM2.SupportsStmt S q₂✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S IH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) IH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) IH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ' h : l ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ ⊢ TM1.SupportsStmt (trSupp M S) (tr M l) [PROOFSTEP] rcases Finset.mem_union.1 h with (h | h) <;> [exact IH₁₂ _ h; exact IH₂₂ _ h] [GOAL] case refine'_3.intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S p✝ : σ → Bool q₁✝ q₂✝ : Stmt₂ IH₁ : TM2.SupportsStmt S q₁✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂ : TM2.SupportsStmt S q₂✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S IH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) IH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) IH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ' h : l ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ ⊢ TM1.SupportsStmt (trSupp M S) (tr M l) [PROOFSTEP] rcases Finset.mem_union.1 h with (h | h) [GOAL] case refine'_3.intro.intro.inl K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S p✝ : σ → Bool q₁✝ q₂✝ : Stmt₂ IH₁ : TM2.SupportsStmt S q₁✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂ : TM2.SupportsStmt S q₂✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S IH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) IH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) IH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ' h✝ : l ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ h : l ∈ trStmts₁ q₁✝ ⊢ TM1.SupportsStmt (trSupp M S) (tr M l) [PROOFSTEP] exact IH₁₂ _ h [GOAL] case refine'_3.intro.intro.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S p✝ : σ → Bool q₁✝ q₂✝ : Stmt₂ IH₁ : TM2.SupportsStmt S q₁✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₁✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂ : TM2.SupportsStmt S q₂✝ → (∀ (x : Λ'), x ∈ trStmts₁ q₂✝ → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') ss' : TM2.SupportsStmt S (TM2.Stmt.branch p✝ q₁✝ q₂✝) sub : ∀ (x : Λ'), x ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ → x ∈ trSupp M S IH₁₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₁✝) IH₁₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₁✝ → TM1.SupportsStmt (trSupp M S) (tr M l') IH₂₁ : TM1.SupportsStmt (trSupp M S) (trNormal q₂✝) IH₂₂ : ∀ (l' : Λ'), l' ∈ trStmts₁ q₂✝ → TM1.SupportsStmt (trSupp M S) (tr M l') l : Λ' h✝ : l ∈ trStmts₁ q₁✝ ∪ trStmts₁ q₂✝ h : l ∈ trStmts₁ q₂✝ ⊢ TM1.SupportsStmt (trSupp M S) (tr M l) [PROOFSTEP] exact IH₂₂ _ h [GOAL] case refine'_4 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S ⊢ ∀ (l : σ → Λ), TM2.SupportsStmt S (TM2.Stmt.goto l) → (∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l) → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.goto l) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] intro _ ss' _ -- goto [GOAL] case refine'_4 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S l✝ : σ → Λ ss' : TM2.SupportsStmt S (TM2.Stmt.goto l✝) x✝ : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l✝) → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l✝)) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ (TM2.Stmt.goto l✝) → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] simp only [trStmts₁, Finset.not_mem_empty] [GOAL] case refine'_4 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S l✝ : σ → Λ ss' : TM2.SupportsStmt S (TM2.Stmt.goto l✝) x✝ : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l✝) → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l✝)) ∧ ∀ (l' : Λ'), False → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] refine' ⟨_, fun _ ↦ False.elim⟩ [GOAL] case refine'_4 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S l✝ : σ → Λ ss' : TM2.SupportsStmt S (TM2.Stmt.goto l✝) x✝ : ∀ (x : Λ'), x ∈ trStmts₁ (TM2.Stmt.goto l✝) → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal (TM2.Stmt.goto l✝)) [PROOFSTEP] exact fun _ v ↦ Finset.mem_biUnion.2 ⟨_, ss' v, Finset.mem_insert_self _ _⟩ [GOAL] case refine'_5 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S ⊢ TM2.SupportsStmt S TM2.Stmt.halt → (∀ (x : Λ'), x ∈ trStmts₁ TM2.Stmt.halt → x ∈ trSupp M S) → TM1.SupportsStmt (trSupp M S) (trNormal TM2.Stmt.halt) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ TM2.Stmt.halt → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] intro _ _ -- halt [GOAL] case refine'_5 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S x✝¹ : TM2.SupportsStmt S TM2.Stmt.halt x✝ : ∀ (x : Λ'), x ∈ trStmts₁ TM2.Stmt.halt → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal TM2.Stmt.halt) ∧ ∀ (l' : Λ'), l' ∈ trStmts₁ TM2.Stmt.halt → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] simp only [trStmts₁, Finset.not_mem_empty] [GOAL] case refine'_5 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ S : Finset Λ ss : TM2.Supports M S x✝¹ : TM2.SupportsStmt S TM2.Stmt.halt x✝ : ∀ (x : Λ'), x ∈ trStmts₁ TM2.Stmt.halt → x ∈ trSupp M S ⊢ TM1.SupportsStmt (trSupp M S) (trNormal TM2.Stmt.halt) ∧ ∀ (l' : Λ'), False → TM1.SupportsStmt (trSupp M S) (tr M l') [PROOFSTEP] exact ⟨trivial, fun _ ↦ False.elim⟩
{"mathlib_filename": "Mathlib.Computability.TuringMachine", "llama_tokens": 358268}
[GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α s₁ s₂ : Set (Set Ω) h : IndepSets s₁ s₂ κ ⊢ IndepSets s₂ s₁ κ [PROOFSTEP] intros t1 t2 ht1 ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α s₁ s₂ : Set (Set Ω) h : IndepSets s₁ s₂ κ t1 t2 : Set Ω ht1 : t1 ∈ s₂ ht2 : t2 ∈ s₁ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] filter_upwards [h t2 t1 ht2 ht1] with a ha [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α s₁ s₂ : Set (Set Ω) h : IndepSets s₁ s₂ κ t1 t2 : Set Ω ht1 : t1 ∈ s₂ ht2 : t2 ∈ s₁ a : α ha : ↑↑(↑κ a) (t2 ∩ t1) = ↑↑(↑κ a) t2 * ↑↑(↑κ a) t1 ⊢ ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] rwa [Set.inter_comm, mul_comm] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m' _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ ⊢ Indep m' ⊥ κ [PROOFSTEP] intros s t _ ht [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m' _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s t : Set Ω a✝ : s ∈ {s | MeasurableSet s} ht : t ∈ {s | MeasurableSet s} ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (s ∩ t) = ↑↑(↑κ a) s * ↑↑(↑κ a) t [PROOFSTEP] rw [Set.mem_setOf_eq, MeasurableSpace.measurableSet_bot_iff] at ht [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m' _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s t : Set Ω a✝ : s ∈ {s | MeasurableSet s} ht : t = ∅ ∨ t = Set.univ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (s ∩ t) = ↑↑(↑κ a) s * ↑↑(↑κ a) t [PROOFSTEP] refine Filter.eventually_of_forall (fun a ↦ ?_) [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m' _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s t : Set Ω a✝ : s ∈ {s | MeasurableSet s} ht : t = ∅ ∨ t = Set.univ a : α ⊢ ↑↑(↑κ a) (s ∩ t) = ↑↑(↑κ a) s * ↑↑(↑κ a) t [PROOFSTEP] cases' ht with ht ht [GOAL] case inl α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m' _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s t : Set Ω a✝ : s ∈ {s | MeasurableSet s} a : α ht : t = ∅ ⊢ ↑↑(↑κ a) (s ∩ t) = ↑↑(↑κ a) s * ↑↑(↑κ a) t [PROOFSTEP] rw [ht, Set.inter_empty, measure_empty, mul_zero] [GOAL] case inr α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m' _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s t : Set Ω a✝ : s ∈ {s | MeasurableSet s} a : α ht : t = Set.univ ⊢ ↑↑(↑κ a) (s ∩ t) = ↑↑(↑κ a) s * ↑↑(↑κ a) t [PROOFSTEP] rw [ht, Set.inter_univ, measure_univ, mul_one] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : Set Ω ⊢ IndepSet s ∅ κ [PROOFSTEP] simp only [IndepSet, generateFrom_singleton_empty] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : Set Ω ⊢ Indep (generateFrom {s}) ⊥ κ [PROOFSTEP] exact indep_bot_right _ [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s₁ s₂ s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h₁ : IndepSets s₁ s' κ h₂ : IndepSets s₂ s' κ ⊢ IndepSets (s₁ ∪ s₂) s' κ [PROOFSTEP] intro t1 t2 ht1 ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s₁ s₂ s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h₁ : IndepSets s₁ s' κ h₂ : IndepSets s₂ s' κ t1 t2 : Set Ω ht1 : t1 ∈ s₁ ∪ s₂ ht2 : t2 ∈ s' ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] cases' (Set.mem_union _ _ _).mp ht1 with ht1₁ ht1₂ [GOAL] case inl α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s₁ s₂ s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h₁ : IndepSets s₁ s' κ h₂ : IndepSets s₂ s' κ t1 t2 : Set Ω ht1 : t1 ∈ s₁ ∪ s₂ ht2 : t2 ∈ s' ht1₁ : t1 ∈ s₁ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] exact h₁ t1 t2 ht1₁ ht2 [GOAL] case inr α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s₁ s₂ s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h₁ : IndepSets s₁ s' κ h₂ : IndepSets s₂ s' κ t1 t2 : Set Ω ht1 : t1 ∈ s₁ ∪ s₂ ht2 : t2 ∈ s' ht1₂ : t1 ∈ s₂ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] exact h₂ t1 t2 ht1₂ ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α hyp : ∀ (n : ι), IndepSets (s n) s' κ ⊢ IndepSets (⋃ (n : ι), s n) s' κ [PROOFSTEP] intro t1 t2 ht1 ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α hyp : ∀ (n : ι), IndepSets (s n) s' κ t1 t2 : Set Ω ht1 : t1 ∈ ⋃ (n : ι), s n ht2 : t2 ∈ s' ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] rw [Set.mem_iUnion] at ht1 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α hyp : ∀ (n : ι), IndepSets (s n) s' κ t1 t2 : Set Ω ht1 : ∃ i, t1 ∈ s i ht2 : t2 ∈ s' ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] cases' ht1 with n ht1 [GOAL] case intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α hyp : ∀ (n : ι), IndepSets (s n) s' κ t1 t2 : Set Ω ht2 : t2 ∈ s' n : ι ht1 : t1 ∈ s n ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] exact hyp n t1 t2 ht1 ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α u : Set ι hyp : ∀ (n : ι), n ∈ u → IndepSets (s n) s' κ ⊢ IndepSets (⋃ (n : ι) (_ : n ∈ u), s n) s' κ [PROOFSTEP] intro t1 t2 ht1 ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α u : Set ι hyp : ∀ (n : ι), n ∈ u → IndepSets (s n) s' κ t1 t2 : Set Ω ht1 : t1 ∈ ⋃ (n : ι) (_ : n ∈ u), s n ht2 : t2 ∈ s' ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] simp_rw [Set.mem_iUnion] at ht1 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α u : Set ι hyp : ∀ (n : ι), n ∈ u → IndepSets (s n) s' κ t1 t2 : Set Ω ht2 : t2 ∈ s' ht1 : ∃ i i_1, t1 ∈ s i ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] rcases ht1 with ⟨n, hpn, ht1⟩ [GOAL] case intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α u : Set ι hyp : ∀ (n : ι), n ∈ u → IndepSets (s n) s' κ t1 t2 : Set Ω ht2 : t2 ∈ s' n : ι hpn : n ∈ u ht1 : t1 ∈ s n ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] exact hyp n hpn t1 t2 ht1 ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h : ∃ n, IndepSets (s n) s' κ ⊢ IndepSets (⋂ (n : ι), s n) s' κ [PROOFSTEP] intro t1 t2 ht1 ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h : ∃ n, IndepSets (s n) s' κ t1 t2 : Set Ω ht1 : t1 ∈ ⋂ (n : ι), s n ht2 : t2 ∈ s' ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] cases' h with n h [GOAL] case intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α t1 t2 : Set Ω ht1 : t1 ∈ ⋂ (n : ι), s n ht2 : t2 ∈ s' n : ι h : IndepSets (s n) s' κ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] exact h t1 t2 (Set.mem_iInter.mp ht1 n) ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α u : Set ι h : ∃ n, n ∈ u ∧ IndepSets (s n) s' κ ⊢ IndepSets (⋂ (n : ι) (_ : n ∈ u), s n) s' κ [PROOFSTEP] intro t1 t2 ht1 ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α u : Set ι h : ∃ n, n ∈ u ∧ IndepSets (s n) s' κ t1 t2 : Set Ω ht1 : t1 ∈ ⋂ (n : ι) (_ : n ∈ u), s n ht2 : t2 ∈ s' ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] rcases h with ⟨n, hn, h⟩ [GOAL] case intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α u : Set ι t1 t2 : Set Ω ht1 : t1 ∈ ⋂ (n : ι) (_ : n ∈ u), s n ht2 : t2 ∈ s' n : ι hn : n ∈ u h : IndepSets (s n) s' κ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] exact h t1 t2 (Set.biInter_subset_of_mem hn ht1) ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s t : Set Ω _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (s ∩ t) = ↑↑(↑κ a) s * ↑↑(↑κ a) t s1 t1 : Set Ω hs1 : s1 ∈ {s} ht1 : t1 ∈ {t} ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (s1 ∩ t1) = ↑↑(↑κ a) s1 * ↑↑(↑κ a) t1 [PROOFSTEP] rwa [Set.mem_singleton_iff.mp hs1, Set.mem_singleton_iff.mp ht1] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j ⊢ IndepSets (s i) (s j) κ [PROOFSTEP] classical intro t₁ t₂ ht₁ ht₂ have hf_m : ∀ x : ι, x ∈ ({ i, j } : Finset ι) → ite (x = i) t₁ t₂ ∈ s x := by intro x hx cases' Finset.mem_insert.mp hx with hx hx · simp [hx, ht₁] · simp [Finset.mem_singleton.mp hx, hij.symm, ht₂] have h1 : t₁ = ite (i = i) t₁ t₂ := by simp only [if_true, eq_self_iff_true] have h2 : t₂ = ite (j = i) t₁ t₂ := by simp only [hij.symm, if_false] have h_inter : ⋂ (t : ι) (_ : t ∈ ({ i, j } : Finset ι)), ite (t = i) t₁ t₂ = ite (i = i) t₁ t₂ ∩ ite (j = i) t₁ t₂ := by simp only [Finset.set_biInter_singleton, Finset.set_biInter_insert] filter_upwards [h_indep { i, j } hf_m] with a h_indep' have h_prod : (∏ t : ι in ({ i, j } : Finset ι), κ a (ite (t = i) t₁ t₂)) = κ a (ite (i = i) t₁ t₂) * κ a (ite (j = i) t₁ t₂) := by simp only [hij, Finset.prod_singleton, Finset.prod_insert, not_false_iff, Finset.mem_singleton] rw [h1] nth_rw 2 [h2] nth_rw 4 [h2] rw [← h_inter, ← h_prod, h_indep'] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j ⊢ IndepSets (s i) (s j) κ [PROOFSTEP] intro t₁ t₂ ht₁ ht₂ [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t₁ ∩ t₂) = ↑↑(↑κ a) t₁ * ↑↑(↑κ a) t₂ [PROOFSTEP] have hf_m : ∀ x : ι, x ∈ ({ i, j } : Finset ι) → ite (x = i) t₁ t₂ ∈ s x := by intro x hx cases' Finset.mem_insert.mp hx with hx hx · simp [hx, ht₁] · simp [Finset.mem_singleton.mp hx, hij.symm, ht₂] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j ⊢ ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x [PROOFSTEP] intro x hx [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j x : ι hx : x ∈ {i, j} ⊢ (if x = i then t₁ else t₂) ∈ s x [PROOFSTEP] cases' Finset.mem_insert.mp hx with hx hx [GOAL] case inl α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j x : ι hx✝ : x ∈ {i, j} hx : x = i ⊢ (if x = i then t₁ else t₂) ∈ s x [PROOFSTEP] simp [hx, ht₁] [GOAL] case inr α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j x : ι hx✝ : x ∈ {i, j} hx : x ∈ {j} ⊢ (if x = i then t₁ else t₂) ∈ s x [PROOFSTEP] simp [Finset.mem_singleton.mp hx, hij.symm, ht₂] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t₁ ∩ t₂) = ↑↑(↑κ a) t₁ * ↑↑(↑κ a) t₂ [PROOFSTEP] have h1 : t₁ = ite (i = i) t₁ t₂ := by simp only [if_true, eq_self_iff_true] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x ⊢ t₁ = if i = i then t₁ else t₂ [PROOFSTEP] simp only [if_true, eq_self_iff_true] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t₁ ∩ t₂) = ↑↑(↑κ a) t₁ * ↑↑(↑κ a) t₂ [PROOFSTEP] have h2 : t₂ = ite (j = i) t₁ t₂ := by simp only [hij.symm, if_false] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ ⊢ t₂ = if j = i then t₁ else t₂ [PROOFSTEP] simp only [hij.symm, if_false] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ h2 : t₂ = if j = i then t₁ else t₂ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t₁ ∩ t₂) = ↑↑(↑κ a) t₁ * ↑↑(↑κ a) t₂ [PROOFSTEP] have h_inter : ⋂ (t : ι) (_ : t ∈ ({ i, j } : Finset ι)), ite (t = i) t₁ t₂ = ite (i = i) t₁ t₂ ∩ ite (j = i) t₁ t₂ := by simp only [Finset.set_biInter_singleton, Finset.set_biInter_insert] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ h2 : t₂ = if j = i then t₁ else t₂ ⊢ (⋂ (t : ι) (_ : t ∈ {i, j}), if t = i then t₁ else t₂) = (if i = i then t₁ else t₂) ∩ if j = i then t₁ else t₂ [PROOFSTEP] simp only [Finset.set_biInter_singleton, Finset.set_biInter_insert] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ h2 : t₂ = if j = i then t₁ else t₂ h_inter : (⋂ (t : ι) (_ : t ∈ {i, j}), if t = i then t₁ else t₂) = (if i = i then t₁ else t₂) ∩ if j = i then t₁ else t₂ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t₁ ∩ t₂) = ↑↑(↑κ a) t₁ * ↑↑(↑κ a) t₂ [PROOFSTEP] filter_upwards [h_indep { i, j } hf_m] with a h_indep' [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ h2 : t₂ = if j = i then t₁ else t₂ h_inter : (⋂ (t : ι) (_ : t ∈ {i, j}), if t = i then t₁ else t₂) = (if i = i then t₁ else t₂) ∩ if j = i then t₁ else t₂ a : α h_indep' : ↑↑(↑κ a) (⋂ (i_1 : ι) (_ : i_1 ∈ {i, j}), if i_1 = i then t₁ else t₂) = ∏ i_1 in {i, j}, ↑↑(↑κ a) (if i_1 = i then t₁ else t₂) ⊢ ↑↑(↑κ a) (t₁ ∩ t₂) = ↑↑(↑κ a) t₁ * ↑↑(↑κ a) t₂ [PROOFSTEP] have h_prod : (∏ t : ι in ({ i, j } : Finset ι), κ a (ite (t = i) t₁ t₂)) = κ a (ite (i = i) t₁ t₂) * κ a (ite (j = i) t₁ t₂) := by simp only [hij, Finset.prod_singleton, Finset.prod_insert, not_false_iff, Finset.mem_singleton] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ h2 : t₂ = if j = i then t₁ else t₂ h_inter : (⋂ (t : ι) (_ : t ∈ {i, j}), if t = i then t₁ else t₂) = (if i = i then t₁ else t₂) ∩ if j = i then t₁ else t₂ a : α h_indep' : ↑↑(↑κ a) (⋂ (i_1 : ι) (_ : i_1 ∈ {i, j}), if i_1 = i then t₁ else t₂) = ∏ i_1 in {i, j}, ↑↑(↑κ a) (if i_1 = i then t₁ else t₂) ⊢ ∏ t in {i, j}, ↑↑(↑κ a) (if t = i then t₁ else t₂) = ↑↑(↑κ a) (if i = i then t₁ else t₂) * ↑↑(↑κ a) (if j = i then t₁ else t₂) [PROOFSTEP] simp only [hij, Finset.prod_singleton, Finset.prod_insert, not_false_iff, Finset.mem_singleton] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ h2 : t₂ = if j = i then t₁ else t₂ h_inter : (⋂ (t : ι) (_ : t ∈ {i, j}), if t = i then t₁ else t₂) = (if i = i then t₁ else t₂) ∩ if j = i then t₁ else t₂ a : α h_indep' : ↑↑(↑κ a) (⋂ (i_1 : ι) (_ : i_1 ∈ {i, j}), if i_1 = i then t₁ else t₂) = ∏ i_1 in {i, j}, ↑↑(↑κ a) (if i_1 = i then t₁ else t₂) h_prod : ∏ t in {i, j}, ↑↑(↑κ a) (if t = i then t₁ else t₂) = ↑↑(↑κ a) (if i = i then t₁ else t₂) * ↑↑(↑κ a) (if j = i then t₁ else t₂) ⊢ ↑↑(↑κ a) (t₁ ∩ t₂) = ↑↑(↑κ a) t₁ * ↑↑(↑κ a) t₂ [PROOFSTEP] rw [h1] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ h2 : t₂ = if j = i then t₁ else t₂ h_inter : (⋂ (t : ι) (_ : t ∈ {i, j}), if t = i then t₁ else t₂) = (if i = i then t₁ else t₂) ∩ if j = i then t₁ else t₂ a : α h_indep' : ↑↑(↑κ a) (⋂ (i_1 : ι) (_ : i_1 ∈ {i, j}), if i_1 = i then t₁ else t₂) = ∏ i_1 in {i, j}, ↑↑(↑κ a) (if i_1 = i then t₁ else t₂) h_prod : ∏ t in {i, j}, ↑↑(↑κ a) (if t = i then t₁ else t₂) = ↑↑(↑κ a) (if i = i then t₁ else t₂) * ↑↑(↑κ a) (if j = i then t₁ else t₂) ⊢ ↑↑(↑κ a) ((if i = i then t₁ else t₂) ∩ t₂) = ↑↑(↑κ a) (if i = i then t₁ else t₂) * ↑↑(↑κ a) t₂ [PROOFSTEP] nth_rw 2 [h2] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ h2 : t₂ = if j = i then t₁ else t₂ h_inter : (⋂ (t : ι) (_ : t ∈ {i, j}), if t = i then t₁ else t₂) = (if i = i then t₁ else t₂) ∩ if j = i then t₁ else t₂ a : α h_indep' : ↑↑(↑κ a) (⋂ (i_1 : ι) (_ : i_1 ∈ {i, j}), if i_1 = i then t₁ else t₂) = ∏ i_1 in {i, j}, ↑↑(↑κ a) (if i_1 = i then t₁ else t₂) h_prod : ∏ t in {i, j}, ↑↑(↑κ a) (if t = i then t₁ else t₂) = ↑↑(↑κ a) (if i = i then t₁ else t₂) * ↑↑(↑κ a) (if j = i then t₁ else t₂) ⊢ ↑↑(↑κ a) ((if i = i then t₁ else t₂) ∩ if j = i then t₁ else t₂) = ↑↑(↑κ a) (if i = i then t₁ else t₂) * ↑↑(↑κ a) t₂ [PROOFSTEP] nth_rw 4 [h2] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α s : ι → Set (Set Ω) _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndepSets s κ i j : ι hij : i ≠ j t₁ t₂ : Set Ω ht₁ : t₁ ∈ s i ht₂ : t₂ ∈ s j hf_m : ∀ (x : ι), x ∈ {i, j} → (if x = i then t₁ else t₂) ∈ s x h1 : t₁ = if i = i then t₁ else t₂ h2 : t₂ = if j = i then t₁ else t₂ h_inter : (⋂ (t : ι) (_ : t ∈ {i, j}), if t = i then t₁ else t₂) = (if i = i then t₁ else t₂) ∩ if j = i then t₁ else t₂ a : α h_indep' : ↑↑(↑κ a) (⋂ (i_1 : ι) (_ : i_1 ∈ {i, j}), if i_1 = i then t₁ else t₂) = ∏ i_1 in {i, j}, ↑↑(↑κ a) (if i_1 = i then t₁ else t₂) h_prod : ∏ t in {i, j}, ↑↑(↑κ a) (if t = i then t₁ else t₂) = ↑↑(↑κ a) (if i = i then t₁ else t₂) * ↑↑(↑κ a) (if j = i then t₁ else t₂) ⊢ ↑↑(↑κ a) ((if i = i then t₁ else t₂) ∩ if j = i then t₁ else t₂) = ↑↑(↑κ a) (if i = i then t₁ else t₂) * ↑↑(↑κ a) (if j = i then t₁ else t₂) [PROOFSTEP] rw [← h_inter, ← h_prod, h_indep'] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m : ι → MeasurableSpace Ω _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndep m κ i j : ι hij : i ≠ j ⊢ Indep (m i) (m j) κ [PROOFSTEP] change IndepSets ((fun x => MeasurableSet[m x]) i) ((fun x => MeasurableSet[m x]) j) κ μ [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m : ι → MeasurableSpace Ω _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : iIndep m κ i j : ι hij : i ≠ j ⊢ IndepSets ((fun x => MeasurableSet) i) ((fun x => MeasurableSet) j) κ [PROOFSTEP] exact iIndepSets.indepSets h_indep hij [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] refine @induction_on_inter _ (fun t ↦ ∀ᵐ a ∂μ, κ a (t1 ∩ t) = κ a t1 * κ a t) _ m₂ hpm2 hp2 ?_ ?_ ?_ ?_ t2 ht2m [GOAL] case refine_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 ⊢ (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t) ∅ [PROOFSTEP] simp only [Set.inter_empty, measure_empty, mul_zero, eq_self_iff_true, Filter.eventually_true] [GOAL] case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 ⊢ ∀ (t : Set Ω), t ∈ p2 → (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t) t [PROOFSTEP] exact fun t ht_mem_p2 ↦ hyp t1 t ht1 ht_mem_p2 [GOAL] case refine_3 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 ⊢ ∀ (t : Set Ω), MeasurableSet t → (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t) t → (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t) tᶜ [PROOFSTEP] intros t ht h [GOAL] case refine_3 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 t : Set Ω ht : MeasurableSet t h : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ tᶜ) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) tᶜ [PROOFSTEP] filter_upwards [h] with a ha [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 t : Set Ω ht : MeasurableSet t h : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t a : α ha : ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t ⊢ ↑↑(↑κ a) (t1 ∩ tᶜ) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) tᶜ [PROOFSTEP] have : t1 ∩ tᶜ = t1 \ (t1 ∩ t) := by rw [Set.diff_self_inter, Set.diff_eq_compl_inter, Set.inter_comm] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 t : Set Ω ht : MeasurableSet t h : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t a : α ha : ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t ⊢ t1 ∩ tᶜ = t1 \ (t1 ∩ t) [PROOFSTEP] rw [Set.diff_self_inter, Set.diff_eq_compl_inter, Set.inter_comm] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 t : Set Ω ht : MeasurableSet t h : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t a : α ha : ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t this : t1 ∩ tᶜ = t1 \ (t1 ∩ t) ⊢ ↑↑(↑κ a) (t1 ∩ tᶜ) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) tᶜ [PROOFSTEP] rw [this, measure_diff (Set.inter_subset_left _ _) (ht1m.inter (h2 _ ht)) (measure_ne_top (κ a) _), measure_compl (h2 _ ht) (measure_ne_top (κ a) t), measure_univ, ENNReal.mul_sub (fun _ _ ↦ measure_ne_top (κ a) _), mul_one, ha] [GOAL] case refine_4 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 ⊢ ∀ (f : ℕ → Set Ω), Pairwise (Disjoint on f) → (∀ (i : ℕ), MeasurableSet (f i)) → (∀ (i : ℕ), (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t) (f i)) → (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t) (⋃ (i : ℕ), f i) [PROOFSTEP] intros f hf_disj hf_meas h [GOAL] case refine_4 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ (i : ℕ), (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t) (f i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ ⋃ (i : ℕ), f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (⋃ (i : ℕ), f i) [PROOFSTEP] rw [← ae_all_iff] at h [GOAL] case refine_4 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ ⋃ (i : ℕ), f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (⋃ (i : ℕ), f i) [PROOFSTEP] filter_upwards [h] with a ha [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) ⊢ ↑↑(↑κ a) (t1 ∩ ⋃ (i : ℕ), f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (⋃ (i : ℕ), f i) [PROOFSTEP] rw [Set.inter_iUnion, measure_iUnion] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) ⊢ ∑' (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (⋃ (i : ℕ), f i) [PROOFSTEP] rw [measure_iUnion hf_disj (fun i ↦ h2 _ (hf_meas i))] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) ⊢ ∑' (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ∑' (i : ℕ), ↑↑(↑κ a) (f i) [PROOFSTEP] rw [← ENNReal.tsum_mul_left] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) ⊢ ∑' (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ∑' (i : ℕ), ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) [PROOFSTEP] congr with i [GOAL] case h.e_f.h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) i : ℕ ⊢ ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) [PROOFSTEP] rw [ha i] [GOAL] case h.hn α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) ⊢ Pairwise (Disjoint on fun i => t1 ∩ f i) [PROOFSTEP] intros i j hij [GOAL] case h.hn α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) i j : ℕ hij : i ≠ j ⊢ (Disjoint on fun i => t1 ∩ f i) i j [PROOFSTEP] rw [Function.onFun, Set.inter_comm t1, Set.inter_comm t1] [GOAL] case h.hn α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) i j : ℕ hij : i ≠ j ⊢ Disjoint (f i ∩ t1) (f j ∩ t1) [PROOFSTEP] exact Disjoint.inter_left _ (Disjoint.inter_right _ (hf_disj hij)) [GOAL] case h.h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m₂ m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h2 : m₂ ≤ m hp2 : IsPiSystem p2 hpm2 : m₂ = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ p1 ht1m : MeasurableSet t1 ht2m : MeasurableSet t2 f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (t1 ∩ f i) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) (f i) ⊢ ∀ (i : ℕ), MeasurableSet (t1 ∩ f i) [PROOFSTEP] exact fun i ↦ ht1m.inter (h2 _ (hf_meas i)) [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ ⊢ Indep m1 m2 κ [PROOFSTEP] intros t1 t2 ht1 ht2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] refine @induction_on_inter _ (fun t ↦ ∀ᵐ (a : α) ∂μ, κ a (t ∩ t2) = κ a t * κ a t2) _ m1 hpm1 hp1 ?_ ?_ ?_ ?_ _ ht1 [GOAL] case refine_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} ⊢ (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2) ∅ [PROOFSTEP] simp only [Set.empty_inter, measure_empty, zero_mul, eq_self_iff_true, Filter.eventually_true] [GOAL] case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} ⊢ ∀ (t : Set Ω), t ∈ p1 → (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2) t [PROOFSTEP] intros t ht_mem_p1 [GOAL] case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} t : Set Ω ht_mem_p1 : t ∈ p1 ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2 [PROOFSTEP] have ht1 : MeasurableSet[m] t := by refine h1 _ ?_ rw [hpm1] exact measurableSet_generateFrom ht_mem_p1 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} t : Set Ω ht_mem_p1 : t ∈ p1 ⊢ MeasurableSet t [PROOFSTEP] refine h1 _ ?_ [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} t : Set Ω ht_mem_p1 : t ∈ p1 ⊢ MeasurableSet t [PROOFSTEP] rw [hpm1] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} t : Set Ω ht_mem_p1 : t ∈ p1 ⊢ MeasurableSet t [PROOFSTEP] exact measurableSet_generateFrom ht_mem_p1 [GOAL] case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1✝ : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} t : Set Ω ht_mem_p1 : t ∈ p1 ht1 : MeasurableSet t ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2 [PROOFSTEP] exact IndepSets.indep_aux h2 hp2 hpm2 hyp ht_mem_p1 ht1 ht2 [GOAL] case refine_3 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} ⊢ ∀ (t : Set Ω), MeasurableSet t → (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2) t → (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2) tᶜ [PROOFSTEP] intros t ht h [GOAL] case refine_3 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} t : Set Ω ht : MeasurableSet t h : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2 ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (tᶜ ∩ t2) = ↑↑(↑κ a) tᶜ * ↑↑(↑κ a) t2 [PROOFSTEP] filter_upwards [h] with a ha [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} t : Set Ω ht : MeasurableSet t h : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2 a : α ha : ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2 ⊢ ↑↑(↑κ a) (tᶜ ∩ t2) = ↑↑(↑κ a) tᶜ * ↑↑(↑κ a) t2 [PROOFSTEP] have : tᶜ ∩ t2 = t2 \ (t ∩ t2) := by rw [Set.inter_comm t, Set.diff_self_inter, Set.diff_eq_compl_inter] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} t : Set Ω ht : MeasurableSet t h : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2 a : α ha : ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2 ⊢ tᶜ ∩ t2 = t2 \ (t ∩ t2) [PROOFSTEP] rw [Set.inter_comm t, Set.diff_self_inter, Set.diff_eq_compl_inter] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} t : Set Ω ht : MeasurableSet t h : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2 a : α ha : ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2 this : tᶜ ∩ t2 = t2 \ (t ∩ t2) ⊢ ↑↑(↑κ a) (tᶜ ∩ t2) = ↑↑(↑κ a) tᶜ * ↑↑(↑κ a) t2 [PROOFSTEP] rw [this, Set.inter_comm t t2, measure_diff (Set.inter_subset_left _ _) ((h2 _ ht2).inter (h1 _ ht)) (measure_ne_top (κ a) _), Set.inter_comm, ha, measure_compl (h1 _ ht) (measure_ne_top (κ a) t), measure_univ, mul_comm (1 - κ a t), ENNReal.mul_sub (fun _ _ ↦ measure_ne_top (κ a) _), mul_one, mul_comm] [GOAL] case refine_4 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} ⊢ ∀ (f : ℕ → Set Ω), Pairwise (Disjoint on f) → (∀ (i : ℕ), MeasurableSet (f i)) → (∀ (i : ℕ), (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2) (f i)) → (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2) (⋃ (i : ℕ), f i) [PROOFSTEP] intros f hf_disj hf_meas h [GOAL] case refine_4 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ (i : ℕ), (fun t => ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t ∩ t2) = ↑↑(↑κ a) t * ↑↑(↑κ a) t2) (f i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((⋃ (i : ℕ), f i) ∩ t2) = ↑↑(↑κ a) (⋃ (i : ℕ), f i) * ↑↑(↑κ a) t2 [PROOFSTEP] rw [← ae_all_iff] at h [GOAL] case refine_4 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((⋃ (i : ℕ), f i) ∩ t2) = ↑↑(↑κ a) (⋃ (i : ℕ), f i) * ↑↑(↑κ a) t2 [PROOFSTEP] filter_upwards [h] with a ha [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 ⊢ ↑↑(↑κ a) ((⋃ (i : ℕ), f i) ∩ t2) = ↑↑(↑κ a) (⋃ (i : ℕ), f i) * ↑↑(↑κ a) t2 [PROOFSTEP] rw [Set.inter_comm, Set.inter_iUnion, measure_iUnion] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 ⊢ ∑' (i : ℕ), ↑↑(↑κ a) (t2 ∩ f i) = ↑↑(↑κ a) (⋃ (i : ℕ), f i) * ↑↑(↑κ a) t2 [PROOFSTEP] rw [measure_iUnion hf_disj (fun i ↦ h1 _ (hf_meas i))] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 ⊢ ∑' (i : ℕ), ↑↑(↑κ a) (t2 ∩ f i) = (∑' (i : ℕ), ↑↑(↑κ a) (f i)) * ↑↑(↑κ a) t2 [PROOFSTEP] rw [← ENNReal.tsum_mul_right] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 ⊢ ∑' (i : ℕ), ↑↑(↑κ a) (t2 ∩ f i) = ∑' (i : ℕ), ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 [PROOFSTEP] congr 1 with i [GOAL] case h.e_f.h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 i : ℕ ⊢ ↑↑(↑κ a) (t2 ∩ f i) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 [PROOFSTEP] rw [Set.inter_comm t2, ha i] [GOAL] case h.hn α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 ⊢ Pairwise (Disjoint on fun i => t2 ∩ f i) [PROOFSTEP] intros i j hij [GOAL] case h.hn α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 i j : ℕ hij : i ≠ j ⊢ (Disjoint on fun i => t2 ∩ f i) i j [PROOFSTEP] rw [Function.onFun, Set.inter_comm t2, Set.inter_comm t2] [GOAL] case h.hn α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 i j : ℕ hij : i ≠ j ⊢ Disjoint (f i ∩ t2) (f j ∩ t2) [PROOFSTEP] exact Disjoint.inter_left _ (Disjoint.inter_right _ (hf_disj hij)) [GOAL] case h.h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α m1 m2 m : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ p1 p2 : Set (Set Ω) h1 : m1 ≤ m h2 : m2 ≤ m hp1 : IsPiSystem p1 hp2 : IsPiSystem p2 hpm1 : m1 = generateFrom p1 hpm2 : m2 = generateFrom p2 hyp : IndepSets p1 p2 κ t1 t2 : Set Ω ht1 : t1 ∈ {s | MeasurableSet s} ht2 : t2 ∈ {s | MeasurableSet s} f : ℕ → Set Ω hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) h : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 a : α ha : ∀ (i : ℕ), ↑↑(↑κ a) (f i ∩ t2) = ↑↑(↑κ a) (f i) * ↑↑(↑κ a) t2 ⊢ ∀ (i : ℕ), MeasurableSet (t2 ∩ f i) [PROOFSTEP] exact fun i ↦ (h2 _ ht2).inter (h1 _ (hf_meas i)) [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T ⊢ IndepSets (piiUnionInter s S) (piiUnionInter s T) κ [PROOFSTEP] rintro t1 t2 ⟨p1, hp1, f1, ht1_m, ht1_eq⟩ ⟨p2, hp2, f2, ht2_m, ht2_eq⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] classical let g i := ite (i ∈ p1) (f1 i) Set.univ ∩ ite (i ∈ p2) (f2 i) Set.univ have h_P_inter : ∀ᵐ a ∂μ, κ a (t1 ∩ t2) = ∏ n in p1 ∪ p2, κ a (g n) := by have hgm : ∀ i ∈ p1 ∪ p2, g i ∈ s i := by intro i hi_mem_union rw [Finset.mem_union] at hi_mem_union cases' hi_mem_union with hi1 hi2 · have hi2 : i ∉ p2 := fun hip2 => Set.disjoint_left.mp hST (hp1 hi1) (hp2 hip2) simp_rw [if_pos hi1, if_neg hi2, Set.inter_univ] exact ht1_m i hi1 · have hi1 : i ∉ p1 := fun hip1 => Set.disjoint_right.mp hST (hp2 hi2) (hp1 hip1) simp_rw [if_neg hi1, if_pos hi2, Set.univ_inter] exact ht2_m i hi2 have h_p1_inter_p2 : ((⋂ x ∈ p1, f1 x) ∩ ⋂ x ∈ p2, f2 x) = ⋂ i ∈ p1 ∪ p2, ite (i ∈ p1) (f1 i) Set.univ ∩ ite (i ∈ p2) (f2 i) Set.univ := by ext1 x simp only [Set.mem_ite_univ_right, Set.mem_inter_iff, Set.mem_iInter, Finset.mem_union] exact ⟨fun h i _ => ⟨h.1 i, h.2 i⟩, fun h => ⟨fun i hi => (h i (Or.inl hi)).1 hi, fun i hi => (h i (Or.inr hi)).2 hi⟩⟩ filter_upwards [h_indep _ hgm] with a ha rw [ht1_eq, ht2_eq, h_p1_inter_p2, ← ha] filter_upwards [h_P_inter, h_indep p1 ht1_m, h_indep p2 ht2_m] with a h_P_inter ha1 ha2 have h_μg : ∀ n, κ a (g n) = (ite (n ∈ p1) (κ a (f1 n)) 1) * (ite (n ∈ p2) (κ a (f2 n)) 1) := by intro n dsimp only split_ifs with h1 h2 · exact absurd rfl (Set.disjoint_iff_forall_ne.mp hST (hp1 h1) (hp2 h2)) all_goals simp only [measure_univ, one_mul, mul_one, Set.inter_univ, Set.univ_inter] simp_rw [h_P_inter, h_μg, Finset.prod_mul_distrib, Finset.prod_ite_mem (p1 ∪ p2) p1 (fun x ↦ κ a (f1 x)), Finset.union_inter_cancel_left, Finset.prod_ite_mem (p1 ∪ p2) p2 (fun x => κ a (f2 x)), Finset.union_inter_cancel_right, ht1_eq, ← ha1, ht2_eq, ← ha2] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] let g i := ite (i ∈ p1) (f1 i) Set.univ ∩ ite (i ∈ p2) (f2 i) Set.univ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] have h_P_inter : ∀ᵐ a ∂μ, κ a (t1 ∩ t2) = ∏ n in p1 ∪ p2, κ a (g n) := by have hgm : ∀ i ∈ p1 ∪ p2, g i ∈ s i := by intro i hi_mem_union rw [Finset.mem_union] at hi_mem_union cases' hi_mem_union with hi1 hi2 · have hi2 : i ∉ p2 := fun hip2 => Set.disjoint_left.mp hST (hp1 hi1) (hp2 hip2) simp_rw [if_pos hi1, if_neg hi2, Set.inter_univ] exact ht1_m i hi1 · have hi1 : i ∉ p1 := fun hip1 => Set.disjoint_right.mp hST (hp2 hi2) (hp1 hip1) simp_rw [if_neg hi1, if_pos hi2, Set.univ_inter] exact ht2_m i hi2 have h_p1_inter_p2 : ((⋂ x ∈ p1, f1 x) ∩ ⋂ x ∈ p2, f2 x) = ⋂ i ∈ p1 ∪ p2, ite (i ∈ p1) (f1 i) Set.univ ∩ ite (i ∈ p2) (f2 i) Set.univ := by ext1 x simp only [Set.mem_ite_univ_right, Set.mem_inter_iff, Set.mem_iInter, Finset.mem_union] exact ⟨fun h i _ => ⟨h.1 i, h.2 i⟩, fun h => ⟨fun i hi => (h i (Or.inl hi)).1 hi, fun i hi => (h i (Or.inr hi)).2 hi⟩⟩ filter_upwards [h_indep _ hgm] with a ha rw [ht1_eq, ht2_eq, h_p1_inter_p2, ← ha] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) [PROOFSTEP] have hgm : ∀ i ∈ p1 ∪ p2, g i ∈ s i := by intro i hi_mem_union rw [Finset.mem_union] at hi_mem_union cases' hi_mem_union with hi1 hi2 · have hi2 : i ∉ p2 := fun hip2 => Set.disjoint_left.mp hST (hp1 hi1) (hp2 hip2) simp_rw [if_pos hi1, if_neg hi2, Set.inter_univ] exact ht1_m i hi1 · have hi1 : i ∉ p1 := fun hip1 => Set.disjoint_right.mp hST (hp2 hi2) (hp1 hip1) simp_rw [if_neg hi1, if_pos hi2, Set.univ_inter] exact ht2_m i hi2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ ⊢ ∀ (i : ι), i ∈ p1 ∪ p2 → g i ∈ s i [PROOFSTEP] intro i hi_mem_union [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ i : ι hi_mem_union : i ∈ p1 ∪ p2 ⊢ g i ∈ s i [PROOFSTEP] rw [Finset.mem_union] at hi_mem_union [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ i : ι hi_mem_union : i ∈ p1 ∨ i ∈ p2 ⊢ g i ∈ s i [PROOFSTEP] cases' hi_mem_union with hi1 hi2 [GOAL] case inl α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ i : ι hi1 : i ∈ p1 ⊢ g i ∈ s i [PROOFSTEP] have hi2 : i ∉ p2 := fun hip2 => Set.disjoint_left.mp hST (hp1 hi1) (hp2 hip2) [GOAL] case inl α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ i : ι hi1 : i ∈ p1 hi2 : ¬i ∈ p2 ⊢ g i ∈ s i [PROOFSTEP] simp_rw [if_pos hi1, if_neg hi2, Set.inter_univ] [GOAL] case inl α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ i : ι hi1 : i ∈ p1 hi2 : ¬i ∈ p2 ⊢ f1 i ∈ s i [PROOFSTEP] exact ht1_m i hi1 [GOAL] case inr α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ i : ι hi2 : i ∈ p2 ⊢ g i ∈ s i [PROOFSTEP] have hi1 : i ∉ p1 := fun hip1 => Set.disjoint_right.mp hST (hp2 hi2) (hp1 hip1) [GOAL] case inr α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ i : ι hi2 : i ∈ p2 hi1 : ¬i ∈ p1 ⊢ g i ∈ s i [PROOFSTEP] simp_rw [if_neg hi1, if_pos hi2, Set.univ_inter] [GOAL] case inr α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ i : ι hi2 : i ∈ p2 hi1 : ¬i ∈ p1 ⊢ f2 i ∈ s i [PROOFSTEP] exact ht2_m i hi2 [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ hgm : ∀ (i : ι), i ∈ p1 ∪ p2 → g i ∈ s i ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) [PROOFSTEP] have h_p1_inter_p2 : ((⋂ x ∈ p1, f1 x) ∩ ⋂ x ∈ p2, f2 x) = ⋂ i ∈ p1 ∪ p2, ite (i ∈ p1) (f1 i) Set.univ ∩ ite (i ∈ p2) (f2 i) Set.univ := by ext1 x simp only [Set.mem_ite_univ_right, Set.mem_inter_iff, Set.mem_iInter, Finset.mem_union] exact ⟨fun h i _ => ⟨h.1 i, h.2 i⟩, fun h => ⟨fun i hi => (h i (Or.inl hi)).1 hi, fun i hi => (h i (Or.inr hi)).2 hi⟩⟩ [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ hgm : ∀ (i : ι), i ∈ p1 ∪ p2 → g i ∈ s i ⊢ (⋂ (x : ι) (_ : x ∈ p1), f1 x) ∩ ⋂ (x : ι) (_ : x ∈ p2), f2 x = ⋂ (i : ι) (_ : i ∈ p1 ∪ p2), (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ [PROOFSTEP] ext1 x [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ hgm : ∀ (i : ι), i ∈ p1 ∪ p2 → g i ∈ s i x : Ω ⊢ x ∈ (⋂ (x : ι) (_ : x ∈ p1), f1 x) ∩ ⋂ (x : ι) (_ : x ∈ p2), f2 x ↔ x ∈ ⋂ (i : ι) (_ : i ∈ p1 ∪ p2), (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ [PROOFSTEP] simp only [Set.mem_ite_univ_right, Set.mem_inter_iff, Set.mem_iInter, Finset.mem_union] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ hgm : ∀ (i : ι), i ∈ p1 ∪ p2 → g i ∈ s i x : Ω ⊢ ((∀ (i : ι), i ∈ p1 → x ∈ f1 i) ∧ ∀ (i : ι), i ∈ p2 → x ∈ f2 i) ↔ ∀ (i : ι), i ∈ p1 ∨ i ∈ p2 → (i ∈ p1 → x ∈ f1 i) ∧ (i ∈ p2 → x ∈ f2 i) [PROOFSTEP] exact ⟨fun h i _ => ⟨h.1 i, h.2 i⟩, fun h => ⟨fun i hi => (h i (Or.inl hi)).1 hi, fun i hi => (h i (Or.inr hi)).2 hi⟩⟩ [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ hgm : ∀ (i : ι), i ∈ p1 ∪ p2 → g i ∈ s i h_p1_inter_p2 : (⋂ (x : ι) (_ : x ∈ p1), f1 x) ∩ ⋂ (x : ι) (_ : x ∈ p2), f2 x = ⋂ (i : ι) (_ : i ∈ p1 ∪ p2), (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) [PROOFSTEP] filter_upwards [h_indep _ hgm] with a ha [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ hgm : ∀ (i : ι), i ∈ p1 ∪ p2 → g i ∈ s i h_p1_inter_p2 : (⋂ (x : ι) (_ : x ∈ p1), f1 x) ∩ ⋂ (x : ι) (_ : x ∈ p2), f2 x = ⋂ (i : ι) (_ : i ∈ p1 ∪ p2), (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ a : α ha : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1 ∪ p2), (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ) = ∏ i in p1 ∪ p2, ↑↑(↑κ a) ((if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ) ⊢ ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) [PROOFSTEP] rw [ht1_eq, ht2_eq, h_p1_inter_p2, ← ha] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] filter_upwards [h_P_inter, h_indep p1 ht1_m, h_indep p2 ht2_m] with a h_P_inter ha1 ha2 [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) ⊢ ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] have h_μg : ∀ n, κ a (g n) = (ite (n ∈ p1) (κ a (f1 n)) 1) * (ite (n ∈ p2) (κ a (f2 n)) 1) := by intro n dsimp only split_ifs with h1 h2 · exact absurd rfl (Set.disjoint_iff_forall_ne.mp hST (hp1 h1) (hp2 h2)) all_goals simp only [measure_univ, one_mul, mul_one, Set.inter_univ, Set.univ_inter] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) ⊢ ∀ (n : ι), ↑↑(↑κ a) (g n) = (if n ∈ p1 then ↑↑(↑κ a) (f1 n) else 1) * if n ∈ p2 then ↑↑(↑κ a) (f2 n) else 1 [PROOFSTEP] intro n [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) n : ι ⊢ ↑↑(↑κ a) (g n) = (if n ∈ p1 then ↑↑(↑κ a) (f1 n) else 1) * if n ∈ p2 then ↑↑(↑κ a) (f2 n) else 1 [PROOFSTEP] dsimp only [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) n : ι ⊢ ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) = (if n ∈ p1 then ↑↑(↑κ a) (f1 n) else 1) * if n ∈ p2 then ↑↑(↑κ a) (f2 n) else 1 [PROOFSTEP] split_ifs with h1 h2 [GOAL] case pos α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) n : ι h1 : n ∈ p1 h2 : n ∈ p2 ⊢ ↑↑(↑κ a) (f1 n ∩ f2 n) = ↑↑(↑κ a) (f1 n) * ↑↑(↑κ a) (f2 n) [PROOFSTEP] exact absurd rfl (Set.disjoint_iff_forall_ne.mp hST (hp1 h1) (hp2 h2)) [GOAL] case neg α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) n : ι h1 : n ∈ p1 h2 : ¬n ∈ p2 ⊢ ↑↑(↑κ a) (f1 n ∩ Set.univ) = ↑↑(↑κ a) (f1 n) * 1 case pos α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) n : ι h1 : ¬n ∈ p1 h✝ : n ∈ p2 ⊢ ↑↑(↑κ a) (Set.univ ∩ f2 n) = 1 * ↑↑(↑κ a) (f2 n) case neg α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) n : ι h1 : ¬n ∈ p1 h✝ : ¬n ∈ p2 ⊢ ↑↑(↑κ a) (Set.univ ∩ Set.univ) = 1 * 1 [PROOFSTEP] all_goals simp only [measure_univ, one_mul, mul_one, Set.inter_univ, Set.univ_inter] [GOAL] case neg α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) n : ι h1 : n ∈ p1 h2 : ¬n ∈ p2 ⊢ ↑↑(↑κ a) (f1 n ∩ Set.univ) = ↑↑(↑κ a) (f1 n) * 1 [PROOFSTEP] simp only [measure_univ, one_mul, mul_one, Set.inter_univ, Set.univ_inter] [GOAL] case pos α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) n : ι h1 : ¬n ∈ p1 h✝ : n ∈ p2 ⊢ ↑↑(↑κ a) (Set.univ ∩ f2 n) = 1 * ↑↑(↑κ a) (f2 n) [PROOFSTEP] simp only [measure_univ, one_mul, mul_one, Set.inter_univ, Set.univ_inter] [GOAL] case neg α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) n : ι h1 : ¬n ∈ p1 h✝ : ¬n ∈ p2 ⊢ ↑↑(↑κ a) (Set.univ ∩ Set.univ) = 1 * 1 [PROOFSTEP] simp only [measure_univ, one_mul, mul_one, Set.inter_univ, Set.univ_inter] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set (Set Ω) S T : Set ι h_indep : iIndepSets s κ hST : Disjoint S T t1 t2 : Set Ω p1 : Finset ι hp1 : ↑p1 ⊆ S f1 : ι → Set Ω ht1_m : ∀ (x : ι), x ∈ p1 → f1 x ∈ s x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ p1), f1 x p2 : Finset ι hp2 : ↑p2 ⊆ T f2 : ι → Set Ω ht2_m : ∀ (x : ι), x ∈ p2 → f2 x ∈ s x ht2_eq : t2 = ⋂ (x : ι) (_ : x ∈ p2), f2 x g : ι → Set Ω := fun i => (if i ∈ p1 then f1 i else Set.univ) ∩ if i ∈ p2 then f2 i else Set.univ h_P_inter✝ : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) (g n) a : α h_P_inter : ↑↑(↑κ a) (t1 ∩ t2) = ∏ n in p1 ∪ p2, ↑↑(↑κ a) ((if n ∈ p1 then f1 n else Set.univ) ∩ if n ∈ p2 then f2 n else Set.univ) ha1 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p1), f1 i) = ∏ i in p1, ↑↑(↑κ a) (f1 i) ha2 : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ p2), f2 i) = ∏ i in p2, ↑↑(↑κ a) (f2 i) h_μg : ∀ (n : ι), ↑↑(↑κ a) (g n) = (if n ∈ p1 then ↑↑(↑κ a) (f1 n) else 1) * if n ∈ p2 then ↑↑(↑κ a) (f2 n) else 1 ⊢ ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] simp_rw [h_P_inter, h_μg, Finset.prod_mul_distrib, Finset.prod_ite_mem (p1 ∪ p2) p1 (fun x ↦ κ a (f1 x)), Finset.union_inter_cancel_left, Finset.prod_ite_mem (p1 ∪ p2) p2 (fun x => κ a (f2 x)), Finset.union_inter_cancel_right, ht1_eq, ← ha1, ht2_eq, ← ha2] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ S T : Set ι hST : Disjoint S T ⊢ Indep (generateFrom {t | ∃ n, n ∈ S ∧ s n = t}) (generateFrom {t | ∃ k, k ∈ T ∧ s k = t}) κ [PROOFSTEP] rw [← generateFrom_piiUnionInter_singleton_left, ← generateFrom_piiUnionInter_singleton_left] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ S T : Set ι hST : Disjoint S T ⊢ Indep (generateFrom (piiUnionInter (fun k => {s k}) S)) (generateFrom (piiUnionInter (fun k => {s k}) T)) κ [PROOFSTEP] refine' IndepSets.indep' (fun t ht => generateFrom_piiUnionInter_le _ _ _ _ (measurableSet_generateFrom ht)) (fun t ht => generateFrom_piiUnionInter_le _ _ _ _ (measurableSet_generateFrom ht)) _ _ _ [GOAL] case refine'_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ S T : Set ι hST : Disjoint S T t : Set Ω ht : t ∈ piiUnionInter (fun k => {s k}) S ⊢ ∀ (n : ι), generateFrom {s n} ≤ _mΩ [PROOFSTEP] exact fun k => generateFrom_le fun t ht => (Set.mem_singleton_iff.1 ht).symm ▸ hsm k [GOAL] case refine'_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ S T : Set ι hST : Disjoint S T t : Set Ω ht : t ∈ piiUnionInter (fun k => {s k}) T ⊢ ∀ (n : ι), generateFrom {s n} ≤ _mΩ [PROOFSTEP] exact fun k => generateFrom_le fun t ht => (Set.mem_singleton_iff.1 ht).symm ▸ hsm k [GOAL] case refine'_3 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ S T : Set ι hST : Disjoint S T ⊢ IsPiSystem (piiUnionInter (fun k => {s k}) S) [PROOFSTEP] exact isPiSystem_piiUnionInter _ (fun k => IsPiSystem.singleton _) _ [GOAL] case refine'_4 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ S T : Set ι hST : Disjoint S T ⊢ IsPiSystem (piiUnionInter (fun k => {s k}) T) [PROOFSTEP] exact isPiSystem_piiUnionInter _ (fun k => IsPiSystem.singleton _) _ [GOAL] case refine'_5 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ S T : Set ι hST : Disjoint S T ⊢ IndepSets (piiUnionInter (fun k => {s k}) S) (piiUnionInter (fun k => {s k}) T) κ [PROOFSTEP] classical exact indepSets_piiUnionInter_of_disjoint (iIndep.iIndepSets (fun n => rfl) hs) hST [GOAL] case refine'_5 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ S T : Set ι hST : Disjoint S T ⊢ IndepSets (piiUnionInter (fun k => {s k}) S) (piiUnionInter (fun k => {s k}) T) κ [PROOFSTEP] exact indepSets_piiUnionInter_of_disjoint (iIndep.iIndepSets (fun n => rfl) hs) hST [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ h_indep : iIndep m κ S T : Set ι hST : Disjoint S T ⊢ Indep (⨆ (i : ι) (_ : i ∈ S), m i) (⨆ (i : ι) (_ : i ∈ T), m i) κ [PROOFSTEP] refine' IndepSets.indep (iSup₂_le fun i _ => h_le i) (iSup₂_le fun i _ => h_le i) _ _ (generateFrom_piiUnionInter_measurableSet m S).symm (generateFrom_piiUnionInter_measurableSet m T).symm _ [GOAL] case refine'_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ h_indep : iIndep m κ S T : Set ι hST : Disjoint S T ⊢ IsPiSystem (piiUnionInter (fun n => {s | MeasurableSet s}) S) [PROOFSTEP] exact isPiSystem_piiUnionInter _ (fun n => @isPiSystem_measurableSet Ω (m n)) _ [GOAL] case refine'_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ h_indep : iIndep m κ S T : Set ι hST : Disjoint S T ⊢ IsPiSystem (piiUnionInter (fun n => {s | MeasurableSet s}) T) [PROOFSTEP] exact isPiSystem_piiUnionInter _ (fun n => @isPiSystem_measurableSet Ω (m n)) _ [GOAL] case refine'_3 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ h_indep : iIndep m κ S T : Set ι hST : Disjoint S T ⊢ IndepSets (piiUnionInter (fun n => {s | MeasurableSet s}) S) (piiUnionInter (fun n => {s | MeasurableSet s}) T) κ [PROOFSTEP] classical exact indepSets_piiUnionInter_of_disjoint h_indep hST [GOAL] case refine'_3 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ h_indep : iIndep m κ S T : Set ι hST : Disjoint S T ⊢ IndepSets (piiUnionInter (fun n => {s | MeasurableSet s}) S) (piiUnionInter (fun n => {s | MeasurableSet s}) T) κ [PROOFSTEP] exact indepSets_piiUnionInter_of_disjoint h_indep hST [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m ⊢ Indep (⨆ (i : ι), m i) m' κ [PROOFSTEP] let p : ι → Set (Set Ω) := fun n => {t | MeasurableSet[m n] t} [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} ⊢ Indep (⨆ (i : ι), m i) m' κ [PROOFSTEP] have hp : ∀ n, IsPiSystem (p n) := fun n => @isPiSystem_measurableSet Ω (m n) [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) ⊢ Indep (⨆ (i : ι), m i) m' κ [PROOFSTEP] have h_gen_n : ∀ n, m n = generateFrom (p n) := fun n => (@generateFrom_measurableSet Ω (m n)).symm [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) ⊢ Indep (⨆ (i : ι), m i) m' κ [PROOFSTEP] have hp_supr_pi : IsPiSystem (⋃ n, p n) := isPiSystem_iUnion_of_directed_le p hp hm [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) ⊢ Indep (⨆ (i : ι), m i) m' κ [PROOFSTEP] let p' := {t : Set Ω | MeasurableSet[m'] t} [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} ⊢ Indep (⨆ (i : ι), m i) m' κ [PROOFSTEP] have hp'_pi : IsPiSystem p' := @isPiSystem_measurableSet Ω m' [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' ⊢ Indep (⨆ (i : ι), m i) m' κ [PROOFSTEP] have h_gen' : m' = generateFrom p' := (@generateFrom_measurableSet Ω m').symm [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' ⊢ Indep (⨆ (i : ι), m i) m' κ [PROOFSTEP] have h_pi_system_indep : IndepSets (⋃ n, p n) p' κ μ := by refine IndepSets.iUnion ?_ conv at h_indep => intro i rw [h_gen_n i, h_gen'] exact fun n => (h_indep n).indepSets [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' ⊢ IndepSets (⋃ (n : ι), p n) p' κ [PROOFSTEP] refine IndepSets.iUnion ?_ [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' ⊢ ∀ (n : ι), IndepSets (p n) p' κ [PROOFSTEP] conv at h_indep => intro i rw [h_gen_n i, h_gen'] [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' | ∀ (i : ι), Indep (m i) m' κ [PROOFSTEP] intro i rw [h_gen_n i, h_gen'] [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' | ∀ (i : ι), Indep (m i) m' κ [PROOFSTEP] intro i rw [h_gen_n i, h_gen'] [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' | ∀ (i : ι), Indep (m i) m' κ [PROOFSTEP] intro i [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' i : ι | Indep (m i) m' κ [PROOFSTEP] rw [h_gen_n i, h_gen'] [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} h_indep : ∀ (i : ι), Indep (generateFrom (p i)) (generateFrom p') κ hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' ⊢ ∀ (n : ι), IndepSets (p n) p' κ [PROOFSTEP] exact fun n => (h_indep n).indepSets [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' h_pi_system_indep : IndepSets (⋃ (n : ι), p n) p' κ ⊢ Indep (⨆ (i : ι), m i) m' κ [PROOFSTEP] refine' IndepSets.indep (iSup_le h_le) h_le' hp_supr_pi hp'_pi _ h_gen' h_pi_system_indep [GOAL] α : Type u_1 Ω✝ : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω✝ κ✝ : { x // x ∈ kernel α Ω✝ } μ✝ : Measure α Ω : Type u_4 m : ι → MeasurableSpace Ω m' m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h_indep : ∀ (i : ι), Indep (m i) m' κ h_le : ∀ (i : ι), m i ≤ m0 h_le' : m' ≤ m0 hm : Directed (fun x x_1 => x ≤ x_1) m p : ι → Set (Set Ω) := fun n => {t | MeasurableSet t} hp : ∀ (n : ι), IsPiSystem (p n) h_gen_n : ∀ (n : ι), m n = generateFrom (p n) hp_supr_pi : IsPiSystem (⋃ (n : ι), p n) p' : Set (Set Ω) := {t | MeasurableSet t} hp'_pi : IsPiSystem p' h_gen' : m' = generateFrom p' h_pi_system_indep : IndepSets (⋃ (n : ι), p n) p' κ ⊢ ⨆ (i : ι), m i = generateFrom (⋃ (n : ι), p n) [PROOFSTEP] exact (generateFrom_iUnion_measurableSet _).symm [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝¹ : Preorder ι inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ i : ι ⊢ Indep (generateFrom {s i}) (generateFrom {t | ∃ j, j < i ∧ s j = t}) κ [PROOFSTEP] convert iIndepSet.indep_generateFrom_of_disjoint hsm hs { i } {j | j < i} (Set.disjoint_singleton_left.mpr (lt_irrefl _)) [GOAL] case h.e'_4.h.e'_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝¹ : Preorder ι inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ i : ι ⊢ {s i} = {t | ∃ n, n ∈ {i} ∧ s n = t} [PROOFSTEP] simp only [Set.mem_singleton_iff, exists_prop, exists_eq_left, Set.setOf_eq_eq_singleton'] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝¹ : LinearOrder ι inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ i k : ι hk : i < k ⊢ Indep (generateFrom {s k}) (generateFrom {t | ∃ j, j ≤ i ∧ s j = t}) κ [PROOFSTEP] convert iIndepSet.indep_generateFrom_of_disjoint hsm hs { k } {j | j ≤ i} (Set.disjoint_singleton_left.mpr hk.not_le) [GOAL] case h.e'_4.h.e'_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝¹ : LinearOrder ι inst✝ : IsMarkovKernel κ s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ i k : ι hk : i < k ⊢ {s k} = {t | ∃ n, n ∈ {k} ∧ s n = t} [PROOFSTEP] simp only [Set.mem_singleton_iff, exists_prop, exists_eq_left, Set.setOf_eq_eq_singleton'] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S ⊢ IndepSets (piiUnionInter π ↑S) (π a) κ [PROOFSTEP] rintro t1 t2 ⟨s, hs_mem, ft1, hft1_mem, ht1_eq⟩ ht2_mem_pia [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : ↑s ⊆ ↑S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] rw [Finset.coe_subset] at hs_mem [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] classical let f := fun n => ite (n = a) t2 (ite (n ∈ s) (ft1 n) Set.univ) have h_f_mem : ∀ n ∈ insert a s, f n ∈ π n := by intro n hn_mem_insert dsimp only cases' Finset.mem_insert.mp hn_mem_insert with hn_mem hn_mem · simp [hn_mem, ht2_mem_pia] · have hn_ne_a : n ≠ a := by rintro rfl; exact haS (hs_mem hn_mem) simp [hn_ne_a, hn_mem, hft1_mem n hn_mem] have h_f_mem_pi : ∀ n ∈ s, f n ∈ π n := fun x hxS => h_f_mem x (by simp [hxS]) have h_t1 : t1 = ⋂ n ∈ s, f n := by suffices h_forall : ∀ n ∈ s, f n = ft1 n · rw [ht1_eq] ext x simp_rw [Set.mem_iInter] conv => lhs; intro i hns; rw [← h_forall i hns] intro n hnS have hn_ne_a : n ≠ a := by rintro rfl; exact haS (hs_mem hnS) simp_rw [if_pos hnS, if_neg hn_ne_a] have h_μ_t1 : ∀ᵐ a' ∂μ, κ a' t1 = ∏ n in s, κ a' (f n) := by filter_upwards [hp_ind s h_f_mem_pi] with a' ha' rw [h_t1, ← ha'] have h_t2 : t2 = f a := by simp have h_μ_inter : ∀ᵐ a' ∂μ, κ a' (t1 ∩ t2) = ∏ n in insert a s, κ a' (f n) := by have h_t1_inter_t2 : t1 ∩ t2 = ⋂ n ∈ insert a s, f n := by rw [h_t1, h_t2, Finset.set_biInter_insert, Set.inter_comm] filter_upwards [hp_ind (insert a s) h_f_mem] with a' ha' rw [h_t1_inter_t2, ← ha'] have has : a ∉ s := fun has_mem => haS (hs_mem has_mem) filter_upwards [h_μ_t1, h_μ_inter] with a' ha1 ha2 rw [ha2, Finset.prod_insert has, h_t2, mul_comm, ha1] simp only [ite_true] [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] let f := fun n => ite (n = a) t2 (ite (n ∈ s) (ft1 n) Set.univ) [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] have h_f_mem : ∀ n ∈ insert a s, f n ∈ π n := by intro n hn_mem_insert dsimp only cases' Finset.mem_insert.mp hn_mem_insert with hn_mem hn_mem · simp [hn_mem, ht2_mem_pia] · have hn_ne_a : n ≠ a := by rintro rfl; exact haS (hs_mem hn_mem) simp [hn_ne_a, hn_mem, hft1_mem n hn_mem] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ ⊢ ∀ (n : ι), n ∈ insert a s → f n ∈ π n [PROOFSTEP] intro n hn_mem_insert [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ n : ι hn_mem_insert : n ∈ insert a s ⊢ f n ∈ π n [PROOFSTEP] dsimp only [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ n : ι hn_mem_insert : n ∈ insert a s ⊢ (if n = a then t2 else if n ∈ s then ft1 n else Set.univ) ∈ π n [PROOFSTEP] cases' Finset.mem_insert.mp hn_mem_insert with hn_mem hn_mem [GOAL] case inl α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ n : ι hn_mem_insert : n ∈ insert a s hn_mem : n = a ⊢ (if n = a then t2 else if n ∈ s then ft1 n else Set.univ) ∈ π n [PROOFSTEP] simp [hn_mem, ht2_mem_pia] [GOAL] case inr α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ n : ι hn_mem_insert : n ∈ insert a s hn_mem : n ∈ s ⊢ (if n = a then t2 else if n ∈ s then ft1 n else Set.univ) ∈ π n [PROOFSTEP] have hn_ne_a : n ≠ a := by rintro rfl; exact haS (hs_mem hn_mem) [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ n : ι hn_mem_insert : n ∈ insert a s hn_mem : n ∈ s ⊢ n ≠ a [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) S : Finset ι hp_ind : iIndepSets π κ t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x n : ι hn_mem : n ∈ s haS : ¬n ∈ S ht2_mem_pia : t2 ∈ π n f : ι → Set Ω := fun n_1 => if n_1 = n then t2 else if n_1 ∈ s then ft1 n_1 else Set.univ hn_mem_insert : n ∈ insert n s ⊢ False [PROOFSTEP] exact haS (hs_mem hn_mem) [GOAL] case inr α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ n : ι hn_mem_insert : n ∈ insert a s hn_mem : n ∈ s hn_ne_a : n ≠ a ⊢ (if n = a then t2 else if n ∈ s then ft1 n else Set.univ) ∈ π n [PROOFSTEP] simp [hn_ne_a, hn_mem, hft1_mem n hn_mem] [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] have h_f_mem_pi : ∀ n ∈ s, f n ∈ π n := fun x hxS => h_f_mem x (by simp [hxS]) [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n x : ι hxS : x ∈ s ⊢ x ∈ insert a s [PROOFSTEP] simp [hxS] [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] have h_t1 : t1 = ⋂ n ∈ s, f n := by suffices h_forall : ∀ n ∈ s, f n = ft1 n · rw [ht1_eq] ext x simp_rw [Set.mem_iInter] conv => lhs; intro i hns; rw [← h_forall i hns] intro n hnS have hn_ne_a : n ≠ a := by rintro rfl; exact haS (hs_mem hnS) simp_rw [if_pos hnS, if_neg hn_ne_a] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n ⊢ t1 = ⋂ (n : ι) (_ : n ∈ s), f n [PROOFSTEP] suffices h_forall : ∀ n ∈ s, f n = ft1 n [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_forall : ∀ (n : ι), n ∈ s → f n = ft1 n ⊢ t1 = ⋂ (n : ι) (_ : n ∈ s), f n [PROOFSTEP] rw [ht1_eq] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_forall : ∀ (n : ι), n ∈ s → f n = ft1 n ⊢ ⋂ (x : ι) (_ : x ∈ s), ft1 x = ⋂ (n : ι) (_ : n ∈ s), f n [PROOFSTEP] ext x [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_forall : ∀ (n : ι), n ∈ s → f n = ft1 n x : Ω ⊢ x ∈ ⋂ (x : ι) (_ : x ∈ s), ft1 x ↔ x ∈ ⋂ (n : ι) (_ : n ∈ s), f n [PROOFSTEP] simp_rw [Set.mem_iInter] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_forall : ∀ (n : ι), n ∈ s → f n = ft1 n x : Ω ⊢ (∀ (i : ι), i ∈ s → x ∈ ft1 i) ↔ ∀ (i : ι), i ∈ s → x ∈ if i = a then t2 else if i ∈ s then ft1 i else Set.univ [PROOFSTEP] conv => lhs; intro i hns; rw [← h_forall i hns] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_forall : ∀ (n : ι), n ∈ s → f n = ft1 n x : Ω | (∀ (i : ι), i ∈ s → x ∈ ft1 i) ↔ ∀ (i : ι), i ∈ s → x ∈ if i = a then t2 else if i ∈ s then ft1 i else Set.univ [PROOFSTEP] lhs; intro i hns; rw [← h_forall i hns] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_forall : ∀ (n : ι), n ∈ s → f n = ft1 n x : Ω | (∀ (i : ι), i ∈ s → x ∈ ft1 i) ↔ ∀ (i : ι), i ∈ s → x ∈ if i = a then t2 else if i ∈ s then ft1 i else Set.univ [PROOFSTEP] lhs; intro i hns; rw [← h_forall i hns] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_forall : ∀ (n : ι), n ∈ s → f n = ft1 n x : Ω | (∀ (i : ι), i ∈ s → x ∈ ft1 i) ↔ ∀ (i : ι), i ∈ s → x ∈ if i = a then t2 else if i ∈ s then ft1 i else Set.univ [PROOFSTEP] lhs [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_forall : ∀ (n : ι), n ∈ s → f n = ft1 n x : Ω | ∀ (i : ι), i ∈ s → x ∈ ft1 i [PROOFSTEP] intro i hns [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_forall : ∀ (n : ι), n ∈ s → f n = ft1 n x : Ω i : ι hns : i ∈ s | x ∈ ft1 i [PROOFSTEP] rw [← h_forall i hns] [GOAL] case h_forall α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n ⊢ ∀ (n : ι), n ∈ s → f n = ft1 n [PROOFSTEP] intro n hnS [GOAL] case h_forall α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n n : ι hnS : n ∈ s ⊢ f n = ft1 n [PROOFSTEP] have hn_ne_a : n ≠ a := by rintro rfl; exact haS (hs_mem hnS) [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n n : ι hnS : n ∈ s ⊢ n ≠ a [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) S : Finset ι hp_ind : iIndepSets π κ t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x n : ι hnS : n ∈ s haS : ¬n ∈ S ht2_mem_pia : t2 ∈ π n f : ι → Set Ω := fun n_1 => if n_1 = n then t2 else if n_1 ∈ s then ft1 n_1 else Set.univ h_f_mem : ∀ (n_1 : ι), n_1 ∈ insert n s → f n_1 ∈ π n_1 h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n ⊢ False [PROOFSTEP] exact haS (hs_mem hnS) [GOAL] case h_forall α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n n : ι hnS : n ∈ s hn_ne_a : n ≠ a ⊢ f n = ft1 n [PROOFSTEP] simp_rw [if_pos hnS, if_neg hn_ne_a] [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] have h_μ_t1 : ∀ᵐ a' ∂μ, κ a' t1 = ∏ n in s, κ a' (f n) := by filter_upwards [hp_ind s h_f_mem_pi] with a' ha' rw [h_t1, ← ha'] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n ⊢ ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) [PROOFSTEP] filter_upwards [hp_ind s h_f_mem_pi] with a' ha' [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n a' : α ha' : ↑↑(↑κ a') (⋂ (i : ι) (_ : i ∈ s), if i = a then t2 else if i ∈ s then ft1 i else Set.univ) = ∏ i in s, ↑↑(↑κ a') (if i = a then t2 else if i ∈ s then ft1 i else Set.univ) ⊢ ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (if n = a then t2 else if n ∈ s then ft1 n else Set.univ) [PROOFSTEP] rw [h_t1, ← ha'] [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n h_μ_t1 : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] have h_t2 : t2 = f a := by simp [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n h_μ_t1 : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) ⊢ t2 = f a [PROOFSTEP] simp [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n h_μ_t1 : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) h_t2 : t2 = f a ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] have h_μ_inter : ∀ᵐ a' ∂μ, κ a' (t1 ∩ t2) = ∏ n in insert a s, κ a' (f n) := by have h_t1_inter_t2 : t1 ∩ t2 = ⋂ n ∈ insert a s, f n := by rw [h_t1, h_t2, Finset.set_biInter_insert, Set.inter_comm] filter_upwards [hp_ind (insert a s) h_f_mem] with a' ha' rw [h_t1_inter_t2, ← ha'] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n h_μ_t1 : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) h_t2 : t2 = f a ⊢ ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') (t1 ∩ t2) = ∏ n in insert a s, ↑↑(↑κ a') (f n) [PROOFSTEP] have h_t1_inter_t2 : t1 ∩ t2 = ⋂ n ∈ insert a s, f n := by rw [h_t1, h_t2, Finset.set_biInter_insert, Set.inter_comm] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n h_μ_t1 : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) h_t2 : t2 = f a ⊢ t1 ∩ t2 = ⋂ (n : ι) (_ : n ∈ insert a s), f n [PROOFSTEP] rw [h_t1, h_t2, Finset.set_biInter_insert, Set.inter_comm] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n h_μ_t1 : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) h_t2 : t2 = f a h_t1_inter_t2 : t1 ∩ t2 = ⋂ (n : ι) (_ : n ∈ insert a s), f n ⊢ ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') (t1 ∩ t2) = ∏ n in insert a s, ↑↑(↑κ a') (f n) [PROOFSTEP] filter_upwards [hp_ind (insert a s) h_f_mem] with a' ha' [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n h_μ_t1 : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) h_t2 : t2 = f a h_t1_inter_t2 : t1 ∩ t2 = ⋂ (n : ι) (_ : n ∈ insert a s), f n a' : α ha' : ↑↑(↑κ a') (⋂ (i : ι) (_ : i ∈ insert a s), if i = a then t2 else if i ∈ s then ft1 i else Set.univ) = ∏ i in insert a s, ↑↑(↑κ a') (if i = a then t2 else if i ∈ s then ft1 i else Set.univ) ⊢ ↑↑(↑κ a') (t1 ∩ t2) = ∏ n in insert a s, ↑↑(↑κ a') (if n = a then t2 else if n ∈ s then ft1 n else Set.univ) [PROOFSTEP] rw [h_t1_inter_t2, ← ha'] [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n h_μ_t1 : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) h_t2 : t2 = f a h_μ_inter : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') (t1 ∩ t2) = ∏ n in insert a s, ↑↑(↑κ a') (f n) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] have has : a ∉ s := fun has_mem => haS (hs_mem has_mem) [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n h_μ_t1 : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) h_t2 : t2 = f a h_μ_inter : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') (t1 ∩ t2) = ∏ n in insert a s, ↑↑(↑κ a') (f n) has : ¬a ∈ s ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (t1 ∩ t2) = ↑↑(↑κ a) t1 * ↑↑(↑κ a) t2 [PROOFSTEP] filter_upwards [h_μ_t1, h_μ_inter] with a' ha1 ha2 [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n h_μ_t1 : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) h_t2 : t2 = f a h_μ_inter : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') (t1 ∩ t2) = ∏ n in insert a s, ↑↑(↑κ a') (f n) has : ¬a ∈ s a' : α ha1 : ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (if n = a then t2 else if n ∈ s then ft1 n else Set.univ) ha2 : ↑↑(↑κ a') (t1 ∩ t2) = ∏ n in insert a s, ↑↑(↑κ a') (if n = a then t2 else if n ∈ s then ft1 n else Set.univ) ⊢ ↑↑(↑κ a') (t1 ∩ t2) = ↑↑(↑κ a') t1 * ↑↑(↑κ a') t2 [PROOFSTEP] rw [ha2, Finset.prod_insert has, h_t2, mul_comm, ha1] [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α π : ι → Set (Set Ω) a : ι S : Finset ι hp_ind : iIndepSets π κ haS : ¬a ∈ S t1 t2 : Set Ω s : Finset ι hs_mem : s ⊆ S ft1 : ι → Set Ω hft1_mem : ∀ (x : ι), x ∈ s → ft1 x ∈ π x ht1_eq : t1 = ⋂ (x : ι) (_ : x ∈ s), ft1 x ht2_mem_pia : t2 ∈ π a f : ι → Set Ω := fun n => if n = a then t2 else if n ∈ s then ft1 n else Set.univ h_f_mem : ∀ (n : ι), n ∈ insert a s → f n ∈ π n h_f_mem_pi : ∀ (n : ι), n ∈ s → f n ∈ π n h_t1 : t1 = ⋂ (n : ι) (_ : n ∈ s), f n h_μ_t1 : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (f n) h_t2 : t2 = f a h_μ_inter : ∀ᵐ (a' : α) ∂μ, ↑↑(↑κ a') (t1 ∩ t2) = ∏ n in insert a s, ↑↑(↑κ a') (f n) has : ¬a ∈ s a' : α ha1 : ↑↑(↑κ a') t1 = ∏ n in s, ↑↑(↑κ a') (if n = a then t2 else if n ∈ s then ft1 n else Set.univ) ha2 : ↑↑(↑κ a') (t1 ∩ t2) = ∏ n in insert a s, ↑↑(↑κ a') (if n = a then t2 else if n ∈ s then ft1 n else Set.univ) ⊢ (∏ x in s, ↑↑(↑κ a') (if x = a then f a else if x ∈ s then ft1 x else Set.univ)) * ↑↑(↑κ a') (if a = a then f a else if a ∈ s then ft1 a else Set.univ) = (∏ n in s, ↑↑(↑κ a') (if n = a then t2 else if n ∈ s then ft1 n else Set.univ)) * ↑↑(↑κ a') (f a) [PROOFSTEP] simp only [ite_true] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ ⊢ kernel.iIndep m κ [PROOFSTEP] classical intro s f refine Finset.induction ?_ ?_ s · simp only [Finset.not_mem_empty, Set.mem_setOf_eq, IsEmpty.forall_iff, implies_true, Set.iInter_of_empty, Set.iInter_univ, measure_univ, Finset.prod_empty, Filter.eventually_true, forall_true_left] · intro a S ha_notin_S h_rec hf_m have hf_m_S : ∀ x ∈ S, MeasurableSet[m x] (f x) := fun x hx => hf_m x (by simp [hx]) let p := piiUnionInter π S set m_p := generateFrom p with hS_eq_generate have h_indep : Indep m_p (m a) κ μ := by have hp : IsPiSystem p := isPiSystem_piiUnionInter π h_pi S have h_le' : ∀ i, generateFrom (π i) ≤ _mΩ := fun i ↦ (h_generate i).symm.trans_le (h_le i) have hm_p : m_p ≤ _mΩ := generateFrom_piiUnionInter_le π h_le' S exact IndepSets.indep hm_p (h_le a) hp (h_pi a) hS_eq_generate (h_generate a) (iIndepSets.piiUnionInter_of_not_mem h_ind ha_notin_S) have h := h_indep.symm (f a) (⋂ n ∈ S, f n) (hf_m a (Finset.mem_insert_self a S)) ?_ · filter_upwards [h_rec hf_m_S, h] with a' ha' h' rwa [Finset.set_biInter_insert, Finset.prod_insert ha_notin_S, ← ha'] · have h_le_p : ∀ i ∈ S, m i ≤ m_p := by intros n hn rw [hS_eq_generate, h_generate n] refine le_generateFrom_piiUnionInter (S : Set ι) hn have h_S_f : ∀ i ∈ S, MeasurableSet[m_p] (f i) := fun i hi ↦ (h_le_p i hi) (f i) (hf_m_S i hi) exact S.measurableSet_biInter h_S_f [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ ⊢ kernel.iIndep m κ [PROOFSTEP] intro s f [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω ⊢ (∀ (i : ι), i ∈ s → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ s), f i) = ∏ i in s, ↑↑(↑κ a) (f i) [PROOFSTEP] refine Finset.induction ?_ ?_ s [GOAL] case refine_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω ⊢ (∀ (i : ι), i ∈ ∅ → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ ∅), f i) = ∏ i in ∅, ↑↑(↑κ a) (f i) [PROOFSTEP] simp only [Finset.not_mem_empty, Set.mem_setOf_eq, IsEmpty.forall_iff, implies_true, Set.iInter_of_empty, Set.iInter_univ, measure_univ, Finset.prod_empty, Filter.eventually_true, forall_true_left] [GOAL] case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω ⊢ ∀ ⦃a : ι⦄ {s : Finset ι}, ¬a ∈ s → ((∀ (i : ι), i ∈ s → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ s), f i) = ∏ i in s, ↑↑(↑κ a) (f i)) → (∀ (i : ι), i ∈ insert a s → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a_3 : α) ∂μ, ↑↑(↑κ a_3) (⋂ (i : ι) (_ : i ∈ insert a s), f i) = ∏ i in insert a s, ↑↑(↑κ a_3) (f i) [PROOFSTEP] intro a S ha_notin_S h_rec hf_m [GOAL] case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i ⊢ ∀ᵐ (a_1 : α) ∂μ, ↑↑(↑κ a_1) (⋂ (i : ι) (_ : i ∈ insert a S), f i) = ∏ i in insert a S, ↑↑(↑κ a_1) (f i) [PROOFSTEP] have hf_m_S : ∀ x ∈ S, MeasurableSet[m x] (f x) := fun x hx => hf_m x (by simp [hx]) [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i x : ι hx : x ∈ S ⊢ x ∈ insert a S [PROOFSTEP] simp [hx] [GOAL] case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) ⊢ ∀ᵐ (a_1 : α) ∂μ, ↑↑(↑κ a_1) (⋂ (i : ι) (_ : i ∈ insert a S), f i) = ∏ i in insert a S, ↑↑(↑κ a_1) (f i) [PROOFSTEP] let p := piiUnionInter π S [GOAL] case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S ⊢ ∀ᵐ (a_1 : α) ∂μ, ↑↑(↑κ a_1) (⋂ (i : ι) (_ : i ∈ insert a S), f i) = ∏ i in insert a S, ↑↑(↑κ a_1) (f i) [PROOFSTEP] set m_p := generateFrom p with hS_eq_generate [GOAL] case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p ⊢ ∀ᵐ (a_1 : α) ∂μ, ↑↑(↑κ a_1) (⋂ (i : ι) (_ : i ∈ insert a S), f i) = ∏ i in insert a S, ↑↑(↑κ a_1) (f i) [PROOFSTEP] have h_indep : Indep m_p (m a) κ μ := by have hp : IsPiSystem p := isPiSystem_piiUnionInter π h_pi S have h_le' : ∀ i, generateFrom (π i) ≤ _mΩ := fun i ↦ (h_generate i).symm.trans_le (h_le i) have hm_p : m_p ≤ _mΩ := generateFrom_piiUnionInter_le π h_le' S exact IndepSets.indep hm_p (h_le a) hp (h_pi a) hS_eq_generate (h_generate a) (iIndepSets.piiUnionInter_of_not_mem h_ind ha_notin_S) [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p ⊢ Indep m_p (m a) κ [PROOFSTEP] have hp : IsPiSystem p := isPiSystem_piiUnionInter π h_pi S [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p hp : IsPiSystem p ⊢ Indep m_p (m a) κ [PROOFSTEP] have h_le' : ∀ i, generateFrom (π i) ≤ _mΩ := fun i ↦ (h_generate i).symm.trans_le (h_le i) [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p hp : IsPiSystem p h_le' : ∀ (i : ι), generateFrom (π i) ≤ _mΩ ⊢ Indep m_p (m a) κ [PROOFSTEP] have hm_p : m_p ≤ _mΩ := generateFrom_piiUnionInter_le π h_le' S [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p hp : IsPiSystem p h_le' : ∀ (i : ι), generateFrom (π i) ≤ _mΩ hm_p : m_p ≤ _mΩ ⊢ Indep m_p (m a) κ [PROOFSTEP] exact IndepSets.indep hm_p (h_le a) hp (h_pi a) hS_eq_generate (h_generate a) (iIndepSets.piiUnionInter_of_not_mem h_ind ha_notin_S) [GOAL] case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p h_indep : Indep m_p (m a) κ ⊢ ∀ᵐ (a_1 : α) ∂μ, ↑↑(↑κ a_1) (⋂ (i : ι) (_ : i ∈ insert a S), f i) = ∏ i in insert a S, ↑↑(↑κ a_1) (f i) [PROOFSTEP] have h := h_indep.symm (f a) (⋂ n ∈ S, f n) (hf_m a (Finset.mem_insert_self a S)) ?_ [GOAL] case refine_2.refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p h_indep : Indep m_p (m a) κ h : ∀ᵐ (a_1 : α) ∂μ, ↑↑(↑κ a_1) (f a ∩ ⋂ (n : ι) (_ : n ∈ S), f n) = ↑↑(↑κ a_1) (f a) * ↑↑(↑κ a_1) (⋂ (n : ι) (_ : n ∈ S), f n) ⊢ ∀ᵐ (a_1 : α) ∂μ, ↑↑(↑κ a_1) (⋂ (i : ι) (_ : i ∈ insert a S), f i) = ∏ i in insert a S, ↑↑(↑κ a_1) (f i) [PROOFSTEP] filter_upwards [h_rec hf_m_S, h] with a' ha' h' [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p h_indep : Indep m_p (m a) κ h : ∀ᵐ (a_1 : α) ∂μ, ↑↑(↑κ a_1) (f a ∩ ⋂ (n : ι) (_ : n ∈ S), f n) = ↑↑(↑κ a_1) (f a) * ↑↑(↑κ a_1) (⋂ (n : ι) (_ : n ∈ S), f n) a' : α ha' : ↑↑(↑κ a') (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a') (f i) h' : ↑↑(↑κ a') (f a ∩ ⋂ (n : ι) (_ : n ∈ S), f n) = ↑↑(↑κ a') (f a) * ↑↑(↑κ a') (⋂ (n : ι) (_ : n ∈ S), f n) ⊢ ↑↑(↑κ a') (⋂ (i : ι) (_ : i ∈ insert a S), f i) = ∏ i in insert a S, ↑↑(↑κ a') (f i) [PROOFSTEP] rwa [Finset.set_biInter_insert, Finset.prod_insert ha_notin_S, ← ha'] [GOAL] case refine_2.refine_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p h_indep : Indep m_p (m a) κ ⊢ ⋂ (n : ι) (_ : n ∈ S), f n ∈ {s | MeasurableSet s} [PROOFSTEP] have h_le_p : ∀ i ∈ S, m i ≤ m_p := by intros n hn rw [hS_eq_generate, h_generate n] refine le_generateFrom_piiUnionInter (S : Set ι) hn [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p h_indep : Indep m_p (m a) κ ⊢ ∀ (i : ι), i ∈ S → m i ≤ m_p [PROOFSTEP] intros n hn [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p h_indep : Indep m_p (m a) κ n : ι hn : n ∈ S ⊢ m n ≤ m_p [PROOFSTEP] rw [hS_eq_generate, h_generate n] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p h_indep : Indep m_p (m a) κ n : ι hn : n ∈ S ⊢ generateFrom (π n) ≤ generateFrom p [PROOFSTEP] refine le_generateFrom_piiUnionInter (S : Set ι) hn [GOAL] case refine_2.refine_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p h_indep : Indep m_p (m a) κ h_le_p : ∀ (i : ι), i ∈ S → m i ≤ m_p ⊢ ⋂ (n : ι) (_ : n ∈ S), f n ∈ {s | MeasurableSet s} [PROOFSTEP] have h_S_f : ∀ i ∈ S, MeasurableSet[m_p] (f i) := fun i hi ↦ (h_le_p i hi) (f i) (hf_m_S i hi) [GOAL] case refine_2.refine_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : ¬a ∈ S h_rec : (∀ (i : ι), i ∈ S → f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i) = ∏ i in S, ↑↑(↑κ a) (f i) hf_m : ∀ (i : ι), i ∈ insert a S → f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ (x : ι), x ∈ S → MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p h_indep : Indep m_p (m a) κ h_le_p : ∀ (i : ι), i ∈ S → m i ≤ m_p h_S_f : ∀ (i : ι), i ∈ S → MeasurableSet (f i) ⊢ ⋂ (n : ι) (_ : n ∈ S), f n ∈ {s | MeasurableSet s} [PROOFSTEP] exact S.measurableSet_biInter h_S_f [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 s t : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m0 : MeasurableSpace Ω hs_meas : MeasurableSet s ht_meas : MeasurableSet t κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h : IndepSets {s} {t} κ u : Set Ω hu : u ∈ {s} ⊢ MeasurableSet u [PROOFSTEP] rwa [Set.mem_singleton_iff.mp hu] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 s t : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m0 : MeasurableSpace Ω hs_meas : MeasurableSet s ht_meas : MeasurableSet t κ : { x // x ∈ kernel α Ω } μ : Measure α inst✝ : IsMarkovKernel κ h : IndepSets {s} {t} κ u : Set Ω hu : u ∈ {t} ⊢ MeasurableSet u [PROOFSTEP] rwa [Set.mem_singleton_iff.mp hu] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 s✝ t✝ : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m₁ m₂ m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : Indep m₁ m₂ κ s t : Set Ω hs : MeasurableSet s ht : MeasurableSet t ⊢ IndepSet s t κ [PROOFSTEP] refine fun s' t' hs' ht' => h_indep s' t' ?_ ?_ [GOAL] case refine_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 s✝ t✝ : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m₁ m₂ m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : Indep m₁ m₂ κ s t : Set Ω hs : MeasurableSet s ht : MeasurableSet t s' t' : Set Ω hs' : s' ∈ {s_1 | MeasurableSet s_1} ht' : t' ∈ {s | MeasurableSet s} ⊢ s' ∈ {s | MeasurableSet s} [PROOFSTEP] refine @generateFrom_induction _ (fun u => MeasurableSet[m₁] u) { s } ?_ ?_ ?_ ?_ _ hs' [GOAL] case refine_1.refine_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 s✝ t✝ : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m₁ m₂ m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : Indep m₁ m₂ κ s t : Set Ω hs : MeasurableSet s ht : MeasurableSet t s' t' : Set Ω hs' : s' ∈ {s_1 | MeasurableSet s_1} ht' : t' ∈ {s | MeasurableSet s} ⊢ ∀ (t : Set Ω), t ∈ {s} → (fun u => MeasurableSet u) t [PROOFSTEP] simp only [Set.mem_singleton_iff, forall_eq, hs] [GOAL] case refine_1.refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 s✝ t✝ : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m₁ m₂ m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : Indep m₁ m₂ κ s t : Set Ω hs : MeasurableSet s ht : MeasurableSet t s' t' : Set Ω hs' : s' ∈ {s_1 | MeasurableSet s_1} ht' : t' ∈ {s | MeasurableSet s} ⊢ (fun u => MeasurableSet u) ∅ [PROOFSTEP] exact @MeasurableSet.empty _ m₁ [GOAL] case refine_1.refine_3 α : Type u_1 Ω : Type u_2 ι : Type u_3 s✝ t✝ : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m₁ m₂ m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : Indep m₁ m₂ κ s t : Set Ω hs : MeasurableSet s ht : MeasurableSet t s' t' : Set Ω hs' : s' ∈ {s_1 | MeasurableSet s_1} ht' : t' ∈ {s | MeasurableSet s} ⊢ ∀ (t : Set Ω), (fun u => MeasurableSet u) t → (fun u => MeasurableSet u) tᶜ [PROOFSTEP] exact fun u hu => hu.compl [GOAL] case refine_1.refine_4 α : Type u_1 Ω : Type u_2 ι : Type u_3 s✝ t✝ : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m₁ m₂ m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : Indep m₁ m₂ κ s t : Set Ω hs : MeasurableSet s ht : MeasurableSet t s' t' : Set Ω hs' : s' ∈ {s_1 | MeasurableSet s_1} ht' : t' ∈ {s | MeasurableSet s} ⊢ ∀ (f : ℕ → Set Ω), (∀ (n : ℕ), (fun u => MeasurableSet u) (f n)) → (fun u => MeasurableSet u) (⋃ (i : ℕ), f i) [PROOFSTEP] exact fun f hf => MeasurableSet.iUnion hf [GOAL] case refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 s✝ t✝ : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m₁ m₂ m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : Indep m₁ m₂ κ s t : Set Ω hs : MeasurableSet s ht : MeasurableSet t s' t' : Set Ω hs' : s' ∈ {s_1 | MeasurableSet s_1} ht' : t' ∈ {s | MeasurableSet s} ⊢ t' ∈ {s | MeasurableSet s} [PROOFSTEP] refine @generateFrom_induction _ (fun u => MeasurableSet[m₂] u) { t } ?_ ?_ ?_ ?_ _ ht' [GOAL] case refine_2.refine_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 s✝ t✝ : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m₁ m₂ m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : Indep m₁ m₂ κ s t : Set Ω hs : MeasurableSet s ht : MeasurableSet t s' t' : Set Ω hs' : s' ∈ {s_1 | MeasurableSet s_1} ht' : t' ∈ {s | MeasurableSet s} ⊢ ∀ (t_1 : Set Ω), t_1 ∈ {t} → (fun u => MeasurableSet u) t_1 [PROOFSTEP] simp only [Set.mem_singleton_iff, forall_eq, ht] [GOAL] case refine_2.refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 s✝ t✝ : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m₁ m₂ m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : Indep m₁ m₂ κ s t : Set Ω hs : MeasurableSet s ht : MeasurableSet t s' t' : Set Ω hs' : s' ∈ {s_1 | MeasurableSet s_1} ht' : t' ∈ {s | MeasurableSet s} ⊢ (fun u => MeasurableSet u) ∅ [PROOFSTEP] exact @MeasurableSet.empty _ m₂ [GOAL] case refine_2.refine_3 α : Type u_1 Ω : Type u_2 ι : Type u_3 s✝ t✝ : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m₁ m₂ m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : Indep m₁ m₂ κ s t : Set Ω hs : MeasurableSet s ht : MeasurableSet t s' t' : Set Ω hs' : s' ∈ {s_1 | MeasurableSet s_1} ht' : t' ∈ {s | MeasurableSet s} ⊢ ∀ (t : Set Ω), (fun u => MeasurableSet u) t → (fun u => MeasurableSet u) tᶜ [PROOFSTEP] exact fun u hu => hu.compl [GOAL] case refine_2.refine_4 α : Type u_1 Ω : Type u_2 ι : Type u_3 s✝ t✝ : Set Ω S T : Set (Set Ω) _mα : MeasurableSpace α m₁ m₂ m0 : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α h_indep : Indep m₁ m₂ κ s t : Set Ω hs : MeasurableSet s ht : MeasurableSet t s' t' : Set Ω hs' : s' ∈ {s_1 | MeasurableSet s_1} ht' : t' ∈ {s | MeasurableSet s} ⊢ ∀ (f : ℕ → Set Ω), (∀ (n : ℕ), (fun u => MeasurableSet u) (f n)) → (fun u => MeasurableSet u) (⋃ (i : ℕ), f i) [PROOFSTEP] exact fun f hf => MeasurableSet.iUnion hf [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' ⊢ IndepFun f g κ ↔ ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t) [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' ⊢ IndepFun f g κ → ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t) [PROOFSTEP] intro h [GOAL] case mpr α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' ⊢ (∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t)) → IndepFun f g κ [PROOFSTEP] intro h [GOAL] case mp α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' h : IndepFun f g κ ⊢ ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t) [PROOFSTEP] refine' fun s t hs ht => h (f ⁻¹' s) (g ⁻¹' t) ⟨s, hs, rfl⟩ ⟨t, ht, rfl⟩ [GOAL] case mpr α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' h : ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t) ⊢ IndepFun f g κ [PROOFSTEP] rintro _ _ ⟨s, hs, rfl⟩ ⟨t, ht, rfl⟩ [GOAL] case mpr.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' h : ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t) s : Set β hs : MeasurableSet s t : Set β' ht : MeasurableSet t ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t) [PROOFSTEP] exact h s t hs ht [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i ⊢ iIndepFun m f κ ↔ ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) [PROOFSTEP] refine' ⟨fun h S sets h_meas => h _ fun i hi_mem => ⟨sets i, h_meas i hi_mem, rfl⟩, _⟩ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i ⊢ (∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i)) → iIndepFun m f κ [PROOFSTEP] intro h S setsΩ h_meas [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ∏ i in S, ↑↑(↑κ a) (setsΩ i) [PROOFSTEP] classical let setsβ : ∀ i : ι, Set (β i) := fun i => dite (i ∈ S) (fun hi_mem => (h_meas i hi_mem).choose) fun _ => Set.univ have h_measβ : ∀ i ∈ S, MeasurableSet[m i] (setsβ i) := by intro i hi_mem simp_rw [dif_pos hi_mem] exact (h_meas i hi_mem).choose_spec.1 have h_preim : ∀ i ∈ S, setsΩ i = f i ⁻¹' setsβ i := by intro i hi_mem simp_rw [dif_pos hi_mem] exact (h_meas i hi_mem).choose_spec.2.symm have h_left_eq : ∀ a, κ a (⋂ i ∈ S, setsΩ i) = κ a (⋂ i ∈ S, (f i) ⁻¹' (setsβ i)) := by intro a congr with x simp_rw [Set.mem_iInter] constructor <;> intro h i hi_mem <;> specialize h i hi_mem · rwa [h_preim i hi_mem] at h · rwa [h_preim i hi_mem] have h_right_eq : ∀ a, (∏ i in S, κ a (setsΩ i)) = ∏ i in S, κ a ((f i) ⁻¹' (setsβ i)) := by refine' fun a ↦ Finset.prod_congr rfl fun i hi_mem => _ rw [h_preim i hi_mem] filter_upwards [h S h_measβ] with a ha rw [h_left_eq a, h_right_eq a, ha] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ∏ i in S, ↑↑(↑κ a) (setsΩ i) [PROOFSTEP] let setsβ : ∀ i : ι, Set (β i) := fun i => dite (i ∈ S) (fun hi_mem => (h_meas i hi_mem).choose) fun _ => Set.univ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ∏ i in S, ↑↑(↑κ a) (setsΩ i) [PROOFSTEP] have h_measβ : ∀ i ∈ S, MeasurableSet[m i] (setsβ i) := by intro i hi_mem simp_rw [dif_pos hi_mem] exact (h_meas i hi_mem).choose_spec.1 [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ ⊢ ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) [PROOFSTEP] intro i hi_mem [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ i : ι hi_mem : i ∈ S ⊢ MeasurableSet (setsβ i) [PROOFSTEP] simp_rw [dif_pos hi_mem] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ i : ι hi_mem : i ∈ S ⊢ MeasurableSet (Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i)) [PROOFSTEP] exact (h_meas i hi_mem).choose_spec.1 [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ∏ i in S, ↑↑(↑κ a) (setsΩ i) [PROOFSTEP] have h_preim : ∀ i ∈ S, setsΩ i = f i ⁻¹' setsβ i := by intro i hi_mem simp_rw [dif_pos hi_mem] exact (h_meas i hi_mem).choose_spec.2.symm [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) ⊢ ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i [PROOFSTEP] intro i hi_mem [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) i : ι hi_mem : i ∈ S ⊢ setsΩ i = f i ⁻¹' setsβ i [PROOFSTEP] simp_rw [dif_pos hi_mem] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) i : ι hi_mem : i ∈ S ⊢ setsΩ i = f i ⁻¹' Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) [PROOFSTEP] exact (h_meas i hi_mem).choose_spec.2.symm [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ∏ i in S, ↑↑(↑κ a) (setsΩ i) [PROOFSTEP] have h_left_eq : ∀ a, κ a (⋂ i ∈ S, setsΩ i) = κ a (⋂ i ∈ S, (f i) ⁻¹' (setsβ i)) := by intro a congr with x simp_rw [Set.mem_iInter] constructor <;> intro h i hi_mem <;> specialize h i hi_mem · rwa [h_preim i hi_mem] at h · rwa [h_preim i hi_mem] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i ⊢ ∀ (a : α), ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' setsβ i) [PROOFSTEP] intro a [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i a : α ⊢ ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' setsβ i) [PROOFSTEP] congr with x [GOAL] case e_a.h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i a : α x : Ω ⊢ x ∈ ⋂ (i : ι) (_ : i ∈ S), setsΩ i ↔ x ∈ ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' setsβ i [PROOFSTEP] simp_rw [Set.mem_iInter] [GOAL] case e_a.h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i a : α x : Ω ⊢ (∀ (i : ι), i ∈ S → x ∈ setsΩ i) ↔ ∀ (i : ι), i ∈ S → x ∈ f i ⁻¹' if h : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ [PROOFSTEP] constructor [GOAL] case e_a.h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i a : α x : Ω ⊢ (∀ (i : ι), i ∈ S → x ∈ setsΩ i) → ∀ (i : ι), i ∈ S → x ∈ f i ⁻¹' if h : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ [PROOFSTEP] intro h i hi_mem [GOAL] case e_a.h.mpr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i a : α x : Ω ⊢ (∀ (i : ι), i ∈ S → x ∈ f i ⁻¹' if h : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ) → ∀ (i : ι), i ∈ S → x ∈ setsΩ i [PROOFSTEP] intro h i hi_mem [GOAL] case e_a.h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h✝ : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i a : α x : Ω h : ∀ (i : ι), i ∈ S → x ∈ setsΩ i i : ι hi_mem : i ∈ S ⊢ x ∈ f i ⁻¹' if h : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ [PROOFSTEP] specialize h i hi_mem [GOAL] case e_a.h.mpr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h✝ : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i a : α x : Ω h : ∀ (i : ι), i ∈ S → x ∈ f i ⁻¹' if h : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ i : ι hi_mem : i ∈ S ⊢ x ∈ setsΩ i [PROOFSTEP] specialize h i hi_mem [GOAL] case e_a.h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h✝ : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i a : α x : Ω i : ι hi_mem : i ∈ S h : x ∈ setsΩ i ⊢ x ∈ f i ⁻¹' if h : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ [PROOFSTEP] rwa [h_preim i hi_mem] at h [GOAL] case e_a.h.mpr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h✝ : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i a : α x : Ω i : ι hi_mem : i ∈ S h : x ∈ f i ⁻¹' if h : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ ⊢ x ∈ setsΩ i [PROOFSTEP] rwa [h_preim i hi_mem] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i h_left_eq : ∀ (a : α), ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' setsβ i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ∏ i in S, ↑↑(↑κ a) (setsΩ i) [PROOFSTEP] have h_right_eq : ∀ a, (∏ i in S, κ a (setsΩ i)) = ∏ i in S, κ a ((f i) ⁻¹' (setsβ i)) := by refine' fun a ↦ Finset.prod_congr rfl fun i hi_mem => _ rw [h_preim i hi_mem] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i h_left_eq : ∀ (a : α), ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' setsβ i) ⊢ ∀ (a : α), ∏ i in S, ↑↑(↑κ a) (setsΩ i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' setsβ i) [PROOFSTEP] refine' fun a ↦ Finset.prod_congr rfl fun i hi_mem => _ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i h_left_eq : ∀ (a : α), ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' setsβ i) a : α i : ι hi_mem : i ∈ S ⊢ ↑↑(↑κ a) (setsΩ i) = ↑↑(↑κ a) (f i ⁻¹' setsβ i) [PROOFSTEP] rw [h_preim i hi_mem] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i h_left_eq : ∀ (a : α), ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' setsβ i) h_right_eq : ∀ (a : α), ∏ i in S, ↑↑(↑κ a) (setsΩ i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' setsβ i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ∏ i in S, ↑↑(↑κ a) (setsΩ i) [PROOFSTEP] filter_upwards [h S h_measβ] with a ha [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' ι : Type u_8 β : ι → Type u_9 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i h : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) S : Finset ι setsΩ : ι → Set Ω h_meas : ∀ (i : ι), i ∈ S → setsΩ i ∈ (fun x => {s | MeasurableSet s}) i setsβ : (i : ι) → Set (β i) := fun i => if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ h_measβ : ∀ (i : ι), i ∈ S → MeasurableSet (setsβ i) h_preim : ∀ (i : ι), i ∈ S → setsΩ i = f i ⁻¹' setsβ i h_left_eq : ∀ (a : α), ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' setsβ i) h_right_eq : ∀ (a : α), ∏ i in S, ↑↑(↑κ a) (setsΩ i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' setsβ i) a : α ha : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' if hi_mem : i ∈ S then Exists.choose (_ : setsΩ i ∈ (fun x => {s | MeasurableSet s}) i) else Set.univ) ⊢ ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), setsΩ i) = ∏ i in S, ↑↑(↑κ a) (setsΩ i) [PROOFSTEP] rw [h_left_eq a, h_right_eq a, ha] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' inst✝ : IsMarkovKernel κ hf : Measurable f hg : Measurable g ⊢ IndepFun f g κ ↔ ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → IndepSet (f ⁻¹' s) (g ⁻¹' t) κ [PROOFSTEP] refine' indepFun_iff_measure_inter_preimage_eq_mul.trans _ [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' inst✝ : IsMarkovKernel κ hf : Measurable f hg : Measurable g ⊢ (∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t)) ↔ ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → IndepSet (f ⁻¹' s) (g ⁻¹' t) κ [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' inst✝ : IsMarkovKernel κ hf : Measurable f hg : Measurable g ⊢ (∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t)) → ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → IndepSet (f ⁻¹' s) (g ⁻¹' t) κ [PROOFSTEP] intro h s t hs ht [GOAL] case mpr α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' inst✝ : IsMarkovKernel κ hf : Measurable f hg : Measurable g ⊢ (∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → IndepSet (f ⁻¹' s) (g ⁻¹' t) κ) → ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t) [PROOFSTEP] intro h s t hs ht [GOAL] case mp α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' inst✝ : IsMarkovKernel κ hf : Measurable f hg : Measurable g h : ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t) s : Set β t : Set β' hs : MeasurableSet s ht : MeasurableSet t ⊢ IndepSet (f ⁻¹' s) (g ⁻¹' t) κ [PROOFSTEP] specialize h s t hs ht [GOAL] case mpr α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' inst✝ : IsMarkovKernel κ hf : Measurable f hg : Measurable g h : ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → IndepSet (f ⁻¹' s) (g ⁻¹' t) κ s : Set β t : Set β' hs : MeasurableSet s ht : MeasurableSet t ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t) [PROOFSTEP] specialize h s t hs ht [GOAL] case mp α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' inst✝ : IsMarkovKernel κ hf : Measurable f hg : Measurable g s : Set β t : Set β' hs : MeasurableSet s ht : MeasurableSet t h : ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t) ⊢ IndepSet (f ⁻¹' s) (g ⁻¹' t) κ [PROOFSTEP] rwa [indepSet_iff_measure_inter_eq_mul (hf hs) (hg ht) κ μ] [GOAL] case mpr α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' inst✝ : IsMarkovKernel κ hf : Measurable f hg : Measurable g s : Set β t : Set β' hs : MeasurableSet s ht : MeasurableSet t h : IndepSet (f ⁻¹' s) (g ⁻¹' t) κ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑(↑κ a) (f ⁻¹' s) * ↑↑(↑κ a) (g ⁻¹' t) [PROOFSTEP] rwa [← indepSet_iff_measure_inter_eq_mul (hf hs) (hg ht) κ μ] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β g✝ : Ω → β' mβ : MeasurableSpace β f g f' g' : Ω → β hfg : IndepFun f g κ hf : ∀ᵐ (a : α) ∂μ, f =ᵐ[↑κ a] f' hg : ∀ᵐ (a : α) ∂μ, g =ᵐ[↑κ a] g' ⊢ IndepFun f' g' κ [PROOFSTEP] rintro _ _ ⟨A, hA, rfl⟩ ⟨B, hB, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β g✝ : Ω → β' mβ : MeasurableSpace β f g f' g' : Ω → β hfg : IndepFun f g κ hf : ∀ᵐ (a : α) ∂μ, f =ᵐ[↑κ a] f' hg : ∀ᵐ (a : α) ∂μ, g =ᵐ[↑κ a] g' A : Set β hA : MeasurableSet A B : Set β hB : MeasurableSet B ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (f' ⁻¹' A ∩ g' ⁻¹' B) = ↑↑(↑κ a) (f' ⁻¹' A) * ↑↑(↑κ a) (g' ⁻¹' B) [PROOFSTEP] filter_upwards [hf, hg, hfg _ _ ⟨_, hA, rfl⟩ ⟨_, hB, rfl⟩] with a hf' hg' hfg' [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β g✝ : Ω → β' mβ : MeasurableSpace β f g f' g' : Ω → β hfg : IndepFun f g κ hf : ∀ᵐ (a : α) ∂μ, f =ᵐ[↑κ a] f' hg : ∀ᵐ (a : α) ∂μ, g =ᵐ[↑κ a] g' A : Set β hA : MeasurableSet A B : Set β hB : MeasurableSet B a : α hf' : f =ᵐ[↑κ a] f' hg' : g =ᵐ[↑κ a] g' hfg' : ↑↑(↑κ a) (f ⁻¹' A ∩ g ⁻¹' B) = ↑↑(↑κ a) (f ⁻¹' A) * ↑↑(↑κ a) (g ⁻¹' B) ⊢ ↑↑(↑κ a) (f' ⁻¹' A ∩ g' ⁻¹' B) = ↑↑(↑κ a) (f' ⁻¹' A) * ↑↑(↑κ a) (g' ⁻¹' B) [PROOFSTEP] have h1 : f ⁻¹' A =ᵐ[κ a] f' ⁻¹' A := hf'.fun_comp A [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β g✝ : Ω → β' mβ : MeasurableSpace β f g f' g' : Ω → β hfg : IndepFun f g κ hf : ∀ᵐ (a : α) ∂μ, f =ᵐ[↑κ a] f' hg : ∀ᵐ (a : α) ∂μ, g =ᵐ[↑κ a] g' A : Set β hA : MeasurableSet A B : Set β hB : MeasurableSet B a : α hf' : f =ᵐ[↑κ a] f' hg' : g =ᵐ[↑κ a] g' hfg' : ↑↑(↑κ a) (f ⁻¹' A ∩ g ⁻¹' B) = ↑↑(↑κ a) (f ⁻¹' A) * ↑↑(↑κ a) (g ⁻¹' B) h1 : f ⁻¹' A =ᵐ[↑κ a] f' ⁻¹' A ⊢ ↑↑(↑κ a) (f' ⁻¹' A ∩ g' ⁻¹' B) = ↑↑(↑κ a) (f' ⁻¹' A) * ↑↑(↑κ a) (g' ⁻¹' B) [PROOFSTEP] have h2 : g ⁻¹' B =ᵐ[κ a] g' ⁻¹' B := hg'.fun_comp B [GOAL] case h α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β g✝ : Ω → β' mβ : MeasurableSpace β f g f' g' : Ω → β hfg : IndepFun f g κ hf : ∀ᵐ (a : α) ∂μ, f =ᵐ[↑κ a] f' hg : ∀ᵐ (a : α) ∂μ, g =ᵐ[↑κ a] g' A : Set β hA : MeasurableSet A B : Set β hB : MeasurableSet B a : α hf' : f =ᵐ[↑κ a] f' hg' : g =ᵐ[↑κ a] g' hfg' : ↑↑(↑κ a) (f ⁻¹' A ∩ g ⁻¹' B) = ↑↑(↑κ a) (f ⁻¹' A) * ↑↑(↑κ a) (g ⁻¹' B) h1 : f ⁻¹' A =ᵐ[↑κ a] f' ⁻¹' A h2 : g ⁻¹' B =ᵐ[↑κ a] g' ⁻¹' B ⊢ ↑↑(↑κ a) (f' ⁻¹' A ∩ g' ⁻¹' B) = ↑↑(↑κ a) (f' ⁻¹' A) * ↑↑(↑κ a) (g' ⁻¹' B) [PROOFSTEP] rwa [← measure_congr h1, ← measure_congr h2, ← measure_congr (h1.inter h2)] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' mγ : MeasurableSpace γ mγ' : MeasurableSpace γ' φ : β → γ ψ : β' → γ' hfg : IndepFun f g κ hφ : Measurable φ hψ : Measurable ψ ⊢ IndepFun (φ ∘ f) (ψ ∘ g) κ [PROOFSTEP] rintro _ _ ⟨A, hA, rfl⟩ ⟨B, hB, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' mγ : MeasurableSpace γ mγ' : MeasurableSpace γ' φ : β → γ ψ : β' → γ' hfg : IndepFun f g κ hφ : Measurable φ hψ : Measurable ψ A : Set γ hA : MeasurableSet A B : Set γ' hB : MeasurableSet B ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (φ ∘ f ⁻¹' A ∩ ψ ∘ g ⁻¹' B) = ↑↑(↑κ a) (φ ∘ f ⁻¹' A) * ↑↑(↑κ a) (ψ ∘ g ⁻¹' B) [PROOFSTEP] apply hfg [GOAL] case intro.intro.intro.intro.a α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' mγ : MeasurableSpace γ mγ' : MeasurableSpace γ' φ : β → γ ψ : β' → γ' hfg : IndepFun f g κ hφ : Measurable φ hψ : Measurable ψ A : Set γ hA : MeasurableSet A B : Set γ' hB : MeasurableSet B ⊢ φ ∘ f ⁻¹' A ∈ {s | MeasurableSet s} [PROOFSTEP] exact ⟨φ ⁻¹' A, hφ hA, Set.preimage_comp.symm⟩ [GOAL] case intro.intro.intro.intro.a α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' mγ : MeasurableSpace γ mγ' : MeasurableSpace γ' φ : β → γ ψ : β' → γ' hfg : IndepFun f g κ hφ : Measurable φ hψ : Measurable ψ A : Set γ hA : MeasurableSet A B : Set γ' hB : MeasurableSet B ⊢ ψ ∘ g ⁻¹' B ∈ {s | MeasurableSet s} [PROOFSTEP] exact ⟨ψ ⁻¹' B, hψ hB, Set.preimage_comp.symm⟩ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) ⊢ IndepFun (fun a i => f (↑i) a) (fun a i => f (↑i) a) κ [PROOFSTEP] let πSβ := Set.pi (Set.univ : Set S) '' Set.pi (Set.univ : Set S) fun i => {s : Set (β i) | MeasurableSet[m i] s} [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} ⊢ IndepFun (fun a i => f (↑i) a) (fun a i => f (↑i) a) κ [PROOFSTEP] let πS := {s : Set Ω | ∃ t ∈ πSβ, (fun a (i : S) => f i a) ⁻¹' t = s} [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} ⊢ IndepFun (fun a i => f (↑i) a) (fun a i => f (↑i) a) κ [PROOFSTEP] have hπS_pi : IsPiSystem πS := by exact IsPiSystem.comap (@isPiSystem_pi _ _ ?_) _ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} ⊢ IsPiSystem πS [PROOFSTEP] exact IsPiSystem.comap (@isPiSystem_pi _ _ ?_) _ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS ⊢ IndepFun (fun a i => f (↑i) a) (fun a i => f (↑i) a) κ [PROOFSTEP] have hπS_gen : (MeasurableSpace.pi.comap fun a (i : S) => f i a) = generateFrom πS := by rw [generateFrom_pi.symm, comap_generateFrom] congr [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS ⊢ MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS [PROOFSTEP] rw [generateFrom_pi.symm, comap_generateFrom] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS ⊢ generateFrom ((Set.preimage fun a i => f (↑i) a) '' (Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s})) = generateFrom πS [PROOFSTEP] congr [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS ⊢ IndepFun (fun a i => f (↑i) a) (fun a i => f (↑i) a) κ [PROOFSTEP] let πTβ := Set.pi (Set.univ : Set T) '' Set.pi (Set.univ : Set T) fun i => {s : Set (β i) | MeasurableSet[m i] s} [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} ⊢ IndepFun (fun a i => f (↑i) a) (fun a i => f (↑i) a) κ [PROOFSTEP] let πT := {s : Set Ω | ∃ t ∈ πTβ, (fun a (i : T) => f i a) ⁻¹' t = s} [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} ⊢ IndepFun (fun a i => f (↑i) a) (fun a i => f (↑i) a) κ [PROOFSTEP] have hπT_pi : IsPiSystem πT := by exact IsPiSystem.comap (@isPiSystem_pi _ _ ?_) _ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} ⊢ IsPiSystem πT [PROOFSTEP] exact IsPiSystem.comap (@isPiSystem_pi _ _ ?_) _ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT ⊢ IndepFun (fun a i => f (↑i) a) (fun a i => f (↑i) a) κ [PROOFSTEP] have hπT_gen : (MeasurableSpace.pi.comap fun a (i : T) => f i a) = generateFrom πT := by rw [generateFrom_pi.symm, comap_generateFrom] congr -- To prove independence, we prove independence of the generating π-systems. [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT ⊢ MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT [PROOFSTEP] rw [generateFrom_pi.symm, comap_generateFrom] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT ⊢ generateFrom ((Set.preimage fun a i => f (↑i) a) '' (Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s})) = generateFrom πT [PROOFSTEP] congr -- To prove independence, we prove independence of the generating π-systems. [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT ⊢ IndepFun (fun a i => f (↑i) a) (fun a i => f (↑i) a) κ [PROOFSTEP] refine IndepSets.indep (Measurable.comap_le (measurable_pi_iff.mpr fun i => hf_meas i)) (Measurable.comap_le (measurable_pi_iff.mpr fun i => hf_meas i)) hπS_pi hπT_pi hπS_gen hπT_gen ?_ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT ⊢ IndepSets πS πT κ [PROOFSTEP] rintro _ _ ⟨s, ⟨sets_s, hs1, hs2⟩, rfl⟩ ⟨t, ⟨sets_t, ht1, ht2⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs1 : sets_s ∈ Set.pi Set.univ fun i => {s | MeasurableSet s} hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht1 : sets_t ∈ Set.pi Set.univ fun i => {s | MeasurableSet s} ht2 : Set.pi Set.univ sets_t = t ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' s ∩ (fun a i => f (↑i) a) ⁻¹' t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' t) [PROOFSTEP] simp only [Set.mem_univ_pi, Set.mem_setOf_eq] at hs1 ht1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' s ∩ (fun a i => f (↑i) a) ⁻¹' t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' t) [PROOFSTEP] rw [← hs2, ← ht2] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] classical let sets_s' : ∀ i : ι, Set (β i) := fun i => dite (i ∈ S) (fun hi => sets_s ⟨i, hi⟩) fun _ => Set.univ have h_sets_s'_eq : ∀ {i} (hi : i ∈ S), sets_s' i = sets_s ⟨i, hi⟩ := by intro i hi; simp_rw [dif_pos hi] have h_sets_s'_univ : ∀ {i} (_hi : i ∈ T), sets_s' i = Set.univ := by intro i hi; simp_rw [dif_neg (Finset.disjoint_right.mp hST hi)] let sets_t' : ∀ i : ι, Set (β i) := fun i => dite (i ∈ T) (fun hi => sets_t ⟨i, hi⟩) fun _ => Set.univ have h_sets_t'_univ : ∀ {i} (_hi : i ∈ S), sets_t' i = Set.univ := by intro i hi; simp_rw [dif_neg (Finset.disjoint_left.mp hST hi)] have h_meas_s' : ∀ i ∈ S, MeasurableSet (sets_s' i) := by intro i hi; rw [h_sets_s'_eq hi]; exact hs1 _ have h_meas_t' : ∀ i ∈ T, MeasurableSet (sets_t' i) := by intro i hi; simp_rw [dif_pos hi]; exact ht1 _ have h_eq_inter_S : (fun (ω : Ω) (i : ↥S) => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ i ∈ S, f i ⁻¹' sets_s' i := by ext1 x simp_rw [Set.mem_preimage, Set.mem_univ_pi, Set.mem_iInter] constructor <;> intro h · intro i hi; simp only [h_sets_s'_eq hi, Set.mem_preimage]; exact h ⟨i, hi⟩ · rintro ⟨i, hi⟩; specialize h i hi; rwa [dif_pos hi] at h have h_eq_inter_T : (fun (ω : Ω) (i : ↥T) => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ i ∈ T, f i ⁻¹' sets_t' i := by ext1 x simp only [Set.mem_preimage, Set.mem_univ_pi, Set.mem_iInter] constructor <;> intro h · intro i hi; simp_rw [dif_pos hi]; exact h ⟨i, hi⟩ · rintro ⟨i, hi⟩; specialize h i hi; simp_rw [dif_pos hi] at h ; exact h rw [iIndepFun_iff_measure_inter_preimage_eq_mul] at hf_Indep have h_Inter_inter : ((⋂ i ∈ S, f i ⁻¹' sets_s' i) ∩ ⋂ i ∈ T, f i ⁻¹' sets_t' i) = ⋂ i ∈ S ∪ T, f i ⁻¹' (sets_s' i ∩ sets_t' i) := by ext1 x simp_rw [Set.mem_inter_iff, Set.mem_iInter, Set.mem_preimage, Finset.mem_union] constructor <;> intro h · intro i hi cases' hi with hiS hiT · replace h := h.1 i hiS simp_rw [dif_pos hiS, dif_neg (Finset.disjoint_left.mp hST hiS)] exact ⟨by rwa [dif_pos hiS] at h , Set.mem_univ _⟩ · replace h := h.2 i hiT simp_rw [dif_pos hiT, dif_neg (Finset.disjoint_right.mp hST hiT)] exact ⟨Set.mem_univ _, by rwa [dif_pos hiT] at h ⟩ · exact ⟨fun i hi => (h i (Or.inl hi)).1, fun i hi => (h i (Or.inr hi)).2⟩ have h_meas_inter : ∀ i ∈ S ∪ T, MeasurableSet (sets_s' i ∩ sets_t' i) := by intros i hi_mem rw [Finset.mem_union] at hi_mem cases' hi_mem with hi_mem hi_mem · rw [h_sets_t'_univ hi_mem, Set.inter_univ] exact h_meas_s' i hi_mem · rw [h_sets_s'_univ hi_mem, Set.univ_inter] exact h_meas_t' i hi_mem filter_upwards [hf_Indep S h_meas_s', hf_Indep T h_meas_t', hf_Indep (S ∪ T) h_meas_inter] with a h_indepS h_indepT h_indepST rw [h_eq_inter_S, h_eq_inter_T, h_indepS, h_indepT, h_Inter_inter, h_indepST, Finset.prod_union hST] congr 1 · refine' Finset.prod_congr rfl fun i hi => _ -- todo : show is necessary because of todo above show κ a (f i ⁻¹' (sets_s' i ∩ sets_t' i)) = κ a (f i ⁻¹' (sets_s' i)) rw [h_sets_t'_univ hi, Set.inter_univ] · refine' Finset.prod_congr rfl fun i hi => _ -- todo : show is necessary because of todo above show κ a (f i ⁻¹' (sets_s' i ∩ sets_t' i)) = κ a (f i ⁻¹' (sets_t' i)) rw [h_sets_s'_univ hi, Set.univ_inter] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] let sets_s' : ∀ i : ι, Set (β i) := fun i => dite (i ∈ S) (fun hi => sets_s ⟨i, hi⟩) fun _ => Set.univ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] have h_sets_s'_eq : ∀ {i} (hi : i ∈ S), sets_s' i = sets_s ⟨i, hi⟩ := by intro i hi; simp_rw [dif_pos hi] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ ⊢ ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } [PROOFSTEP] intro i hi [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ i : ι hi : i ∈ S ⊢ sets_s' i = sets_s { val := i, property := hi } [PROOFSTEP] simp_rw [dif_pos hi] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] have h_sets_s'_univ : ∀ {i} (_hi : i ∈ T), sets_s' i = Set.univ := by intro i hi; simp_rw [dif_neg (Finset.disjoint_right.mp hST hi)] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } ⊢ ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ [PROOFSTEP] intro i hi [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } i : ι hi : i ∈ T ⊢ sets_s' i = Set.univ [PROOFSTEP] simp_rw [dif_neg (Finset.disjoint_right.mp hST hi)] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] let sets_t' : ∀ i : ι, Set (β i) := fun i => dite (i ∈ T) (fun hi => sets_t ⟨i, hi⟩) fun _ => Set.univ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] have h_sets_t'_univ : ∀ {i} (_hi : i ∈ S), sets_t' i = Set.univ := by intro i hi; simp_rw [dif_neg (Finset.disjoint_left.mp hST hi)] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ ⊢ ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ [PROOFSTEP] intro i hi [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ i : ι hi : i ∈ S ⊢ sets_t' i = Set.univ [PROOFSTEP] simp_rw [dif_neg (Finset.disjoint_left.mp hST hi)] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] have h_meas_s' : ∀ i ∈ S, MeasurableSet (sets_s' i) := by intro i hi; rw [h_sets_s'_eq hi]; exact hs1 _ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ ⊢ ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) [PROOFSTEP] intro i hi [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ i : ι hi : i ∈ S ⊢ MeasurableSet (sets_s' i) [PROOFSTEP] rw [h_sets_s'_eq hi] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ i : ι hi : i ∈ S ⊢ MeasurableSet (sets_s { val := i, property := hi }) [PROOFSTEP] exact hs1 _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] have h_meas_t' : ∀ i ∈ T, MeasurableSet (sets_t' i) := by intro i hi; simp_rw [dif_pos hi]; exact ht1 _ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) ⊢ ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) [PROOFSTEP] intro i hi [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) i : ι hi : i ∈ T ⊢ MeasurableSet (sets_t' i) [PROOFSTEP] simp_rw [dif_pos hi] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) i : ι hi : i ∈ T ⊢ MeasurableSet (sets_t { val := i, property := hi }) [PROOFSTEP] exact ht1 _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] have h_eq_inter_S : (fun (ω : Ω) (i : ↥S) => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ i ∈ S, f i ⁻¹' sets_s' i := by ext1 x simp_rw [Set.mem_preimage, Set.mem_univ_pi, Set.mem_iInter] constructor <;> intro h · intro i hi; simp only [h_sets_s'_eq hi, Set.mem_preimage]; exact h ⟨i, hi⟩ · rintro ⟨i, hi⟩; specialize h i hi; rwa [dif_pos hi] at h [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) ⊢ (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i [PROOFSTEP] ext1 x [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) x : Ω ⊢ x ∈ (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s ↔ x ∈ ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i [PROOFSTEP] simp_rw [Set.mem_preimage, Set.mem_univ_pi, Set.mem_iInter] [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) x : Ω ⊢ (∀ (i : { x // x ∈ S }), f (↑i) x ∈ sets_s i) ↔ ∀ (i : ι), i ∈ S → x ∈ f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) x : Ω ⊢ (∀ (i : { x // x ∈ S }), f (↑i) x ∈ sets_s i) → ∀ (i : ι), i ∈ S → x ∈ f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ [PROOFSTEP] intro h [GOAL] case h.mpr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) x : Ω ⊢ (∀ (i : ι), i ∈ S → x ∈ f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) → ∀ (i : { x // x ∈ S }), f (↑i) x ∈ sets_s i [PROOFSTEP] intro h [GOAL] case h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) x : Ω h : ∀ (i : { x // x ∈ S }), f (↑i) x ∈ sets_s i ⊢ ∀ (i : ι), i ∈ S → x ∈ f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ [PROOFSTEP] intro i hi [GOAL] case h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) x : Ω h : ∀ (i : { x // x ∈ S }), f (↑i) x ∈ sets_s i i : ι hi : i ∈ S ⊢ x ∈ f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ [PROOFSTEP] simp only [h_sets_s'_eq hi, Set.mem_preimage] [GOAL] case h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) x : Ω h : ∀ (i : { x // x ∈ S }), f (↑i) x ∈ sets_s i i : ι hi : i ∈ S ⊢ f i x ∈ sets_s { val := i, property := hi } [PROOFSTEP] exact h ⟨i, hi⟩ [GOAL] case h.mpr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) x : Ω h : ∀ (i : ι), i ∈ S → x ∈ f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ ⊢ ∀ (i : { x // x ∈ S }), f (↑i) x ∈ sets_s i [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case h.mpr.mk α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) x : Ω h : ∀ (i : ι), i ∈ S → x ∈ f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ i : ι hi : i ∈ S ⊢ f (↑{ val := i, property := hi }) x ∈ sets_s { val := i, property := hi } [PROOFSTEP] specialize h i hi [GOAL] case h.mpr.mk α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) x : Ω i : ι hi : i ∈ S h : x ∈ f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ ⊢ f (↑{ val := i, property := hi }) x ∈ sets_s { val := i, property := hi } [PROOFSTEP] rwa [dif_pos hi] at h [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] have h_eq_inter_T : (fun (ω : Ω) (i : ↥T) => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ i ∈ T, f i ⁻¹' sets_t' i := by ext1 x simp only [Set.mem_preimage, Set.mem_univ_pi, Set.mem_iInter] constructor <;> intro h · intro i hi; simp_rw [dif_pos hi]; exact h ⟨i, hi⟩ · rintro ⟨i, hi⟩; specialize h i hi; simp_rw [dif_pos hi] at h ; exact h [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i ⊢ (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i [PROOFSTEP] ext1 x [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i x : Ω ⊢ x ∈ (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t ↔ x ∈ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i [PROOFSTEP] simp only [Set.mem_preimage, Set.mem_univ_pi, Set.mem_iInter] [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i x : Ω ⊢ (∀ (i : { x // x ∈ T }), f (↑i) x ∈ sets_t i) ↔ ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i x : Ω ⊢ (∀ (i : { x // x ∈ T }), f (↑i) x ∈ sets_t i) → ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] intro h [GOAL] case h.mpr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i x : Ω ⊢ (∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) → ∀ (i : { x // x ∈ T }), f (↑i) x ∈ sets_t i [PROOFSTEP] intro h [GOAL] case h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i x : Ω h : ∀ (i : { x // x ∈ T }), f (↑i) x ∈ sets_t i ⊢ ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] intro i hi [GOAL] case h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i x : Ω h : ∀ (i : { x // x ∈ T }), f (↑i) x ∈ sets_t i i : ι hi : i ∈ T ⊢ f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] simp_rw [dif_pos hi] [GOAL] case h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i x : Ω h : ∀ (i : { x // x ∈ T }), f (↑i) x ∈ sets_t i i : ι hi : i ∈ T ⊢ f i x ∈ sets_t { val := i, property := hi } [PROOFSTEP] exact h ⟨i, hi⟩ [GOAL] case h.mpr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i x : Ω h : ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ ⊢ ∀ (i : { x // x ∈ T }), f (↑i) x ∈ sets_t i [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case h.mpr.mk α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i x : Ω h : ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ i : ι hi : i ∈ T ⊢ f (↑{ val := i, property := hi }) x ∈ sets_t { val := i, property := hi } [PROOFSTEP] specialize h i hi [GOAL] case h.mpr.mk α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i x : Ω i : ι hi : i ∈ T h : f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ ⊢ f (↑{ val := i, property := hi }) x ∈ sets_t { val := i, property := hi } [PROOFSTEP] simp_rw [dif_pos hi] at h [GOAL] case h.mpr.mk α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i x : Ω i : ι hi : i ∈ T h : f i x ∈ sets_t { val := i, property := hi } ⊢ f (↑{ val := i, property := hi }) x ∈ sets_t { val := i, property := hi } [PROOFSTEP] exact h [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] rw [iIndepFun_iff_measure_inter_preimage_eq_mul] at hf_Indep [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] have h_Inter_inter : ((⋂ i ∈ S, f i ⁻¹' sets_s' i) ∩ ⋂ i ∈ T, f i ⁻¹' sets_t' i) = ⋂ i ∈ S ∪ T, f i ⁻¹' (sets_s' i ∩ sets_t' i) := by ext1 x simp_rw [Set.mem_inter_iff, Set.mem_iInter, Set.mem_preimage, Finset.mem_union] constructor <;> intro h · intro i hi cases' hi with hiS hiT · replace h := h.1 i hiS simp_rw [dif_pos hiS, dif_neg (Finset.disjoint_left.mp hST hiS)] exact ⟨by rwa [dif_pos hiS] at h , Set.mem_univ _⟩ · replace h := h.2 i hiT simp_rw [dif_pos hiT, dif_neg (Finset.disjoint_right.mp hST hiT)] exact ⟨Set.mem_univ _, by rwa [dif_pos hiT] at h ⟩ · exact ⟨fun i hi => (h i (Or.inl hi)).1, fun i hi => (h i (Or.inr hi)).2⟩ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i ⊢ (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) [PROOFSTEP] ext1 x [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω ⊢ x ∈ (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i ↔ x ∈ ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) [PROOFSTEP] simp_rw [Set.mem_inter_iff, Set.mem_iInter, Set.mem_preimage, Finset.mem_union] [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω ⊢ ((∀ (i : ι), i ∈ S → f i x ∈ if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∧ ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) ↔ ∀ (i : ι), i ∈ S ∨ i ∈ T → f i x ∈ (if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω ⊢ ((∀ (i : ι), i ∈ S → f i x ∈ if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∧ ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) → ∀ (i : ι), i ∈ S ∨ i ∈ T → f i x ∈ (if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] intro h [GOAL] case h.mpr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω ⊢ (∀ (i : ι), i ∈ S ∨ i ∈ T → f i x ∈ (if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) → (∀ (i : ι), i ∈ S → f i x ∈ if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∧ ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] intro h [GOAL] case h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω h : (∀ (i : ι), i ∈ S → f i x ∈ if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∧ ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ ⊢ ∀ (i : ι), i ∈ S ∨ i ∈ T → f i x ∈ (if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] intro i hi [GOAL] case h.mp α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω h : (∀ (i : ι), i ∈ S → f i x ∈ if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∧ ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ i : ι hi : i ∈ S ∨ i ∈ T ⊢ f i x ∈ (if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] cases' hi with hiS hiT [GOAL] case h.mp.inl α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω h : (∀ (i : ι), i ∈ S → f i x ∈ if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∧ ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ i : ι hiS : i ∈ S ⊢ f i x ∈ (if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] replace h := h.1 i hiS [GOAL] case h.mp.inl α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω i : ι hiS : i ∈ S h : f i x ∈ if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ ⊢ f i x ∈ (if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] simp_rw [dif_pos hiS, dif_neg (Finset.disjoint_left.mp hST hiS)] [GOAL] case h.mp.inl α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω i : ι hiS : i ∈ S h : f i x ∈ if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ ⊢ f i x ∈ sets_s { val := i, property := hiS } ∩ Set.univ [PROOFSTEP] exact ⟨by rwa [dif_pos hiS] at h , Set.mem_univ _⟩ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω i : ι hiS : i ∈ S h : f i x ∈ if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ ⊢ f i x ∈ sets_s { val := i, property := hiS } [PROOFSTEP] rwa [dif_pos hiS] at h [GOAL] case h.mp.inr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω h : (∀ (i : ι), i ∈ S → f i x ∈ if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∧ ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ i : ι hiT : i ∈ T ⊢ f i x ∈ (if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] replace h := h.2 i hiT [GOAL] case h.mp.inr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω i : ι hiT : i ∈ T h : f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ ⊢ f i x ∈ (if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] simp_rw [dif_pos hiT, dif_neg (Finset.disjoint_right.mp hST hiT)] [GOAL] case h.mp.inr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω i : ι hiT : i ∈ T h : f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ ⊢ f i x ∈ Set.univ ∩ sets_t { val := i, property := hiT } [PROOFSTEP] exact ⟨Set.mem_univ _, by rwa [dif_pos hiT] at h ⟩ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω i : ι hiT : i ∈ T h : f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ ⊢ f i x ∈ sets_t { val := i, property := hiT } [PROOFSTEP] rwa [dif_pos hiT] at h [GOAL] case h.mpr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i x : Ω h : ∀ (i : ι), i ∈ S ∨ i ∈ T → f i x ∈ (if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ ⊢ (∀ (i : ι), i ∈ S → f i x ∈ if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∧ ∀ (i : ι), i ∈ T → f i x ∈ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ [PROOFSTEP] exact ⟨fun i hi => (h i (Or.inl hi)).1, fun i hi => (h i (Or.inr hi)).2⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] have h_meas_inter : ∀ i ∈ S ∪ T, MeasurableSet (sets_s' i ∩ sets_t' i) := by intros i hi_mem rw [Finset.mem_union] at hi_mem cases' hi_mem with hi_mem hi_mem · rw [h_sets_t'_univ hi_mem, Set.inter_univ] exact h_meas_s' i hi_mem · rw [h_sets_s'_univ hi_mem, Set.univ_inter] exact h_meas_t' i hi_mem [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) ⊢ ∀ (i : ι), i ∈ S ∪ T → MeasurableSet (sets_s' i ∩ sets_t' i) [PROOFSTEP] intros i hi_mem [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) i : ι hi_mem : i ∈ S ∪ T ⊢ MeasurableSet (sets_s' i ∩ sets_t' i) [PROOFSTEP] rw [Finset.mem_union] at hi_mem [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) i : ι hi_mem : i ∈ S ∨ i ∈ T ⊢ MeasurableSet (sets_s' i ∩ sets_t' i) [PROOFSTEP] cases' hi_mem with hi_mem hi_mem [GOAL] case inl α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) i : ι hi_mem : i ∈ S ⊢ MeasurableSet (sets_s' i ∩ sets_t' i) [PROOFSTEP] rw [h_sets_t'_univ hi_mem, Set.inter_univ] [GOAL] case inl α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) i : ι hi_mem : i ∈ S ⊢ MeasurableSet (sets_s' i) [PROOFSTEP] exact h_meas_s' i hi_mem [GOAL] case inr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) i : ι hi_mem : i ∈ T ⊢ MeasurableSet (sets_s' i ∩ sets_t' i) [PROOFSTEP] rw [h_sets_s'_univ hi_mem, Set.univ_inter] [GOAL] case inr α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) i : ι hi_mem : i ∈ T ⊢ MeasurableSet (sets_t' i) [PROOFSTEP] exact h_meas_t' i hi_mem [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) h_meas_inter : ∀ (i : ι), i ∈ S ∪ T → MeasurableSet (sets_s' i ∩ sets_t' i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] filter_upwards [hf_Indep S h_meas_s', hf_Indep T h_meas_t', hf_Indep (S ∪ T) h_meas_inter] with a h_indepS h_indepT h_indepST [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) h_meas_inter : ∀ (i : ι), i ∈ S ∪ T → MeasurableSet (sets_s' i ∩ sets_t' i) a : α h_indepS : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) h_indepT : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) = ∏ i in T, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) h_indepST : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) = ∏ i in S ∪ T, ↑↑(↑κ a) (f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) ⊢ ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s ∩ (fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) = ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_s) * ↑↑(↑κ a) ((fun a i => f (↑i) a) ⁻¹' Set.pi Set.univ sets_t) [PROOFSTEP] rw [h_eq_inter_S, h_eq_inter_T, h_indepS, h_indepT, h_Inter_inter, h_indepST, Finset.prod_union hST] [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) h_meas_inter : ∀ (i : ι), i ∈ S ∪ T → MeasurableSet (sets_s' i ∩ sets_t' i) a : α h_indepS : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) h_indepT : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) = ∏ i in T, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) h_indepST : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) = ∏ i in S ∪ T, ↑↑(↑κ a) (f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) ⊢ (∏ x in S, ↑↑(↑κ a) (f x ⁻¹' ((if hi : x ∈ S then sets_s { val := x, property := hi } else Set.univ) ∩ if hi : x ∈ T then sets_t { val := x, property := hi } else Set.univ))) * ∏ x in T, ↑↑(↑κ a) (f x ⁻¹' ((if hi : x ∈ S then sets_s { val := x, property := hi } else Set.univ) ∩ if hi : x ∈ T then sets_t { val := x, property := hi } else Set.univ)) = (∏ i in S, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ)) * ∏ i in T, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) [PROOFSTEP] congr 1 [GOAL] case h.e_a α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) h_meas_inter : ∀ (i : ι), i ∈ S ∪ T → MeasurableSet (sets_s' i ∩ sets_t' i) a : α h_indepS : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) h_indepT : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) = ∏ i in T, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) h_indepST : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) = ∏ i in S ∪ T, ↑↑(↑κ a) (f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) ⊢ ∏ x in S, ↑↑(↑κ a) (f x ⁻¹' ((if hi : x ∈ S then sets_s { val := x, property := hi } else Set.univ) ∩ if hi : x ∈ T then sets_t { val := x, property := hi } else Set.univ)) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) [PROOFSTEP] refine' Finset.prod_congr rfl fun i hi => _ -- todo : show is necessary because of todo above [GOAL] case h.e_a α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) h_meas_inter : ∀ (i : ι), i ∈ S ∪ T → MeasurableSet (sets_s' i ∩ sets_t' i) a : α h_indepS : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) h_indepT : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) = ∏ i in T, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) h_indepST : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) = ∏ i in S ∪ T, ↑↑(↑κ a) (f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) i : ι hi : i ∈ S ⊢ ↑↑(↑κ a) (f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) = ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) [PROOFSTEP] show κ a (f i ⁻¹' (sets_s' i ∩ sets_t' i)) = κ a (f i ⁻¹' (sets_s' i)) [GOAL] case h.e_a α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) h_meas_inter : ∀ (i : ι), i ∈ S ∪ T → MeasurableSet (sets_s' i ∩ sets_t' i) a : α h_indepS : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) h_indepT : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) = ∏ i in T, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) h_indepST : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) = ∏ i in S ∪ T, ↑↑(↑κ a) (f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) i : ι hi : i ∈ S ⊢ ↑↑(↑κ a) (f i ⁻¹' (sets_s' i ∩ sets_t' i)) = ↑↑(↑κ a) (f i ⁻¹' sets_s' i) [PROOFSTEP] rw [h_sets_t'_univ hi, Set.inter_univ] [GOAL] case h.e_a α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) h_meas_inter : ∀ (i : ι), i ∈ S ∪ T → MeasurableSet (sets_s' i ∩ sets_t' i) a : α h_indepS : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) h_indepT : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) = ∏ i in T, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) h_indepST : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) = ∏ i in S ∪ T, ↑↑(↑κ a) (f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) ⊢ ∏ x in T, ↑↑(↑κ a) (f x ⁻¹' ((if hi : x ∈ S then sets_s { val := x, property := hi } else Set.univ) ∩ if hi : x ∈ T then sets_t { val := x, property := hi } else Set.univ)) = ∏ i in T, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) [PROOFSTEP] refine' Finset.prod_congr rfl fun i hi => _ -- todo : show is necessary because of todo above [GOAL] case h.e_a α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) h_meas_inter : ∀ (i : ι), i ∈ S ∪ T → MeasurableSet (sets_s' i ∩ sets_t' i) a : α h_indepS : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) h_indepT : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) = ∏ i in T, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) h_indepST : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) = ∏ i in S ∪ T, ↑↑(↑κ a) (f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) i : ι hi : i ∈ T ⊢ ↑↑(↑κ a) (f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) = ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) [PROOFSTEP] show κ a (f i ⁻¹' (sets_s' i ∩ sets_t' i)) = κ a (f i ⁻¹' (sets_t' i)) [GOAL] case h.e_a α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' sets i) hf_meas : ∀ (i : ι), Measurable (f i) πSβ : Set (Set ((i : { x // x ∈ S }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πS : Set (Set Ω) := {s | ∃ t, t ∈ πSβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπS_pi : IsPiSystem πS hπS_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πS πTβ : Set (Set ((i : { x // x ∈ T }) → β ↑i)) := Set.pi Set.univ '' Set.pi Set.univ fun i => {s | MeasurableSet s} πT : Set (Set Ω) := {s | ∃ t, t ∈ πTβ ∧ (fun a i => f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem πT hπT_gen : MeasurableSpace.comap (fun a i => f (↑i) a) pi = generateFrom πT s : Set ((i : { x // x ∈ S }) → β ↑i) sets_s : (i : { x // x ∈ S }) → Set (β ↑i) hs2 : Set.pi Set.univ sets_s = s t : Set ((i : { x // x ∈ T }) → β ↑i) sets_t : (i : { x // x ∈ T }) → Set (β ↑i) ht2 : Set.pi Set.univ sets_t = t hs1 : ∀ (i : { x // x ∈ S }), MeasurableSet (sets_s i) ht1 : ∀ (i : { x // x ∈ T }), MeasurableSet (sets_t i) sets_s' : (i : ι) → Set (β i) := fun i => if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), sets_s' i = sets_s { val := i, property := hi } h_sets_s'_univ : ∀ {i : ι}, i ∈ T → sets_s' i = Set.univ sets_t' : (i : ι) → Set (β i) := fun i => if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → sets_t' i = Set.univ h_meas_s' : ∀ (i : ι), i ∈ S → MeasurableSet (sets_s' i) h_meas_t' : ∀ (i : ι), i ∈ T → MeasurableSet (sets_t' i) h_eq_inter_S : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_s = ⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i h_eq_inter_T : (fun ω i => f (↑i) ω) ⁻¹' Set.pi Set.univ sets_t = ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i h_Inter_inter : (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets_s' i) ∩ ⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' sets_t' i = ⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' (sets_s' i ∩ sets_t' i) h_meas_inter : ∀ (i : ι), i ∈ S ∪ T → MeasurableSet (sets_s' i ∩ sets_t' i) a : α h_indepS : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) = ∏ i in S, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) h_indepT : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ T), f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) = ∏ i in T, ↑↑(↑κ a) (f i ⁻¹' if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ) h_indepST : ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S ∪ T), f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) = ∏ i in S ∪ T, ↑↑(↑κ a) (f i ⁻¹' ((if hi : i ∈ S then sets_s { val := i, property := hi } else Set.univ) ∩ if hi : i ∈ T then sets_t { val := i, property := hi } else Set.univ)) i : ι hi : i ∈ T ⊢ ↑↑(↑κ a) (f i ⁻¹' (sets_s' i ∩ sets_t' i)) = ↑↑(↑κ a) (f i ⁻¹' sets_t' i) [PROOFSTEP] rw [h_sets_s'_univ hi, Set.univ_inter] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k ⊢ IndepFun (fun a => (f i a, f j a)) (f k) κ [PROOFSTEP] classical have h_right : f k = (fun p : ∀ j : ({ k } : Finset ι), β j => p ⟨k, Finset.mem_singleton_self k⟩) ∘ fun a (j : ({ k } : Finset ι)) => f j a := rfl have h_meas_right : Measurable fun p : ∀ j : ({ k } : Finset ι), β j => p ⟨k, Finset.mem_singleton_self k⟩ := measurable_pi_apply _ let s : Finset ι := { i, j } have h_left : (fun ω => (f i ω, f j ω)) = (fun p : ∀ l : s, β l => (p ⟨i, Finset.mem_insert_self i _⟩, p ⟨j, Finset.mem_insert_of_mem (Finset.mem_singleton_self _)⟩)) ∘ fun a (j : s) => f j a := by ext1 a simp only [Prod.mk.inj_iff] constructor have h_meas_left : Measurable fun p : ∀ l : s, β l => (p ⟨i, Finset.mem_insert_self i _⟩, p ⟨j, Finset.mem_insert_of_mem (Finset.mem_singleton_self _)⟩) := Measurable.prod (measurable_pi_apply _) (measurable_pi_apply _) rw [h_left, h_right] refine' (hf_Indep.indepFun_finset s { k } _ hf_meas).comp h_meas_left h_meas_right rw [Finset.disjoint_singleton_right] simp only [Finset.mem_insert, Finset.mem_singleton, not_or] exact ⟨hik.symm, hjk.symm⟩ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k ⊢ IndepFun (fun a => (f i a, f j a)) (f k) κ [PROOFSTEP] have h_right : f k = (fun p : ∀ j : ({ k } : Finset ι), β j => p ⟨k, Finset.mem_singleton_self k⟩) ∘ fun a (j : ({ k } : Finset ι)) => f j a := rfl [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a ⊢ IndepFun (fun a => (f i a, f j a)) (f k) κ [PROOFSTEP] have h_meas_right : Measurable fun p : ∀ j : ({ k } : Finset ι), β j => p ⟨k, Finset.mem_singleton_self k⟩ := measurable_pi_apply _ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := k, property := (_ : k ∈ {k}) } ⊢ IndepFun (fun a => (f i a, f j a)) (f k) κ [PROOFSTEP] let s : Finset ι := { i, j } [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := k, property := (_ : k ∈ {k}) } s : Finset ι := {i, j} ⊢ IndepFun (fun a => (f i a, f j a)) (f k) κ [PROOFSTEP] have h_left : (fun ω => (f i ω, f j ω)) = (fun p : ∀ l : s, β l => (p ⟨i, Finset.mem_insert_self i _⟩, p ⟨j, Finset.mem_insert_of_mem (Finset.mem_singleton_self _)⟩)) ∘ fun a (j : s) => f j a := by ext1 a simp only [Prod.mk.inj_iff] constructor [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := k, property := (_ : k ∈ {k}) } s : Finset ι := {i, j} ⊢ (fun ω => (f i ω, f j ω)) = (fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) })) ∘ fun a j => f (↑j) a [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := k, property := (_ : k ∈ {k}) } s : Finset ι := {i, j} a : Ω ⊢ (f i a, f j a) = ((fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) })) ∘ fun a j => f (↑j) a) a [PROOFSTEP] simp only [Prod.mk.inj_iff] [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := k, property := (_ : k ∈ {k}) } s : Finset ι := {i, j} a : Ω ⊢ (f i a, f j a) = ((fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) })) ∘ fun a j_1 => f (↑j_1) a) a [PROOFSTEP] constructor [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := k, property := (_ : k ∈ {k}) } s : Finset ι := {i, j} h_left : (fun ω => (f i ω, f j ω)) = (fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) })) ∘ fun a j => f (↑j) a ⊢ IndepFun (fun a => (f i a, f j a)) (f k) κ [PROOFSTEP] have h_meas_left : Measurable fun p : ∀ l : s, β l => (p ⟨i, Finset.mem_insert_self i _⟩, p ⟨j, Finset.mem_insert_of_mem (Finset.mem_singleton_self _)⟩) := Measurable.prod (measurable_pi_apply _) (measurable_pi_apply _) [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := k, property := (_ : k ∈ {k}) } s : Finset ι := {i, j} h_left : (fun ω => (f i ω, f j ω)) = (fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) })) ∘ fun a j => f (↑j) a h_meas_left : Measurable fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) }) ⊢ IndepFun (fun a => (f i a, f j a)) (f k) κ [PROOFSTEP] rw [h_left, h_right] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := k, property := (_ : k ∈ {k}) } s : Finset ι := {i, j} h_left : (fun ω => (f i ω, f j ω)) = (fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) })) ∘ fun a j => f (↑j) a h_meas_left : Measurable fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) }) ⊢ IndepFun ((fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) })) ∘ fun a j => f (↑j) a) ((fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a) κ [PROOFSTEP] refine' (hf_Indep.indepFun_finset s { k } _ hf_meas).comp h_meas_left h_meas_right [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := k, property := (_ : k ∈ {k}) } s : Finset ι := {i, j} h_left : (fun ω => (f i ω, f j ω)) = (fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) })) ∘ fun a j => f (↑j) a h_meas_left : Measurable fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) }) ⊢ Disjoint s {k} [PROOFSTEP] rw [Finset.disjoint_singleton_right] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := k, property := (_ : k ∈ {k}) } s : Finset ι := {i, j} h_left : (fun ω => (f i ω, f j ω)) = (fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) })) ∘ fun a j => f (↑j) a h_meas_left : Measurable fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) }) ⊢ ¬k ∈ s [PROOFSTEP] simp only [Finset.mem_insert, Finset.mem_singleton, not_or] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝ : IsMarkovKernel κ ι : Type u_8 β : ι → Type u_9 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i hf_Indep : iIndepFun m f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k h_right : f k = (fun p => p { val := k, property := (_ : k ∈ {k}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := k, property := (_ : k ∈ {k}) } s : Finset ι := {i, j} h_left : (fun ω => (f i ω, f j ω)) = (fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) })) ∘ fun a j => f (↑j) a h_meas_left : Measurable fun p => (p { val := i, property := (_ : i ∈ {i, j}) }, p { val := j, property := (_ : j ∈ {i, j}) }) ⊢ ¬k = i ∧ ¬k = j [PROOFSTEP] exact ⟨hik.symm, hjk.symm⟩ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : Mul β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k ⊢ IndepFun (f i * f j) (f k) κ [PROOFSTEP] have : IndepFun (fun ω => (f i ω, f j ω)) (f k) κ μ := hf_Indep.indepFun_prod hf_meas i j k hik hjk [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : Mul β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k this : IndepFun (fun ω => (f i ω, f j ω)) (f k) κ ⊢ IndepFun (f i * f j) (f k) κ [PROOFSTEP] change IndepFun ((fun p : β × β => p.fst * p.snd) ∘ fun ω => (f i ω, f j ω)) (id ∘ f k) κ μ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : Mul β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) i j k : ι hik : i ≠ k hjk : j ≠ k this : IndepFun (fun ω => (f i ω, f j ω)) (f k) κ ⊢ IndepFun ((fun p => p.fst * p.snd) ∘ fun ω => (f i ω, f j ω)) (id ∘ f k) κ [PROOFSTEP] exact IndepFun.comp this (measurable_fst.mul measurable_snd) measurable_id [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s ⊢ IndepFun (∏ j in s, f j) (f i) κ [PROOFSTEP] classical have h_right : f i = (fun p : ∀ _j : ({ i } : Finset ι), β => p ⟨i, Finset.mem_singleton_self i⟩) ∘ fun a (j : ({ i } : Finset ι)) => f j a := rfl have h_meas_right : Measurable fun p : ∀ _j : ({ i } : Finset ι), β => p ⟨i, Finset.mem_singleton_self i⟩ := measurable_pi_apply ⟨i, Finset.mem_singleton_self i⟩ have h_left : ∏ j in s, f j = (fun p : ∀ _j : s, β => ∏ j, p j) ∘ fun a (j : s) => f j a := by ext1 a simp only [Function.comp_apply] have : (∏ j : ↥s, f (↑j) a) = (∏ j : ↥s, f ↑j) a := by rw [Finset.prod_apply] rw [this, Finset.prod_coe_sort] have h_meas_left : Measurable fun p : ∀ _j : s, β => ∏ j, p j := Finset.univ.measurable_prod fun (j : ↥s) (_H : j ∈ Finset.univ) => measurable_pi_apply j rw [h_left, h_right] exact (hf_Indep.indepFun_finset s { i } (Finset.disjoint_singleton_left.mpr hi).symm hf_meas).comp h_meas_left h_meas_right [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s ⊢ IndepFun (∏ j in s, f j) (f i) κ [PROOFSTEP] have h_right : f i = (fun p : ∀ _j : ({ i } : Finset ι), β => p ⟨i, Finset.mem_singleton_self i⟩) ∘ fun a (j : ({ i } : Finset ι)) => f j a := rfl [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s h_right : f i = (fun p => p { val := i, property := (_ : i ∈ {i}) }) ∘ fun a j => f (↑j) a ⊢ IndepFun (∏ j in s, f j) (f i) κ [PROOFSTEP] have h_meas_right : Measurable fun p : ∀ _j : ({ i } : Finset ι), β => p ⟨i, Finset.mem_singleton_self i⟩ := measurable_pi_apply ⟨i, Finset.mem_singleton_self i⟩ [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s h_right : f i = (fun p => p { val := i, property := (_ : i ∈ {i}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := i, property := (_ : i ∈ {i}) } ⊢ IndepFun (∏ j in s, f j) (f i) κ [PROOFSTEP] have h_left : ∏ j in s, f j = (fun p : ∀ _j : s, β => ∏ j, p j) ∘ fun a (j : s) => f j a := by ext1 a simp only [Function.comp_apply] have : (∏ j : ↥s, f (↑j) a) = (∏ j : ↥s, f ↑j) a := by rw [Finset.prod_apply] rw [this, Finset.prod_coe_sort] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s h_right : f i = (fun p => p { val := i, property := (_ : i ∈ {i}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := i, property := (_ : i ∈ {i}) } ⊢ ∏ j in s, f j = (fun p => ∏ j : { x // x ∈ s }, p j) ∘ fun a j => f (↑j) a [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s h_right : f i = (fun p => p { val := i, property := (_ : i ∈ {i}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := i, property := (_ : i ∈ {i}) } a : Ω ⊢ Finset.prod s (fun j => f j) a = ((fun p => ∏ j : { x // x ∈ s }, p j) ∘ fun a j => f (↑j) a) a [PROOFSTEP] simp only [Function.comp_apply] [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s h_right : f i = (fun p => p { val := i, property := (_ : i ∈ {i}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := i, property := (_ : i ∈ {i}) } a : Ω ⊢ Finset.prod s (fun j => f j) a = ∏ j : { x // x ∈ s }, f (↑j) a [PROOFSTEP] have : (∏ j : ↥s, f (↑j) a) = (∏ j : ↥s, f ↑j) a := by rw [Finset.prod_apply] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s h_right : f i = (fun p => p { val := i, property := (_ : i ∈ {i}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := i, property := (_ : i ∈ {i}) } a : Ω ⊢ ∏ j : { x // x ∈ s }, f (↑j) a = Finset.prod Finset.univ (fun j => f ↑j) a [PROOFSTEP] rw [Finset.prod_apply] [GOAL] case h α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s h_right : f i = (fun p => p { val := i, property := (_ : i ∈ {i}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := i, property := (_ : i ∈ {i}) } a : Ω this : ∏ j : { x // x ∈ s }, f (↑j) a = Finset.prod Finset.univ (fun j => f ↑j) a ⊢ Finset.prod s (fun j => f j) a = ∏ j : { x // x ∈ s }, f (↑j) a [PROOFSTEP] rw [this, Finset.prod_coe_sort] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s h_right : f i = (fun p => p { val := i, property := (_ : i ∈ {i}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := i, property := (_ : i ∈ {i}) } h_left : ∏ j in s, f j = (fun p => ∏ j : { x // x ∈ s }, p j) ∘ fun a j => f (↑j) a ⊢ IndepFun (∏ j in s, f j) (f i) κ [PROOFSTEP] have h_meas_left : Measurable fun p : ∀ _j : s, β => ∏ j, p j := Finset.univ.measurable_prod fun (j : ↥s) (_H : j ∈ Finset.univ) => measurable_pi_apply j [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s h_right : f i = (fun p => p { val := i, property := (_ : i ∈ {i}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := i, property := (_ : i ∈ {i}) } h_left : ∏ j in s, f j = (fun p => ∏ j : { x // x ∈ s }, p j) ∘ fun a j => f (↑j) a h_meas_left : Measurable fun p => ∏ j : { x // x ∈ s }, p j ⊢ IndepFun (∏ j in s, f j) (f i) κ [PROOFSTEP] rw [h_left, h_right] [GOAL] α : Type u_1 Ω : Type u_2 ι✝ : Type u_3 β✝ : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f✝ : Ω → β✝ g : Ω → β' inst✝² : IsMarkovKernel κ ι : Type u_8 β : Type u_9 m : MeasurableSpace β inst✝¹ : CommMonoid β inst✝ : MeasurableMul₂ β f : ι → Ω → β hf_Indep : iIndepFun (fun x => m) f κ hf_meas : ∀ (i : ι), Measurable (f i) s : Finset ι i : ι hi : ¬i ∈ s h_right : f i = (fun p => p { val := i, property := (_ : i ∈ {i}) }) ∘ fun a j => f (↑j) a h_meas_right : Measurable fun p => p { val := i, property := (_ : i ∈ {i}) } h_left : ∏ j in s, f j = (fun p => ∏ j : { x // x ∈ s }, p j) ∘ fun a j => f (↑j) a h_meas_left : Measurable fun p => ∏ j : { x // x ∈ s }, p j ⊢ IndepFun ((fun p => ∏ j : { x // x ∈ s }, p j) ∘ fun a j => f (↑j) a) ((fun p => p { val := i, property := (_ : i ∈ {i}) }) ∘ fun a j => f (↑j) a) κ [PROOFSTEP] exact (hf_Indep.indepFun_finset s { i } (Finset.disjoint_singleton_left.mpr hi).symm hf_meas).comp h_meas_left h_meas_right [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' inst✝¹ : Zero β inst✝ : One β m : MeasurableSpace β s : ι → Set Ω hs : iIndepSet s κ ⊢ iIndepFun (fun _n => m) (fun n => Set.indicator (s n) fun _ω => 1) κ [PROOFSTEP] classical rw [iIndepFun_iff_measure_inter_preimage_eq_mul] rintro S π _hπ simp_rw [Set.indicator_const_preimage_eq_union] refine' @hs S (fun i => ite (1 ∈ π i) (s i) ∅ ∪ ite ((0 : β) ∈ π i) (s i)ᶜ ∅) fun i _hi => _ have hsi : MeasurableSet[generateFrom {s i}] (s i) := measurableSet_generateFrom (Set.mem_singleton _) refine' MeasurableSet.union (MeasurableSet.ite' (fun _ => hsi) fun _ => _) (MeasurableSet.ite' (fun _ => hsi.compl) fun _ => _) · exact @MeasurableSet.empty _ (generateFrom {s i}) · exact @MeasurableSet.empty _ (generateFrom {s i}) [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' inst✝¹ : Zero β inst✝ : One β m : MeasurableSpace β s : ι → Set Ω hs : iIndepSet s κ ⊢ iIndepFun (fun _n => m) (fun n => Set.indicator (s n) fun _ω => 1) κ [PROOFSTEP] rw [iIndepFun_iff_measure_inter_preimage_eq_mul] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' inst✝¹ : Zero β inst✝ : One β m : MeasurableSpace β s : ι → Set Ω hs : iIndepSet s κ ⊢ ∀ (S : Finset ι) {sets : ι → Set β}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), (Set.indicator (s i) fun _ω => 1) ⁻¹' sets i) = ∏ i in S, ↑↑(↑κ a) ((Set.indicator (s i) fun _ω => 1) ⁻¹' sets i) [PROOFSTEP] rintro S π _hπ [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' inst✝¹ : Zero β inst✝ : One β m : MeasurableSpace β s : ι → Set Ω hs : iIndepSet s κ S : Finset ι π : ι → Set β _hπ : ∀ (i : ι), i ∈ S → MeasurableSet (π i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), (Set.indicator (s i) fun _ω => 1) ⁻¹' π i) = ∏ i in S, ↑↑(↑κ a) ((Set.indicator (s i) fun _ω => 1) ⁻¹' π i) [PROOFSTEP] simp_rw [Set.indicator_const_preimage_eq_union] [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' inst✝¹ : Zero β inst✝ : One β m : MeasurableSpace β s : ι → Set Ω hs : iIndepSet s κ S : Finset ι π : ι → Set β _hπ : ∀ (i : ι), i ∈ S → MeasurableSet (π i) ⊢ ∀ᵐ (a : α) ∂μ, ↑↑(↑κ a) (⋂ (i : ι) (_ : i ∈ S), (if 1 ∈ π i then s i else ∅) ∪ if 0 ∈ π i then (s i)ᶜ else ∅) = ∏ x in S, ↑↑(↑κ a) ((if 1 ∈ π x then s x else ∅) ∪ if 0 ∈ π x then (s x)ᶜ else ∅) [PROOFSTEP] refine' @hs S (fun i => ite (1 ∈ π i) (s i) ∅ ∪ ite ((0 : β) ∈ π i) (s i)ᶜ ∅) fun i _hi => _ [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' inst✝¹ : Zero β inst✝ : One β m : MeasurableSpace β s : ι → Set Ω hs : iIndepSet s κ S : Finset ι π : ι → Set β _hπ : ∀ (i : ι), i ∈ S → MeasurableSet (π i) i : ι _hi : i ∈ S ⊢ (fun i => (if 1 ∈ π i then s i else ∅) ∪ if 0 ∈ π i then (s i)ᶜ else ∅) i ∈ (fun x => {s_1 | MeasurableSet s_1}) i [PROOFSTEP] have hsi : MeasurableSet[generateFrom {s i}] (s i) := measurableSet_generateFrom (Set.mem_singleton _) [GOAL] α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' inst✝¹ : Zero β inst✝ : One β m : MeasurableSpace β s : ι → Set Ω hs : iIndepSet s κ S : Finset ι π : ι → Set β _hπ : ∀ (i : ι), i ∈ S → MeasurableSet (π i) i : ι _hi : i ∈ S hsi : MeasurableSet (s i) ⊢ (fun i => (if 1 ∈ π i then s i else ∅) ∪ if 0 ∈ π i then (s i)ᶜ else ∅) i ∈ (fun x => {s_1 | MeasurableSet s_1}) i [PROOFSTEP] refine' MeasurableSet.union (MeasurableSet.ite' (fun _ => hsi) fun _ => _) (MeasurableSet.ite' (fun _ => hsi.compl) fun _ => _) [GOAL] case refine'_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' inst✝¹ : Zero β inst✝ : One β m : MeasurableSpace β s : ι → Set Ω hs : iIndepSet s κ S : Finset ι π : ι → Set β _hπ : ∀ (i : ι), i ∈ S → MeasurableSet (π i) i : ι _hi : i ∈ S hsi : MeasurableSet (s i) x✝ : ¬1 ∈ π i ⊢ MeasurableSet ∅ [PROOFSTEP] exact @MeasurableSet.empty _ (generateFrom {s i}) [GOAL] case refine'_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 β : Type u_4 β' : Type u_5 γ : Type u_6 γ' : Type u_7 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : { x // x ∈ kernel α Ω } μ : Measure α f : Ω → β g : Ω → β' inst✝¹ : Zero β inst✝ : One β m : MeasurableSpace β s : ι → Set Ω hs : iIndepSet s κ S : Finset ι π : ι → Set β _hπ : ∀ (i : ι), i ∈ S → MeasurableSet (π i) i : ι _hi : i ∈ S hsi : MeasurableSet (s i) x✝ : ¬0 ∈ π i ⊢ MeasurableSet ∅ [PROOFSTEP] exact @MeasurableSet.empty _ (generateFrom {s i})
{"mathlib_filename": "Mathlib.Probability.Independence.Kernel", "llama_tokens": 250973}
[GOAL] β : Type u_1 G : Type u_2 α : Type u_3 γ : Type u_4 inst✝³ : Group G inst✝² : AddGroup α inst✝¹ : SMul γ α inst✝ : SlashAction β G α γ k : β g : G a : α ⊢ (-a) ∣[k;γ] g + a ∣[k;γ] g = 0 [PROOFSTEP] rw [← SlashAction.add_slash, add_left_neg, SlashAction.zero_slash] [GOAL] R : Type u_1 β : Type u_2 G : Type u_3 α : Type u_4 γ : Type u_5 inst✝⁷ : Group G inst✝⁶ : AddGroup α inst✝⁵ : Monoid γ inst✝⁴ : MulAction γ α inst✝³ : SMul R γ inst✝² : SMul R α inst✝¹ : IsScalarTower R γ α inst✝ : SlashAction β G α γ k : β g : G a : α r : R ⊢ (r • a) ∣[k;γ] g = r • a ∣[k;γ] g [PROOFSTEP] rw [← smul_one_smul γ r a, SlashAction.smul_slash, smul_one_smul] [GOAL] β : Type u_1 G : Type u_2 H : Type u_3 α : Type u_4 γ : Type u_5 inst✝⁴ : Group G inst✝³ : AddMonoid α inst✝² : SMul γ α inst✝¹ : Group H inst✝ : SlashAction β G α γ h : H →* G k : β a : α ⊢ (fun k g => SlashAction.map γ k (↑h g)) k 1 a = a [PROOFSTEP] simp only [map_one, SlashAction.slash_one] [GOAL] β : Type u_1 G : Type u_2 H : Type u_3 α : Type u_4 γ : Type u_5 inst✝⁴ : Group G inst✝³ : AddMonoid α inst✝² : SMul γ α inst✝¹ : Group H inst✝ : SlashAction β G α γ h : H →* G k : β g gg : H a : α ⊢ (fun k g => SlashAction.map γ k (↑h g)) k (g * gg) a = (fun k g => SlashAction.map γ k (↑h g)) k gg ((fun k g => SlashAction.map γ k (↑h g)) k g a) [PROOFSTEP] simp only [map_mul, SlashAction.slash_mul] [GOAL] Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A B : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ ⊢ f ∣[k](A * B) = (f ∣[k]A) ∣[k]B [PROOFSTEP] ext1 x [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A B : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ x : ℍ ⊢ (f ∣[k](A * B)) x = ((f ∣[k]A) ∣[k]B) x [PROOFSTEP] simp_rw [slash, UpperHalfPlane.denom_cocycle A B x] [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A B : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ x : ℍ ⊢ f ((A * B) • x) * ↑(Matrix.det ↑↑(A * B)) ^ (k - 1) * (denom A (smulAux B x) * denom B x) ^ (-k) = f (A • B • x) * ↑(Matrix.det ↑↑A) ^ (k - 1) * denom A (B • x) ^ (-k) * ↑(Matrix.det ↑↑B) ^ (k - 1) * denom B x ^ (-k) [PROOFSTEP] have e3 : (A * B) • x = A • B • x := by convert UpperHalfPlane.mul_smul' A B x [GOAL] Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A B : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ x : ℍ ⊢ (A * B) • x = A • B • x [PROOFSTEP] convert UpperHalfPlane.mul_smul' A B x [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A B : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ x : ℍ e3 : (A * B) • x = A • B • x ⊢ f ((A * B) • x) * ↑(Matrix.det ↑↑(A * B)) ^ (k - 1) * (denom A (smulAux B x) * denom B x) ^ (-k) = f (A • B • x) * ↑(Matrix.det ↑↑A) ^ (k - 1) * denom A (B • x) ^ (-k) * ↑(Matrix.det ↑↑B) ^ (k - 1) * denom B x ^ (-k) [PROOFSTEP] rw [e3] [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A B : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ x : ℍ e3 : (A * B) • x = A • B • x ⊢ f (A • B • x) * ↑(Matrix.det ↑↑(A * B)) ^ (k - 1) * (denom A (smulAux B x) * denom B x) ^ (-k) = f (A • B • x) * ↑(Matrix.det ↑↑A) ^ (k - 1) * denom A (B • x) ^ (-k) * ↑(Matrix.det ↑↑B) ^ (k - 1) * denom B x ^ (-k) [PROOFSTEP] simp only [UpperHalfPlane.num, UpperHalfPlane.denom, ofReal_mul, Subgroup.coe_mul, UpperHalfPlane.coe_smul, Units.val_mul, Matrix.det_mul, UpperHalfPlane.smulAux, UpperHalfPlane.smulAux', UpperHalfPlane.coe_mk] at * [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A B : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ x : ℍ e3 : (A * B) • x = A • B • x ⊢ f (A • B • x) * (↑(Matrix.det ↑↑A) * ↑(Matrix.det ↑↑B)) ^ (k - 1) * ((↑(↑↑A 1 0) * ((↑(↑↑B 0 0) * ↑x + ↑(↑↑B 0 1)) / (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1))) + ↑(↑↑A 1 1)) * (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1))) ^ (-k) = f (A • B • x) * ↑(Matrix.det ↑↑A) ^ (k - 1) * (↑(↑↑A 1 0) * ((↑(↑↑B 0 0) * ↑x + ↑(↑↑B 0 1)) / (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1))) + ↑(↑↑A 1 1)) ^ (-k) * ↑(Matrix.det ↑↑B) ^ (k - 1) * (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1)) ^ (-k) [PROOFSTEP] field_simp [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A B : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ x : ℍ e3 : (A * B) • x = A • B • x ⊢ f (A • B • x) * (↑(Matrix.det ↑↑A) * ↑(Matrix.det ↑↑B)) ^ (k - 1) / ((↑(↑↑A 1 0) * (↑(↑↑B 0 0) * ↑x + ↑(↑↑B 0 1)) / (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1)) + ↑(↑↑A 1 1)) * (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1))) ^ k = f (A • B • x) * ↑(Matrix.det ↑↑A) ^ (k - 1) * ↑(Matrix.det ↑↑B) ^ (k - 1) / ((↑(↑↑A 1 0) * (↑(↑↑B 0 0) * ↑x + ↑(↑↑B 0 1)) / (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1)) + ↑(↑↑A 1 1)) ^ k * (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1)) ^ k) [PROOFSTEP] have : (((↑(↑A : GL (Fin 2) ℝ) : Matrix (Fin 2) (Fin 2) ℝ).det : ℂ) * ((↑(↑B : GL (Fin 2) ℝ) : Matrix (Fin 2) (Fin 2) ℝ).det : ℂ)) ^ (k - 1) = ((↑(↑A : GL (Fin 2) ℝ) : Matrix (Fin 2) (Fin 2) ℝ).det : ℂ) ^ (k - 1) * ((↑(↑B : GL (Fin 2) ℝ) : Matrix (Fin 2) (Fin 2) ℝ).det : ℂ) ^ (k - 1) := by simp_rw [← mul_zpow] [GOAL] Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A B : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ x : ℍ e3 : (A * B) • x = A • B • x ⊢ (↑(Matrix.det ↑↑A) * ↑(Matrix.det ↑↑B)) ^ (k - 1) = ↑(Matrix.det ↑↑A) ^ (k - 1) * ↑(Matrix.det ↑↑B) ^ (k - 1) [PROOFSTEP] simp_rw [← mul_zpow] [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A B : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ x : ℍ e3 : (A * B) • x = A • B • x this : (↑(Matrix.det ↑↑A) * ↑(Matrix.det ↑↑B)) ^ (k - 1) = ↑(Matrix.det ↑↑A) ^ (k - 1) * ↑(Matrix.det ↑↑B) ^ (k - 1) ⊢ f (A • B • x) * (↑(Matrix.det ↑↑A) * ↑(Matrix.det ↑↑B)) ^ (k - 1) / ((↑(↑↑A 1 0) * (↑(↑↑B 0 0) * ↑x + ↑(↑↑B 0 1)) / (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1)) + ↑(↑↑A 1 1)) * (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1))) ^ k = f (A • B • x) * ↑(Matrix.det ↑↑A) ^ (k - 1) * ↑(Matrix.det ↑↑B) ^ (k - 1) / ((↑(↑↑A 1 0) * (↑(↑↑B 0 0) * ↑x + ↑(↑↑B 0 1)) / (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1)) + ↑(↑↑A 1 1)) ^ k * (↑(↑↑B 1 0) * ↑x + ↑(↑↑B 1 1)) ^ k) [PROOFSTEP] simp_rw [this, ← mul_assoc, ← mul_zpow] [GOAL] Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ ⊢ (f + g) ∣[k]A = f ∣[k]A + g ∣[k]A [PROOFSTEP] ext1 [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x✝ : ℍ ⊢ ((f + g) ∣[k]A) x✝ = (f ∣[k]A + g ∣[k]A) x✝ [PROOFSTEP] simp only [slash, Pi.add_apply, denom, zpow_neg] [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x✝ : ℍ ⊢ (f (A • x✝) + g (A • x✝)) * ↑(Matrix.det ↑↑A) ^ (k - 1) * ((↑(↑↑A 1 0) * ↑x✝ + ↑(↑↑A 1 1)) ^ k)⁻¹ = f (A • x✝) * ↑(Matrix.det ↑↑A) ^ (k - 1) * ((↑(↑↑A 1 0) * ↑x✝ + ↑(↑↑A 1 1)) ^ k)⁻¹ + g (A • x✝) * ↑(Matrix.det ↑↑A) ^ (k - 1) * ((↑(↑↑A 1 0) * ↑x✝ + ↑(↑↑A 1 1)) ^ k)⁻¹ [PROOFSTEP] ring [GOAL] Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ f : ℍ → ℂ ⊢ ∀ (x : ℍ), (f ∣[k]1) x = f x [PROOFSTEP] simp [slash, denom] [GOAL] Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ α : Type u_1 inst✝¹ : SMul α ℂ inst✝ : IsScalarTower α ℂ ℂ k : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ c : α ⊢ (c • f) ∣[k]A = c • f ∣[k]A [PROOFSTEP] simp_rw [← smul_one_smul ℂ c f, ← smul_one_smul ℂ c (f ∣[k] A)] [GOAL] Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ α : Type u_1 inst✝¹ : SMul α ℂ inst✝ : IsScalarTower α ℂ ℂ k : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ c : α ⊢ ((c • 1) • f) ∣[k]A = (c • 1) • f ∣[k]A [PROOFSTEP] ext1 [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ α : Type u_1 inst✝¹ : SMul α ℂ inst✝ : IsScalarTower α ℂ ℂ k : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ c : α x✝ : ℍ ⊢ (((c • 1) • f) ∣[k]A) x✝ = ((c • 1) • f ∣[k]A) x✝ [PROOFSTEP] simp_rw [slash] [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ α : Type u_1 inst✝¹ : SMul α ℂ inst✝ : IsScalarTower α ℂ ℂ k : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ c : α x✝ : ℍ ⊢ ((c • 1) • f) (A • x✝) * ↑(Matrix.det ↑↑A) ^ (k - 1) * denom A x✝ ^ (-k) = ((c • 1) • fun x => f (A • x) * ↑(Matrix.det ↑↑A) ^ (k - 1) * denom A x ^ (-k)) x✝ [PROOFSTEP] simp only [slash, Algebra.id.smul_eq_mul, Matrix.GeneralLinearGroup.det_apply_val, Pi.smul_apply] [GOAL] case h Γ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ α : Type u_1 inst✝¹ : SMul α ℂ inst✝ : IsScalarTower α ℂ ℂ k : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f : ℍ → ℂ c : α x✝ : ℍ ⊢ c • 1 * f (A • x✝) * ↑(Matrix.det ↑↑A) ^ (k - 1) * denom A x✝ ^ (-k) = c • 1 * (f (A • x✝) * ↑(Matrix.det ↑↑A) ^ (k - 1) * denom A x✝ ^ (-k)) [PROOFSTEP] ring [GOAL] Γ : Subgroup SL(2, ℤ) k✝ : ℤ f : ℍ → ℂ α : Type u_1 inst✝¹ : SMul α ℂ inst✝ : IsScalarTower α ℂ ℂ k : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } x✝ : ℍ ⊢ (0 ∣[k]A) x✝ = OfNat.ofNat 0 x✝ [PROOFSTEP] simp only [slash, Pi.zero_apply, zero_mul] [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f : ℍ → ℂ A : SL(2, ℤ) ⊢ 1 ∣[0] A = 1 [PROOFSTEP] have : ((↑ₘ(A : GL(2, ℝ)⁺)).det : ℝ) = 1 := det_coe' [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f : ℍ → ℂ A : SL(2, ℤ) this : Matrix.det ↑↑↑A = 1 ⊢ 1 ∣[0] A = 1 [PROOFSTEP] funext [GOAL] case h Γ : Subgroup SL(2, ℤ) k : ℤ f : ℍ → ℂ A : SL(2, ℤ) this : Matrix.det ↑↑↑A = 1 x✝ : ℍ ⊢ (1 ∣[0] A) x✝ = OfNat.ofNat 1 x✝ [PROOFSTEP] rw [SL_slash, slash_def, slash, zero_sub, this] [GOAL] case h Γ : Subgroup SL(2, ℤ) k : ℤ f : ℍ → ℂ A : SL(2, ℤ) this : Matrix.det ↑↑↑A = 1 x✝ : ℍ ⊢ OfNat.ofNat 1 (↑A • x✝) * ↑1 ^ (-1) * denom (↑A) x✝ ^ (-0) = OfNat.ofNat 1 x✝ [PROOFSTEP] simp [GOAL] Γ✝ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ Γ : Subgroup SL(2, ℤ) f : ℍ → ℂ γ : { x // x ∈ Γ } z : ℍ ⊢ (f ∣[k] γ) z = f z ↔ f (γ • z) = (↑(↑↑↑γ 1 0) * ↑z + ↑(↑↑↑γ 1 1)) ^ k * f z [PROOFSTEP] simp only [subgroup_slash, slash_def, ModularForm.slash] [GOAL] Γ✝ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ Γ : Subgroup SL(2, ℤ) f : ℍ → ℂ γ : { x // x ∈ Γ } z : ℍ ⊢ f (↑↑γ • z) * ↑(Matrix.det ↑↑↑↑γ) ^ (k - 1) * denom (↑↑γ) z ^ (-k) = f z ↔ f (γ • z) = (↑(↑↑↑γ 1 0) * ↑z + ↑(↑↑↑γ 1 1)) ^ k * f z [PROOFSTEP] convert inv_mul_eq_iff_eq_mul₀ (G₀ := ℂ) _ using 2 [GOAL] case h.e'_1.h.e'_2 Γ✝ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ Γ : Subgroup SL(2, ℤ) f : ℍ → ℂ γ : { x // x ∈ Γ } z : ℍ ⊢ f (↑↑γ • z) * ↑(Matrix.det ↑↑↑↑γ) ^ (k - 1) * denom (↑↑γ) z ^ (-k) = ((↑(↑↑↑γ 1 0) * ↑z + ↑(↑↑↑γ 1 1)) ^ k)⁻¹ * f (γ • z) [PROOFSTEP] rw [mul_comm] [GOAL] case h.e'_1.h.e'_2 Γ✝ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ Γ : Subgroup SL(2, ℤ) f : ℍ → ℂ γ : { x // x ∈ Γ } z : ℍ ⊢ denom (↑↑γ) z ^ (-k) * (f (↑↑γ • z) * ↑(Matrix.det ↑↑↑↑γ) ^ (k - 1)) = ((↑(↑↑↑γ 1 0) * ↑z + ↑(↑↑↑γ 1 1)) ^ k)⁻¹ * f (γ • z) [PROOFSTEP] simp only [denom, zpow_neg, det_coe', ofReal_one, one_zpow, mul_one, subgroup_to_sl_moeb, sl_moeb] [GOAL] case h.e'_1.h.e'_2 Γ✝ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ Γ : Subgroup SL(2, ℤ) f : ℍ → ℂ γ : { x // x ∈ Γ } z : ℍ ⊢ ((↑(↑↑↑↑γ 1 0) * ↑z + ↑(↑↑↑↑γ 1 1)) ^ k)⁻¹ * f (↑↑γ • z) = ((↑(↑↑↑γ 1 0) * ↑z + ↑(↑↑↑γ 1 1)) ^ k)⁻¹ * f (↑↑γ • z) [PROOFSTEP] rfl [GOAL] case convert_4 Γ✝ : Subgroup SL(2, ℤ) k✝ : ℤ f✝ : ℍ → ℂ k : ℤ Γ : Subgroup SL(2, ℤ) f : ℍ → ℂ γ : { x // x ∈ Γ } z : ℍ ⊢ (↑(↑↑↑γ 1 0) * ↑z + ↑(↑↑↑γ 1 1)) ^ k ≠ 0 [PROOFSTEP] convert zpow_ne_zero k (denom_ne_zero γ z) [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ ⊢ (f * g) ∣[k1 + k2] A = Matrix.det ↑↑A • f ∣[k1] A * g ∣[k2] A [PROOFSTEP] ext1 x [GOAL] case h Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ ⊢ ((f * g) ∣[k1 + k2] A) x = (Matrix.det ↑↑A • f ∣[k1] A * g ∣[k2] A) x [PROOFSTEP] simp only [slash_def, slash, Matrix.GeneralLinearGroup.det_apply_val, Pi.mul_apply, Pi.smul_apply, Algebra.smul_mul_assoc, real_smul] [GOAL] case h Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ ⊢ f (A • x) * g (A • x) * ↑(Matrix.det ↑↑A) ^ (k1 + k2 - 1) * denom A x ^ (-(k1 + k2)) = ↑(Matrix.det ↑↑A) * (f (A • x) * ↑(Matrix.det ↑↑A) ^ (k1 - 1) * denom A x ^ (-k1)) * (g (A • x) * ↑(Matrix.det ↑↑A) ^ (k2 - 1) * denom A x ^ (-k2)) [PROOFSTEP] set d : ℂ := ↑((↑ₘA).det : ℝ) [GOAL] case h Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) ⊢ f (A • x) * g (A • x) * d ^ (k1 + k2 - 1) * denom A x ^ (-(k1 + k2)) = d * (f (A • x) * d ^ (k1 - 1) * denom A x ^ (-k1)) * (g (A • x) * d ^ (k2 - 1) * denom A x ^ (-k2)) [PROOFSTEP] have h1 : d ^ (k1 + k2 - 1) = d * d ^ (k1 - 1) * d ^ (k2 - 1) := by have : d ≠ 0 := by dsimp norm_cast exact Matrix.GLPos.det_ne_zero A rw [← zpow_one_add₀ this, ← zpow_add₀ this] congr; ring [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) ⊢ d ^ (k1 + k2 - 1) = d * d ^ (k1 - 1) * d ^ (k2 - 1) [PROOFSTEP] have : d ≠ 0 := by dsimp norm_cast exact Matrix.GLPos.det_ne_zero A [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) ⊢ d ≠ 0 [PROOFSTEP] dsimp [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) ⊢ ¬↑(Matrix.det ↑↑A) = 0 [PROOFSTEP] norm_cast [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) ⊢ ¬Matrix.det ↑↑A = 0 [PROOFSTEP] exact Matrix.GLPos.det_ne_zero A [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) this : d ≠ 0 ⊢ d ^ (k1 + k2 - 1) = d * d ^ (k1 - 1) * d ^ (k2 - 1) [PROOFSTEP] rw [← zpow_one_add₀ this, ← zpow_add₀ this] [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) this : d ≠ 0 ⊢ d ^ (k1 + k2 - 1) = d ^ (1 + (k1 - 1) + (k2 - 1)) [PROOFSTEP] congr [GOAL] case e_a Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) this : d ≠ 0 ⊢ k1 + k2 - 1 = 1 + (k1 - 1) + (k2 - 1) [PROOFSTEP] ring [GOAL] case h Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) h1 : d ^ (k1 + k2 - 1) = d * d ^ (k1 - 1) * d ^ (k2 - 1) ⊢ f (A • x) * g (A • x) * d ^ (k1 + k2 - 1) * denom A x ^ (-(k1 + k2)) = d * (f (A • x) * d ^ (k1 - 1) * denom A x ^ (-k1)) * (g (A • x) * d ^ (k2 - 1) * denom A x ^ (-k2)) [PROOFSTEP] have h22 : denom A x ^ (-(k1 + k2)) = denom A x ^ (-k1) * denom A x ^ (-k2) := by rw [Int.neg_add, zpow_add₀] exact UpperHalfPlane.denom_ne_zero A x [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) h1 : d ^ (k1 + k2 - 1) = d * d ^ (k1 - 1) * d ^ (k2 - 1) ⊢ denom A x ^ (-(k1 + k2)) = denom A x ^ (-k1) * denom A x ^ (-k2) [PROOFSTEP] rw [Int.neg_add, zpow_add₀] [GOAL] case ha Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) h1 : d ^ (k1 + k2 - 1) = d * d ^ (k1 - 1) * d ^ (k2 - 1) ⊢ denom A x ≠ 0 [PROOFSTEP] exact UpperHalfPlane.denom_ne_zero A x [GOAL] case h Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) h1 : d ^ (k1 + k2 - 1) = d * d ^ (k1 - 1) * d ^ (k2 - 1) h22 : denom A x ^ (-(k1 + k2)) = denom A x ^ (-k1) * denom A x ^ (-k2) ⊢ f (A • x) * g (A • x) * d ^ (k1 + k2 - 1) * denom A x ^ (-(k1 + k2)) = d * (f (A • x) * d ^ (k1 - 1) * denom A x ^ (-k1)) * (g (A • x) * d ^ (k2 - 1) * denom A x ^ (-k2)) [PROOFSTEP] rw [h1, h22] [GOAL] case h Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : { x // x ∈ GL(2, ℝ)⁺ } f g : ℍ → ℂ x : ℍ d : ℂ := ↑(Matrix.det ↑↑A) h1 : d ^ (k1 + k2 - 1) = d * d ^ (k1 - 1) * d ^ (k2 - 1) h22 : denom A x ^ (-(k1 + k2)) = denom A x ^ (-k1) * denom A x ^ (-k2) ⊢ f (A • x) * g (A • x) * (d * d ^ (k1 - 1) * d ^ (k2 - 1)) * (denom A x ^ (-k1) * denom A x ^ (-k2)) = d * (f (A • x) * d ^ (k1 - 1) * denom A x ^ (-k1)) * (g (A • x) * d ^ (k2 - 1) * denom A x ^ (-k2)) [PROOFSTEP] ring [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : SL(2, ℤ) f g : ℍ → ℂ ⊢ (f * g) ∣[k1 + k2] ↑A = Matrix.det ↑↑↑A • f ∣[k1] A * g ∣[k2] A [PROOFSTEP] apply mul_slash [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : SL(2, ℤ) f g : ℍ → ℂ ⊢ Matrix.det ↑↑↑A • f ∣[k1] A * g ∣[k2] A = 1 • f ∣[k1] A * g ∣[k2] A [PROOFSTEP] rw [det_coe'] [GOAL] Γ : Subgroup SL(2, ℤ) k : ℤ f✝ : ℍ → ℂ k1 k2 : ℤ A : SL(2, ℤ) f g : ℍ → ℂ ⊢ 1 • f ∣[k1] A * g ∣[k2] A = f ∣[k1] A * g ∣[k2] A [PROOFSTEP] rw [one_smul]
{"mathlib_filename": "Mathlib.NumberTheory.ModularForms.SlashActions", "llama_tokens": 10756}
[GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S h : ∀ (n : ℕ), ∃ k, map f p ≤ P ^ k ∧ n < k ⊢ ¬∃ n, ∀ (a : ℕ), a ∈ {n | map f p ≤ P ^ n} → a ≤ n [PROOFSTEP] push_neg [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S h : ∀ (n : ℕ), ∃ k, map f p ≤ P ^ k ∧ n < k ⊢ ∀ (n : ℕ), ∃ a, a ∈ {n | map f p ≤ P ^ n} ∧ n < a [PROOFSTEP] exact h [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hle : map f p ≤ P ^ n hgt : ¬map f p ≤ P ^ (n + 1) ⊢ ramificationIdx f p P = n [PROOFSTEP] let Q : ℕ → Prop := fun m => ∀ k : ℕ, map f p ≤ P ^ k → k ≤ m [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hle : map f p ≤ P ^ n hgt : ¬map f p ≤ P ^ (n + 1) Q : ℕ → Prop := fun m => ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ m ⊢ ramificationIdx f p P = n [PROOFSTEP] have : Q n := by intro k hk refine le_of_not_lt fun hnk => ?_ exact hgt (hk.trans (Ideal.pow_le_pow hnk)) [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hle : map f p ≤ P ^ n hgt : ¬map f p ≤ P ^ (n + 1) Q : ℕ → Prop := fun m => ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ m ⊢ Q n [PROOFSTEP] intro k hk [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hle : map f p ≤ P ^ n hgt : ¬map f p ≤ P ^ (n + 1) Q : ℕ → Prop := fun m => ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ m k : ℕ hk : map f p ≤ P ^ k ⊢ k ≤ n [PROOFSTEP] refine le_of_not_lt fun hnk => ?_ [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hle : map f p ≤ P ^ n hgt : ¬map f p ≤ P ^ (n + 1) Q : ℕ → Prop := fun m => ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ m k : ℕ hk : map f p ≤ P ^ k hnk : n < k ⊢ False [PROOFSTEP] exact hgt (hk.trans (Ideal.pow_le_pow hnk)) [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hle : map f p ≤ P ^ n hgt : ¬map f p ≤ P ^ (n + 1) Q : ℕ → Prop := fun m => ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ m this : Q n ⊢ ramificationIdx f p P = n [PROOFSTEP] rw [ramificationIdx_eq_find ⟨n, this⟩] [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hle : map f p ≤ P ^ n hgt : ¬map f p ≤ P ^ (n + 1) Q : ℕ → Prop := fun m => ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ m this : Q n ⊢ Nat.find (_ : ∃ n, ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ n) = n [PROOFSTEP] refine le_antisymm (Nat.find_min' _ this) (le_of_not_gt fun h : Nat.find _ < n => ?_) [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hle : map f p ≤ P ^ n hgt : ¬map f p ≤ P ^ (n + 1) Q : ℕ → Prop := fun m => ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ m this : Q n h : Nat.find (_ : ∃ n, ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ n) < n ⊢ False [PROOFSTEP] obtain this' := Nat.find_spec ⟨n, this⟩ [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hle : map f p ≤ P ^ n hgt : ¬map f p ≤ P ^ (n + 1) Q : ℕ → Prop := fun m => ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ m this : Q n h : Nat.find (_ : ∃ n, ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ n) < n this' : Q (Nat.find (_ : ∃ n, Q n)) ⊢ False [PROOFSTEP] exact h.not_le (this' _ hle) [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hgt : ¬map f p ≤ P ^ n ⊢ ramificationIdx f p P < n [PROOFSTEP] cases' n with n n [GOAL] case zero R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hgt : ¬map f p ≤ P ^ Nat.zero ⊢ ramificationIdx f p P < Nat.zero [PROOFSTEP] simp at hgt [GOAL] case succ R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hgt : ¬map f p ≤ P ^ Nat.succ n ⊢ ramificationIdx f p P < Nat.succ n [PROOFSTEP] rw [Nat.lt_succ_iff] [GOAL] case succ R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hgt : ¬map f p ≤ P ^ Nat.succ n ⊢ ramificationIdx f p P ≤ n [PROOFSTEP] have : ∀ k, map f p ≤ P ^ k → k ≤ n := by refine fun k hk => le_of_not_lt fun hnk => ?_ exact hgt (hk.trans (Ideal.pow_le_pow hnk)) [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hgt : ¬map f p ≤ P ^ Nat.succ n ⊢ ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ n [PROOFSTEP] refine fun k hk => le_of_not_lt fun hnk => ?_ [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hgt : ¬map f p ≤ P ^ Nat.succ n k : ℕ hk : map f p ≤ P ^ k hnk : n < k ⊢ False [PROOFSTEP] exact hgt (hk.trans (Ideal.pow_le_pow hnk)) [GOAL] case succ R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hgt : ¬map f p ≤ P ^ Nat.succ n this : ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ n ⊢ ramificationIdx f p P ≤ n [PROOFSTEP] rw [ramificationIdx_eq_find ⟨n, this⟩] [GOAL] case succ R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hgt : ¬map f p ≤ P ^ Nat.succ n this : ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ n ⊢ Nat.find (_ : ∃ n, ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ n) ≤ n [PROOFSTEP] exact Nat.find_min' ⟨n, this⟩ this [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hn : ∀ (a : ℕ), a ∈ {n | map f ⊥ ≤ P ^ n} → a ≤ n ⊢ Nat.succ n ∈ {n | map f ⊥ ≤ P ^ n} [PROOFSTEP] simp [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S h : ¬map f p ≤ P ⊢ map f p ≤ P ^ 0 [PROOFSTEP] simp [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S h : ¬map f p ≤ P ⊢ ¬map f p ≤ P ^ (0 + 1) [PROOFSTEP] simpa using h [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S e : ℕ he : e ≠ 0 hle : map f p ≤ P ^ e hnle : ¬map f p ≤ P ^ (e + 1) ⊢ ramificationIdx f p P ≠ 0 [PROOFSTEP] rwa [ramificationIdx_spec hle hnle] [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hn : n ≤ ramificationIdx f p P ⊢ map f p ≤ P ^ n [PROOFSTEP] contrapose! hn [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S n : ℕ hn : ¬map f p ≤ P ^ n ⊢ ramificationIdx f p P < n [PROOFSTEP] exact ramificationIdx_lt hn [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P hP0 : P ≠ ⊥ ⊢ ramificationIdx f p P = Multiset.count P (normalizedFactors (map f p)) [PROOFSTEP] have hPirr := (Ideal.prime_of_isPrime hP0 hP).irreducible [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P hP0 : P ≠ ⊥ hPirr : Irreducible P ⊢ ramificationIdx f p P = Multiset.count P (normalizedFactors (map f p)) [PROOFSTEP] refine ramificationIdx_spec (Ideal.le_of_dvd ?_) (mt Ideal.dvd_iff_le.mpr ?_) [GOAL] case refine_1 R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P hP0 : P ≠ ⊥ hPirr : Irreducible P ⊢ P ^ Multiset.count P (normalizedFactors (map f p)) ∣ map f p [PROOFSTEP] rw [dvd_iff_normalizedFactors_le_normalizedFactors (pow_ne_zero _ hP0) hp0, normalizedFactors_pow, normalizedFactors_irreducible hPirr, normalize_eq, Multiset.nsmul_singleton, ← Multiset.le_count_iff_replicate_le] [GOAL] case refine_2 R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P hP0 : P ≠ ⊥ hPirr : Irreducible P ⊢ ¬P ^ (Multiset.count P (normalizedFactors (map f p)) + 1) ∣ map f p [PROOFSTEP] rw [dvd_iff_normalizedFactors_le_normalizedFactors (pow_ne_zero _ hP0) hp0, normalizedFactors_pow, normalizedFactors_irreducible hPirr, normalize_eq, Multiset.nsmul_singleton, ← Multiset.le_count_iff_replicate_le] [GOAL] case refine_2 R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P hP0 : P ≠ ⊥ hPirr : Irreducible P ⊢ ¬Multiset.count P (normalizedFactors (map f p)) + 1 ≤ Multiset.count P (normalizedFactors (map f p)) [PROOFSTEP] exact (Nat.lt_succ_self _).not_le [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P hP0 : P ≠ ⊥ ⊢ ramificationIdx f p P = Multiset.count P (factors (map f p)) [PROOFSTEP] rw [IsDedekindDomain.ramificationIdx_eq_normalizedFactors_count hp0 hP hP0, factors_eq_normalizedFactors] [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P le : map f p ≤ P ⊢ ramificationIdx f p P ≠ 0 [PROOFSTEP] have hP0 : P ≠ ⊥ := by rintro rfl have := le_bot_iff.mp le contradiction [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P le : map f p ≤ P ⊢ P ≠ ⊥ [PROOFSTEP] rintro rfl [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime ⊥ le : map f p ≤ ⊥ ⊢ False [PROOFSTEP] have := le_bot_iff.mp le [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime ⊥ le : map f p ≤ ⊥ this : map f p = ⊥ ⊢ False [PROOFSTEP] contradiction [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P le : map f p ≤ P hP0 : P ≠ ⊥ ⊢ ramificationIdx f p P ≠ 0 [PROOFSTEP] have hPirr := (Ideal.prime_of_isPrime hP0 hP).irreducible [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P le : map f p ≤ P hP0 : P ≠ ⊥ hPirr : Irreducible P ⊢ ramificationIdx f p P ≠ 0 [PROOFSTEP] rw [IsDedekindDomain.ramificationIdx_eq_normalizedFactors_count hp0 hP hP0] [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P le : map f p ≤ P hP0 : P ≠ ⊥ hPirr : Irreducible P ⊢ Multiset.count P (normalizedFactors (map f p)) ≠ 0 [PROOFSTEP] obtain ⟨P', hP', P'_eq⟩ := exists_mem_normalizedFactors_of_dvd hp0 hPirr (Ideal.dvd_iff_le.mpr le) [GOAL] case intro.intro R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hp0 : map f p ≠ ⊥ hP : IsPrime P le : map f p ≤ P hP0 : P ≠ ⊥ hPirr : Irreducible P P' : Ideal S hP' : P' ∈ normalizedFactors (map f p) P'_eq : Associated P P' ⊢ Multiset.count P (normalizedFactors (map f p)) ≠ 0 [PROOFSTEP] rwa [Multiset.count_ne_zero, associated_iff_eq.mp P'_eq] [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hp : IsMaximal p hQ : Subsingleton (S ⧸ P) ⊢ inertiaDeg f p P = 0 [PROOFSTEP] have := Ideal.Quotient.subsingleton_iff.mp hQ [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hp : IsMaximal p hQ : Subsingleton (S ⧸ P) this : P = ⊤ ⊢ inertiaDeg f p P = 0 [PROOFSTEP] subst this [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R hp : IsMaximal p hQ : Subsingleton (S ⧸ ⊤) ⊢ inertiaDeg f p ⊤ = 0 [PROOFSTEP] exact dif_neg fun h => hp.ne_top <| h.symm.trans comap_top [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝² : Algebra R S inst✝¹ : Algebra (R ⧸ p) (S ⧸ P) inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P) hp : IsMaximal p ⊢ inertiaDeg (algebraMap R S) p P = finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] nontriviality S ⧸ P using inertiaDeg_of_subsingleton, finrank_zero_of_subsingleton [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝² : Algebra R S inst✝¹ : Algebra (R ⧸ p) (S ⧸ P) inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P) hp : IsMaximal p ✝ : Nontrivial (S ⧸ P) ⊢ inertiaDeg (algebraMap R S) p P = finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] have := comap_eq_of_scalar_tower_quotient (algebraMap (R ⧸ p) (S ⧸ P)).injective [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝² : Algebra R S inst✝¹ : Algebra (R ⧸ p) (S ⧸ P) inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P) hp : IsMaximal p ✝ : Nontrivial (S ⧸ P) this : comap (algebraMap R S) P = p ⊢ inertiaDeg (algebraMap R S) p P = finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] rw [inertiaDeg, dif_pos this] [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝² : Algebra R S inst✝¹ : Algebra (R ⧸ p) (S ⧸ P) inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P) hp : IsMaximal p ✝ : Nontrivial (S ⧸ P) this : comap (algebraMap R S) P = p ⊢ finrank (R ⧸ p) (S ⧸ P) = finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] congr [GOAL] case h.e_5.h.h.e_5.h R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝² : Algebra R S inst✝¹ : Algebra (R ⧸ p) (S ⧸ P) inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P) hp : IsMaximal p ✝ : Nontrivial (S ⧸ P) this : comap (algebraMap R S) P = p ⊢ RingHom.toAlgebra (Quotient.lift p (RingHom.comp (Quotient.mk P) (algebraMap R S)) (_ : ∀ (x : R), x ∈ p → ↑(Quotient.mk P) (↑(algebraMap R S) x) = 0)) = inst✝¹ [PROOFSTEP] refine' Algebra.algebra_ext _ _ fun x' => Quotient.inductionOn' x' fun x => _ [GOAL] case h.e_5.h.h.e_5.h R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝² : Algebra R S inst✝¹ : Algebra (R ⧸ p) (S ⧸ P) inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P) hp : IsMaximal p ✝ : Nontrivial (S ⧸ P) this : comap (algebraMap R S) P = p x' : R ⧸ p x : R ⊢ ↑(algebraMap (R ⧸ p) (S ⧸ P)) (Quotient.mk'' x) = ↑(algebraMap (R ⧸ p) (S ⧸ P)) (Quotient.mk'' x) [PROOFSTEP] change Ideal.Quotient.lift p _ _ (Ideal.Quotient.mk p x) = algebraMap _ _ (Ideal.Quotient.mk p x) [GOAL] case h.e_5.h.h.e_5.h R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝² : Algebra R S inst✝¹ : Algebra (R ⧸ p) (S ⧸ P) inst✝ : IsScalarTower R (R ⧸ p) (S ⧸ P) hp : IsMaximal p ✝ : Nontrivial (S ⧸ P) this : comap (algebraMap R S) P = p x' : R ⧸ p x : R ⊢ ↑(Quotient.lift p (RingHom.comp (Quotient.mk P) (algebraMap R S)) (_ : ∀ (x : R), x ∈ p → ↑(Quotient.mk P) (↑(algebraMap R S) x) = 0)) (↑(Quotient.mk p) x) = ↑(algebraMap ((fun x => R ⧸ p) x) (S ⧸ P)) (↑(Quotient.mk p) x) [PROOFSTEP] rw [Ideal.Quotient.lift_mk, ← Ideal.Quotient.algebraMap_eq P, ← IsScalarTower.algebraMap_eq, ← Ideal.Quotient.algebraMap_eq, ← IsScalarTower.algebraMap_apply] [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' hb' : LinearIndependent S (↑f' ∘ b) ⊢ LinearIndependent K (↑f ∘ b) [PROOFSTEP] contrapose! hb' with hb [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' hb : ¬LinearIndependent K (↑f ∘ b) ⊢ ¬LinearIndependent S (↑f' ∘ b) [PROOFSTEP] simp only [linearIndependent_iff', not_forall] at hb ⊢ [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' hb : ∃ x x_1 h x_2 x, ¬x_1 x_2 = 0 ⊢ ∃ x x_1 h x_2 x, ¬x_1 x_2 = 0 [PROOFSTEP] obtain ⟨s, g, eq, j', hj's, hj'g⟩ := hb [GOAL] case intro.intro.intro.intro.intro R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 ⊢ ∃ x x_1 h x_2 x, ¬x_1 x_2 = 0 [PROOFSTEP] use s [GOAL] case h R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 ⊢ ∃ x h x_1 x_2, ¬x x_1 = 0 [PROOFSTEP] obtain ⟨a, hag, j, hjs, hgI⟩ := Ideal.exist_integer_multiples_not_mem hRS s g hj's hj'g [GOAL] case h.intro.intro.intro.intro R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K hag : ∀ (i : ι), i ∈ s → IsLocalization.IsInteger R (a * g i) j : ι hjs : j ∈ s hgI : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) ⊢ ∃ x h x_1 x_2, ¬x x_1 = 0 [PROOFSTEP] choose g'' hg'' using hag [GOAL] case h.intro.intro.intro.intro R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i ⊢ ∃ x h x_1 x_2, ¬x x_1 = 0 [PROOFSTEP] letI := Classical.propDecidable [GOAL] case h.intro.intro.intro.intro R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable ⊢ ∃ x h x_1 x_2, ¬x x_1 = 0 [PROOFSTEP] let g' i := if h : i ∈ s then g'' i h else 0 [GOAL] case h.intro.intro.intro.intro R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 ⊢ ∃ x h x_1 x_2, ¬x x_1 = 0 [PROOFSTEP] have hg' : ∀ i ∈ s, algebraMap _ _ (g' i) = a * g i := by intro i hi; exact (congr_arg _ (dif_pos hi)).trans (hg'' i hi) -- Because `R/I` is nontrivial, we can lift `g` to a nontrivial linear dependence in `S`. [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 ⊢ ∀ (i : ι), i ∈ s → ↑(algebraMap R K) (g' i) = a * g i [PROOFSTEP] intro i hi [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 i : ι hi : i ∈ s ⊢ ↑(algebraMap R K) (g' i) = a * g i [PROOFSTEP] exact (congr_arg _ (dif_pos hi)).trans (hg'' i hi) -- Because `R/I` is nontrivial, we can lift `g` to a nontrivial linear dependence in `S`. [GOAL] case h.intro.intro.intro.intro R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 hg' : ∀ (i : ι), i ∈ s → ↑(algebraMap R K) (g' i) = a * g i ⊢ ∃ x h x_1 x_2, ¬x x_1 = 0 [PROOFSTEP] have hgI : algebraMap R S (g' j) ≠ 0 := by simp only [FractionalIdeal.mem_coeIdeal, not_exists, not_and'] at hgI exact hgI _ (hg' j hjs) [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 hg' : ∀ (i : ι), i ∈ s → ↑(algebraMap R K) (g' i) = a * g i ⊢ ↑(algebraMap R S) (g' j) ≠ 0 [PROOFSTEP] simp only [FractionalIdeal.mem_coeIdeal, not_exists, not_and'] at hgI [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 hg' : ∀ (i : ι), i ∈ s → ↑(algebraMap R K) (g' i) = a * g i hgI : ∀ (x : R), ↑(algebraMap R K) x = a * g j → ¬x ∈ RingHom.ker (algebraMap R S) ⊢ ↑(algebraMap R S) (g' j) ≠ 0 [PROOFSTEP] exact hgI _ (hg' j hjs) [GOAL] case h.intro.intro.intro.intro R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI✝ : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 hg' : ∀ (i : ι), i ∈ s → ↑(algebraMap R K) (g' i) = a * g i hgI : ↑(algebraMap R S) (g' j) ≠ 0 ⊢ ∃ x h x_1 x_2, ¬x x_1 = 0 [PROOFSTEP] refine ⟨fun i => algebraMap R S (g' i), ?_, j, hjs, hgI⟩ [GOAL] case h.intro.intro.intro.intro R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI✝ : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 hg' : ∀ (i : ι), i ∈ s → ↑(algebraMap R K) (g' i) = a * g i hgI : ↑(algebraMap R S) (g' j) ≠ 0 ⊢ ∑ i in s, (fun i => ↑(algebraMap R S) (g' i)) i • (↑f' ∘ b) i = 0 [PROOFSTEP] have eq : f (∑ i in s, g' i • b i) = 0 := by rw [LinearMap.map_sum, ← smul_zero a, ← eq, Finset.smul_sum] refine Finset.sum_congr rfl ?_ intro i hi rw [LinearMap.map_smul, ← IsScalarTower.algebraMap_smul K, hg' i hi, ← smul_assoc, smul_eq_mul, Function.comp_apply] [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI✝ : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 hg' : ∀ (i : ι), i ∈ s → ↑(algebraMap R K) (g' i) = a * g i hgI : ↑(algebraMap R S) (g' j) ≠ 0 ⊢ ↑f (∑ i in s, g' i • b i) = 0 [PROOFSTEP] rw [LinearMap.map_sum, ← smul_zero a, ← eq, Finset.smul_sum] [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI✝ : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 hg' : ∀ (i : ι), i ∈ s → ↑(algebraMap R K) (g' i) = a * g i hgI : ↑(algebraMap R S) (g' j) ≠ 0 ⊢ ∑ i in s, ↑f (g' i • b i) = ∑ x in s, a • g x • (↑f ∘ b) x [PROOFSTEP] refine Finset.sum_congr rfl ?_ [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI✝ : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 hg' : ∀ (i : ι), i ∈ s → ↑(algebraMap R K) (g' i) = a * g i hgI : ↑(algebraMap R S) (g' j) ≠ 0 ⊢ ∀ (x : ι), x ∈ s → ↑f (g' x • b x) = a • g x • (↑f ∘ b) x [PROOFSTEP] intro i hi [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI✝ : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 hg' : ∀ (i : ι), i ∈ s → ↑(algebraMap R K) (g' i) = a * g i hgI : ↑(algebraMap R S) (g' j) ≠ 0 i : ι hi : i ∈ s ⊢ ↑f (g' i • b i) = a • g i • (↑f ∘ b) i [PROOFSTEP] rw [LinearMap.map_smul, ← IsScalarTower.algebraMap_smul K, hg' i hi, ← smul_assoc, smul_eq_mul, Function.comp_apply] [GOAL] case h.intro.intro.intro.intro R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : Algebra R S K : Type u_1 inst✝¹⁶ : Field K inst✝¹⁵ : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝¹⁴ : Field L inst✝¹³ : Algebra S L inst✝¹² : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module R V inst✝⁹ : Module K V inst✝⁸ : IsScalarTower R K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module R V' inst✝⁵ : Module S V' inst✝⁴ : IsScalarTower R S V' inst✝³ : AddCommGroup V'' inst✝² : Module R V'' inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R hRS : RingHom.ker (algebraMap R S) ≠ ⊤ f : V'' →ₗ[R] V hf : Function.Injective ↑f f' : V'' →ₗ[R] V' ι : Type u_6 b : ι → V'' s : Finset ι g : ι → K eq✝ : ∑ i in s, g i • (↑f ∘ b) i = 0 j' : ι hj's : j' ∈ s hj'g : ¬g j' = 0 a : K j : ι hjs : j ∈ s hgI✝ : ¬a * g j ∈ ↑(RingHom.ker (algebraMap R S)) g'' : (i : ι) → i ∈ s → R hg'' : ∀ (i : ι) (a_1 : i ∈ s), ↑(algebraMap R K) (g'' i a_1) = a * g i this : (a : Prop) → Decidable a := Classical.propDecidable g' : ι → R := fun i => if h : i ∈ s then g'' i h else 0 hg' : ∀ (i : ι), i ∈ s → ↑(algebraMap R K) (g' i) = a * g i hgI : ↑(algebraMap R S) (g' j) ≠ 0 eq : ↑f (∑ i in s, g' i • b i) = 0 ⊢ ∑ i in s, (fun i => ↑(algebraMap R S) (g' i)) i • (↑f' ∘ b) i = 0 [PROOFSTEP] simp only [IsScalarTower.algebraMap_smul, ← LinearMap.map_smul, ← LinearMap.map_sum, (f.map_eq_zero_iff hf).mp eq, LinearMap.map_zero, (· ∘ ·)] [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] have hRL : Function.Injective (algebraMap R L) := by rw [IsScalarTower.algebraMap_eq R K L] exact (algebraMap K L).injective.comp (NoZeroSMulDivisors.algebraMap_injective R K) -- Let `M` be the `R`-module spanned by the proposed basis elements. [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ ⊢ Function.Injective ↑(algebraMap R L) [PROOFSTEP] rw [IsScalarTower.algebraMap_eq R K L] [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ ⊢ Function.Injective ↑(RingHom.comp (algebraMap K L) (algebraMap R K)) [PROOFSTEP] exact (algebraMap K L).injective.comp (NoZeroSMulDivisors.algebraMap_injective R K) -- Let `M` be the `R`-module spanned by the proposed basis elements. [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] let M : Submodule R S := Submodule.span R b [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] letI h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ _) (Submodule.Quotient.mk_surjective _) [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] obtain ⟨n, a, ha⟩ := @Module.Finite.exists_fin _ _ _ _ _ h [GOAL] case intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] have smul_top_eq : p • (⊤ : Submodule R (S ⧸ M)) = ⊤ := by calc p • ⊤ = Submodule.map M.mkQ (p • ⊤) := by rw [Submodule.map_smul'', Submodule.map_top, M.range_mkQ] _ = ⊤ := by rw [Ideal.smul_top_eq_map, (Submodule.map_mkQ_eq_top M _).mpr hb'] -- we can write the elements of `a` as `p`-linear combinations of other elements of `a`. [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ ⊢ p • ⊤ = ⊤ [PROOFSTEP] calc p • ⊤ = Submodule.map M.mkQ (p • ⊤) := by rw [Submodule.map_smul'', Submodule.map_top, M.range_mkQ] _ = ⊤ := by rw [Ideal.smul_top_eq_map, (Submodule.map_mkQ_eq_top M _).mpr hb'] -- we can write the elements of `a` as `p`-linear combinations of other elements of `a`. [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ ⊢ p • ⊤ = Submodule.map (Submodule.mkQ M) (p • ⊤) [PROOFSTEP] rw [Submodule.map_smul'', Submodule.map_top, M.range_mkQ] [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ ⊢ Submodule.map (Submodule.mkQ M) (p • ⊤) = ⊤ [PROOFSTEP] rw [Ideal.smul_top_eq_map, (Submodule.map_mkQ_eq_top M _).mpr hb'] -- we can write the elements of `a` as `p`-linear combinations of other elements of `a`. [GOAL] case intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] have exists_sum : ∀ x : S ⧸ M, ∃ a' : Fin n → R, (∀ i, a' i ∈ p) ∧ ∑ i, a' i • a i = x := by intro x obtain ⟨a'', ha'', hx⟩ := (Submodule.mem_ideal_smul_span_iff_exists_sum p a x).1 (by {rw [ha, smul_top_eq]; exact Submodule.mem_top } : x ∈ p • Submodule.span R (Set.range a)) · refine ⟨fun i => a'' i, fun i => ha'' _, ?_⟩ rw [← hx, Finsupp.sum_fintype] exact fun _ => zero_smul _ _ [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ ⊢ ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x [PROOFSTEP] intro x [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ x : S ⧸ M ⊢ ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x [PROOFSTEP] obtain ⟨a'', ha'', hx⟩ := (Submodule.mem_ideal_smul_span_iff_exists_sum p a x).1 (by {rw [ha, smul_top_eq]; exact Submodule.mem_top } : x ∈ p • Submodule.span R (Set.range a)) [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ x : S ⧸ M ⊢ x ∈ p • Submodule.span R (Set.range a) [PROOFSTEP] {rw [ha, smul_top_eq]; exact Submodule.mem_top } [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ x : S ⧸ M ⊢ x ∈ p • Submodule.span R (Set.range a) [PROOFSTEP] rw [ha, smul_top_eq] [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ x : S ⧸ M ⊢ x ∈ ⊤ [PROOFSTEP] exact Submodule.mem_top [GOAL] case intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ x : S ⧸ M a'' : Fin n →₀ R ha'' : ∀ (i : Fin n), ↑a'' i ∈ p hx : (Finsupp.sum a'' fun i c => c • a i) = x ⊢ ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x [PROOFSTEP] refine ⟨fun i => a'' i, fun i => ha'' _, ?_⟩ [GOAL] case intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ x : S ⧸ M a'' : Fin n →₀ R ha'' : ∀ (i : Fin n), ↑a'' i ∈ p hx : (Finsupp.sum a'' fun i c => c • a i) = x ⊢ ∑ i : Fin n, (fun i => ↑a'' i) i • a i = x [PROOFSTEP] rw [← hx, Finsupp.sum_fintype] [GOAL] case intro.intro.h R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ x : S ⧸ M a'' : Fin n →₀ R ha'' : ∀ (i : Fin n), ↑a'' i ∈ p hx : (Finsupp.sum a'' fun i c => c • a i) = x ⊢ ∀ (i : Fin n), 0 • a i = 0 [PROOFSTEP] exact fun _ => zero_smul _ _ [GOAL] case intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] choose A' hA'p hA' using fun i => exists_sum (a i) -- This gives us a(n invertible) matrix `A` such that `det A ∈ (M = span R b)`, [GOAL] case intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] let A : Matrix (Fin n) (Fin n) R := Matrix.of A' - 1 [GOAL] case intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] let B := A.adjugate [GOAL] case intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] have A_smul : ∀ i, ∑ j, A i j • a j = 0 := by intros simp only [Matrix.sub_apply, Matrix.of_apply, ne_eq, Matrix.one_apply, sub_smul, Finset.sum_sub_distrib, hA', Finset.sum_univ_ite, sub_self] -- since `span S {det A} / M = 0`. [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A ⊢ ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 [PROOFSTEP] intros [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A i✝ : Fin n ⊢ ∑ j : Fin n, A i✝ j • a j = 0 [PROOFSTEP] simp only [Matrix.sub_apply, Matrix.of_apply, ne_eq, Matrix.one_apply, sub_smul, Finset.sum_sub_distrib, hA', Finset.sum_univ_ite, sub_self] -- since `span S {det A} / M = 0`. [GOAL] case intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] have d_smul : ∀ i, A.det • a i = 0 := by intro i calc A.det • a i = ∑ j, (B * A) i j • a j := ?_ _ = ∑ k, B i k • ∑ j, A k j • a j := ?_ _ = 0 := Finset.sum_eq_zero fun k _ => ?_ · simp only [Matrix.adjugate_mul, Matrix.smul_apply, Matrix.one_apply, smul_eq_mul, ite_true, mul_ite, mul_one, mul_zero, ite_smul, zero_smul, Finset.sum_ite_eq, Finset.mem_univ] · simp only [Matrix.mul_apply, Finset.smul_sum, Finset.sum_smul, smul_smul] rw [Finset.sum_comm] · rw [A_smul, smul_zero] -- In the rings of integers we have the desired inclusion. [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 ⊢ ∀ (i : Fin n), Matrix.det A • a i = 0 [PROOFSTEP] intro i [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 i : Fin n ⊢ Matrix.det A • a i = 0 [PROOFSTEP] calc A.det • a i = ∑ j, (B * A) i j • a j := ?_ _ = ∑ k, B i k • ∑ j, A k j • a j := ?_ _ = 0 := Finset.sum_eq_zero fun k _ => ?_ [GOAL] case calc_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 i : Fin n ⊢ Matrix.det A • a i = ∑ j : Fin n, (B * A) i j • a j [PROOFSTEP] simp only [Matrix.adjugate_mul, Matrix.smul_apply, Matrix.one_apply, smul_eq_mul, ite_true, mul_ite, mul_one, mul_zero, ite_smul, zero_smul, Finset.sum_ite_eq, Finset.mem_univ] [GOAL] case calc_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 i : Fin n ⊢ ∑ j : Fin n, (B * A) i j • a j = ∑ k : Fin n, B i k • ∑ j : Fin n, A k j • a j [PROOFSTEP] simp only [Matrix.mul_apply, Finset.smul_sum, Finset.sum_smul, smul_smul] [GOAL] case calc_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 i : Fin n ⊢ ∑ x : Fin n, ∑ i_1 : Fin n, (Matrix.adjugate (↑Matrix.of A' - 1) i i_1 * (↑Matrix.of A' - 1) i_1 x) • a x = ∑ x : Fin n, ∑ x_1 : Fin n, (Matrix.adjugate (↑Matrix.of A' - 1) i x * (↑Matrix.of A' - 1) x x_1) • a x_1 [PROOFSTEP] rw [Finset.sum_comm] [GOAL] case calc_3 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 i k : Fin n x✝ : k ∈ Finset.univ ⊢ B i k • ∑ j : Fin n, A k j • a j = 0 [PROOFSTEP] rw [A_smul, smul_zero] -- In the rings of integers we have the desired inclusion. [GOAL] case intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] have span_d : (Submodule.span S ({algebraMap R S A.det} : Set S)).restrictScalars R ≤ M := by intro x hx rw [Submodule.restrictScalars_mem] at hx obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hx rw [smul_eq_mul, mul_comm, ← Algebra.smul_def] at hx ⊢ rw [← Submodule.Quotient.mk_eq_zero, Submodule.Quotient.mk_smul] obtain ⟨a', _, quot_x_eq⟩ := exists_sum (Submodule.Quotient.mk x') rw [← quot_x_eq, Finset.smul_sum] conv => lhs; congr; next => skip intro x; rw [smul_comm A.det, d_smul, smul_zero] exact Finset.sum_const_zero [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 ⊢ Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M [PROOFSTEP] intro x hx [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x : S hx : x ∈ Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ⊢ x ∈ M [PROOFSTEP] rw [Submodule.restrictScalars_mem] at hx [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x : S hx : x ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} ⊢ x ∈ M [PROOFSTEP] obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hx [GOAL] case intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : x' • ↑(algebraMap R S) (Matrix.det A) ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} ⊢ x' • ↑(algebraMap R S) (Matrix.det A) ∈ M [PROOFSTEP] rw [smul_eq_mul, mul_comm, ← Algebra.smul_def] at hx ⊢ [GOAL] case intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} ⊢ Matrix.det A • x' ∈ M [PROOFSTEP] rw [← Submodule.Quotient.mk_eq_zero, Submodule.Quotient.mk_smul] [GOAL] case intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} ⊢ Matrix.det A • Submodule.Quotient.mk x' = 0 [PROOFSTEP] obtain ⟨a', _, quot_x_eq⟩ := exists_sum (Submodule.Quotient.mk x') [GOAL] case intro.intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' ⊢ Matrix.det A • Submodule.Quotient.mk x' = 0 [PROOFSTEP] rw [← quot_x_eq, Finset.smul_sum] [GOAL] case intro.intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' ⊢ ∑ x : Fin n, Matrix.det A • a' x • a x = 0 [PROOFSTEP] conv => lhs; congr; next => skip intro x; rw [smul_comm A.det, d_smul, smul_zero] [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' | ∑ x : Fin n, Matrix.det A • a' x • a x = 0 [PROOFSTEP] lhs; congr; next => skip intro x; rw [smul_comm A.det, d_smul, smul_zero] [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' | ∑ x : Fin n, Matrix.det A • a' x • a x = 0 [PROOFSTEP] lhs; congr; next => skip intro x; rw [smul_comm A.det, d_smul, smul_zero] [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' | ∑ x : Fin n, Matrix.det A • a' x • a x = 0 [PROOFSTEP] lhs [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' | ∑ x : Fin n, Matrix.det A • a' x • a x [PROOFSTEP] congr [GOAL] case s R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' | Finset.univ case f R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' | fun x => Matrix.det A • a' x • a x [PROOFSTEP] next => skip [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' | Finset.univ [PROOFSTEP] skip [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' | Finset.univ [PROOFSTEP] skip [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' | Finset.univ [PROOFSTEP] skip [GOAL] case f R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' | fun x => Matrix.det A • a' x • a x [PROOFSTEP] intro x [GOAL] case f.h R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' x : Fin n | Matrix.det A • a' x • a x [PROOFSTEP] rw [smul_comm A.det, d_smul, smul_zero] [GOAL] case intro.intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 x' : S hx : Matrix.det A • x' ∈ Submodule.span S {↑(algebraMap R S) (Matrix.det A)} a' : Fin n → R left✝ : ∀ (i : Fin n), a' i ∈ p quot_x_eq : ∑ i : Fin n, a' i • a i = Submodule.Quotient.mk x' ⊢ ∑ x : Fin n, 0 = 0 [PROOFSTEP] exact Finset.sum_const_zero [GOAL] case intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M ⊢ Submodule.span K (↑(algebraMap S L) '' b) = ⊤ [PROOFSTEP] refine top_le_iff.mp (calc ⊤ = (Ideal.span {algebraMap R L A.det}).restrictScalars K := ?_ _ ≤ Submodule.span K (algebraMap S L '' b) := ?_) -- Because `det A ≠ 0`, we have `span L {det A} = ⊤`. [GOAL] case intro.intro.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M ⊢ ⊤ = Submodule.restrictScalars K (span {↑(algebraMap R L) (Matrix.det A)}) [PROOFSTEP] rw [eq_comm, Submodule.restrictScalars_eq_top_iff, Ideal.span_singleton_eq_top] [GOAL] case intro.intro.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M ⊢ IsUnit (↑(algebraMap R L) (Matrix.det A)) [PROOFSTEP] refine IsUnit.mk0 _ ((map_ne_zero_iff (algebraMap R L) hRL).mpr ?_) [GOAL] case intro.intro.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M ⊢ Matrix.det A ≠ 0 [PROOFSTEP] refine @ne_zero_of_map _ _ _ _ _ _ (Ideal.Quotient.mk p) _ ?_ [GOAL] case intro.intro.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M ⊢ ↑(Quotient.mk p) (Matrix.det A) ≠ 0 [PROOFSTEP] haveI := Ideal.Quotient.nontrivial hp [GOAL] case intro.intro.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M this : Nontrivial (R ⧸ p) ⊢ ↑(Quotient.mk p) (Matrix.det A) ≠ 0 [PROOFSTEP] calc Ideal.Quotient.mk p A.det = Matrix.det ((Ideal.Quotient.mk p).mapMatrix A) := by rw [RingHom.map_det, RingHom.mapMatrix_apply] _ = Matrix.det ((Ideal.Quotient.mk p).mapMatrix (Matrix.of A' - 1)) := rfl _ = Matrix.det fun i j => (Ideal.Quotient.mk p) (A' i j) - (1 : Matrix (Fin n) (Fin n) (R ⧸ p)) i j := ?_ _ = Matrix.det (-1 : Matrix (Fin n) (Fin n) (R ⧸ p)) := ?_ _ = (-1 : R ⧸ p) ^ n := by rw [Matrix.det_neg, Fintype.card_fin, Matrix.det_one, mul_one] _ ≠ 0 := IsUnit.ne_zero (isUnit_one.neg.pow _) [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M this : Nontrivial (R ⧸ p) ⊢ ↑(Quotient.mk p) (Matrix.det A) = Matrix.det (↑(RingHom.mapMatrix (Quotient.mk p)) A) [PROOFSTEP] rw [RingHom.map_det, RingHom.mapMatrix_apply] [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M this : Nontrivial (R ⧸ p) ⊢ Matrix.det (-1) = (-1) ^ n [PROOFSTEP] rw [Matrix.det_neg, Fintype.card_fin, Matrix.det_one, mul_one] [GOAL] case intro.intro.refine_1.calc_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M this : Nontrivial (R ⧸ p) ⊢ Matrix.det (↑(RingHom.mapMatrix (Quotient.mk p)) (↑Matrix.of A' - 1)) = Matrix.det fun i j => ↑(Quotient.mk p) (A' i j) - OfNat.ofNat 1 i j [PROOFSTEP] refine congr_arg Matrix.det (Matrix.ext fun i j => ?_) [GOAL] case intro.intro.refine_1.calc_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M this : Nontrivial (R ⧸ p) i j : Fin n ⊢ ↑(RingHom.mapMatrix (Quotient.mk p)) (↑Matrix.of A' - 1) i j = ↑(Quotient.mk p) (A' i j) - OfNat.ofNat 1 i j [PROOFSTEP] rw [map_sub, RingHom.mapMatrix_apply, map_one] [GOAL] case intro.intro.refine_1.calc_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M this : Nontrivial (R ⧸ p) i j : Fin n ⊢ (Matrix.map (↑Matrix.of A') ↑(Quotient.mk p) - 1) i j = ↑(Quotient.mk p) (A' i j) - OfNat.ofNat 1 i j [PROOFSTEP] rfl [GOAL] case intro.intro.refine_1.calc_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M this : Nontrivial (R ⧸ p) ⊢ (Matrix.det fun i j => ↑(Quotient.mk p) (A' i j) - OfNat.ofNat 1 i j) = Matrix.det (-1) [PROOFSTEP] refine congr_arg Matrix.det (Matrix.ext fun i j => ?_) [GOAL] case intro.intro.refine_1.calc_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M this : Nontrivial (R ⧸ p) i j : Fin n ⊢ ↑(Quotient.mk p) (A' i j) - OfNat.ofNat 1 i j = (-1) i j [PROOFSTEP] rw [Ideal.Quotient.eq_zero_iff_mem.mpr (hA'p i j), zero_sub] [GOAL] case intro.intro.refine_1.calc_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M this : Nontrivial (R ⧸ p) i j : Fin n ⊢ -OfNat.ofNat 1 i j = (-1) i j [PROOFSTEP] rfl -- And we conclude `L = span L {det A} ≤ span K b`, so `span K b` spans everything. [GOAL] case intro.intro.refine_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M ⊢ Submodule.restrictScalars K (span {↑(algebraMap R L) (Matrix.det A)}) ≤ Submodule.span K (↑(algebraMap S L) '' b) [PROOFSTEP] intro x hx [GOAL] case intro.intro.refine_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M x : L hx : x ∈ Submodule.restrictScalars K (span {↑(algebraMap R L) (Matrix.det A)}) ⊢ x ∈ Submodule.span K (↑(algebraMap S L) '' b) [PROOFSTEP] rw [Submodule.restrictScalars_mem, IsScalarTower.algebraMap_apply R S L] at hx [GOAL] case intro.intro.refine_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M x : L hx : x ∈ span {↑(algebraMap S L) (↑(algebraMap R S) (Matrix.det A))} ⊢ x ∈ Submodule.span K (↑(algebraMap S L) '' b) [PROOFSTEP] refine' IsFractionRing.ideal_span_singleton_map_subset R _ hRL span_d hx [GOAL] case intro.intro.refine_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M x : L hx : x ∈ span {↑(algebraMap S L) (↑(algebraMap R S) (Matrix.det A))} ⊢ Algebra.IsAlgebraic R L [PROOFSTEP] haveI : NoZeroSMulDivisors R L := NoZeroSMulDivisors.of_algebraMap_injective hRL [GOAL] case intro.intro.refine_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M x : L hx : x ∈ span {↑(algebraMap S L) (↑(algebraMap R S) (Matrix.det A))} this : NoZeroSMulDivisors R L ⊢ Algebra.IsAlgebraic R L [PROOFSTEP] rw [← IsFractionRing.isAlgebraic_iff' R S] [GOAL] case intro.intro.refine_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M x : L hx : x ∈ span {↑(algebraMap S L) (↑(algebraMap R S) (Matrix.det A))} this : NoZeroSMulDivisors R L ⊢ Algebra.IsAlgebraic R S [PROOFSTEP] intro x [GOAL] case intro.intro.refine_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : Algebra K L inst✝⁵ : IsNoetherian R S inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsIntegralClosure S R L inst✝ : NoZeroSMulDivisors R K hp : p ≠ ⊤ b : Set S hb' : Submodule.span R b ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) = ⊤ hRL : Function.Injective ↑(algebraMap R L) M : Submodule R S := Submodule.span R b h : Module.Finite R (S ⧸ M) := Module.Finite.of_surjective (Submodule.mkQ M) (Submodule.Quotient.mk_surjective M) n : ℕ a : Fin n → S ⧸ M ha : Submodule.span R (Set.range a) = ⊤ smul_top_eq : p • ⊤ = ⊤ exists_sum : ∀ (x : S ⧸ M), ∃ a', (∀ (i : Fin n), a' i ∈ p) ∧ ∑ i : Fin n, a' i • a i = x A' : Fin n → Fin n → R hA'p : ∀ (i i_1 : Fin n), A' i i_1 ∈ p hA' : ∀ (i : Fin n), ∑ i_1 : Fin n, A' i i_1 • a i_1 = a i A : Matrix (Fin n) (Fin n) R := ↑Matrix.of A' - 1 B : Matrix (Fin n) (Fin n) R := Matrix.adjugate A A_smul : ∀ (i : Fin n), ∑ j : Fin n, A i j • a j = 0 d_smul : ∀ (i : Fin n), Matrix.det A • a i = 0 span_d : Submodule.restrictScalars R (Submodule.span S {↑(algebraMap R S) (Matrix.det A)}) ≤ M x✝ : L hx : x✝ ∈ span {↑(algebraMap S L) (↑(algebraMap R S) (Matrix.det A))} this : NoZeroSMulDivisors R L x : S ⊢ IsAlgebraic R x [PROOFSTEP] exact IsIntegral.isAlgebraic _ (isIntegral_of_noetherian inferInstance _) [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L [PROOFSTEP] letI : Field (R ⧸ p) := Ideal.Quotient.field _ [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L [PROOFSTEP] let ι := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L [PROOFSTEP] let b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis _ _ -- Namely, choose a representative `b' i : S` for each `b i : S / pS`. [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L [PROOFSTEP] let b' : ι → S := fun i => (Ideal.Quotient.mk_surjective (b i)).choose [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L [PROOFSTEP] have b_eq_b' : ⇑b = (Submodule.mkQ (map (algebraMap R S) p)).restrictScalars R ∘ b' := funext fun i => (Ideal.Quotient.mk_surjective (b i)).choose_spec.symm [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L [PROOFSTEP] let b'' : ι → L := algebraMap S L ∘ b' [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L [PROOFSTEP] have b''_li : LinearIndependent K b'' := ?_ [GOAL] case refine_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L case refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' ⊢ LinearIndependent K b'' [PROOFSTEP] have b''_sp : Submodule.span K (Set.range b'') = ⊤ := ?_ -- Since the two bases have the same index set, the spaces have the same dimension. [GOAL] case refine_2.refine_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' b''_sp : Submodule.span K (Set.range b'') = ⊤ ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L case refine_2.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' ⊢ Submodule.span K (Set.range b'') = ⊤ case refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' ⊢ LinearIndependent K b'' [PROOFSTEP] let c : Basis ι K L := Basis.mk b''_li b''_sp.ge [GOAL] case refine_2.refine_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' b''_sp : Submodule.span K (Set.range b'') = ⊤ c : Basis ι K L := Basis.mk b''_li (_ : ⊤ ≤ Submodule.span K (Set.range b'')) ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L case refine_2.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' ⊢ Submodule.span K (Set.range b'') = ⊤ case refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' ⊢ LinearIndependent K b'' [PROOFSTEP] rw [finrank_eq_card_basis b, finrank_eq_card_basis c] -- It remains to show that the basis is indeed linear independent and spans the whole space. [GOAL] case refine_2.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' ⊢ Submodule.span K (Set.range b'') = ⊤ [PROOFSTEP] rw [Set.range_comp] [GOAL] case refine_2.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' ⊢ Submodule.span K (↑(algebraMap S L) '' Set.range b') = ⊤ [PROOFSTEP] refine FinrankQuotientMap.span_eq_top p hp.ne_top _ (top_le_iff.mp ?_) -- The nicest way to show `S ≤ span b' ⊔ pS` is by reducing both sides modulo pS. -- However, this would imply distinguishing between `pS` as `S`-ideal, -- and `pS` as `R`-submodule, since they have different (non-defeq) quotients. -- Instead we'll lift `x mod pS ∈ span b` to `y ∈ span b'` for some `y - x ∈ pS`. [GOAL] case refine_2.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' ⊢ ⊤ ≤ Submodule.span R (Set.range b') ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) [PROOFSTEP] intro x _ [GOAL] case refine_2.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' x : S a✝ : x ∈ ⊤ ⊢ x ∈ Submodule.span R (Set.range b') ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) [PROOFSTEP] have mem_span_b : ((Submodule.mkQ (map (algebraMap R S) p)) x : S ⧸ map (algebraMap R S) p) ∈ Submodule.span (R ⧸ p) (Set.range b) := b.mem_span _ [GOAL] case refine_2.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' x : S a✝ : x ∈ ⊤ mem_span_b : ↑(Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.span (R ⧸ p) (Set.range ↑b) ⊢ x ∈ Submodule.span R (Set.range b') ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) [PROOFSTEP] rw [← @Submodule.restrictScalars_mem R, Submodule.restrictScalars_span R (R ⧸ p) Ideal.Quotient.mk_surjective, b_eq_b', Set.range_comp, ← Submodule.map_span] at mem_span_b [GOAL] case refine_2.refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' x : S a✝ : x ∈ ⊤ mem_span_b✝ : ↑(Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.span R (↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) '' Set.range b') mem_span_b : ↑(Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.map (↑R (Submodule.mkQ (map (algebraMap R S) p))) (Submodule.span R (Set.range b')) ⊢ x ∈ Submodule.span R (Set.range b') ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) [PROOFSTEP] obtain ⟨y, y_mem, y_eq⟩ := Submodule.mem_map.mp mem_span_b [GOAL] case refine_2.refine_1.intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' x : S a✝ : x ∈ ⊤ mem_span_b✝ : ↑(Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.span R (↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) '' Set.range b') mem_span_b : ↑(Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.map (↑R (Submodule.mkQ (map (algebraMap R S) p))) (Submodule.span R (Set.range b')) y : S y_mem : y ∈ Submodule.span R (Set.range b') y_eq : ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) y = ↑(Submodule.mkQ (map (algebraMap R S) p)) x ⊢ x ∈ Submodule.span R (Set.range b') ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) [PROOFSTEP] suffices y + -(y - x) ∈ _ by simpa [GOAL] R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this✝ : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' x : S a✝ : x ∈ ⊤ mem_span_b✝ : ↑(Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.span R (↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) '' Set.range b') mem_span_b : ↑(Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.map (↑R (Submodule.mkQ (map (algebraMap R S) p))) (Submodule.span R (Set.range b')) y : S y_mem : y ∈ Submodule.span R (Set.range b') y_eq : ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) y = ↑(Submodule.mkQ (map (algebraMap R S) p)) x this : y + -(y - x) ∈ ?m.689464 ⊢ x ∈ Submodule.span R (Set.range b') ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) [PROOFSTEP] simpa [GOAL] case refine_2.refine_1.intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' x : S a✝ : x ∈ ⊤ mem_span_b✝ : ↑(Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.span R (↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) '' Set.range b') mem_span_b : ↑(Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.map (↑R (Submodule.mkQ (map (algebraMap R S) p))) (Submodule.span R (Set.range b')) y : S y_mem : y ∈ Submodule.span R (Set.range b') y_eq : ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) y = ↑(Submodule.mkQ (map (algebraMap R S) p)) x ⊢ y + -(y - x) ∈ Submodule.span R (Set.range fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i)) ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) [PROOFSTEP] rw [LinearMap.restrictScalars_apply, Submodule.mkQ_apply, Submodule.mkQ_apply, Submodule.Quotient.eq] at y_eq [GOAL] case refine_2.refine_1.intro.intro R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' x : S a✝ : x ∈ ⊤ mem_span_b✝ : ↑(Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.span R (↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) '' Set.range b') mem_span_b : ↑(Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.map (↑R (Submodule.mkQ (map (algebraMap R S) p))) (Submodule.span R (Set.range b')) y : S y_mem : y ∈ Submodule.span R (Set.range b') y_eq : y - x ∈ map (algebraMap R S) p ⊢ y + -(y - x) ∈ Submodule.span R (Set.range fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i)) ⊔ Submodule.restrictScalars R (map (algebraMap R S) p) [PROOFSTEP] exact add_mem (Submodule.mem_sup_left y_mem) (neg_mem <| Submodule.mem_sup_right y_eq) [GOAL] case refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' ⊢ LinearIndependent K b'' [PROOFSTEP] have := b.linearIndependent [GOAL] case refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this✝ : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' this : LinearIndependent (R ⧸ p) ↑b ⊢ LinearIndependent K b'' [PROOFSTEP] rw [b_eq_b'] at this [GOAL] case refine_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this✝ : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' this : LinearIndependent (R ⧸ p) (↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b') ⊢ LinearIndependent K b'' [PROOFSTEP] convert FinrankQuotientMap.linearIndependent_of_nontrivial K _ ((Algebra.linearMap S L).restrictScalars R) _ ((Submodule.mkQ _).restrictScalars R) this [GOAL] case refine_1.convert_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this✝ : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' this : LinearIndependent (R ⧸ p) (↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b') ⊢ RingHom.ker (algebraMap R (R ⧸ p)) ≠ ⊤ [PROOFSTEP] rw [Quotient.algebraMap_eq, Ideal.mk_ker] [GOAL] case refine_1.convert_1 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this✝ : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' this : LinearIndependent (R ⧸ p) (↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b') ⊢ p ≠ ⊤ [PROOFSTEP] exact hp.ne_top [GOAL] case refine_1.convert_2 R : Type u inst✝²⁶ : CommRing R S : Type v inst✝²⁵ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝²⁴ : Algebra R S K : Type u_1 inst✝²³ : Field K inst✝²² : Algebra R K hRK : IsFractionRing R K L : Type u_2 inst✝²¹ : Field L inst✝²⁰ : Algebra S L inst✝¹⁹ : IsFractionRing S L V : Type u_3 V' : Type u_4 V'' : Type u_5 inst✝¹⁸ : AddCommGroup V inst✝¹⁷ : Module R V inst✝¹⁶ : Module K V inst✝¹⁵ : IsScalarTower R K V inst✝¹⁴ : AddCommGroup V' inst✝¹³ : Module R V' inst✝¹² : Module S V' inst✝¹¹ : IsScalarTower R S V' inst✝¹⁰ : AddCommGroup V'' inst✝⁹ : Module R V'' inst✝⁸ : IsDomain R inst✝⁷ : IsDomain S inst✝⁶ : IsDedekindDomain R inst✝⁵ : Algebra K L inst✝⁴ : Algebra R L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegralClosure S R L hp : IsMaximal p inst✝ : IsNoetherian R S this✝ : Field (R ⧸ p) := Quotient.field p ι : Type v := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Module.Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => Exists.choose (_ : ∃ a, ↑(Quotient.mk (map (algebraMap R S) p)) a = ↑b i) b_eq_b' : ↑b = ↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ↑(algebraMap S L) ∘ b' this : LinearIndependent (R ⧸ p) (↑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b') ⊢ Function.Injective ↑(↑R (Algebra.linearMap S L)) [PROOFSTEP] exact IsFractionRing.injective S L [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ ⊢ Function.Injective ↑(powQuotSuccInclusion f p P i) [PROOFSTEP] rw [← LinearMap.ker_eq_bot, LinearMap.ker_eq_bot'] [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ ⊢ ∀ (m : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1)) }), ↑(powQuotSuccInclusion f p P i) m = 0 → m = 0 [PROOFSTEP] rintro ⟨x, hx⟩ hx0 [GOAL] case mk R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ x : S ⧸ P ^ e hx : x ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1)) hx0 : ↑(powQuotSuccInclusion f p P i) { val := x, property := hx } = 0 ⊢ { val := x, property := hx } = 0 [PROOFSTEP] rw [Subtype.ext_iff] at hx0 ⊢ [GOAL] case mk R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ x : S ⧸ P ^ e hx : x ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1)) hx0 : ↑(↑(powQuotSuccInclusion f p P i) { val := x, property := hx }) = ↑0 ⊢ ↑{ val := x, property := hx } = ↑0 [PROOFSTEP] rwa [powQuotSuccInclusion_apply_coe] at hx0 [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x y : S h : Setoid.r x y ⊢ Setoid.r ((fun x => { val := ↑(Quotient.mk (P ^ e)) (x * a), property := (_ : ↑(Quotient.mk (P ^ e)) (x * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) }) x) ((fun x => { val := ↑(Quotient.mk (P ^ e)) (x * a), property := (_ : ↑(Quotient.mk (P ^ e)) (x * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) }) y) [PROOFSTEP] rw [Submodule.quotientRel_r_def] at h ⊢ [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x y : S h : x - y ∈ P ⊢ (fun x => { val := ↑(Quotient.mk (P ^ e)) (x * a), property := (_ : ↑(Quotient.mk (P ^ e)) (x * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) }) x - (fun x => { val := ↑(Quotient.mk (P ^ e)) (x * a), property := (_ : ↑(Quotient.mk (P ^ e)) (x * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) }) y ∈ LinearMap.range (powQuotSuccInclusion f p P i) [PROOFSTEP] simp only [_root_.map_mul, LinearMap.mem_range] [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x y : S h : x - y ∈ P ⊢ ∃ y_1, ↑(powQuotSuccInclusion f p P i) y_1 = { val := ↑(Quotient.mk (P ^ e)) x * ↑(Quotient.mk (P ^ e)) a, property := (_ : (fun x => x ∈ map (Quotient.mk (P ^ e)) (P ^ i)) (↑(Quotient.mk (P ^ e)) x * ↑(Quotient.mk (P ^ e)) a)) } - { val := ↑(Quotient.mk (P ^ e)) y * ↑(Quotient.mk (P ^ e)) a, property := (_ : (fun x => x ∈ map (Quotient.mk (P ^ e)) (P ^ i)) (↑(Quotient.mk (P ^ e)) y * ↑(Quotient.mk (P ^ e)) a)) } [PROOFSTEP] refine' ⟨⟨_, Ideal.mem_map_of_mem _ (Ideal.mul_mem_mul h a_mem)⟩, _⟩ [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x y : S h : x - y ∈ P ⊢ ↑(powQuotSuccInclusion f p P i) { val := ↑(Quotient.mk (P ^ e)) ((x - y) * a), property := (_ : ↑(Quotient.mk (P ^ e)) ((x - y) * a) ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1))) } = { val := ↑(Quotient.mk (P ^ e)) x * ↑(Quotient.mk (P ^ e)) a, property := (_ : (fun x => x ∈ map (Quotient.mk (P ^ e)) (P ^ i)) (↑(Quotient.mk (P ^ e)) x * ↑(Quotient.mk (P ^ e)) a)) } - { val := ↑(Quotient.mk (P ^ e)) y * ↑(Quotient.mk (P ^ e)) a, property := (_ : (fun x => x ∈ map (Quotient.mk (P ^ e)) (P ^ i)) (↑(Quotient.mk (P ^ e)) y * ↑(Quotient.mk (P ^ e)) a)) } [PROOFSTEP] ext [GOAL] case a R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x y : S h : x - y ∈ P ⊢ ↑(↑(powQuotSuccInclusion f p P i) { val := ↑(Quotient.mk (P ^ e)) ((x - y) * a), property := (_ : ↑(Quotient.mk (P ^ e)) ((x - y) * a) ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1))) }) = ↑({ val := ↑(Quotient.mk (P ^ e)) x * ↑(Quotient.mk (P ^ e)) a, property := (_ : (fun x => x ∈ map (Quotient.mk (P ^ e)) (P ^ i)) (↑(Quotient.mk (P ^ e)) x * ↑(Quotient.mk (P ^ e)) a)) } - { val := ↑(Quotient.mk (P ^ e)) y * ↑(Quotient.mk (P ^ e)) a, property := (_ : (fun x => x ∈ map (Quotient.mk (P ^ e)) (P ^ i)) (↑(Quotient.mk (P ^ e)) y * ↑(Quotient.mk (P ^ e)) a)) }) [PROOFSTEP] rw [powQuotSuccInclusion_apply_coe, Subtype.coe_mk, Submodule.coe_sub, Subtype.coe_mk, Subtype.coe_mk, _root_.map_mul, map_sub, sub_mul] [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x : S ⊢ quotientToQuotientRangePowQuotSuccAux f p P a_mem (Submodule.Quotient.mk x) = Submodule.Quotient.mk { val := ↑(Quotient.mk (P ^ e)) (x * a), property := (_ : ↑(Quotient.mk (P ^ e)) (x * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) } [PROOFSTEP] apply Quotient.map'_mk'' [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i ⊢ ∀ (x y : S ⧸ P), quotientToQuotientRangePowQuotSuccAux f p P a_mem (x + y) = quotientToQuotientRangePowQuotSuccAux f p P a_mem x + quotientToQuotientRangePowQuotSuccAux f p P a_mem y [PROOFSTEP] intro x y [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x y : S ⧸ P ⊢ quotientToQuotientRangePowQuotSuccAux f p P a_mem (x + y) = quotientToQuotientRangePowQuotSuccAux f p P a_mem x + quotientToQuotientRangePowQuotSuccAux f p P a_mem y [PROOFSTEP] refine' Quotient.inductionOn' x fun x => Quotient.inductionOn' y fun y => _ [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x✝ y✝ : S ⧸ P x y : S ⊢ quotientToQuotientRangePowQuotSuccAux f p P a_mem (Quotient.mk'' x + Quotient.mk'' y) = quotientToQuotientRangePowQuotSuccAux f p P a_mem (Quotient.mk'' x) + quotientToQuotientRangePowQuotSuccAux f p P a_mem (Quotient.mk'' y) [PROOFSTEP] simp only [Submodule.Quotient.mk''_eq_mk, ← Submodule.Quotient.mk_add, quotientToQuotientRangePowQuotSuccAux_mk, add_mul] [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x✝ y✝ : S ⧸ P x y : S ⊢ Submodule.Quotient.mk { val := ↑(Quotient.mk (P ^ e)) (x * a + y * a), property := (_ : (fun x => x ∈ map (Quotient.mk (P ^ e)) (P ^ i)) (↑(Quotient.mk (P ^ e)) (x * a + y * a))) } = Submodule.Quotient.mk ({ val := ↑(Quotient.mk (P ^ e)) (x * a), property := (_ : ↑(Quotient.mk (P ^ e)) (x * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) } + { val := ↑(Quotient.mk (P ^ e)) (y * a), property := (_ : ↑(Quotient.mk (P ^ e)) (y * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) }) [PROOFSTEP] exact congr_arg Submodule.Quotient.mk rfl [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i ⊢ ∀ (r : R ⧸ p) (x : S ⧸ P), AddHom.toFun { toFun := quotientToQuotientRangePowQuotSuccAux f p P a_mem, map_add' := (_ : ∀ (x y : S ⧸ P), quotientToQuotientRangePowQuotSuccAux f p P a_mem (x + y) = quotientToQuotientRangePowQuotSuccAux f p P a_mem x + quotientToQuotientRangePowQuotSuccAux f p P a_mem y) } (r • x) = ↑(RingHom.id (R ⧸ p)) r • AddHom.toFun { toFun := quotientToQuotientRangePowQuotSuccAux f p P a_mem, map_add' := (_ : ∀ (x y : S ⧸ P), quotientToQuotientRangePowQuotSuccAux f p P a_mem (x + y) = quotientToQuotientRangePowQuotSuccAux f p P a_mem x + quotientToQuotientRangePowQuotSuccAux f p P a_mem y) } x [PROOFSTEP] intro x y [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x : R ⧸ p y : S ⧸ P ⊢ AddHom.toFun { toFun := quotientToQuotientRangePowQuotSuccAux f p P a_mem, map_add' := (_ : ∀ (x y : S ⧸ P), quotientToQuotientRangePowQuotSuccAux f p P a_mem (x + y) = quotientToQuotientRangePowQuotSuccAux f p P a_mem x + quotientToQuotientRangePowQuotSuccAux f p P a_mem y) } (x • y) = ↑(RingHom.id (R ⧸ p)) x • AddHom.toFun { toFun := quotientToQuotientRangePowQuotSuccAux f p P a_mem, map_add' := (_ : ∀ (x y : S ⧸ P), quotientToQuotientRangePowQuotSuccAux f p P a_mem (x + y) = quotientToQuotientRangePowQuotSuccAux f p P a_mem x + quotientToQuotientRangePowQuotSuccAux f p P a_mem y) } y [PROOFSTEP] refine' Quotient.inductionOn' x fun x => Quotient.inductionOn' y fun y => _ [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x✝ : R ⧸ p y✝ : S ⧸ P x : R y : S ⊢ AddHom.toFun { toFun := quotientToQuotientRangePowQuotSuccAux f p P a_mem, map_add' := (_ : ∀ (x y : S ⧸ P), quotientToQuotientRangePowQuotSuccAux f p P a_mem (x + y) = quotientToQuotientRangePowQuotSuccAux f p P a_mem x + quotientToQuotientRangePowQuotSuccAux f p P a_mem y) } (Quotient.mk'' x • Quotient.mk'' y) = ↑(RingHom.id (R ⧸ p)) (Quotient.mk'' x) • AddHom.toFun { toFun := quotientToQuotientRangePowQuotSuccAux f p P a_mem, map_add' := (_ : ∀ (x y : S ⧸ P), quotientToQuotientRangePowQuotSuccAux f p P a_mem (x + y) = quotientToQuotientRangePowQuotSuccAux f p P a_mem x + quotientToQuotientRangePowQuotSuccAux f p P a_mem y) } (Quotient.mk'' y) [PROOFSTEP] simp only [Submodule.Quotient.mk''_eq_mk, RingHom.id_apply, quotientToQuotientRangePowQuotSuccAux_mk] [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x✝ : R ⧸ p y✝ : S ⧸ P x : R y : S ⊢ quotientToQuotientRangePowQuotSuccAux f p P a_mem (Submodule.Quotient.mk x • Submodule.Quotient.mk y) = Submodule.Quotient.mk x • Submodule.Quotient.mk { val := ↑(Quotient.mk (P ^ e)) (y * a), property := (_ : ↑(Quotient.mk (P ^ e)) (y * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) } [PROOFSTEP] refine congr_arg Submodule.Quotient.mk ?_ [GOAL] R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x✝ : R ⧸ p y✝ : S ⧸ P x : R y : S ⊢ (fun x => { val := ↑(Quotient.mk (P ^ e)) (x * a), property := (_ : ↑(Quotient.mk (P ^ e)) (x * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) }) ((fun x x_1 => x * x_1) (↑f x) y) = (fun x x_1 => x • x_1) (Submodule.Quotient.mk x) { val := ↑(Quotient.mk (P ^ e)) (y * a), property := (_ : ↑(Quotient.mk (P ^ e)) (y * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) } [PROOFSTEP] ext [GOAL] case a R : Type u inst✝¹ : CommRing R S : Type v inst✝ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e i : ℕ a : S a_mem : a ∈ P ^ i x✝ : R ⧸ p y✝ : S ⧸ P x : R y : S ⊢ ↑((fun x => { val := ↑(Quotient.mk (P ^ e)) (x * a), property := (_ : ↑(Quotient.mk (P ^ e)) (x * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) }) ((fun x x_1 => x * x_1) (↑f x) y)) = ↑((fun x x_1 => x • x_1) (Submodule.Quotient.mk x) { val := ↑(Quotient.mk (P ^ e)) (y * a), property := (_ : ↑(Quotient.mk (P ^ e)) (y * a) ∈ map (Quotient.mk (P ^ e)) (P ^ i)) }) [PROOFSTEP] simp only [mul_assoc, _root_.map_mul, Quotient.mk_eq_mk, Submodule.coe_smul_of_tower, Algebra.smul_def, Quotient.algebraMap_quotient_pow_ramificationIdx] [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) x✝ : S ⧸ P x : S y✝ : S ⧸ P y : S h : ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) (Quotient.mk'' x) = ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) (Quotient.mk'' y) ⊢ Quotient.mk'' x = Quotient.mk'' y [PROOFSTEP] have Pe_le_Pi1 : P ^ e ≤ P ^ (i + 1) := Ideal.pow_le_pow hi [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) x✝ : S ⧸ P x : S y✝ : S ⧸ P y : S h : ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) (Quotient.mk'' x) = ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) (Quotient.mk'' y) Pe_le_Pi1 : P ^ e ≤ P ^ (i + 1) ⊢ Quotient.mk'' x = Quotient.mk'' y [PROOFSTEP] simp only [Submodule.Quotient.mk''_eq_mk, quotientToQuotientRangePowQuotSucc_mk, Submodule.Quotient.eq, LinearMap.mem_range, Subtype.ext_iff, Subtype.coe_mk, Submodule.coe_sub] at h ⊢ [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) x✝ : S ⧸ P x : S y✝ : S ⧸ P y : S Pe_le_Pi1 : P ^ e ≤ P ^ (i + 1) h : ∃ y_1, ↑(↑(powQuotSuccInclusion f p P i) y_1) = ↑(Quotient.mk (P ^ e)) (x * a) - ↑(Quotient.mk (P ^ e)) (y * a) ⊢ x - y ∈ P [PROOFSTEP] rcases h with ⟨⟨⟨z⟩, hz⟩, h⟩ [GOAL] case intro.mk.mk R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) x✝ : S ⧸ P x : S y✝ : S ⧸ P y : S Pe_le_Pi1 : P ^ e ≤ P ^ (i + 1) val✝ : S ⧸ P ^ e z : S hz : Quot.mk Setoid.r z ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1)) h : ↑(↑(powQuotSuccInclusion f p P i) { val := Quot.mk Setoid.r z, property := hz }) = ↑(Quotient.mk (P ^ e)) (x * a) - ↑(Quotient.mk (P ^ e)) (y * a) ⊢ x - y ∈ P [PROOFSTEP] rw [Submodule.Quotient.quot_mk_eq_mk, Ideal.Quotient.mk_eq_mk, Ideal.mem_quotient_iff_mem_sup, sup_eq_left.mpr Pe_le_Pi1] at hz [GOAL] case intro.mk.mk R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) x✝ : S ⧸ P x : S y✝ : S ⧸ P y : S Pe_le_Pi1 : P ^ e ≤ P ^ (i + 1) val✝ : S ⧸ P ^ e z : S hz✝ : Quot.mk Setoid.r z ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1)) hz : z ∈ P ^ (i + 1) h : ↑(↑(powQuotSuccInclusion f p P i) { val := Quot.mk Setoid.r z, property := hz✝ }) = ↑(Quotient.mk (P ^ e)) (x * a) - ↑(Quotient.mk (P ^ e)) (y * a) ⊢ x - y ∈ P [PROOFSTEP] rw [powQuotSuccInclusion_apply_coe, Subtype.coe_mk, Submodule.Quotient.quot_mk_eq_mk, Ideal.Quotient.mk_eq_mk, ← map_sub, Ideal.Quotient.eq, ← sub_mul] at h [GOAL] case intro.mk.mk R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) x✝ : S ⧸ P x : S y✝ : S ⧸ P y : S Pe_le_Pi1 : P ^ e ≤ P ^ (i + 1) val✝ : S ⧸ P ^ e z : S hz✝ : Quot.mk Setoid.r z ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1)) hz : z ∈ P ^ (i + 1) h : z - (x - y) * a ∈ P ^ e ⊢ x - y ∈ P [PROOFSTEP] exact (Ideal.IsPrime.mul_mem_pow _ ((Submodule.sub_mem_iff_right _ hz).mp (Pe_le_Pi1 h))).resolve_right a_not_mem [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) ⊢ Function.Surjective ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) [PROOFSTEP] rintro ⟨⟨⟨x⟩, hx⟩⟩ [GOAL] case mk.mk.mk R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) ⊢ ∃ a_1, ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) a_1 = Quot.mk Setoid.r { val := Quot.mk Setoid.r x, property := hx } [PROOFSTEP] have Pe_le_Pi : P ^ e ≤ P ^ i := Ideal.pow_le_pow hi.le [GOAL] case mk.mk.mk R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) Pe_le_Pi : P ^ e ≤ P ^ i ⊢ ∃ a_1, ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) a_1 = Quot.mk Setoid.r { val := Quot.mk Setoid.r x, property := hx } [PROOFSTEP] rw [Submodule.Quotient.quot_mk_eq_mk, Ideal.Quotient.mk_eq_mk, Ideal.mem_quotient_iff_mem_sup, sup_eq_left.mpr Pe_le_Pi] at hx [GOAL] case mk.mk.mk R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i ⊢ ∃ a_1, ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) a_1 = Quot.mk Setoid.r { val := Quot.mk Setoid.r x, property := hx✝ } [PROOFSTEP] suffices hx' : x ∈ Ideal.span { a } ⊔ P ^ (i + 1) [GOAL] case mk.mk.mk R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i hx' : x ∈ span {a} ⊔ P ^ (i + 1) ⊢ ∃ a_1, ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) a_1 = Quot.mk Setoid.r { val := Quot.mk Setoid.r x, property := hx✝ } [PROOFSTEP] obtain ⟨y', hy', z, hz, rfl⟩ := Submodule.mem_sup.mp hx' [GOAL] case mk.mk.mk.intro.intro.intro.intro R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e Pe_le_Pi : P ^ e ≤ P ^ i y' : S hy' : y' ∈ span {a} z : S hz : z ∈ P ^ (i + 1) hx✝ : Quot.mk Setoid.r (y' + z) ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : y' + z ∈ P ^ i hx' : y' + z ∈ span {a} ⊔ P ^ (i + 1) ⊢ ∃ a_1, ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) a_1 = Quot.mk Setoid.r { val := Quot.mk Setoid.r (y' + z), property := hx✝ } [PROOFSTEP] obtain ⟨y, rfl⟩ := Ideal.mem_span_singleton.mp hy' [GOAL] case mk.mk.mk.intro.intro.intro.intro.intro R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e Pe_le_Pi : P ^ e ≤ P ^ i z : S hz : z ∈ P ^ (i + 1) y : S hy' : a * y ∈ span {a} hx✝ : Quot.mk Setoid.r (a * y + z) ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : a * y + z ∈ P ^ i hx' : a * y + z ∈ span {a} ⊔ P ^ (i + 1) ⊢ ∃ a_1, ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) a_1 = Quot.mk Setoid.r { val := Quot.mk Setoid.r (a * y + z), property := hx✝ } [PROOFSTEP] refine ⟨Submodule.Quotient.mk y, ?_⟩ [GOAL] case mk.mk.mk.intro.intro.intro.intro.intro R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e Pe_le_Pi : P ^ e ≤ P ^ i z : S hz : z ∈ P ^ (i + 1) y : S hy' : a * y ∈ span {a} hx✝ : Quot.mk Setoid.r (a * y + z) ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : a * y + z ∈ P ^ i hx' : a * y + z ∈ span {a} ⊔ P ^ (i + 1) ⊢ ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) (Submodule.Quotient.mk y) = Quot.mk Setoid.r { val := Quot.mk Setoid.r (a * y + z), property := hx✝ } [PROOFSTEP] simp only [Submodule.Quotient.quot_mk_eq_mk, quotientToQuotientRangePowQuotSucc_mk, Submodule.Quotient.eq, LinearMap.mem_range, Subtype.ext_iff, Subtype.coe_mk, Submodule.coe_sub] [GOAL] case mk.mk.mk.intro.intro.intro.intro.intro R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e Pe_le_Pi : P ^ e ≤ P ^ i z : S hz : z ∈ P ^ (i + 1) y : S hy' : a * y ∈ span {a} hx✝ : Quot.mk Setoid.r (a * y + z) ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : a * y + z ∈ P ^ i hx' : a * y + z ∈ span {a} ⊔ P ^ (i + 1) ⊢ ∃ y_1, ↑(↑(powQuotSuccInclusion f p P i) y_1) = ↑(Quotient.mk (P ^ e)) (y * a) - Submodule.Quotient.mk (a * y + z) [PROOFSTEP] refine ⟨⟨_, Ideal.mem_map_of_mem _ (Submodule.neg_mem _ hz)⟩, ?_⟩ [GOAL] case mk.mk.mk.intro.intro.intro.intro.intro R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e Pe_le_Pi : P ^ e ≤ P ^ i z : S hz : z ∈ P ^ (i + 1) y : S hy' : a * y ∈ span {a} hx✝ : Quot.mk Setoid.r (a * y + z) ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : a * y + z ∈ P ^ i hx' : a * y + z ∈ span {a} ⊔ P ^ (i + 1) ⊢ ↑(↑(powQuotSuccInclusion f p P i) { val := ↑(Quotient.mk (P ^ e)) (-z), property := (_ : ↑(Quotient.mk (P ^ e)) (-z) ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1))) }) = ↑(Quotient.mk (P ^ e)) (y * a) - Submodule.Quotient.mk (a * y + z) [PROOFSTEP] rw [powQuotSuccInclusion_apply_coe, Subtype.coe_mk, Ideal.Quotient.mk_eq_mk, map_add, mul_comm y a, sub_add_cancel', map_neg] [GOAL] case hx' R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i ⊢ x ∈ span {a} ⊔ P ^ (i + 1) [PROOFSTEP] letI := Classical.decEq (Ideal S) [GOAL] case hx' R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i this : DecidableEq (Ideal S) := Classical.decEq (Ideal S) ⊢ x ∈ span {a} ⊔ P ^ (i + 1) [PROOFSTEP] rw [sup_eq_prod_inf_factors _ (pow_ne_zero _ hP0), normalizedFactors_pow, normalizedFactors_irreducible ((Ideal.prime_iff_isPrime hP0).mpr hP).irreducible, normalize_eq, Multiset.nsmul_singleton, Multiset.inter_replicate, Multiset.prod_replicate] [GOAL] case hx' R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i this : DecidableEq (Ideal S) := Classical.decEq (Ideal S) ⊢ x ∈ P ^ min (Multiset.count P (normalizedFactors (span {a}))) (i + 1) R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i this : DecidableEq (Ideal S) := Classical.decEq (Ideal S) ⊢ span {a} ≠ ⊥ [PROOFSTEP] rw [← Submodule.span_singleton_le_iff_mem, Ideal.submodule_span_eq] at a_mem a_not_mem [GOAL] case hx' R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : span {a} ≤ P ^ i a_not_mem : ¬span {a} ≤ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i this : DecidableEq (Ideal S) := Classical.decEq (Ideal S) ⊢ x ∈ P ^ min (Multiset.count P (normalizedFactors (span {a}))) (i + 1) R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i this : DecidableEq (Ideal S) := Classical.decEq (Ideal S) ⊢ span {a} ≠ ⊥ [PROOFSTEP] rwa [Ideal.count_normalizedFactors_eq a_mem a_not_mem, min_eq_left i.le_succ] [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i this : DecidableEq (Ideal S) := Classical.decEq (Ideal S) ⊢ span {a} ≠ ⊥ [PROOFSTEP] intro ha [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬a ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i this : DecidableEq (Ideal S) := Classical.decEq (Ideal S) ha : span {a} = ⊥ ⊢ False [PROOFSTEP] rw [Ideal.span_singleton_eq_bot.mp ha] at a_not_mem [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬0 ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i this : DecidableEq (Ideal S) := Classical.decEq (Ideal S) ha : span {a} = ⊥ ⊢ False [PROOFSTEP] have := (P ^ (i + 1)).zero_mem [GOAL] R : Type u inst✝³ : CommRing R S : Type v inst✝² : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝¹ : IsDomain S inst✝ : IsDedekindDomain S hP0 : P ≠ ⊥ hP : IsPrime P i : ℕ hi : i < e a : S a_mem : a ∈ P ^ i a_not_mem : ¬0 ∈ P ^ (i + 1) b✝ : { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) val✝ : S ⧸ P ^ e x : S hx✝ : Quot.mk Setoid.r x ∈ map (Quotient.mk (P ^ e)) (P ^ i) hx : x ∈ P ^ i Pe_le_Pi : P ^ e ≤ P ^ i this✝ : DecidableEq (Ideal S) := Classical.decEq (Ideal S) ha : span {a} = ⊥ this : 0 ∈ P ^ (i + 1) ⊢ False [PROOFSTEP] contradiction [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : IsPrime P hP : P ≠ ⊥ i : ℕ hi : i < e ⊢ ({ x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i)) ≃ₗ[R ⧸ p] S ⧸ P [PROOFSTEP] choose a a_mem a_not_mem using SetLike.exists_of_lt (Ideal.strictAnti_pow P hP (Ideal.IsPrime.ne_top inferInstance) (le_refl i.succ)) [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : IsPrime P hP : P ≠ ⊥ i : ℕ hi : i < e a : S a_mem : a ∈ (fun x x_1 => x ^ x_1) P i a_not_mem : ¬a ∈ (fun x x_1 => x ^ x_1) P (Nat.succ i) ⊢ ({ x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i)) ≃ₗ[R ⧸ p] S ⧸ P [PROOFSTEP] refine' (LinearEquiv.ofBijective _ ⟨_, _⟩).symm [GOAL] case refine'_1 R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : IsPrime P hP : P ≠ ⊥ i : ℕ hi : i < e a : S a_mem : a ∈ (fun x x_1 => x ^ x_1) P i a_not_mem : ¬a ∈ (fun x x_1 => x ^ x_1) P (Nat.succ i) ⊢ S ⧸ P →ₗ[R ⧸ p] { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i) [PROOFSTEP] exact quotientToQuotientRangePowQuotSucc f p P a_mem [GOAL] case refine'_2 R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : IsPrime P hP : P ≠ ⊥ i : ℕ hi : i < e a : S a_mem : a ∈ (fun x x_1 => x ^ x_1) P i a_not_mem : ¬a ∈ (fun x x_1 => x ^ x_1) P (Nat.succ i) ⊢ Function.Injective ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) [PROOFSTEP] exact quotientToQuotientRangePowQuotSucc_injective f p P hi a_mem a_not_mem [GOAL] case refine'_3 R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : IsPrime P hP : P ≠ ⊥ i : ℕ hi : i < e a : S a_mem : a ∈ (fun x x_1 => x ^ x_1) P i a_not_mem : ¬a ∈ (fun x x_1 => x ^ x_1) P (Nat.succ i) ⊢ Function.Surjective ↑(quotientToQuotientRangePowQuotSucc f p P a_mem) [PROOFSTEP] exact quotientToQuotientRangePowQuotSucc_surjective f p P hP hi a_mem a_not_mem [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ i : ℕ hi : i < e ⊢ Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = Module.rank (R ⧸ p) (S ⧸ P) + Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1)) } [PROOFSTEP] letI : Field (R ⧸ p) := Ideal.Quotient.field _ [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ i : ℕ hi : i < e this : Field (R ⧸ p) := Quotient.field p ⊢ Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = Module.rank (R ⧸ p) (S ⧸ P) + Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ (i + 1)) } [PROOFSTEP] rw [← rank_range_of_injective _ (powQuotSuccInclusion_injective f p P i), (quotientRangePowQuotSuccInclusionEquiv f p P hP0 hi).symm.rank_eq] [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ i : ℕ hi : i < e this : Field (R ⧸ p) := Quotient.field p ⊢ Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = Module.rank (R ⧸ p) ({ x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } ⧸ LinearMap.range (powQuotSuccInclusion f p P i)) + Module.rank (R ⧸ p) { x // x ∈ LinearMap.range (powQuotSuccInclusion f p P i) } [PROOFSTEP] exact (rank_quotient_add_rank (LinearMap.range (powQuotSuccInclusion f p P i))).symm [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ i : ℕ hi : i ≤ e ⊢ Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = (e - i) • Module.rank (R ⧸ p) (S ⧸ P) [PROOFSTEP] let Q : ℕ → Prop := fun i => Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = (e - i) • Module.rank (R ⧸ p) (S ⧸ P) [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ i : ℕ hi : i ≤ e Q : ℕ → Prop := fun i => Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = (e - i) • Module.rank (R ⧸ p) (S ⧸ P) ⊢ Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = (e - i) • Module.rank (R ⧸ p) (S ⧸ P) [PROOFSTEP] refine @Nat.decreasingInduction' Q i e (fun j lt_e _le_j ih => ?_) hi ?_ [GOAL] case refine_1 R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ i : ℕ hi : i ≤ e Q : ℕ → Prop := fun i => Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = (e - i) • Module.rank (R ⧸ p) (S ⧸ P) j : ℕ lt_e : j < e _le_j : i ≤ j ih : Q (j + 1) ⊢ Q j [PROOFSTEP] dsimp only [GOAL] case refine_1 R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ i : ℕ hi : i ≤ e Q : ℕ → Prop := fun i => Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = (e - i) • Module.rank (R ⧸ p) (S ⧸ P) j : ℕ lt_e : j < e _le_j : i ≤ j ih : Q (j + 1) ⊢ Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ j) } = (e - j) • Module.rank (R ⧸ p) (S ⧸ P) [PROOFSTEP] rw [rank_pow_quot_aux f p P _ lt_e, ih, ← succ_nsmul, Nat.sub_succ, ← Nat.succ_eq_add_one, Nat.succ_pred_eq_of_pos (Nat.sub_pos_of_lt lt_e)] [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ i : ℕ hi : i ≤ e Q : ℕ → Prop := fun i => Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = (e - i) • Module.rank (R ⧸ p) (S ⧸ P) j : ℕ lt_e : j < e _le_j : i ≤ j ih : Q (j + 1) ⊢ P ≠ ⊥ [PROOFSTEP] assumption [GOAL] case refine_2 R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ i : ℕ hi : i ≤ e Q : ℕ → Prop := fun i => Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = (e - i) • Module.rank (R ⧸ p) (S ⧸ P) ⊢ Q e [PROOFSTEP] dsimp only [GOAL] case refine_2 R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ i : ℕ hi : i ≤ e Q : ℕ → Prop := fun i => Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = (e - i) • Module.rank (R ⧸ p) (S ⧸ P) ⊢ Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ e) } = (e - e) • Module.rank (R ⧸ p) (S ⧸ P) [PROOFSTEP] rw [Nat.sub_self, zero_nsmul, map_quotient_self] [GOAL] case refine_2 R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ i : ℕ hi : i ≤ e Q : ℕ → Prop := fun i => Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ i) } = (e - i) • Module.rank (R ⧸ p) (S ⧸ P) ⊢ Module.rank (R ⧸ p) { x // x ∈ ⊥ } = 0 [PROOFSTEP] exact rank_bot (R ⧸ p) (S ⧸ P ^ e) [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ he : e ≠ 0 ⊢ Module.rank (R ⧸ p) (S ⧸ P ^ e) = e • Module.rank (R ⧸ p) (S ⧸ P) [PROOFSTEP] letI : NeZero e := ⟨he⟩ [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ he : e ≠ 0 this : NeZero e := { out := he } ⊢ Module.rank (R ⧸ p) (S ⧸ P ^ e) = e • Module.rank (R ⧸ p) (S ⧸ P) [PROOFSTEP] have := rank_pow_quot f p P hP0 0 (Nat.zero_le e) [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ he : e ≠ 0 this✝ : NeZero e := { out := he } this : Module.rank (R ⧸ p) { x // x ∈ map (Quotient.mk (P ^ e)) (P ^ 0) } = (e - 0) • Module.rank (R ⧸ p) (S ⧸ P) ⊢ Module.rank (R ⧸ p) (S ⧸ P ^ e) = e • Module.rank (R ⧸ p) (S ⧸ P) [PROOFSTEP] rw [pow_zero, Nat.sub_zero, Ideal.one_eq_top, Ideal.map_top] at this [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : IsMaximal p inst✝ : IsPrime P hP0 : P ≠ ⊥ he : e ≠ 0 this✝ : NeZero e := { out := he } this : Module.rank (R ⧸ p) { x // x ∈ ⊤ } = e • Module.rank (R ⧸ p) (S ⧸ P) ⊢ Module.rank (R ⧸ p) (S ⧸ P ^ e) = e • Module.rank (R ⧸ p) (S ⧸ P) [PROOFSTEP] exact (rank_top (R ⧸ p) _).symm.trans this [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S hP0 : P ≠ ⊥ inst✝¹ : IsMaximal p inst✝ : IsPrime P he : e ≠ 0 ⊢ finrank (R ⧸ p) (S ⧸ P ^ e) = e * finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] letI : NeZero e := ⟨he⟩ [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S hP0 : P ≠ ⊥ inst✝¹ : IsMaximal p inst✝ : IsPrime P he : e ≠ 0 this : NeZero e := { out := he } ⊢ finrank (R ⧸ p) (S ⧸ P ^ e) = e * finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] letI : Algebra (R ⧸ p) (S ⧸ P) := Quotient.algebraQuotientOfRamificationIdxNeZero f p P [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S hP0 : P ≠ ⊥ inst✝¹ : IsMaximal p inst✝ : IsPrime P he : e ≠ 0 this✝ : NeZero e := { out := he } this : Algebra (R ⧸ p) (S ⧸ P) := Quotient.algebraQuotientOfRamificationIdxNeZero f p P ⊢ finrank (R ⧸ p) (S ⧸ P ^ e) = e * finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] letI := Ideal.Quotient.field p [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S hP0 : P ≠ ⊥ inst✝¹ : IsMaximal p inst✝ : IsPrime P he : e ≠ 0 this✝¹ : NeZero e := { out := he } this✝ : Algebra (R ⧸ p) (S ⧸ P) := Quotient.algebraQuotientOfRamificationIdxNeZero f p P this : Field (R ⧸ p) := Quotient.field p ⊢ finrank (R ⧸ p) (S ⧸ P ^ e) = e * finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] have hdim := rank_prime_pow_ramificationIdx _ _ _ hP0 he [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S hP0 : P ≠ ⊥ inst✝¹ : IsMaximal p inst✝ : IsPrime P he : e ≠ 0 this✝¹ : NeZero e := { out := he } this✝ : Algebra (R ⧸ p) (S ⧸ P) := Quotient.algebraQuotientOfRamificationIdxNeZero f p P this : Field (R ⧸ p) := Quotient.field p hdim : Module.rank (R ⧸ p) (S ⧸ P ^ e) = e • Module.rank (R ⧸ p) (S ⧸ P) ⊢ finrank (R ⧸ p) (S ⧸ P ^ e) = e * finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] by_cases hP : FiniteDimensional (R ⧸ p) (S ⧸ P) [GOAL] case pos R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S hP0 : P ≠ ⊥ inst✝¹ : IsMaximal p inst✝ : IsPrime P he : e ≠ 0 this✝¹ : NeZero e := { out := he } this✝ : Algebra (R ⧸ p) (S ⧸ P) := Quotient.algebraQuotientOfRamificationIdxNeZero f p P this : Field (R ⧸ p) := Quotient.field p hdim : Module.rank (R ⧸ p) (S ⧸ P ^ e) = e • Module.rank (R ⧸ p) (S ⧸ P) hP : FiniteDimensional (R ⧸ p) (S ⧸ P) ⊢ finrank (R ⧸ p) (S ⧸ P ^ e) = e * finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] haveI := hP [GOAL] case pos R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S hP0 : P ≠ ⊥ inst✝¹ : IsMaximal p inst✝ : IsPrime P he : e ≠ 0 this✝² : NeZero e := { out := he } this✝¹ : Algebra (R ⧸ p) (S ⧸ P) := Quotient.algebraQuotientOfRamificationIdxNeZero f p P this✝ : Field (R ⧸ p) := Quotient.field p hdim : Module.rank (R ⧸ p) (S ⧸ P ^ e) = e • Module.rank (R ⧸ p) (S ⧸ P) hP this : FiniteDimensional (R ⧸ p) (S ⧸ P) ⊢ finrank (R ⧸ p) (S ⧸ P ^ e) = e * finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] haveI := (finiteDimensional_iff_of_rank_eq_nsmul he hdim).mpr hP [GOAL] case pos R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S hP0 : P ≠ ⊥ inst✝¹ : IsMaximal p inst✝ : IsPrime P he : e ≠ 0 this✝³ : NeZero e := { out := he } this✝² : Algebra (R ⧸ p) (S ⧸ P) := Quotient.algebraQuotientOfRamificationIdxNeZero f p P this✝¹ : Field (R ⧸ p) := Quotient.field p hdim : Module.rank (R ⧸ p) (S ⧸ P ^ e) = e • Module.rank (R ⧸ p) (S ⧸ P) hP this✝ : FiniteDimensional (R ⧸ p) (S ⧸ P) this : FiniteDimensional (R ⧸ p) (S ⧸ P ^ e) ⊢ finrank (R ⧸ p) (S ⧸ P ^ e) = e * finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] refine' Cardinal.natCast_injective _ [GOAL] case pos R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S hP0 : P ≠ ⊥ inst✝¹ : IsMaximal p inst✝ : IsPrime P he : e ≠ 0 this✝³ : NeZero e := { out := he } this✝² : Algebra (R ⧸ p) (S ⧸ P) := Quotient.algebraQuotientOfRamificationIdxNeZero f p P this✝¹ : Field (R ⧸ p) := Quotient.field p hdim : Module.rank (R ⧸ p) (S ⧸ P ^ e) = e • Module.rank (R ⧸ p) (S ⧸ P) hP this✝ : FiniteDimensional (R ⧸ p) (S ⧸ P) this : FiniteDimensional (R ⧸ p) (S ⧸ P ^ e) ⊢ ↑(finrank (R ⧸ p) (S ⧸ P ^ e)) = ↑(e * finrank (R ⧸ p) (S ⧸ P)) [PROOFSTEP] rw [finrank_eq_rank', Nat.cast_mul, finrank_eq_rank', hdim, nsmul_eq_mul] [GOAL] case neg R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S hP0 : P ≠ ⊥ inst✝¹ : IsMaximal p inst✝ : IsPrime P he : e ≠ 0 this✝¹ : NeZero e := { out := he } this✝ : Algebra (R ⧸ p) (S ⧸ P) := Quotient.algebraQuotientOfRamificationIdxNeZero f p P this : Field (R ⧸ p) := Quotient.field p hdim : Module.rank (R ⧸ p) (S ⧸ P ^ e) = e • Module.rank (R ⧸ p) (S ⧸ P) hP : ¬FiniteDimensional (R ⧸ p) (S ⧸ P) ⊢ finrank (R ⧸ p) (S ⧸ P ^ e) = e * finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] have hPe := mt (finiteDimensional_iff_of_rank_eq_nsmul he hdim).mp hP [GOAL] case neg R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P : Ideal S hfp : NeZero e inst✝³ : IsDomain S inst✝² : IsDedekindDomain S hP0 : P ≠ ⊥ inst✝¹ : IsMaximal p inst✝ : IsPrime P he : e ≠ 0 this✝¹ : NeZero e := { out := he } this✝ : Algebra (R ⧸ p) (S ⧸ P) := Quotient.algebraQuotientOfRamificationIdxNeZero f p P this : Field (R ⧸ p) := Quotient.field p hdim : Module.rank (R ⧸ p) (S ⧸ P ^ e) = e • Module.rank (R ⧸ p) (S ⧸ P) hP : ¬FiniteDimensional (R ⧸ p) (S ⧸ P) hPe : ¬FiniteDimensional (R ⧸ p) (S ⧸ P ^ e) ⊢ finrank (R ⧸ p) (S ⧸ P ^ e) = e * finrank (R ⧸ p) (S ⧸ P) [PROOFSTEP] simp only [finrank_of_infinite_dimensional hP, finrank_of_infinite_dimensional hPe, mul_zero] [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p : Ideal R P✝ : Ideal S inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : Algebra R S P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } x : R ⊢ ↑(algebraMap R (S ⧸ ↑P)) x = ↑(algebraMap (R ⧸ p) (S ⧸ ↑P)) (↑(algebraMap R (R ⧸ p)) x) [PROOFSTEP] simp [GOAL] R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P✝ : Ideal S inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : Algebra R S inst✝ : IsMaximal p P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ finrank (R ⧸ p) (S ⧸ ↑P ^ ramificationIdx (algebraMap R S) p ↑P) = ramificationIdx (algebraMap R S) p ↑P * inertiaDeg (algebraMap R S) p ↑P [PROOFSTEP] rw [finrank_prime_pow_ramificationIdx, inertiaDeg_algebraMap] [GOAL] case he R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P✝ : Ideal S inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : Algebra R S inst✝ : IsMaximal p P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ ramificationIdx (algebraMap R S) p ↑P ≠ 0 case hP0 R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P✝ : Ideal S inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : Algebra R S inst✝ : IsMaximal p P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ ↑P ≠ ⊥ case he R : Type u inst✝⁵ : CommRing R S : Type v inst✝⁴ : CommRing S f : R →+* S p : Ideal R P✝ : Ideal S inst✝³ : IsDomain S inst✝² : IsDedekindDomain S inst✝¹ : Algebra R S inst✝ : IsMaximal p P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ ramificationIdx (algebraMap R S) p ↑P ≠ 0 [PROOFSTEP] exacts [NeZero.ne _, Factors.ne_bot p P] [GOAL] R : Type u inst✝⁶ : CommRing R S : Type v inst✝⁵ : CommRing S f : R →+* S p : Ideal R P✝ : Ideal S inst✝⁴ : IsDomain S inst✝³ : IsDedekindDomain S inst✝² : Algebra R S inst✝¹ : IsNoetherian R S inst✝ : IsMaximal p P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ inertiaDeg (algebraMap R S) p ↑P ≠ 0 [PROOFSTEP] rw [inertiaDeg_algebraMap] [GOAL] R : Type u inst✝⁶ : CommRing R S : Type v inst✝⁵ : CommRing S f : R →+* S p : Ideal R P✝ : Ideal S inst✝⁴ : IsDomain S inst✝³ : IsDedekindDomain S inst✝² : Algebra R S inst✝¹ : IsNoetherian R S inst✝ : IsMaximal p P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ finrank (R ⧸ p) (S ⧸ ↑P) ≠ 0 [PROOFSTEP] exact (FiniteDimensional.finrank_pos_iff.mpr inferInstance).ne' [GOAL] R : Type u inst✝⁶ : CommRing R S : Type v inst✝⁵ : CommRing S f : R →+* S p : Ideal R P✝ : Ideal S inst✝⁴ : IsDomain S inst✝³ : IsDedekindDomain S inst✝² : Algebra R S inst✝¹ : IsNoetherian R S inst✝ : IsMaximal p P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ FiniteDimensional (R ⧸ p) (S ⧸ ↑P ^ ramificationIdx (algebraMap R S) p ↑P) [PROOFSTEP] refine FiniteDimensional.finiteDimensional_of_finrank ?_ [GOAL] R : Type u inst✝⁶ : CommRing R S : Type v inst✝⁵ : CommRing S f : R →+* S p : Ideal R P✝ : Ideal S inst✝⁴ : IsDomain S inst✝³ : IsDedekindDomain S inst✝² : Algebra R S inst✝¹ : IsNoetherian R S inst✝ : IsMaximal p P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ 0 < finrank (R ⧸ p) (S ⧸ ↑P ^ ramificationIdx (algebraMap R S) p ↑P) [PROOFSTEP] rw [pos_iff_ne_zero, Factors.finrank_pow_ramificationIdx] [GOAL] R : Type u inst✝⁶ : CommRing R S : Type v inst✝⁵ : CommRing S f : R →+* S p : Ideal R P✝ : Ideal S inst✝⁴ : IsDomain S inst✝³ : IsDedekindDomain S inst✝² : Algebra R S inst✝¹ : IsNoetherian R S inst✝ : IsMaximal p P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ ramificationIdx (algebraMap R S) p ↑P * inertiaDeg (algebraMap R S) p ↑P ≠ 0 [PROOFSTEP] exact mul_ne_zero (Factors.ramificationIdx_ne_zero p P) (Factors.inertiaDeg_ne_zero p P) [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p✝ : Ideal R P✝ : Ideal S inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : Algebra R S p : Ideal R hp : map (algebraMap R S) p ≠ ⊥ P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ ↑P ^ Multiset.count (↑P) (factors (map (algebraMap R S) p)) = ↑P ^ ramificationIdx (algebraMap R S) p ↑P [PROOFSTEP] rw [IsDedekindDomain.ramificationIdx_eq_factors_count hp (Factors.isPrime p P) (Factors.ne_bot p P)] [GOAL] R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p✝ : Ideal R P : Ideal S inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : Algebra R S p : Ideal R hp : map (algebraMap R S) p ≠ ⊥ src✝ : S ⧸ map (algebraMap R S) p ≃+* ((P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) }) → S ⧸ ↑P ^ ramificationIdx (algebraMap R S) p ↑P) := piQuotientEquiv p hp ⊢ ∀ (r : R ⧸ p) (x : S ⧸ map (algebraMap R S) p), AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : S ⧸ map (algebraMap R S) p), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (r • x) = ↑(RingHom.id (R ⧸ p)) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : S ⧸ map (algebraMap R S) p), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } x [PROOFSTEP] rintro ⟨c⟩ ⟨x⟩ [GOAL] case mk.mk R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p✝ : Ideal R P : Ideal S inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : Algebra R S p : Ideal R hp : map (algebraMap R S) p ≠ ⊥ src✝ : S ⧸ map (algebraMap R S) p ≃+* ((P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) }) → S ⧸ ↑P ^ ramificationIdx (algebraMap R S) p ↑P) := piQuotientEquiv p hp r✝ : R ⧸ p c : R x✝ : S ⧸ map (algebraMap R S) p x : S ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : S ⧸ map (algebraMap R S) p), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (Quot.mk Setoid.r c • Quot.mk Setoid.r x) = ↑(RingHom.id (R ⧸ p)) (Quot.mk Setoid.r c) • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : S ⧸ map (algebraMap R S) p), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (Quot.mk Setoid.r x) [PROOFSTEP] ext P [GOAL] case mk.mk.h R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p✝ : Ideal R P✝ : Ideal S inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : Algebra R S p : Ideal R hp : map (algebraMap R S) p ≠ ⊥ src✝ : S ⧸ map (algebraMap R S) p ≃+* ((P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) }) → S ⧸ ↑P ^ ramificationIdx (algebraMap R S) p ↑P) := piQuotientEquiv p hp r✝ : R ⧸ p c : R x✝ : S ⧸ map (algebraMap R S) p x : S P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : S ⧸ map (algebraMap R S) p), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (Quot.mk Setoid.r c • Quot.mk Setoid.r x) P = (↑(RingHom.id (R ⧸ p)) (Quot.mk Setoid.r c) • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : S ⧸ map (algebraMap R S) p), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (Quot.mk Setoid.r x)) P [PROOFSTEP] simp only [Submodule.Quotient.quot_mk_eq_mk, Quotient.mk_eq_mk, Algebra.smul_def, Quotient.algebraMap_quotient_map_quotient, Quotient.mk_algebraMap, RingHomCompTriple.comp_apply, Pi.mul_apply, Pi.algebraMap_apply] [GOAL] case mk.mk.h R : Type u inst✝⁴ : CommRing R S : Type v inst✝³ : CommRing S f : R →+* S p✝ : Ideal R P✝ : Ideal S inst✝² : IsDomain S inst✝¹ : IsDedekindDomain S inst✝ : Algebra R S p : Ideal R hp : map (algebraMap R S) p ≠ ⊥ src✝ : S ⧸ map (algebraMap R S) p ≃+* ((P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) }) → S ⧸ ↑P ^ ramificationIdx (algebraMap R S) p ↑P) := piQuotientEquiv p hp r✝ : R ⧸ p c : R x✝ : S ⧸ map (algebraMap R S) p x : S P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } ⊢ Equiv.toFun (piQuotientEquiv p hp).toEquiv (↑(algebraMap R (S ⧸ map (algebraMap R S) p)) c * ↑(Quotient.mk (map (algebraMap R S) p)) x) P = ↑(algebraMap (R ⧸ p) (S ⧸ ↑P ^ ramificationIdx (algebraMap R S) p ↑P)) (↑(Quotient.mk p) c) * Equiv.toFun (piQuotientEquiv p hp).toEquiv (↑(Quotient.mk (map (algebraMap R S) p)) x) P [PROOFSTEP] congr [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ ⊢ ∑ P in Multiset.toFinset (factors (map (algebraMap R S) p)), ramificationIdx (algebraMap R S) p P * inertiaDeg (algebraMap R S) p P = finrank K L [PROOFSTEP] set e := ramificationIdx (algebraMap R S) p [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p ⊢ ∑ P in Multiset.toFinset (factors (map (algebraMap R S) p)), e P * inertiaDeg (algebraMap R S) p P = finrank K L [PROOFSTEP] set f := inertiaDeg (algebraMap R S) p [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p ⊢ ∑ P in Multiset.toFinset (factors (map (algebraMap R S) p)), e P * f P = finrank K L [PROOFSTEP] have inj_RL : Function.Injective (algebraMap R L) := by rw [IsScalarTower.algebraMap_eq R K L, RingHom.coe_comp] exact (RingHom.injective _).comp (IsFractionRing.injective R K) [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p ⊢ Function.Injective ↑(algebraMap R L) [PROOFSTEP] rw [IsScalarTower.algebraMap_eq R K L, RingHom.coe_comp] [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p ⊢ Function.Injective (↑(algebraMap K L) ∘ ↑(algebraMap R K)) [PROOFSTEP] exact (RingHom.injective _).comp (IsFractionRing.injective R K) [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p inj_RL : Function.Injective ↑(algebraMap R L) ⊢ ∑ P in Multiset.toFinset (factors (map (algebraMap R S) p)), e P * f P = finrank K L [PROOFSTEP] have inj_RS : Function.Injective (algebraMap R S) := by refine Function.Injective.of_comp (show Function.Injective (algebraMap S L ∘ _) from ?_) rw [← RingHom.coe_comp, ← IsScalarTower.algebraMap_eq] exact inj_RL [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p inj_RL : Function.Injective ↑(algebraMap R L) ⊢ Function.Injective ↑(algebraMap R S) [PROOFSTEP] refine Function.Injective.of_comp (show Function.Injective (algebraMap S L ∘ _) from ?_) [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p inj_RL : Function.Injective ↑(algebraMap R L) ⊢ Function.Injective (↑(algebraMap S L) ∘ ↑(algebraMap R S)) [PROOFSTEP] rw [← RingHom.coe_comp, ← IsScalarTower.algebraMap_eq] [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p inj_RL : Function.Injective ↑(algebraMap R L) ⊢ Function.Injective ↑(algebraMap R L) [PROOFSTEP] exact inj_RL [GOAL] R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p inj_RL : Function.Injective ↑(algebraMap R L) inj_RS : Function.Injective ↑(algebraMap R S) ⊢ ∑ P in Multiset.toFinset (factors (map (algebraMap R S) p)), e P * f P = finrank K L [PROOFSTEP] calc (∑ P in (factors (map (algebraMap R S) p)).toFinset, e P * f P) = ∑ P in (factors (map (algebraMap R S) p)).toFinset.attach, finrank (R ⧸ p) (S ⧸ (P : Ideal S) ^ e P) := ?_ _ = finrank (R ⧸ p) (∀ P : (factors (map (algebraMap R S) p)).toFinset, S ⧸ (P : Ideal S) ^ e P) := (finrank_pi_fintype (R ⧸ p)).symm _ = finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) := ?_ _ = finrank K L := ?_ [GOAL] case calc_1 R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p inj_RL : Function.Injective ↑(algebraMap R L) inj_RS : Function.Injective ↑(algebraMap R S) ⊢ ∑ P in Multiset.toFinset (factors (map (algebraMap R S) p)), e P * f P = ∑ P in Finset.attach (Multiset.toFinset (factors (map (algebraMap R S) p))), finrank (R ⧸ p) (S ⧸ ↑P ^ e ↑P) [PROOFSTEP] rw [← Finset.sum_attach] [GOAL] case calc_1 R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p inj_RL : Function.Injective ↑(algebraMap R L) inj_RS : Function.Injective ↑(algebraMap R S) ⊢ ∑ x in Finset.attach (Multiset.toFinset (factors (map (algebraMap R S) p))), e ↑x * f ↑x = ∑ P in Finset.attach (Multiset.toFinset (factors (map (algebraMap R S) p))), finrank (R ⧸ p) (S ⧸ ↑P ^ e ↑P) [PROOFSTEP] refine Finset.sum_congr rfl fun P _ => ?_ [GOAL] case calc_1 R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P✝ : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p inj_RL : Function.Injective ↑(algebraMap R L) inj_RS : Function.Injective ↑(algebraMap R S) P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) } x✝ : P ∈ Finset.attach (Multiset.toFinset (factors (map (algebraMap R S) p))) ⊢ e ↑P * f ↑P = finrank (R ⧸ p) (S ⧸ ↑P ^ e ↑P) [PROOFSTEP] rw [Factors.finrank_pow_ramificationIdx] [GOAL] case calc_2 R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p inj_RL : Function.Injective ↑(algebraMap R L) inj_RS : Function.Injective ↑(algebraMap R S) ⊢ finrank (R ⧸ p) ((P : { x // x ∈ Multiset.toFinset (factors (map (algebraMap R S) p)) }) → S ⧸ ↑P ^ e ↑P) = finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) [PROOFSTEP] refine LinearEquiv.finrank_eq (Factors.piQuotientLinearEquiv S p ?_).symm [GOAL] case calc_2 R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p inj_RL : Function.Injective ↑(algebraMap R L) inj_RS : Function.Injective ↑(algebraMap R S) ⊢ map (algebraMap R S) p ≠ ⊥ [PROOFSTEP] rwa [Ne.def, Ideal.map_eq_bot_iff_le_ker, (RingHom.injective_iff_ker_eq_bot _).mp inj_RS, le_bot_iff] [GOAL] case calc_3 R : Type u inst✝¹⁹ : CommRing R S : Type v inst✝¹⁸ : CommRing S f✝ : R →+* S p : Ideal R P : Ideal S inst✝¹⁷ : IsDomain S inst✝¹⁶ : IsDedekindDomain S inst✝¹⁵ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : IsDomain R inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : IsMaximal p hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p f : Ideal S → [inst : IsMaximal p] → ℕ := inertiaDeg (algebraMap R S) p inj_RL : Function.Injective ↑(algebraMap R L) inj_RS : Function.Injective ↑(algebraMap R S) ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L [PROOFSTEP] exact finrank_quotient_map p K L
{"mathlib_filename": "Mathlib.NumberTheory.RamificationInertia", "llama_tokens": 146323}
[GOAL] f : ℕ →. ℕ hf : Partrec f ⊢ Partrec₂ fun a m => Part.map (fun x => x + m) (Nat.rfind fun n => (fun m => decide (m = 0)) <$> f (Nat.pair a (n + m))) [PROOFSTEP] refine' Partrec.map ((@Partrec₂.unpaired' fun a b : ℕ => Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1 _) (Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂ [GOAL] f : ℕ →. ℕ hf : Partrec f ⊢ Partrec (unpaired fun a b => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f (Nat.pair a (n + b))) [PROOFSTEP] have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$> Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2))) (Nat.pair a n))) := rfind (Partrec₂.unpaired'.2 ((Partrec.nat_iff.2 hf).comp (Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst) (Primrec.nat_add.comp Primrec.snd (Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp)) [GOAL] f : ℕ →. ℕ hf : Partrec f this : Partrec fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> unpaired (fun a b => f (Nat.pair (unpair a).fst (b + (unpair a).snd))) (Nat.pair a n) ⊢ Partrec (unpaired fun a b => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f (Nat.pair a (n + b))) [PROOFSTEP] simp at this [GOAL] f : ℕ →. ℕ hf : Partrec f this : Partrec fun a => Nat.rfind fun n => Part.map (fun m => decide (m = 0)) (f (Nat.pair (unpair a).fst (n + (unpair a).snd))) ⊢ Partrec (unpaired fun a b => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f (Nat.pair a (n + b))) [PROOFSTEP] exact this [GOAL] x✝ : Code.const 0 = Code.const 0 ⊢ 0 = 0 [PROOFSTEP] simp [GOAL] n₁ n₂ : ℕ h : Code.const (n₁ + 1) = Code.const (n₂ + 1) ⊢ n₁ + 1 = n₂ + 1 [PROOFSTEP] dsimp [Nat.add_one, Nat.Partrec.Code.const] at h [GOAL] n₁ n₂ : ℕ h : comp succ (Code.const n₁) = comp succ (Code.const n₂) ⊢ n₁ + 1 = n₂ + 1 [PROOFSTEP] injection h with h₁ h₂ [GOAL] n₁ n₂ : ℕ h₁ : succ = succ h₂ : Code.const n₁ = Code.const n₂ ⊢ n₁ + 1 = n₂ + 1 [PROOFSTEP] simp only [const_inj h₂] [GOAL] n : ℕ m : ℕ := div2 (div2 n) ⊢ m < n + 4 [PROOFSTEP] simp [Nat.div2_val] [GOAL] n : ℕ m : ℕ := div2 (div2 n) ⊢ n / 2 / 2 < n + 4 [PROOFSTEP] exact lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _)) (Nat.succ_le_succ (Nat.le_add_right _ _)) [GOAL] ⊢ encodeCode (ofNatCode 0) = 0 [PROOFSTEP] simp [ofNatCode, encodeCode] [GOAL] ⊢ encodeCode (ofNatCode 1) = 1 [PROOFSTEP] simp [ofNatCode, encodeCode] [GOAL] ⊢ encodeCode (ofNatCode 2) = 2 [PROOFSTEP] simp [ofNatCode, encodeCode] [GOAL] ⊢ encodeCode (ofNatCode 3) = 3 [PROOFSTEP] simp [ofNatCode, encodeCode] [GOAL] n : ℕ ⊢ encodeCode (ofNatCode (n + 4)) = n + 4 [PROOFSTEP] let m := n.div2.div2 [GOAL] n : ℕ m : ℕ := div2 (div2 n) ⊢ encodeCode (ofNatCode (n + 4)) = n + 4 [PROOFSTEP] have hm : m < n + 4 := by simp [Nat.div2_val] exact lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _)) (Nat.succ_le_succ (Nat.le_add_right _ _)) [GOAL] n : ℕ m : ℕ := div2 (div2 n) ⊢ m < n + 4 [PROOFSTEP] simp [Nat.div2_val] [GOAL] n : ℕ m : ℕ := div2 (div2 n) ⊢ n / 2 / 2 < n + 4 [PROOFSTEP] exact lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _)) (Nat.succ_le_succ (Nat.le_add_right _ _)) [GOAL] n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 ⊢ encodeCode (ofNatCode (n + 4)) = n + 4 [PROOFSTEP] have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm [GOAL] n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 ⊢ encodeCode (ofNatCode (n + 4)) = n + 4 [PROOFSTEP] have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm [GOAL] n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 ⊢ encodeCode (ofNatCode (n + 4)) = n + 4 [PROOFSTEP] have IH := encode_ofNatCode m [GOAL] n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m ⊢ encodeCode (ofNatCode (n + 4)) = n + 4 [PROOFSTEP] have IH1 := encode_ofNatCode m.unpair.1 [GOAL] n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst ⊢ encodeCode (ofNatCode (n + 4)) = n + 4 [PROOFSTEP] have IH2 := encode_ofNatCode m.unpair.2 [GOAL] n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd ⊢ encodeCode (ofNatCode (n + 4)) = n + 4 [PROOFSTEP] conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2] [GOAL] n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd | n + 4 [PROOFSTEP] rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2] [GOAL] n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd | n + 4 [PROOFSTEP] rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2] [GOAL] n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd | n + 4 [PROOFSTEP] rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2] [GOAL] n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd ⊢ encodeCode (ofNatCode (n + 4)) = bit (bodd n) (bit (bodd (div2 n)) (div2 (div2 n))) + 4 [PROOFSTEP] simp [encodeCode, ofNatCode] [GOAL] n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd ⊢ encodeCode (match bodd n, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) = bit (bodd n) (bit (bodd (div2 n)) (div2 (div2 n))) + 4 [PROOFSTEP] cases n.bodd [GOAL] case false n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd ⊢ encodeCode (match false, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) = bit false (bit (bodd (div2 n)) (div2 (div2 n))) + 4 [PROOFSTEP] cases n.div2.bodd [GOAL] case true n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd ⊢ encodeCode (match true, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) = bit true (bit (bodd (div2 n)) (div2 (div2 n))) + 4 [PROOFSTEP] cases n.div2.bodd [GOAL] case false.false n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd ⊢ encodeCode (match false, false with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) = bit false (bit false (div2 (div2 n))) + 4 [PROOFSTEP] simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val] [GOAL] case false.true n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd ⊢ encodeCode (match false, true with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) = bit false (bit true (div2 (div2 n))) + 4 [PROOFSTEP] simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val] [GOAL] case true.false n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd ⊢ encodeCode (match true, false with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) = bit true (bit false (div2 (div2 n))) + 4 [PROOFSTEP] simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val] [GOAL] case true.true n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 _m1 : (unpair m).fst < n + 4 _m2 : (unpair m).snd < n + 4 IH : encodeCode (ofNatCode m) = m IH1 : encodeCode (ofNatCode (unpair m).fst) = (unpair m).fst IH2 : encodeCode (ofNatCode (unpair m).snd) = (unpair m).snd ⊢ encodeCode (match true, true with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) = bit true (bit true (div2 (div2 n))) + 4 [PROOFSTEP] simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val] [GOAL] c : Code ⊢ ofNatCode (encodeCode c) = c [PROOFSTEP] induction c [GOAL] case zero ⊢ ofNatCode (encodeCode zero) = zero [PROOFSTEP] try {rfl } [GOAL] case zero ⊢ ofNatCode (encodeCode zero) = zero [PROOFSTEP] {rfl } [GOAL] case zero ⊢ ofNatCode (encodeCode zero) = zero [PROOFSTEP] rfl [GOAL] case succ ⊢ ofNatCode (encodeCode succ) = succ [PROOFSTEP] try {rfl } [GOAL] case succ ⊢ ofNatCode (encodeCode succ) = succ [PROOFSTEP] {rfl } [GOAL] case succ ⊢ ofNatCode (encodeCode succ) = succ [PROOFSTEP] rfl [GOAL] case left ⊢ ofNatCode (encodeCode left) = left [PROOFSTEP] try {rfl } [GOAL] case left ⊢ ofNatCode (encodeCode left) = left [PROOFSTEP] {rfl } [GOAL] case left ⊢ ofNatCode (encodeCode left) = left [PROOFSTEP] rfl [GOAL] case right ⊢ ofNatCode (encodeCode right) = right [PROOFSTEP] try {rfl } [GOAL] case right ⊢ ofNatCode (encodeCode right) = right [PROOFSTEP] {rfl } [GOAL] case right ⊢ ofNatCode (encodeCode right) = right [PROOFSTEP] rfl [GOAL] case pair a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (pair a✝¹ a✝)) = pair a✝¹ a✝ [PROOFSTEP] try {rfl } [GOAL] case pair a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (pair a✝¹ a✝)) = pair a✝¹ a✝ [PROOFSTEP] {rfl } [GOAL] case pair a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (pair a✝¹ a✝)) = pair a✝¹ a✝ [PROOFSTEP] rfl [GOAL] case comp a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (comp a✝¹ a✝)) = comp a✝¹ a✝ [PROOFSTEP] try {rfl } [GOAL] case comp a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (comp a✝¹ a✝)) = comp a✝¹ a✝ [PROOFSTEP] {rfl } [GOAL] case comp a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (comp a✝¹ a✝)) = comp a✝¹ a✝ [PROOFSTEP] rfl [GOAL] case prec a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (prec a✝¹ a✝)) = prec a✝¹ a✝ [PROOFSTEP] try {rfl } [GOAL] case prec a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (prec a✝¹ a✝)) = prec a✝¹ a✝ [PROOFSTEP] {rfl } [GOAL] case prec a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (prec a✝¹ a✝)) = prec a✝¹ a✝ [PROOFSTEP] rfl [GOAL] case rfind' a✝ : Code a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (rfind' a✝)) = rfind' a✝ [PROOFSTEP] try {rfl } [GOAL] case rfind' a✝ : Code a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (rfind' a✝)) = rfind' a✝ [PROOFSTEP] {rfl } [GOAL] case rfind' a✝ : Code a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (rfind' a✝)) = rfind' a✝ [PROOFSTEP] rfl [GOAL] case pair a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (pair a✝¹ a✝)) = pair a✝¹ a✝ [PROOFSTEP] simp [encodeCode, ofNatCode, Nat.div2_val, *] [GOAL] case comp a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (comp a✝¹ a✝)) = comp a✝¹ a✝ [PROOFSTEP] simp [encodeCode, ofNatCode, Nat.div2_val, *] [GOAL] case prec a✝¹ a✝ : Code a_ih✝¹ : ofNatCode (encodeCode a✝¹) = a✝¹ a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (prec a✝¹ a✝)) = prec a✝¹ a✝ [PROOFSTEP] simp [encodeCode, ofNatCode, Nat.div2_val, *] [GOAL] case rfind' a✝ : Code a_ih✝ : ofNatCode (encodeCode a✝) = a✝ ⊢ ofNatCode (encodeCode (rfind' a✝)) = rfind' a✝ [PROOFSTEP] simp [encodeCode, ofNatCode, Nat.div2_val, *] [GOAL] cf cg : Code ⊢ encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) [PROOFSTEP] simp [encodeCode_eq, encodeCode] [GOAL] cf cg : Code ⊢ encodeCode cf < 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4 ∧ encodeCode cg < 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4 [PROOFSTEP] have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2) [GOAL] cf cg : Code ⊢ 1 ≤ 2 * 2 [PROOFSTEP] decide [GOAL] cf cg : Code this : 1 * Nat.pair (encodeCode cf) (encodeCode cg) ≤ 2 * 2 * Nat.pair (encodeCode cf) (encodeCode cg) ⊢ encodeCode cf < 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4 ∧ encodeCode cg < 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4 [PROOFSTEP] rw [one_mul, mul_assoc] at this [GOAL] cf cg : Code this : Nat.pair (encodeCode cf) (encodeCode cg) ≤ 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) ⊢ encodeCode cf < 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4 ∧ encodeCode cg < 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4 [PROOFSTEP] have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4)) [GOAL] cf cg : Code this : Nat.pair (encodeCode cf) (encodeCode cg) ≤ 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) ⊢ 0 < 4 [PROOFSTEP] decide [GOAL] cf cg : Code this✝ : Nat.pair (encodeCode cf) (encodeCode cg) ≤ 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) this : Nat.pair (encodeCode cf) (encodeCode cg) < 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4 ⊢ encodeCode cf < 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4 ∧ encodeCode cg < 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4 [PROOFSTEP] exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩ [GOAL] cf cg : Code ⊢ encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) [PROOFSTEP] suffices [GOAL] cf cg : Code this : ?m.354291 ⊢ encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) case this cf cg : Code ⊢ ?m.354291 [PROOFSTEP] exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this [GOAL] case this cf cg : Code ⊢ encode (pair cf cg) < encode (comp cf cg) [PROOFSTEP] change _ [GOAL] case this cf cg : Code ⊢ encode (pair cf cg) < encode (comp cf cg) [PROOFSTEP] simp [encodeCode_eq, encodeCode] [GOAL] cf cg : Code ⊢ encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) [PROOFSTEP] suffices [GOAL] cf cg : Code this : ?m.356899 ⊢ encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) case this cf cg : Code ⊢ ?m.356899 [PROOFSTEP] exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this [GOAL] case this cf cg : Code ⊢ encode (pair cf cg) < encode (prec cf cg) [PROOFSTEP] change _ [GOAL] case this cf cg : Code ⊢ encode (pair cf cg) < encode (prec cf cg) [PROOFSTEP] simp [encodeCode_eq, encodeCode] [GOAL] cf : Code ⊢ encode cf < encode (rfind' cf) [PROOFSTEP] simp [encodeCode_eq, encodeCode] [GOAL] cf : Code ⊢ encodeCode cf < 2 * (2 * encodeCode cf + 1) + 1 + 4 [PROOFSTEP] have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2) [GOAL] cf : Code ⊢ 1 ≤ 2 * 2 [PROOFSTEP] decide [GOAL] cf : Code this : 1 * encodeCode cf ≤ 2 * 2 * encodeCode cf ⊢ encodeCode cf < 2 * (2 * encodeCode cf + 1) + 1 + 4 [PROOFSTEP] rw [one_mul, mul_assoc] at this [GOAL] cf : Code this : encodeCode cf ≤ 2 * (2 * encodeCode cf) ⊢ encodeCode cf < 2 * (2 * encodeCode cf + 1) + 1 + 4 [PROOFSTEP] refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4)) [GOAL] cf : Code this : encodeCode cf ≤ 2 * (2 * encodeCode cf) ⊢ 0 < 4 [PROOFSTEP] decide [GOAL] cf : Code this : encodeCode cf ≤ 2 * (2 * encodeCode cf) ⊢ 2 * (2 * encodeCode cf) ≤ 2 * (2 * encodeCode cf + 1) + 1 [PROOFSTEP] exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <| Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf ⊢ let PR := fun a cf cg hf hg => pr a (cf, cg, hf, hg); let CO := fun a cf cg hf hg => co a (cf, cg, hf, hg); let PC := fun a cf cg hf hg => pc a (cf, cg, hf, hg); let RF := fun a cf hf => rf a (cf, hf); let F := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a); Primrec fun a => F a (c a) [PROOFSTEP] intros _ _ _ _ F [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) ⊢ Primrec fun a => F a (c a) [PROOFSTEP] let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.1.1 let IH := p.1.2 let n := p.2.1 let m := p.2.2 (IH.get? m).bind fun s => (IH.get? m.unpair.1).bind fun s₁ => (IH.get? m.unpair.2).map fun s₂ => cond n.bodd (cond n.div2.bodd (rf a (ofNat Code m, s)) (pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))) (cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)) (pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Primrec fun a => F a (c a) [PROOFSTEP] have : Primrec G₁ := by refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _ unfold Primrec₂ refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _ unfold Primrec₂ refine' option_map ((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _ have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) := fst.comp (fst.comp <| fst.comp <| fst.comp fst) have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) := fst.comp (snd.comp <| fst.comp <| fst.comp fst) have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) := snd.comp (snd.comp <| fst.comp <| fst.comp fst) have m₁ := fst.comp (Primrec.unpair.comp m) have m₂ := snd.comp (Primrec.unpair.comp m) have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) := snd.comp (fst.comp fst) have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) := snd.comp fst have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) := snd unfold Primrec₂ exact (nat_bodd.comp n).cond ((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s)) (hpc.comp a (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))) (Primrec.cond (nat_bodd.comp <| nat_div2.comp n) (hco.comp a (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)) (hpr.comp a (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Primrec G₁ [PROOFSTEP] refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Primrec₂ fun p s => Option.bind (List.get? p.fst.snd (unpair p.snd.snd).fst) fun s₁ => Option.map (fun s₂ => bif bodd p.snd.fst then bif bodd (div2 p.snd.fst) then rf p.fst.fst (ofNat Code p.snd.snd, s) else pc p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂) else bif bodd (div2 p.snd.fst) then co p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂) else pr p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂)) (List.get? p.fst.snd (unpair p.snd.snd).snd) [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Primrec fun p => (fun p s => Option.bind (List.get? p.fst.snd (unpair p.snd.snd).fst) fun s₁ => Option.map (fun s₂ => bif bodd p.snd.fst then bif bodd (div2 p.snd.fst) then rf p.fst.fst (ofNat Code p.snd.snd, s) else pc p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂) else bif bodd (div2 p.snd.fst) then co p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂) else pr p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂)) (List.get? p.fst.snd (unpair p.snd.snd).snd)) p.fst p.snd [PROOFSTEP] refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Primrec₂ fun p s₁ => Option.map (fun s₂ => bif bodd p.fst.snd.fst then bif bodd (div2 p.fst.snd.fst) then rf p.fst.fst.fst (ofNat Code p.fst.snd.snd, p.snd) else pc p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂) else bif bodd (div2 p.fst.snd.fst) then co p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂) else pr p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂)) (List.get? p.fst.fst.snd (unpair p.fst.snd.snd).snd) [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Primrec fun p => (fun p s₁ => Option.map (fun s₂ => bif bodd p.fst.snd.fst then bif bodd (div2 p.fst.snd.fst) then rf p.fst.fst.fst (ofNat Code p.fst.snd.snd, p.snd) else pc p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂) else bif bodd (div2 p.fst.snd.fst) then co p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂) else pr p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂)) (List.get? p.fst.fst.snd (unpair p.fst.snd.snd).snd)) p.fst p.snd [PROOFSTEP] refine' option_map ((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) := fst.comp (fst.comp <| fst.comp <| fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) := fst.comp (snd.comp <| fst.comp <| fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) := snd.comp (snd.comp <| fst.comp <| fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have m₁ := fst.comp (Primrec.unpair.comp m) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have m₂ := snd.comp (Primrec.unpair.comp m) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) := snd.comp (fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) := snd.comp fst [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd s₁ : Primrec fun p => p.fst.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) := snd [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd s₁ : Primrec fun p => p.fst.snd s₂ : Primrec fun p => p.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd s₁ : Primrec fun p => p.fst.snd s₂ : Primrec fun p => p.snd ⊢ Primrec fun p => (fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂)) p.fst p.snd [PROOFSTEP] exact (nat_bodd.comp n).cond ((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s)) (hpc.comp a (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))) (Primrec.cond (nat_bodd.comp <| nat_div2.comp n) (hco.comp a (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)) (hpr.comp a (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ ⊢ Primrec fun a => F a (c a) [PROOFSTEP] let G : α → List σ → Option σ := fun a IH => IH.length.casesOn (some (z a)) fun n => n.casesOn (some (s a)) fun n => n.casesOn (some (l a)) fun n => n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun a => F a (c a) [PROOFSTEP] have : Primrec₂ G := by unfold Primrec₂ refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_ unfold Primrec₂ refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_ unfold Primrec₂ refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_ unfold Primrec₂ refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_ unfold Primrec₂ exact this.comp <| ((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <| snd.pair <| nat_div2.comp <| nat_div2.comp snd [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec₂ G [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun p => G p.fst p.snd [PROOFSTEP] refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec₂ fun p n => (fun n => Nat.casesOn n (some (s p.fst)) fun n => Nat.casesOn n (some (l p.fst)) fun n => Nat.casesOn n (some (r p.fst)) fun n => G₁ ((p.fst, p.snd), n, div2 (div2 n))) n [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun p => (fun p n => (fun n => Nat.casesOn n (some (s p.fst)) fun n => Nat.casesOn n (some (l p.fst)) fun n => Nat.casesOn n (some (r p.fst)) fun n => G₁ ((p.fst, p.snd), n, div2 (div2 n))) n) p.fst p.snd [PROOFSTEP] refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec₂ fun p n => (fun n => Nat.casesOn n (some (l p.fst.fst)) fun n => Nat.casesOn n (some (r p.fst.fst)) fun n => G₁ ((p.fst.fst, p.fst.snd), n, div2 (div2 n))) n [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun p => (fun p n => (fun n => Nat.casesOn n (some (l p.fst.fst)) fun n => Nat.casesOn n (some (r p.fst.fst)) fun n => G₁ ((p.fst.fst, p.fst.snd), n, div2 (div2 n))) n) p.fst p.snd [PROOFSTEP] refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec₂ fun p n => (fun n => Nat.casesOn n (some (r p.fst.fst.fst)) fun n => G₁ ((p.fst.fst.fst, p.fst.fst.snd), n, div2 (div2 n))) n [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun p => (fun p n => (fun n => Nat.casesOn n (some (r p.fst.fst.fst)) fun n => G₁ ((p.fst.fst.fst, p.fst.fst.snd), n, div2 (div2 n))) n) p.fst p.snd [PROOFSTEP] refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec₂ fun p n => (fun n => G₁ ((p.fst.fst.fst.fst, p.fst.fst.fst.snd), n, div2 (div2 n))) n [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun p => (fun p n => (fun n => G₁ ((p.fst.fst.fst.fst, p.fst.fst.fst.snd), n, div2 (div2 n))) n) p.fst p.snd [PROOFSTEP] exact this.comp <| ((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <| snd.pair <| nat_div2.comp <| nat_div2.comp snd [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G ⊢ Primrec fun a => F a (c a) [PROOFSTEP] refine' ((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp _root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ F (id a) (ofNat Code (encode (c a))) = F a (c a) [PROOFSTEP] simp [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G (a, List.map ((fun a n => F a (ofNat Code n)) a) (List.range n)).fst (a, List.map ((fun a n => F a (ofNat Code n)) a) (List.range n)).snd = some ((fun a n => F a (ofNat Code n)) a n) [PROOFSTEP] simp (config := { zeta := false }) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range n)) = some (F a (ofNat Code n)) [PROOFSTEP] iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range n)) = some (F a (ofNat Code n)) [PROOFSTEP] cases' n with n [GOAL] case zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range Nat.zero)) = some (F a (ofNat Code Nat.zero)) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a [] = some (F a zero) [PROOFSTEP] rfl [GOAL] case succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ n))) = some (F a (ofNat Code (Nat.succ n))) [PROOFSTEP] cases' n with n [GOAL] case succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ Nat.zero))) = some (F a (ofNat Code (Nat.succ Nat.zero))) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a [F a zero] = some (F a succ) [PROOFSTEP] rfl [GOAL] case succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ n)))) = some (F a (ofNat Code (Nat.succ (Nat.succ n)))) [PROOFSTEP] cases' n with n [GOAL] case succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ Nat.zero)))) = some (F a (ofNat Code (Nat.succ (Nat.succ Nat.zero)))) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a [F a zero, F a succ] = some (F a left) [PROOFSTEP] rfl [GOAL] case succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ n))))) = some (F a (ofNat Code (Nat.succ (Nat.succ (Nat.succ n))))) [PROOFSTEP] cases' n with n [GOAL] case succ.succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ Nat.zero))))) = some (F a (ofNat Code (Nat.succ (Nat.succ (Nat.succ Nat.zero))))) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case succ.succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a [F a zero, F a succ, F a left] = some (F a right) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) = some (F a (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] simp only [] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ Nat.rec (some (z a)) (fun n_1 n_ih => Nat.rec (some (s a)) (fun n_2 n_ih => Nat.rec (some (l a)) (fun n_3 n_ih => Nat.rec (some (r a)) (fun n_4 n_ih => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (div2 (div2 n_4))) fun s_1 => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).fst) fun s₁ => Option.map (fun s₂ => bif bodd n_4 then bif bodd (div2 n_4) then rf a (ofNat Code (div2 (div2 n_4)), s_1) else pc a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else bif bodd (div2 n_4) then co a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else pr a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂)) (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).snd)) n_3) n_2) n_1) (List.length (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n))))))) = some (rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] rw [List.length_map, List.length_range] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ Nat.rec (some (z a)) (fun n_1 n_ih => Nat.rec (some (s a)) (fun n_2 n_ih => Nat.rec (some (l a)) (fun n_3 n_ih => Nat.rec (some (r a)) (fun n_4 n_ih => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (div2 (div2 n_4))) fun s_1 => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).fst) fun s₁ => Option.map (fun s₂ => bif bodd n_4 then bif bodd (div2 n_4) then rf a (ofNat Code (div2 (div2 n_4)), s_1) else pc a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else bif bodd (div2 n_4) then co a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else pr a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂)) (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).snd)) n_3) n_2) n_1) (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))) = some (rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] let m := n.div2.div2 [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ Nat.rec (some (z a)) (fun n_1 n_ih => Nat.rec (some (s a)) (fun n_2 n_ih => Nat.rec (some (l a)) (fun n_3 n_ih => Nat.rec (some (r a)) (fun n_4 n_ih => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (div2 (div2 n_4))) fun s_1 => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).fst) fun s₁ => Option.map (fun s₂ => bif bodd n_4 then bif bodd (div2 n_4) then rf a (ofNat Code (div2 (div2 n_4)), s_1) else pc a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else bif bodd (div2 n_4) then co a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else pr a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂)) (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).snd)) n_3) n_2) n_1) (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))) = some (rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] show G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) = some (F a (ofNat Code (n + 4))) [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] have hm : m < n + 4 := by simp [Nat.div2_val] exact lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _)) (Nat.succ_le_succ (Nat.le_add_right _ _)) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ m < n + 4 [PROOFSTEP] simp [Nat.div2_val] [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ n / 2 / 2 < n + 4 [PROOFSTEP] exact lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _)) (Nat.succ_le_succ (Nat.le_add_right _ _)) [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] simp [List.get?_map, List.get?_range, hm, m1, m2] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif bodd n then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (n + 4)) [PROOFSTEP] rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif bodd n then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNatCode (n + 4)) [PROOFSTEP] simp [ofNatCode] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif bodd n then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match bodd n, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] cases n.bodd [GOAL] case succ.succ.succ.succ.false α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif false then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match false, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] cases n.div2.bodd [GOAL] case succ.succ.succ.succ.true α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif true then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match true, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] cases n.div2.bodd [GOAL] case succ.succ.succ.succ.false.false α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif false then bif false then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif false then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match false, false with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ.false.true α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif false then bif true then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif true then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match false, true with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ.true.false α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif true then bif false then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif false then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match true, false with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ.true.true α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code × Code × σ × σ → σ hpr : Primrec₂ pr co : α → Code × Code × σ × σ → σ hco : Primrec₂ co pc : α → Code × Code × σ × σ → σ hpc : Primrec₂ pc rf : α → Code × σ → σ hrf : Primrec₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif true then bif true then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif true then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match true, true with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd ⊢ let F := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a); Primrec fun a => F a (c a) [PROOFSTEP] intros F [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) ⊢ Primrec fun a => F a (c a) [PROOFSTEP] let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.1.1 let IH := p.1.2 let n := p.2.1 let m := p.2.2 (IH.get? m).bind fun s => (IH.get? m.unpair.1).bind fun s₁ => (IH.get? m.unpair.2).map fun s₂ => cond n.bodd (cond n.div2.bodd (rf a (ofNat Code m) s) (pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)) (cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂) (pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) ⊢ Primrec fun a => F a (c a) [PROOFSTEP] have : Primrec G₁ := by refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _ unfold Primrec₂ refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _ unfold Primrec₂ refine' option_map ((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _ have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) := fst.comp (fst.comp <| fst.comp <| fst.comp fst) have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) := fst.comp (snd.comp <| fst.comp <| fst.comp fst) have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) := snd.comp (snd.comp <| fst.comp <| fst.comp fst) have m₁ := fst.comp (Primrec.unpair.comp m) have m₂ := snd.comp (Primrec.unpair.comp m) have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) := snd.comp (fst.comp fst) have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) := snd.comp fst have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) := snd have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s) have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂) have h₃ := hco.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂) have h₄ := hpr.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂) unfold Primrec₂ exact (nat_bodd.comp n).cond ((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂) (cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) ⊢ Primrec G₁ [PROOFSTEP] refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) ⊢ Primrec₂ fun p s => Option.bind (List.get? p.fst.snd (unpair p.snd.snd).fst) fun s₁ => Option.map (fun s₂ => bif bodd p.snd.fst then bif bodd (div2 p.snd.fst) then rf p.fst.fst (ofNat Code p.snd.snd) s else pc p.fst.fst (ofNat Code (unpair p.snd.snd).fst) (ofNat Code (unpair p.snd.snd).snd) s₁ s₂ else bif bodd (div2 p.snd.fst) then co p.fst.fst (ofNat Code (unpair p.snd.snd).fst) (ofNat Code (unpair p.snd.snd).snd) s₁ s₂ else pr p.fst.fst (ofNat Code (unpair p.snd.snd).fst) (ofNat Code (unpair p.snd.snd).snd) s₁ s₂) (List.get? p.fst.snd (unpair p.snd.snd).snd) [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) ⊢ Primrec fun p => (fun p s => Option.bind (List.get? p.fst.snd (unpair p.snd.snd).fst) fun s₁ => Option.map (fun s₂ => bif bodd p.snd.fst then bif bodd (div2 p.snd.fst) then rf p.fst.fst (ofNat Code p.snd.snd) s else pc p.fst.fst (ofNat Code (unpair p.snd.snd).fst) (ofNat Code (unpair p.snd.snd).snd) s₁ s₂ else bif bodd (div2 p.snd.fst) then co p.fst.fst (ofNat Code (unpair p.snd.snd).fst) (ofNat Code (unpair p.snd.snd).snd) s₁ s₂ else pr p.fst.fst (ofNat Code (unpair p.snd.snd).fst) (ofNat Code (unpair p.snd.snd).snd) s₁ s₂) (List.get? p.fst.snd (unpair p.snd.snd).snd)) p.fst p.snd [PROOFSTEP] refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) ⊢ Primrec₂ fun p s₁ => Option.map (fun s₂ => bif bodd p.fst.snd.fst then bif bodd (div2 p.fst.snd.fst) then rf p.fst.fst.fst (ofNat Code p.fst.snd.snd) p.snd else pc p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst) (ofNat Code (unpair p.fst.snd.snd).snd) s₁ s₂ else bif bodd (div2 p.fst.snd.fst) then co p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst) (ofNat Code (unpair p.fst.snd.snd).snd) s₁ s₂ else pr p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst) (ofNat Code (unpair p.fst.snd.snd).snd) s₁ s₂) (List.get? p.fst.fst.snd (unpair p.fst.snd.snd).snd) [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) ⊢ Primrec fun p => (fun p s₁ => Option.map (fun s₂ => bif bodd p.fst.snd.fst then bif bodd (div2 p.fst.snd.fst) then rf p.fst.fst.fst (ofNat Code p.fst.snd.snd) p.snd else pc p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst) (ofNat Code (unpair p.fst.snd.snd).snd) s₁ s₂ else bif bodd (div2 p.fst.snd.fst) then co p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst) (ofNat Code (unpair p.fst.snd.snd).snd) s₁ s₂ else pr p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst) (ofNat Code (unpair p.fst.snd.snd).snd) s₁ s₂) (List.get? p.fst.fst.snd (unpair p.fst.snd.snd).snd)) p.fst p.snd [PROOFSTEP] refine' option_map ((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) := fst.comp (fst.comp <| fst.comp <| fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) := fst.comp (snd.comp <| fst.comp <| fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) := snd.comp (snd.comp <| fst.comp <| fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have m₁ := fst.comp (Primrec.unpair.comp m) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have m₂ := snd.comp (Primrec.unpair.comp m) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) := snd.comp (fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) := snd.comp fst [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd s₁ : Primrec fun p => p.fst.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) := snd [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd s₁ : Primrec fun p => p.fst.snd s₂ : Primrec fun p => p.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd s₁ : Primrec fun p => p.fst.snd s₂ : Primrec fun p => p.snd h₁ : Primrec fun a => rf (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).snd.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd s₁ : Primrec fun p => p.fst.snd s₂ : Primrec fun p => p.snd h₁ : Primrec fun a => rf (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).snd.snd h₂ : Primrec fun a => pc (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have h₃ := hco.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd s₁ : Primrec fun p => p.fst.snd s₂ : Primrec fun p => p.snd h₁ : Primrec fun a => rf (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).snd.snd h₂ : Primrec fun a => pc (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.snd h₃ : Primrec fun a => co (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] have h₄ := hpr.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd s₁ : Primrec fun p => p.fst.snd s₂ : Primrec fun p => p.snd h₁ : Primrec fun a => rf (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).snd.snd h₂ : Primrec fun a => pc (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.snd h₃ : Primrec fun a => co (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.snd h₄ : Primrec fun a => pr (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.snd ⊢ Primrec₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s✝ : α → σ hs : Primrec s✝ l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) a : Primrec fun p => p.fst.fst.fst.fst.fst n : Primrec fun p => p.fst.fst.fst.snd.fst m : Primrec fun p => p.fst.fst.fst.snd.snd m₁ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Primrec fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Primrec fun p => p.fst.fst.snd s₁ : Primrec fun p => p.fst.snd s₂ : Primrec fun p => p.snd h₁ : Primrec fun a => rf (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code a.fst.fst.fst.snd.snd, a.fst.fst.snd).snd.snd h₂ : Primrec fun a => pc (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.snd h₃ : Primrec fun a => co (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.snd h₄ : Primrec fun a => pr (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.fst (a.fst.fst.fst.fst.fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).fst, ofNat Code (unpair a.fst.fst.fst.snd.snd).snd, a.fst.snd, a.snd).snd.snd.snd.snd ⊢ Primrec fun p => (fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd) p.fst.snd else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂ else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst) (ofNat Code (unpair p.fst.fst.snd.snd).snd) p.snd s₂) p.fst p.snd [PROOFSTEP] exact (nat_bodd.comp n).cond ((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂) (cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ ⊢ Primrec fun a => F a (c a) [PROOFSTEP] let G : α → List σ → Option σ := fun a IH => IH.length.casesOn (some (z a)) fun n => n.casesOn (some (s a)) fun n => n.casesOn (some (l a)) fun n => n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun a => F a (c a) [PROOFSTEP] have : Primrec₂ G := by unfold Primrec₂ refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_ unfold Primrec₂ refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_ unfold Primrec₂ refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_ unfold Primrec₂ refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_ unfold Primrec₂ exact this.comp <| ((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <| snd.pair <| nat_div2.comp <| nat_div2.comp snd [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec₂ G [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun p => G p.fst p.snd [PROOFSTEP] refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec₂ fun p n => (fun n => Nat.casesOn n (some (s p.fst)) fun n => Nat.casesOn n (some (l p.fst)) fun n => Nat.casesOn n (some (r p.fst)) fun n => G₁ ((p.fst, p.snd), n, div2 (div2 n))) n [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun p => (fun p n => (fun n => Nat.casesOn n (some (s p.fst)) fun n => Nat.casesOn n (some (l p.fst)) fun n => Nat.casesOn n (some (r p.fst)) fun n => G₁ ((p.fst, p.snd), n, div2 (div2 n))) n) p.fst p.snd [PROOFSTEP] refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec₂ fun p n => (fun n => Nat.casesOn n (some (l p.fst.fst)) fun n => Nat.casesOn n (some (r p.fst.fst)) fun n => G₁ ((p.fst.fst, p.fst.snd), n, div2 (div2 n))) n [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun p => (fun p n => (fun n => Nat.casesOn n (some (l p.fst.fst)) fun n => Nat.casesOn n (some (r p.fst.fst)) fun n => G₁ ((p.fst.fst, p.fst.snd), n, div2 (div2 n))) n) p.fst p.snd [PROOFSTEP] refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec₂ fun p n => (fun n => Nat.casesOn n (some (r p.fst.fst.fst)) fun n => G₁ ((p.fst.fst.fst, p.fst.fst.snd), n, div2 (div2 n))) n [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun p => (fun p n => (fun n => Nat.casesOn n (some (r p.fst.fst.fst)) fun n => G₁ ((p.fst.fst.fst, p.fst.fst.snd), n, div2 (div2 n))) n) p.fst p.snd [PROOFSTEP] refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec₂ fun p n => (fun n => G₁ ((p.fst.fst.fst.fst, p.fst.fst.fst.snd), n, div2 (div2 n))) n [PROOFSTEP] unfold Primrec₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Primrec fun p => (fun p n => (fun n => G₁ ((p.fst.fst.fst.fst, p.fst.fst.fst.snd), n, div2 (div2 n))) n) p.fst p.snd [PROOFSTEP] exact this.comp <| ((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <| snd.pair <| nat_div2.comp <| nat_div2.comp snd [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G ⊢ Primrec fun a => F a (c a) [PROOFSTEP] refine' ((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp _root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ F (id a) (ofNat Code (encode (c a))) = F a (c a) [PROOFSTEP] simp [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G (a, List.map ((fun a n => F a (ofNat Code n)) a) (List.range n)).fst (a, List.map ((fun a n => F a (ofNat Code n)) a) (List.range n)).snd = some ((fun a n => F a (ofNat Code n)) a n) [PROOFSTEP] simp (config := { zeta := false }) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range n)) = some (F a (ofNat Code n)) [PROOFSTEP] iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range n)) = some (F a (ofNat Code n)) [PROOFSTEP] cases' n with n [GOAL] case zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range Nat.zero)) = some (F a (ofNat Code Nat.zero)) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a [] = some (F a zero) [PROOFSTEP] rfl [GOAL] case succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ n))) = some (F a (ofNat Code (Nat.succ n))) [PROOFSTEP] cases' n with n [GOAL] case succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ Nat.zero))) = some (F a (ofNat Code (Nat.succ Nat.zero))) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a [F a zero] = some (F a succ) [PROOFSTEP] rfl [GOAL] case succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ n)))) = some (F a (ofNat Code (Nat.succ (Nat.succ n)))) [PROOFSTEP] cases' n with n [GOAL] case succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ Nat.zero)))) = some (F a (ofNat Code (Nat.succ (Nat.succ Nat.zero)))) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a [F a zero, F a succ] = some (F a left) [PROOFSTEP] rfl [GOAL] case succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ n))))) = some (F a (ofNat Code (Nat.succ (Nat.succ (Nat.succ n))))) [PROOFSTEP] cases' n with n [GOAL] case succ.succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ Nat.zero))))) = some (F a (ofNat Code (Nat.succ (Nat.succ (Nat.succ Nat.zero))))) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case succ.succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α ⊢ G a [F a zero, F a succ, F a left] = some (F a right) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) = some (F a (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] simp only [] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ Nat.rec (some (z a)) (fun n_1 n_ih => Nat.rec (some (s a)) (fun n_2 n_ih => Nat.rec (some (l a)) (fun n_3 n_ih => Nat.rec (some (r a)) (fun n_4 n_ih => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (div2 (div2 n_4))) fun s_1 => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).fst) fun s₁ => Option.map (fun s₂ => bif bodd n_4 then bif bodd (div2 n_4) then rf a (ofNat Code (div2 (div2 n_4))) s_1 else pc a (ofNat Code (unpair (div2 (div2 n_4))).fst) (ofNat Code (unpair (div2 (div2 n_4))).snd) s₁ s₂ else bif bodd (div2 n_4) then co a (ofNat Code (unpair (div2 (div2 n_4))).fst) (ofNat Code (unpair (div2 (div2 n_4))).snd) s₁ s₂ else pr a (ofNat Code (unpair (div2 (div2 n_4))).fst) (ofNat Code (unpair (div2 (div2 n_4))).snd) s₁ s₂) (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).snd)) n_3) n_2) n_1) (List.length (List.map (fun n => rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n))))))) = some (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] rw [List.length_map, List.length_range] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ ⊢ Nat.rec (some (z a)) (fun n_1 n_ih => Nat.rec (some (s a)) (fun n_2 n_ih => Nat.rec (some (l a)) (fun n_3 n_ih => Nat.rec (some (r a)) (fun n_4 n_ih => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (div2 (div2 n_4))) fun s_1 => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).fst) fun s₁ => Option.map (fun s₂ => bif bodd n_4 then bif bodd (div2 n_4) then rf a (ofNat Code (div2 (div2 n_4))) s_1 else pc a (ofNat Code (unpair (div2 (div2 n_4))).fst) (ofNat Code (unpair (div2 (div2 n_4))).snd) s₁ s₂ else bif bodd (div2 n_4) then co a (ofNat Code (unpair (div2 (div2 n_4))).fst) (ofNat Code (unpair (div2 (div2 n_4))).snd) s₁ s₂ else pr a (ofNat Code (unpair (div2 (div2 n_4))).fst) (ofNat Code (unpair (div2 (div2 n_4))).snd) s₁ s₂) (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).snd)) n_3) n_2) n_1) (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))) = some (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] let m := n.div2.div2 [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ Nat.rec (some (z a)) (fun n_1 n_ih => Nat.rec (some (s a)) (fun n_2 n_ih => Nat.rec (some (l a)) (fun n_3 n_ih => Nat.rec (some (r a)) (fun n_4 n_ih => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (div2 (div2 n_4))) fun s_1 => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).fst) fun s₁ => Option.map (fun s₂ => bif bodd n_4 then bif bodd (div2 n_4) then rf a (ofNat Code (div2 (div2 n_4))) s_1 else pc a (ofNat Code (unpair (div2 (div2 n_4))).fst) (ofNat Code (unpair (div2 (div2 n_4))).snd) s₁ s₂ else bif bodd (div2 n_4) then co a (ofNat Code (unpair (div2 (div2 n_4))).fst) (ofNat Code (unpair (div2 (div2 n_4))).snd) s₁ s₂ else pr a (ofNat Code (unpair (div2 (div2 n_4))).fst) (ofNat Code (unpair (div2 (div2 n_4))).snd) s₁ s₂) (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).snd)) n_3) n_2) n_1) (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))) = some (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] show G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) = some (F a (ofNat Code (n + 4))) [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] have hm : m < n + 4 := by simp [Nat.div2_val] exact lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _)) (Nat.succ_le_succ (Nat.le_add_right _ _)) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ m < n + 4 [PROOFSTEP] simp [Nat.div2_val] [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ n / 2 / 2 < n + 4 [PROOFSTEP] exact lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _)) (Nat.succ_le_succ (Nat.le_add_right _ _)) [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] simp [List.get?_map, List.get?_range, hm, m1, m2] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif bodd n then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n))) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (n + 4)) [PROOFSTEP] rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif bodd n then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n))) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNatCode (n + 4)) [PROOFSTEP] simp [ofNatCode] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif bodd n then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n))) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (match bodd n, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] cases n.bodd [GOAL] case succ.succ.succ.succ.false α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif false then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n))) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (match false, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] cases n.div2.bodd [GOAL] case succ.succ.succ.succ.true α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif true then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n))) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (match true, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] cases n.div2.bodd [GOAL] case succ.succ.succ.succ.false.false α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif false then bif false then rf a (ofNat Code (div2 (div2 n))) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif false then co a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (match false, false with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ.false.true α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif false then bif true then rf a (ofNat Code (div2 (div2 n))) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif true then co a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (match false, true with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ.true.false α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif true then bif false then rf a (ofNat Code (div2 (div2 n))) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif false then co a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (match true, false with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ.true.true α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Primrec c z : α → σ hz : Primrec z s : α → σ hs : Primrec s l : α → σ hl : Primrec l r : α → σ hr : Primrec r pr : α → Code → Code → σ → σ → σ hpr : Primrec fun a => pr a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd co : α → Code → Code → σ → σ → σ hco : Primrec fun a => co a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd pc : α → Code → Code → σ → σ → σ hpc : Primrec fun a => pc a.fst a.snd.fst a.snd.snd.fst a.snd.snd.snd.fst a.snd.snd.snd.snd rf : α → Code → σ → σ hrf : Primrec fun a => rf a.fst a.snd.fst a.snd.snd F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m) s else pc a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂ else pr a (ofNat Code (unpair m).fst) (ofNat Code (unpair m).snd) s₁ s₂) (List.get? IH (unpair m).snd) this✝ : Primrec G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Primrec₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif true then bif true then rf a (ofNat Code (div2 (div2 n))) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif true then co a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst) (ofNat Code (unpair (div2 (div2 n))).snd) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).fst)) (rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a) (match true, true with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf ⊢ let PR := fun a cf cg hf hg => pr a (cf, cg, hf, hg); let CO := fun a cf cg hf hg => co a (cf, cg, hf, hg); let PC := fun a cf cg hf hg => pc a (cf, cg, hf, hg); let RF := fun a cf hf => rf a (cf, hf); let F := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a); Computable fun a => F a (c a) [PROOFSTEP] intros _ _ _ _ F [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) ⊢ Computable fun a => F a (c a) [PROOFSTEP] let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.1.1 let IH := p.1.2 let n := p.2.1 let m := p.2.2 (IH.get? m).bind fun s => (IH.get? m.unpair.1).bind fun s₁ => (IH.get? m.unpair.2).map fun s₂ => cond n.bodd (cond n.div2.bodd (rf a (ofNat Code m, s)) (pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))) (cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)) (pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Computable fun a => F a (c a) [PROOFSTEP] have : Computable G₁ := by refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _ unfold Computable₂ refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _ unfold Computable₂ refine' option_map ((list_get?.comp (snd.comp fst) (snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _ have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) := fst.comp (fst.comp <| fst.comp <| fst.comp fst) have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) := fst.comp (snd.comp <| fst.comp <| fst.comp fst) have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) := snd.comp (snd.comp <| fst.comp <| fst.comp fst) have m₁ := fst.comp (Computable.unpair.comp m) have m₂ := snd.comp (Computable.unpair.comp m) have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) := snd.comp (fst.comp fst) have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) := snd.comp fst have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) := snd exact (nat_bodd.comp n).cond ((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Computable.ofNat Code).comp m).pair s)) (hpc.comp a (((Computable.ofNat Code).comp m₁).pair <| ((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))) (Computable.cond (nat_bodd.comp <| nat_div2.comp n) (hco.comp a (((Computable.ofNat Code).comp m₁).pair <| ((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)) (hpr.comp a (((Computable.ofNat Code).comp m₁).pair <| ((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Computable G₁ [PROOFSTEP] refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Computable₂ fun p s => Option.bind (List.get? p.fst.snd (unpair p.snd.snd).fst) fun s₁ => Option.map (fun s₂ => bif bodd p.snd.fst then bif bodd (div2 p.snd.fst) then rf p.fst.fst (ofNat Code p.snd.snd, s) else pc p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂) else bif bodd (div2 p.snd.fst) then co p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂) else pr p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂)) (List.get? p.fst.snd (unpair p.snd.snd).snd) [PROOFSTEP] unfold Computable₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Computable fun p => (fun p s => Option.bind (List.get? p.fst.snd (unpair p.snd.snd).fst) fun s₁ => Option.map (fun s₂ => bif bodd p.snd.fst then bif bodd (div2 p.snd.fst) then rf p.fst.fst (ofNat Code p.snd.snd, s) else pc p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂) else bif bodd (div2 p.snd.fst) then co p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂) else pr p.fst.fst (ofNat Code (unpair p.snd.snd).fst, ofNat Code (unpair p.snd.snd).snd, s₁, s₂)) (List.get? p.fst.snd (unpair p.snd.snd).snd)) p.fst p.snd [PROOFSTEP] refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Computable₂ fun p s₁ => Option.map (fun s₂ => bif bodd p.fst.snd.fst then bif bodd (div2 p.fst.snd.fst) then rf p.fst.fst.fst (ofNat Code p.fst.snd.snd, p.snd) else pc p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂) else bif bodd (div2 p.fst.snd.fst) then co p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂) else pr p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂)) (List.get? p.fst.fst.snd (unpair p.fst.snd.snd).snd) [PROOFSTEP] unfold Computable₂ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Computable fun p => (fun p s₁ => Option.map (fun s₂ => bif bodd p.fst.snd.fst then bif bodd (div2 p.fst.snd.fst) then rf p.fst.fst.fst (ofNat Code p.fst.snd.snd, p.snd) else pc p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂) else bif bodd (div2 p.fst.snd.fst) then co p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂) else pr p.fst.fst.fst (ofNat Code (unpair p.fst.snd.snd).fst, ofNat Code (unpair p.fst.snd.snd).snd, s₁, s₂)) (List.get? p.fst.fst.snd (unpair p.fst.snd.snd).snd)) p.fst p.snd [PROOFSTEP] refine' option_map ((list_get?.comp (snd.comp fst) (snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) ⊢ Computable₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) := fst.comp (fst.comp <| fst.comp <| fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Computable fun p => p.fst.fst.fst.fst.fst ⊢ Computable₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) := fst.comp (snd.comp <| fst.comp <| fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Computable fun p => p.fst.fst.fst.fst.fst n : Computable fun p => p.fst.fst.fst.snd.fst ⊢ Computable₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) := snd.comp (snd.comp <| fst.comp <| fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Computable fun p => p.fst.fst.fst.fst.fst n : Computable fun p => p.fst.fst.fst.snd.fst m : Computable fun p => p.fst.fst.fst.snd.snd ⊢ Computable₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have m₁ := fst.comp (Computable.unpair.comp m) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Computable fun p => p.fst.fst.fst.fst.fst n : Computable fun p => p.fst.fst.fst.snd.fst m : Computable fun p => p.fst.fst.fst.snd.snd m₁ : Computable fun a => (unpair a.fst.fst.fst.snd.snd).fst ⊢ Computable₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have m₂ := snd.comp (Computable.unpair.comp m) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Computable fun p => p.fst.fst.fst.fst.fst n : Computable fun p => p.fst.fst.fst.snd.fst m : Computable fun p => p.fst.fst.fst.snd.snd m₁ : Computable fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Computable fun a => (unpair a.fst.fst.fst.snd.snd).snd ⊢ Computable₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) := snd.comp (fst.comp fst) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s✝ : α → σ hs : Computable s✝ l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Computable fun p => p.fst.fst.fst.fst.fst n : Computable fun p => p.fst.fst.fst.snd.fst m : Computable fun p => p.fst.fst.fst.snd.snd m₁ : Computable fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Computable fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Computable fun p => p.fst.fst.snd ⊢ Computable₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) := snd.comp fst [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s✝ : α → σ hs : Computable s✝ l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Computable fun p => p.fst.fst.fst.fst.fst n : Computable fun p => p.fst.fst.fst.snd.fst m : Computable fun p => p.fst.fst.fst.snd.snd m₁ : Computable fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Computable fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Computable fun p => p.fst.fst.snd s₁ : Computable fun p => p.fst.snd ⊢ Computable₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) := snd [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s✝ : α → σ hs : Computable s✝ l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s✝ a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) a : Computable fun p => p.fst.fst.fst.fst.fst n : Computable fun p => p.fst.fst.fst.snd.fst m : Computable fun p => p.fst.fst.fst.snd.snd m₁ : Computable fun a => (unpair a.fst.fst.fst.snd.snd).fst m₂ : Computable fun a => (unpair a.fst.fst.fst.snd.snd).snd s : Computable fun p => p.fst.fst.snd s₁ : Computable fun p => p.fst.snd s₂ : Computable fun p => p.snd ⊢ Computable₂ fun p s₂ => bif bodd p.fst.fst.snd.fst then bif bodd (div2 p.fst.fst.snd.fst) then rf p.fst.fst.fst.fst (ofNat Code p.fst.fst.snd.snd, p.fst.snd) else pc p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else bif bodd (div2 p.fst.fst.snd.fst) then co p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) else pr p.fst.fst.fst.fst (ofNat Code (unpair p.fst.fst.snd.snd).fst, ofNat Code (unpair p.fst.fst.snd.snd).snd, p.snd, s₂) [PROOFSTEP] exact (nat_bodd.comp n).cond ((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Computable.ofNat Code).comp m).pair s)) (hpc.comp a (((Computable.ofNat Code).comp m₁).pair <| ((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))) (Computable.cond (nat_bodd.comp <| nat_div2.comp n) (hco.comp a (((Computable.ofNat Code).comp m₁).pair <| ((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)) (hpr.comp a (((Computable.ofNat Code).comp m₁).pair <| ((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Computable G₁ ⊢ Computable fun a => F a (c a) [PROOFSTEP] let G : α → List σ → Option σ := fun a IH => IH.length.casesOn (some (z a)) fun n => n.casesOn (some (s a)) fun n => n.casesOn (some (l a)) fun n => n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) ⊢ Computable fun a => F a (c a) [PROOFSTEP] have : Computable₂ G := Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <| Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <| Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <| Computable.nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) (this.comp <| ((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <| snd.pair <| nat_div2.comp <| nat_div2.comp snd) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G ⊢ Computable fun a => F a (c a) [PROOFSTEP] refine' ((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <| encode_iff.2 hc).of_eq fun a => by simp [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α ⊢ F (id a) (ofNat Code (encode (c a))) = F a (c a) [PROOFSTEP] simp [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ ⊢ G (a, List.map ((fun a n => F a (ofNat Code n)) a) (List.range n)).fst (a, List.map ((fun a n => F a (ofNat Code n)) a) (List.range n)).snd = some ((fun a n => F a (ofNat Code n)) a n) [PROOFSTEP] simp (config := { zeta := false }) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range n)) = some (F a (ofNat Code n)) [PROOFSTEP] iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range n)) = some (F a (ofNat Code n)) [PROOFSTEP] cases' n with n [GOAL] case zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range Nat.zero)) = some (F a (ofNat Code Nat.zero)) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α ⊢ G a [] = some (F a zero) [PROOFSTEP] rfl [GOAL] case succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ n))) = some (F a (ofNat Code (Nat.succ n))) [PROOFSTEP] cases' n with n [GOAL] case succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ Nat.zero))) = some (F a (ofNat Code (Nat.succ Nat.zero))) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α ⊢ G a [F a zero] = some (F a succ) [PROOFSTEP] rfl [GOAL] case succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ n)))) = some (F a (ofNat Code (Nat.succ (Nat.succ n)))) [PROOFSTEP] cases' n with n [GOAL] case succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ Nat.zero)))) = some (F a (ofNat Code (Nat.succ (Nat.succ Nat.zero)))) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α ⊢ G a [F a zero, F a succ] = some (F a left) [PROOFSTEP] rfl [GOAL] case succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ n))))) = some (F a (ofNat Code (Nat.succ (Nat.succ (Nat.succ n))))) [PROOFSTEP] cases' n with n [GOAL] case succ.succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ Nat.zero))))) = some (F a (ofNat Code (Nat.succ (Nat.succ (Nat.succ Nat.zero))))) [PROOFSTEP] simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode] [GOAL] case succ.succ.succ.zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α ⊢ G a [F a zero, F a succ, F a left] = some (F a right) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ ⊢ G a (List.map (fun n => F a (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) = some (F a (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] simp only [] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ ⊢ Nat.rec (some (z a)) (fun n_1 n_ih => Nat.rec (some (s a)) (fun n_2 n_ih => Nat.rec (some (l a)) (fun n_3 n_ih => Nat.rec (some (r a)) (fun n_4 n_ih => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (div2 (div2 n_4))) fun s_1 => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).fst) fun s₁ => Option.map (fun s₂ => bif bodd n_4 then bif bodd (div2 n_4) then rf a (ofNat Code (div2 (div2 n_4)), s_1) else pc a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else bif bodd (div2 n_4) then co a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else pr a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂)) (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).snd)) n_3) n_2) n_1) (List.length (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n))))))) = some (rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] rw [List.length_map, List.length_range] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ ⊢ Nat.rec (some (z a)) (fun n_1 n_ih => Nat.rec (some (s a)) (fun n_2 n_ih => Nat.rec (some (l a)) (fun n_3 n_ih => Nat.rec (some (r a)) (fun n_4 n_ih => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (div2 (div2 n_4))) fun s_1 => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).fst) fun s₁ => Option.map (fun s₂ => bif bodd n_4 then bif bodd (div2 n_4) then rf a (ofNat Code (div2 (div2 n_4)), s_1) else pc a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else bif bodd (div2 n_4) then co a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else pr a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂)) (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).snd)) n_3) n_2) n_1) (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))) = some (rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] let m := n.div2.div2 [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ Nat.rec (some (z a)) (fun n_1 n_ih => Nat.rec (some (s a)) (fun n_2 n_ih => Nat.rec (some (l a)) (fun n_3 n_ih => Nat.rec (some (r a)) (fun n_4 n_ih => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (div2 (div2 n_4))) fun s_1 => Option.bind (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).fst) fun s₁ => Option.map (fun s₂ => bif bodd n_4 then bif bodd (div2 n_4) then rf a (ofNat Code (div2 (div2 n_4)), s_1) else pc a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else bif bodd (div2 n_4) then co a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂) else pr a (ofNat Code (unpair (div2 (div2 n_4))).fst, ofNat Code (unpair (div2 (div2 n_4))).snd, s₁, s₂)) (List.get? (List.map (fun n => rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code n)) (List.range (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) (unpair (div2 (div2 n_4))).snd)) n_3) n_2) n_1) (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))) = some (rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (Nat.succ (Nat.succ (Nat.succ (Nat.succ n)))))) [PROOFSTEP] show G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) = some (F a (ofNat Code (n + 4))) [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] have hm : m < n + 4 := by simp [Nat.div2_val] exact lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _)) (Nat.succ_le_succ (Nat.le_add_right _ _)) [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ m < n + 4 [PROOFSTEP] simp [Nat.div2_val] [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) ⊢ n / 2 / 2 < n + 4 [PROOFSTEP] exact lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _)) (Nat.succ_le_succ (Nat.le_add_right _ _)) [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ G₁ ((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 4))), n, m) = some (F a (ofNat Code (n + 4))) [PROOFSTEP] simp [List.get?_map, List.get?_range, hm, m1, m2] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif bodd n then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (n + 4)) [PROOFSTEP] rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif bodd n then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNatCode (n + 4)) [PROOFSTEP] simp [ofNatCode] [GOAL] case succ.succ.succ.succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif bodd n then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match bodd n, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] cases n.bodd [GOAL] case succ.succ.succ.succ.false α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif false then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match false, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] cases n.div2.bodd [GOAL] case succ.succ.succ.succ.true α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif true then bif bodd (div2 n) then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif bodd (div2 n) then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match true, bodd (div2 n) with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] cases n.div2.bodd [GOAL] case succ.succ.succ.succ.false.false α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif false then bif false then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif false then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match false, false with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ.false.true α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif false then bif true then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif true then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match false, true with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ.true.false α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif true then bif false then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif false then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match true, false with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] case succ.succ.succ.succ.true.true α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ c : α → Code hc : Computable c z : α → σ hz : Computable z s : α → σ hs : Computable s l : α → σ hl : Computable l r : α → σ hr : Computable r pr : α → Code × Code × σ × σ → σ hpr : Computable₂ pr co : α → Code × Code × σ × σ → σ hco : Computable₂ co pc : α → Code × Code × σ × σ → σ hpc : Computable₂ pc rf : α → Code × σ → σ hrf : Computable₂ rf PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg) CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg) PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg) RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf) F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a) G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p => let a := p.fst.fst; let IH := p.fst.snd; let n := p.snd.fst; let m := p.snd.snd; Option.bind (List.get? IH m) fun s => Option.bind (List.get? IH (unpair m).fst) fun s₁ => Option.map (fun s₂ => bif bodd n then bif bodd (div2 n) then rf a (ofNat Code m, s) else pc a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else bif bodd (div2 n) then co a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂) else pr a (ofNat Code (unpair m).fst, ofNat Code (unpair m).snd, s₁, s₂)) (List.get? IH (unpair m).snd) this✝ : Computable G₁ G : α → List σ → Option σ := fun a IH => Nat.casesOn (List.length IH) (some (z a)) fun n => Nat.casesOn n (some (s a)) fun n => Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, div2 (div2 n)) this : Computable₂ G a : α n : ℕ m : ℕ := div2 (div2 n) hm : m < n + 4 m1 : (unpair m).fst < n + 4 m2 : (unpair m).snd < n + 4 ⊢ (bif true then bif true then rf a (ofNat Code (div2 (div2 n)), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (div2 (div2 n)))) else pc a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else bif true then co a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd)) else pr a (ofNat Code (unpair (div2 (div2 n))).fst, ofNat Code (unpair (div2 (div2 n))).snd, rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).fst), rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (ofNat Code (unpair (div2 (div2 n))).snd))) = rec (z a) (s a) (l a) (r a) (fun cf cg hf hg => pr a (cf, cg, hf, hg)) (fun cf cg hf hg => co a (cf, cg, hf, hg)) (fun cf cg hf hg => pc a (cf, cg, hf, hg)) (fun cf hf => rf a (cf, hf)) (match true, true with | false, false => pair (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | false, true => comp (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, false => prec (ofNatCode (unpair (div2 (div2 n))).fst) (ofNatCode (unpair (div2 (div2 n))).snd) | true, true => rfind' (ofNatCode (div2 (div2 n)))) [PROOFSTEP] rfl [GOAL] cf cg : Code a : ℕ ⊢ eval (prec cf cg) (Nat.pair a 0) = eval cf a [PROOFSTEP] rw [eval, Nat.unpaired, Nat.unpair_pair] [GOAL] cf cg : Code a : ℕ ⊢ Nat.rec (eval cf (a, 0).fst) (fun y IH => do let i ← IH eval cg (Nat.pair (a, 0).fst (Nat.pair y i))) (a, 0).snd = eval cf a [PROOFSTEP] simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only [] [GOAL] cf cg : Code a : ℕ ⊢ Nat.rec (eval cf a) (fun y IH => do let i ← IH eval cg (Nat.pair a (Nat.pair y i))) 0 = eval cf a [PROOFSTEP] rw [Nat.rec_zero] [GOAL] cf cg : Code a k : ℕ ⊢ eval (prec cf cg) (Nat.pair a (Nat.succ k)) = do let ih ← eval (prec cf cg) (Nat.pair a k) eval cg (Nat.pair a (Nat.pair k ih)) [PROOFSTEP] rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair] [GOAL] cf cg : Code a k : ℕ ⊢ Nat.rec (eval cf (a, Nat.succ k).fst) (fun y IH => do let i ← IH eval cg (Nat.pair (a, Nat.succ k).fst (Nat.pair y i))) (a, Nat.succ k).snd = Part.bind (unpaired (fun a n => Nat.rec (eval cf a) (fun y IH => do let i ← IH eval cg (Nat.pair a (Nat.pair y i))) n) (Nat.pair a k)) fun ih => eval cg (Nat.pair a (Nat.pair k ih)) [PROOFSTEP] simp [GOAL] n m : ℕ ⊢ eval (Code.const (n + 1)) m = Part.some (n + 1) [PROOFSTEP] simp! [eval_const n m] [GOAL] n : ℕ ⊢ eval Code.id n = Part.some n [PROOFSTEP] simp! [Seq.seq] [GOAL] c : Code n x : ℕ ⊢ eval (curry c n) x = eval c (Nat.pair n x) [PROOFSTEP] simp! [Seq.seq] [GOAL] n : ℕ ⊢ (fun b => comp succ (n, b).snd)^[id n] zero = Code.const n [PROOFSTEP] simp [GOAL] n : ℕ ⊢ (fun b => comp succ b)^[n] zero = Code.const n [PROOFSTEP] induction n [GOAL] case zero ⊢ (fun b => comp succ b)^[Nat.zero] zero = Code.const Nat.zero [PROOFSTEP] simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ] [GOAL] case succ n✝ : ℕ n_ih✝ : (fun b => comp succ b)^[n✝] zero = Code.const n✝ ⊢ (fun b => comp succ b)^[Nat.succ n✝] zero = Code.const (Nat.succ n✝) [PROOFSTEP] simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ] [GOAL] c₁ c₂ : Code n₁ n₂ : ℕ h : curry c₁ n₁ = curry c₂ n₂ ⊢ c₁ = c₂ [PROOFSTEP] injection h [GOAL] c₁ c₂ : Code n₁ n₂ : ℕ h : curry c₁ n₁ = curry c₂ n₂ ⊢ n₁ = n₂ [PROOFSTEP] injection h with h₁ h₂ [GOAL] c₁ c₂ : Code n₁ n₂ : ℕ h₁ : c₁ = c₂ h₂ : pair (Code.const n₁) Code.id = pair (Code.const n₂) Code.id ⊢ n₁ = n₂ [PROOFSTEP] injection h₂ with h₃ h₄ [GOAL] c₁ c₂ : Code n₁ n₂ : ℕ h₁ : c₁ = c₂ h₃ : Code.const n₁ = Code.const n₂ h₄ : Code.id = Code.id ⊢ n₁ = n₂ [PROOFSTEP] exact const_inj h₃ [GOAL] f : ℕ →. ℕ h : Partrec f ⊢ ∃ c, eval c = f [PROOFSTEP] induction h [GOAL] case zero f : ℕ →. ℕ ⊢ ∃ c, eval c = pure 0 case succ f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑Nat.succ case left f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑fun n => (unpair n).fst case right f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑fun n => (unpair n).snd case pair f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = fun n => Seq.seq (Nat.pair <$> f✝ n) fun x => g✝ n case comp f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = fun n => g✝ n >>= f✝ case prec f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = unpaired fun a n => Nat.rec (f✝ a) (fun y IH => do let i ← IH g✝ (Nat.pair a (Nat.pair y i))) n case rfind f f✝ : ℕ →. ℕ a✝ : Partrec f✝ a_ih✝ : ∃ c, eval c = f✝ ⊢ ∃ c, eval c = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f✝ (Nat.pair a n) [PROOFSTEP] case zero => exact ⟨zero, rfl⟩ [GOAL] f : ℕ →. ℕ ⊢ ∃ c, eval c = pure 0 [PROOFSTEP] case zero => exact ⟨zero, rfl⟩ [GOAL] f : ℕ →. ℕ ⊢ ∃ c, eval c = pure 0 [PROOFSTEP] exact ⟨zero, rfl⟩ [GOAL] case succ f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑Nat.succ case left f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑fun n => (unpair n).fst case right f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑fun n => (unpair n).snd case pair f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = fun n => Seq.seq (Nat.pair <$> f✝ n) fun x => g✝ n case comp f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = fun n => g✝ n >>= f✝ case prec f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = unpaired fun a n => Nat.rec (f✝ a) (fun y IH => do let i ← IH g✝ (Nat.pair a (Nat.pair y i))) n case rfind f f✝ : ℕ →. ℕ a✝ : Partrec f✝ a_ih✝ : ∃ c, eval c = f✝ ⊢ ∃ c, eval c = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f✝ (Nat.pair a n) [PROOFSTEP] case succ => exact ⟨succ, rfl⟩ [GOAL] f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑Nat.succ [PROOFSTEP] case succ => exact ⟨succ, rfl⟩ [GOAL] f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑Nat.succ [PROOFSTEP] exact ⟨succ, rfl⟩ [GOAL] case left f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑fun n => (unpair n).fst case right f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑fun n => (unpair n).snd case pair f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = fun n => Seq.seq (Nat.pair <$> f✝ n) fun x => g✝ n case comp f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = fun n => g✝ n >>= f✝ case prec f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = unpaired fun a n => Nat.rec (f✝ a) (fun y IH => do let i ← IH g✝ (Nat.pair a (Nat.pair y i))) n case rfind f f✝ : ℕ →. ℕ a✝ : Partrec f✝ a_ih✝ : ∃ c, eval c = f✝ ⊢ ∃ c, eval c = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f✝ (Nat.pair a n) [PROOFSTEP] case left => exact ⟨left, rfl⟩ [GOAL] f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑fun n => (unpair n).fst [PROOFSTEP] case left => exact ⟨left, rfl⟩ [GOAL] f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑fun n => (unpair n).fst [PROOFSTEP] exact ⟨left, rfl⟩ [GOAL] case right f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑fun n => (unpair n).snd case pair f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = fun n => Seq.seq (Nat.pair <$> f✝ n) fun x => g✝ n case comp f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = fun n => g✝ n >>= f✝ case prec f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = unpaired fun a n => Nat.rec (f✝ a) (fun y IH => do let i ← IH g✝ (Nat.pair a (Nat.pair y i))) n case rfind f f✝ : ℕ →. ℕ a✝ : Partrec f✝ a_ih✝ : ∃ c, eval c = f✝ ⊢ ∃ c, eval c = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f✝ (Nat.pair a n) [PROOFSTEP] case right => exact ⟨right, rfl⟩ [GOAL] f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑fun n => (unpair n).snd [PROOFSTEP] case right => exact ⟨right, rfl⟩ [GOAL] f : ℕ →. ℕ ⊢ ∃ c, eval c = ↑fun n => (unpair n).snd [PROOFSTEP] exact ⟨right, rfl⟩ [GOAL] case pair f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = fun n => Seq.seq (Nat.pair <$> f✝ n) fun x => g✝ n case comp f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = fun n => g✝ n >>= f✝ case prec f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = unpaired fun a n => Nat.rec (f✝ a) (fun y IH => do let i ← IH g✝ (Nat.pair a (Nat.pair y i))) n case rfind f f✝ : ℕ →. ℕ a✝ : Partrec f✝ a_ih✝ : ∃ c, eval c = f✝ ⊢ ∃ c, eval c = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f✝ (Nat.pair a n) [PROOFSTEP] case pair f g pf pg hf hg => rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩ exact ⟨pair cf cg, rfl⟩ [GOAL] f✝ f g : ℕ →. ℕ pf : Partrec f pg : Partrec g hf : ∃ c, eval c = f hg : ∃ c, eval c = g ⊢ ∃ c, eval c = fun n => Seq.seq (Nat.pair <$> f n) fun x => g n [PROOFSTEP] case pair f g pf pg hf hg => rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩ exact ⟨pair cf cg, rfl⟩ [GOAL] f✝ f g : ℕ →. ℕ pf : Partrec f pg : Partrec g hf : ∃ c, eval c = f hg : ∃ c, eval c = g ⊢ ∃ c, eval c = fun n => Seq.seq (Nat.pair <$> f n) fun x => g n [PROOFSTEP] rcases hf with ⟨cf, rfl⟩ [GOAL] case intro f g : ℕ →. ℕ pg : Partrec g hg : ∃ c, eval c = g cf : Code pf : Partrec (eval cf) ⊢ ∃ c, eval c = fun n => Seq.seq (Nat.pair <$> eval cf n) fun x => g n [PROOFSTEP] rcases hg with ⟨cg, rfl⟩ [GOAL] case intro.intro f : ℕ →. ℕ cf : Code pf : Partrec (eval cf) cg : Code pg : Partrec (eval cg) ⊢ ∃ c, eval c = fun n => Seq.seq (Nat.pair <$> eval cf n) fun x => eval cg n [PROOFSTEP] exact ⟨pair cf cg, rfl⟩ [GOAL] case comp f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = fun n => g✝ n >>= f✝ case prec f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = unpaired fun a n => Nat.rec (f✝ a) (fun y IH => do let i ← IH g✝ (Nat.pair a (Nat.pair y i))) n case rfind f f✝ : ℕ →. ℕ a✝ : Partrec f✝ a_ih✝ : ∃ c, eval c = f✝ ⊢ ∃ c, eval c = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f✝ (Nat.pair a n) [PROOFSTEP] case comp f g pf pg hf hg => rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩ exact ⟨comp cf cg, rfl⟩ [GOAL] f✝ f g : ℕ →. ℕ pf : Partrec f pg : Partrec g hf : ∃ c, eval c = f hg : ∃ c, eval c = g ⊢ ∃ c, eval c = fun n => g n >>= f [PROOFSTEP] case comp f g pf pg hf hg => rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩ exact ⟨comp cf cg, rfl⟩ [GOAL] f✝ f g : ℕ →. ℕ pf : Partrec f pg : Partrec g hf : ∃ c, eval c = f hg : ∃ c, eval c = g ⊢ ∃ c, eval c = fun n => g n >>= f [PROOFSTEP] rcases hf with ⟨cf, rfl⟩ [GOAL] case intro f g : ℕ →. ℕ pg : Partrec g hg : ∃ c, eval c = g cf : Code pf : Partrec (eval cf) ⊢ ∃ c, eval c = fun n => g n >>= eval cf [PROOFSTEP] rcases hg with ⟨cg, rfl⟩ [GOAL] case intro.intro f : ℕ →. ℕ cf : Code pf : Partrec (eval cf) cg : Code pg : Partrec (eval cg) ⊢ ∃ c, eval c = fun n => eval cg n >>= eval cf [PROOFSTEP] exact ⟨comp cf cg, rfl⟩ [GOAL] case prec f f✝ g✝ : ℕ →. ℕ a✝¹ : Partrec f✝ a✝ : Partrec g✝ a_ih✝¹ : ∃ c, eval c = f✝ a_ih✝ : ∃ c, eval c = g✝ ⊢ ∃ c, eval c = unpaired fun a n => Nat.rec (f✝ a) (fun y IH => do let i ← IH g✝ (Nat.pair a (Nat.pair y i))) n case rfind f f✝ : ℕ →. ℕ a✝ : Partrec f✝ a_ih✝ : ∃ c, eval c = f✝ ⊢ ∃ c, eval c = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f✝ (Nat.pair a n) [PROOFSTEP] case prec f g pf pg hf hg => rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩ exact ⟨prec cf cg, rfl⟩ [GOAL] f✝ f g : ℕ →. ℕ pf : Partrec f pg : Partrec g hf : ∃ c, eval c = f hg : ∃ c, eval c = g ⊢ ∃ c, eval c = unpaired fun a n => Nat.rec (f a) (fun y IH => do let i ← IH g (Nat.pair a (Nat.pair y i))) n [PROOFSTEP] case prec f g pf pg hf hg => rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩ exact ⟨prec cf cg, rfl⟩ [GOAL] f✝ f g : ℕ →. ℕ pf : Partrec f pg : Partrec g hf : ∃ c, eval c = f hg : ∃ c, eval c = g ⊢ ∃ c, eval c = unpaired fun a n => Nat.rec (f a) (fun y IH => do let i ← IH g (Nat.pair a (Nat.pair y i))) n [PROOFSTEP] rcases hf with ⟨cf, rfl⟩ [GOAL] case intro f g : ℕ →. ℕ pg : Partrec g hg : ∃ c, eval c = g cf : Code pf : Partrec (eval cf) ⊢ ∃ c, eval c = unpaired fun a n => Nat.rec (eval cf a) (fun y IH => do let i ← IH g (Nat.pair a (Nat.pair y i))) n [PROOFSTEP] rcases hg with ⟨cg, rfl⟩ [GOAL] case intro.intro f : ℕ →. ℕ cf : Code pf : Partrec (eval cf) cg : Code pg : Partrec (eval cg) ⊢ ∃ c, eval c = unpaired fun a n => Nat.rec (eval cf a) (fun y IH => do let i ← IH eval cg (Nat.pair a (Nat.pair y i))) n [PROOFSTEP] exact ⟨prec cf cg, rfl⟩ [GOAL] case rfind f f✝ : ℕ →. ℕ a✝ : Partrec f✝ a_ih✝ : ∃ c, eval c = f✝ ⊢ ∃ c, eval c = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f✝ (Nat.pair a n) [PROOFSTEP] case rfind f pf hf => rcases hf with ⟨cf, rfl⟩ refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩ simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'] [GOAL] f✝ f : ℕ →. ℕ pf : Partrec f hf : ∃ c, eval c = f ⊢ ∃ c, eval c = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f (Nat.pair a n) [PROOFSTEP] case rfind f pf hf => rcases hf with ⟨cf, rfl⟩ refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩ simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'] [GOAL] f✝ f : ℕ →. ℕ pf : Partrec f hf : ∃ c, eval c = f ⊢ ∃ c, eval c = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> f (Nat.pair a n) [PROOFSTEP] rcases hf with ⟨cf, rfl⟩ [GOAL] case intro f : ℕ →. ℕ cf : Code pf : Partrec (eval cf) ⊢ ∃ c, eval c = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> eval cf (Nat.pair a n) [PROOFSTEP] refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩ [GOAL] case intro f : ℕ →. ℕ cf : Code pf : Partrec (eval cf) ⊢ eval (comp (rfind' cf) (pair Code.id zero)) = fun a => Nat.rfind fun n => (fun m => decide (m = 0)) <$> eval cf (Nat.pair a n) [PROOFSTEP] simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'] [GOAL] f : ℕ →. ℕ h : ∃ c, eval c = f ⊢ Partrec f [PROOFSTEP] rcases h with ⟨c, rfl⟩ [GOAL] case intro c : Code ⊢ Partrec (eval c) [PROOFSTEP] induction c [GOAL] case intro.zero ⊢ Partrec (eval zero) case intro.succ ⊢ Partrec (eval succ) case intro.left ⊢ Partrec (eval left) case intro.right ⊢ Partrec (eval right) case intro.pair a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (pair a✝¹ a✝)) case intro.comp a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (comp a✝¹ a✝)) case intro.prec a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (prec a✝¹ a✝)) case intro.rfind' a✝ : Code a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (rfind' a✝)) [PROOFSTEP] case zero => exact Nat.Partrec.zero [GOAL] ⊢ Partrec (eval zero) [PROOFSTEP] case zero => exact Nat.Partrec.zero [GOAL] ⊢ Partrec (eval zero) [PROOFSTEP] exact Nat.Partrec.zero [GOAL] case intro.succ ⊢ Partrec (eval succ) case intro.left ⊢ Partrec (eval left) case intro.right ⊢ Partrec (eval right) case intro.pair a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (pair a✝¹ a✝)) case intro.comp a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (comp a✝¹ a✝)) case intro.prec a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (prec a✝¹ a✝)) case intro.rfind' a✝ : Code a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (rfind' a✝)) [PROOFSTEP] case succ => exact Nat.Partrec.succ [GOAL] ⊢ Partrec (eval succ) [PROOFSTEP] case succ => exact Nat.Partrec.succ [GOAL] ⊢ Partrec (eval succ) [PROOFSTEP] exact Nat.Partrec.succ [GOAL] case intro.left ⊢ Partrec (eval left) case intro.right ⊢ Partrec (eval right) case intro.pair a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (pair a✝¹ a✝)) case intro.comp a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (comp a✝¹ a✝)) case intro.prec a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (prec a✝¹ a✝)) case intro.rfind' a✝ : Code a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (rfind' a✝)) [PROOFSTEP] case left => exact Nat.Partrec.left [GOAL] ⊢ Partrec (eval left) [PROOFSTEP] case left => exact Nat.Partrec.left [GOAL] ⊢ Partrec (eval left) [PROOFSTEP] exact Nat.Partrec.left [GOAL] case intro.right ⊢ Partrec (eval right) case intro.pair a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (pair a✝¹ a✝)) case intro.comp a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (comp a✝¹ a✝)) case intro.prec a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (prec a✝¹ a✝)) case intro.rfind' a✝ : Code a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (rfind' a✝)) [PROOFSTEP] case right => exact Nat.Partrec.right [GOAL] ⊢ Partrec (eval right) [PROOFSTEP] case right => exact Nat.Partrec.right [GOAL] ⊢ Partrec (eval right) [PROOFSTEP] exact Nat.Partrec.right [GOAL] case intro.pair a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (pair a✝¹ a✝)) case intro.comp a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (comp a✝¹ a✝)) case intro.prec a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (prec a✝¹ a✝)) case intro.rfind' a✝ : Code a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (rfind' a✝)) [PROOFSTEP] case pair cf cg pf pg => exact pf.pair pg [GOAL] cf cg : Code pf : Partrec (eval cf) pg : Partrec (eval cg) ⊢ Partrec (eval (pair cf cg)) [PROOFSTEP] case pair cf cg pf pg => exact pf.pair pg [GOAL] cf cg : Code pf : Partrec (eval cf) pg : Partrec (eval cg) ⊢ Partrec (eval (pair cf cg)) [PROOFSTEP] exact pf.pair pg [GOAL] case intro.comp a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (comp a✝¹ a✝)) case intro.prec a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (prec a✝¹ a✝)) case intro.rfind' a✝ : Code a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (rfind' a✝)) [PROOFSTEP] case comp cf cg pf pg => exact pf.comp pg [GOAL] cf cg : Code pf : Partrec (eval cf) pg : Partrec (eval cg) ⊢ Partrec (eval (comp cf cg)) [PROOFSTEP] case comp cf cg pf pg => exact pf.comp pg [GOAL] cf cg : Code pf : Partrec (eval cf) pg : Partrec (eval cg) ⊢ Partrec (eval (comp cf cg)) [PROOFSTEP] exact pf.comp pg [GOAL] case intro.prec a✝¹ a✝ : Code a_ih✝¹ : Partrec (eval a✝¹) a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (prec a✝¹ a✝)) case intro.rfind' a✝ : Code a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (rfind' a✝)) [PROOFSTEP] case prec cf cg pf pg => exact pf.prec pg [GOAL] cf cg : Code pf : Partrec (eval cf) pg : Partrec (eval cg) ⊢ Partrec (eval (prec cf cg)) [PROOFSTEP] case prec cf cg pf pg => exact pf.prec pg [GOAL] cf cg : Code pf : Partrec (eval cf) pg : Partrec (eval cg) ⊢ Partrec (eval (prec cf cg)) [PROOFSTEP] exact pf.prec pg [GOAL] case intro.rfind' a✝ : Code a_ih✝ : Partrec (eval a✝) ⊢ Partrec (eval (rfind' a✝)) [PROOFSTEP] case rfind' cf pf => exact pf.rfind' [GOAL] cf : Code pf : Partrec (eval cf) ⊢ Partrec (eval (rfind' cf)) [PROOFSTEP] case rfind' cf pf => exact pf.rfind' [GOAL] cf : Code pf : Partrec (eval cf) ⊢ Partrec (eval (rfind' cf)) [PROOFSTEP] exact pf.rfind' [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cf } { fst := Nat.succ k, snd := pair cf cg } [PROOFSTEP] {decreasing_with simp (config := { arith := true }) [Zero.zero]; done } [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cf } { fst := Nat.succ k, snd := pair cf cg } [PROOFSTEP] decreasing_with simp (config := { arith := true }) [Zero.zero]; done [GOAL] case h k : ℕ cf cg : Code ⊢ sizeOf cf < sizeOf (pair cf cg) [PROOFSTEP] simp (config := { arith := true }) [Zero.zero] [GOAL] [PROOFSTEP] done [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cg } { fst := Nat.succ k, snd := pair cf cg } [PROOFSTEP] {decreasing_with simp (config := { arith := true }) [Zero.zero]; done } [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cg } { fst := Nat.succ k, snd := pair cf cg } [PROOFSTEP] decreasing_with simp (config := { arith := true }) [Zero.zero]; done [GOAL] case h k : ℕ cf cg : Code ⊢ sizeOf cg < sizeOf (pair cf cg) [PROOFSTEP] simp (config := { arith := true }) [Zero.zero] [GOAL] [PROOFSTEP] done [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cg } { fst := Nat.succ k, snd := comp cf cg } [PROOFSTEP] {decreasing_with simp (config := { arith := true }) [Zero.zero]; done } [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cg } { fst := Nat.succ k, snd := comp cf cg } [PROOFSTEP] decreasing_with simp (config := { arith := true }) [Zero.zero]; done [GOAL] case h k : ℕ cf cg : Code ⊢ sizeOf cg < sizeOf (comp cf cg) [PROOFSTEP] simp (config := { arith := true }) [Zero.zero] [GOAL] [PROOFSTEP] done [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cf } { fst := Nat.succ k, snd := comp cf cg } [PROOFSTEP] {decreasing_with simp (config := { arith := true }) [Zero.zero]; done } [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cf } { fst := Nat.succ k, snd := comp cf cg } [PROOFSTEP] decreasing_with simp (config := { arith := true }) [Zero.zero]; done [GOAL] case h k : ℕ cf cg : Code ⊢ sizeOf cf < sizeOf (comp cf cg) [PROOFSTEP] simp (config := { arith := true }) [Zero.zero] [GOAL] [PROOFSTEP] done [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cf } { fst := Nat.succ k, snd := prec cf cg } [PROOFSTEP] {decreasing_with simp (config := { arith := true }) [Zero.zero]; done } [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cf } { fst := Nat.succ k, snd := prec cf cg } [PROOFSTEP] decreasing_with simp (config := { arith := true }) [Zero.zero]; done [GOAL] case h k : ℕ cf cg : Code ⊢ sizeOf cf < sizeOf (prec cf cg) [PROOFSTEP] simp (config := { arith := true }) [Zero.zero] [GOAL] [PROOFSTEP] done [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k, snd := prec cf cg } { fst := Nat.succ k, snd := prec cf cg } [PROOFSTEP] {decreasing_with simp (config := { arith := true }) [Zero.zero]; done } [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k, snd := prec cf cg } { fst := Nat.succ k, snd := prec cf cg } [PROOFSTEP] decreasing_with simp (config := { arith := true }) [Zero.zero]; done [GOAL] case h k : ℕ cf cg : Code ⊢ k < Nat.succ k [PROOFSTEP] simp (config := { arith := true }) [Zero.zero] [GOAL] [PROOFSTEP] done [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cg } { fst := Nat.succ k, snd := prec cf cg } [PROOFSTEP] {decreasing_with simp (config := { arith := true }) [Zero.zero]; done } [GOAL] k : ℕ cf cg : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cg } { fst := Nat.succ k, snd := prec cf cg } [PROOFSTEP] decreasing_with simp (config := { arith := true }) [Zero.zero]; done [GOAL] case h k : ℕ cf cg : Code ⊢ sizeOf cg < sizeOf (prec cf cg) [PROOFSTEP] simp (config := { arith := true }) [Zero.zero] [GOAL] [PROOFSTEP] done [GOAL] k : ℕ cf : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cf } { fst := Nat.succ k, snd := rfind' cf } [PROOFSTEP] {decreasing_with simp (config := { arith := true }) [Zero.zero]; done } [GOAL] k : ℕ cf : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k + 1, snd := cf } { fst := Nat.succ k, snd := rfind' cf } [PROOFSTEP] decreasing_with simp (config := { arith := true }) [Zero.zero]; done [GOAL] case h k : ℕ cf : Code ⊢ sizeOf cf < sizeOf (rfind' cf) [PROOFSTEP] simp (config := { arith := true }) [Zero.zero] [GOAL] [PROOFSTEP] done [GOAL] k : ℕ cf : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k, snd := rfind' cf } { fst := Nat.succ k, snd := rfind' cf } [PROOFSTEP] {decreasing_with simp (config := { arith := true }) [Zero.zero]; done } [GOAL] k : ℕ cf : Code ⊢ (invImage (fun a => PSigma.casesOn a fun k snd => (k, snd)) Prod.instWellFoundedRelationProd).1 { fst := k, snd := rfind' cf } { fst := Nat.succ k, snd := rfind' cf } [PROOFSTEP] decreasing_with simp (config := { arith := true }) [Zero.zero]; done [GOAL] case h k : ℕ cf : Code ⊢ k < Nat.succ k [PROOFSTEP] simp (config := { arith := true }) [Zero.zero] [GOAL] [PROOFSTEP] done [GOAL] c : Code n x : ℕ h : x ∈ evaln 0 c n ⊢ n < 0 [PROOFSTEP] simp [evaln] at h [GOAL] k : ℕ c : Code n x : ℕ h : x ∈ evaln (k + 1) c n ⊢ n < k + 1 [PROOFSTEP] suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by cases c <;> rw [evaln] at h <;> exact this h [GOAL] k : ℕ c : Code n x : ℕ h : x ∈ evaln (k + 1) c n this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 ⊢ n < k + 1 [PROOFSTEP] cases c [GOAL] case zero k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 h : x ∈ evaln (k + 1) zero n ⊢ n < k + 1 [PROOFSTEP] rw [evaln] at h [GOAL] case succ k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 h : x ∈ evaln (k + 1) succ n ⊢ n < k + 1 [PROOFSTEP] rw [evaln] at h [GOAL] case left k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 h : x ∈ evaln (k + 1) left n ⊢ n < k + 1 [PROOFSTEP] rw [evaln] at h [GOAL] case right k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 h : x ∈ evaln (k + 1) right n ⊢ n < k + 1 [PROOFSTEP] rw [evaln] at h [GOAL] case pair k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 a✝¹ a✝ : Code h : x ∈ evaln (k + 1) (pair a✝¹ a✝) n ⊢ n < k + 1 [PROOFSTEP] rw [evaln] at h [GOAL] case comp k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 a✝¹ a✝ : Code h : x ∈ evaln (k + 1) (comp a✝¹ a✝) n ⊢ n < k + 1 [PROOFSTEP] rw [evaln] at h [GOAL] case prec k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 a✝¹ a✝ : Code h : x ∈ evaln (k + 1) (prec a✝¹ a✝) n ⊢ n < k + 1 [PROOFSTEP] rw [evaln] at h [GOAL] case rfind' k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 a✝ : Code h : x ∈ evaln (k + 1) (rfind' a✝) n ⊢ n < k + 1 [PROOFSTEP] rw [evaln] at h [GOAL] case zero k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 h : x ∈ (fun n => do guard (n ≤ k) pure 0) n ⊢ n < k + 1 [PROOFSTEP] exact this h [GOAL] case succ k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 h : x ∈ (fun n => do guard (n ≤ k) pure (Nat.succ n)) n ⊢ n < k + 1 [PROOFSTEP] exact this h [GOAL] case left k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 h : x ∈ (fun n => do guard (n ≤ k) pure (unpair n).fst) n ⊢ n < k + 1 [PROOFSTEP] exact this h [GOAL] case right k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 h : x ∈ (fun n => do guard (n ≤ k) pure (unpair n).snd) n ⊢ n < k + 1 [PROOFSTEP] exact this h [GOAL] case pair k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 a✝¹ a✝ : Code h : x ∈ (fun n => do guard (n ≤ k) Seq.seq (Nat.pair <$> evaln (k + 1) a✝¹ n) fun x => evaln (k + 1) a✝ n) n ⊢ n < k + 1 [PROOFSTEP] exact this h [GOAL] case comp k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 a✝¹ a✝ : Code h : x ∈ (fun n => do guard (n ≤ k) let x ← evaln (k + 1) a✝ n evaln (k + 1) a✝¹ x) n ⊢ n < k + 1 [PROOFSTEP] exact this h [GOAL] case prec k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 a✝¹ a✝ : Code h : x ∈ (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) a✝¹ a) fun y => do let i ← evaln k (prec a✝¹ a✝) (Nat.pair a y) evaln (k + 1) a✝ (Nat.pair a (Nat.pair y i))) n) n ⊢ n < k + 1 [PROOFSTEP] exact this h [GOAL] case rfind' k n x : ℕ this : ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 a✝ : Code h : x ∈ (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) a✝ (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' a✝) (Nat.pair a (m + 1))) n) n ⊢ n < k + 1 [PROOFSTEP] exact this h [GOAL] k : ℕ c : Code n x : ℕ h : x ∈ evaln (k + 1) c n ⊢ ∀ {o : Option ℕ}, (x ∈ do guard (n ≤ k) o) → n < k + 1 [PROOFSTEP] simpa [Bind.bind] using Nat.lt_succ_of_le [GOAL] k₂ : ℕ c : Code n x : ℕ x✝ : 0 ≤ k₂ h : x ∈ evaln 0 c n ⊢ x ∈ evaln k₂ c n [PROOFSTEP] simp [evaln] at h [GOAL] k k₂ : ℕ c : Code n x : ℕ hl : k + 1 ≤ k₂ + 1 h : x ∈ evaln (k + 1) c n ⊢ x ∈ evaln (k₂ + 1) c n [PROOFSTEP] have hl' := Nat.le_of_succ_le_succ hl [GOAL] k k₂ : ℕ c : Code n x : ℕ hl : k + 1 ≤ k₂ + 1 h : x ∈ evaln (k + 1) c n hl' : k ≤ k₂ ⊢ x ∈ evaln (k₂ + 1) c n [PROOFSTEP] have : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by simp [Bind.bind] introv h h₁ h₂ h₃ exact ⟨le_trans h₂ h, h₁ h₃⟩ [GOAL] k k₂ : ℕ c : Code n x : ℕ hl : k + 1 ≤ k₂ + 1 h : x ∈ evaln (k + 1) c n hl' : k ≤ k₂ ⊢ ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ [PROOFSTEP] simp [Bind.bind] [GOAL] k k₂ : ℕ c : Code n x : ℕ hl : k + 1 ≤ k₂ + 1 h : x ∈ evaln (k + 1) c n hl' : k ≤ k₂ ⊢ ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (o₁ = some x → o₂ = some x) → n ≤ k → o₁ = some x → n ≤ k₂ ∧ o₂ = some x [PROOFSTEP] introv h h₁ h₂ h₃ [GOAL] k✝ k₂✝ : ℕ c : Code n✝ x✝ : ℕ hl : k✝ + 1 ≤ k₂✝ + 1 h✝ : x✝ ∈ evaln (k✝ + 1) c n✝ hl' : k✝ ≤ k₂✝ k k₂ n x : ℕ o₁ o₂ : Option ℕ h : k ≤ k₂ h₁ : o₁ = some x → o₂ = some x h₂ : n ≤ k h₃ : o₁ = some x ⊢ n ≤ k₂ ∧ o₂ = some x [PROOFSTEP] exact ⟨le_trans h₂ h, h₁ h₃⟩ [GOAL] k k₂ : ℕ c : Code n x : ℕ hl : k + 1 ≤ k₂ + 1 h : x ∈ evaln (k + 1) c n hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ ⊢ x ∈ evaln (k₂ + 1) c n [PROOFSTEP] simp at h ⊢ [GOAL] k k₂ : ℕ c : Code n x : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h : evaln (k + 1) c n = some x ⊢ evaln (k₂ + 1) c n = some x [PROOFSTEP] induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n [GOAL] case zero k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h : evaln (k + 1) zero n = some x ⊢ evaln (k₂ + 1) zero n = some x [PROOFSTEP] rw [evaln] at h ⊢ [GOAL] case succ k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h : evaln (k + 1) succ n = some x ⊢ evaln (k₂ + 1) succ n = some x [PROOFSTEP] rw [evaln] at h ⊢ [GOAL] case left k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h : evaln (k + 1) left n = some x ⊢ evaln (k₂ + 1) left n = some x [PROOFSTEP] rw [evaln] at h ⊢ [GOAL] case right k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h : evaln (k + 1) right n = some x ⊢ evaln (k₂ + 1) right n = some x [PROOFSTEP] rw [evaln] at h ⊢ [GOAL] case pair k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : evaln (k + 1) (pair cf cg) n = some x ⊢ evaln (k₂ + 1) (pair cf cg) n = some x [PROOFSTEP] rw [evaln] at h ⊢ [GOAL] case comp k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : evaln (k + 1) (comp cf cg) n = some x ⊢ evaln (k₂ + 1) (comp cf cg) n = some x [PROOFSTEP] rw [evaln] at h ⊢ [GOAL] case prec k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : evaln (k + 1) (prec cf cg) n = some x ⊢ evaln (k₂ + 1) (prec cf cg) n = some x [PROOFSTEP] rw [evaln] at h ⊢ [GOAL] case rfind' k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x : ℕ h : evaln (k + 1) (rfind' cf) n = some x ⊢ evaln (k₂ + 1) (rfind' cf) n = some x [PROOFSTEP] rw [evaln] at h ⊢ [GOAL] case zero k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h : (fun n => do guard (n ≤ k) pure 0) n = some x ⊢ (fun n => do guard (n ≤ k₂) pure 0) n = some x [PROOFSTEP] refine' this hl' (fun h => _) h [GOAL] case succ k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h : (fun n => do guard (n ≤ k) pure (Nat.succ n)) n = some x ⊢ (fun n => do guard (n ≤ k₂) pure (Nat.succ n)) n = some x [PROOFSTEP] refine' this hl' (fun h => _) h [GOAL] case left k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h : (fun n => do guard (n ≤ k) pure (unpair n).fst) n = some x ⊢ (fun n => do guard (n ≤ k₂) pure (unpair n).fst) n = some x [PROOFSTEP] refine' this hl' (fun h => _) h [GOAL] case right k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h : (fun n => do guard (n ≤ k) pure (unpair n).snd) n = some x ⊢ (fun n => do guard (n ≤ k₂) pure (unpair n).snd) n = some x [PROOFSTEP] refine' this hl' (fun h => _) h [GOAL] case pair k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : (fun n => do guard (n ≤ k) Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n) n = some x ⊢ (fun n => do guard (n ≤ k₂) Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n) n = some x [PROOFSTEP] refine' this hl' (fun h => _) h [GOAL] case comp k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : (fun n => do guard (n ≤ k) let x ← evaln (k + 1) cg n evaln (k + 1) cf x) n = some x ⊢ (fun n => do guard (n ≤ k₂) let x ← evaln (k₂ + 1) cg n evaln (k₂ + 1) cf x) n = some x [PROOFSTEP] refine' this hl' (fun h => _) h [GOAL] case prec k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x ⊢ (fun n => do guard (n ≤ k₂) unpaired (fun a n => Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do let i ← evaln k₂ (prec cf cg) (Nat.pair a y) evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x [PROOFSTEP] refine' this hl' (fun h => _) h [GOAL] case rfind' k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x : ℕ h : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x ⊢ (fun n => do guard (n ≤ k₂) unpaired (fun a m => do let x ← evaln (k₂ + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1))) n) n = some x [PROOFSTEP] refine' this hl' (fun h => _) h [GOAL] case zero k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure 0) n = some x h : x ∈ pure 0 ⊢ x ∈ pure 0 case succ k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (Nat.succ n)) n = some x h : x ∈ pure (Nat.succ n) ⊢ x ∈ pure (Nat.succ n) case left k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (unpair n).fst) n = some x h : x ∈ pure (unpair n).fst ⊢ x ∈ pure (unpair n).fst case right k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (unpair n).snd) n = some x h : x ∈ pure (unpair n).snd ⊢ x ∈ pure (unpair n).snd case pair k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n) n = some x h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n ⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n case comp k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) let x ← evaln (k + 1) cg n evaln (k + 1) cf x) n = some x h : x ∈ do let x ← evaln (k + 1) cg n evaln (k + 1) cf x ⊢ x ∈ do let x ← evaln (k₂ + 1) cg n evaln (k₂ + 1) cf x case prec k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x h : x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n ⊢ x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do let i ← evaln k₂ (prec cf cg) (Nat.pair a y) evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i))) n case rfind' k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x h : x ∈ unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n ⊢ x ∈ unpaired (fun a m => do let x ← evaln (k₂ + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1))) n [PROOFSTEP] iterate 4 exact h [GOAL] case zero k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure 0) n = some x h : x ∈ pure 0 ⊢ x ∈ pure 0 case succ k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (Nat.succ n)) n = some x h : x ∈ pure (Nat.succ n) ⊢ x ∈ pure (Nat.succ n) case left k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (unpair n).fst) n = some x h : x ∈ pure (unpair n).fst ⊢ x ∈ pure (unpair n).fst case right k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (unpair n).snd) n = some x h : x ∈ pure (unpair n).snd ⊢ x ∈ pure (unpair n).snd case pair k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n) n = some x h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n ⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n case comp k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) let x ← evaln (k + 1) cg n evaln (k + 1) cf x) n = some x h : x ∈ do let x ← evaln (k + 1) cg n evaln (k + 1) cf x ⊢ x ∈ do let x ← evaln (k₂ + 1) cg n evaln (k₂ + 1) cf x case prec k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x h : x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n ⊢ x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do let i ← evaln k₂ (prec cf cg) (Nat.pair a y) evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i))) n case rfind' k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x h : x ∈ unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n ⊢ x ∈ unpaired (fun a m => do let x ← evaln (k₂ + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1))) n [PROOFSTEP] exact h [GOAL] case succ k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (Nat.succ n)) n = some x h : x ∈ pure (Nat.succ n) ⊢ x ∈ pure (Nat.succ n) case left k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (unpair n).fst) n = some x h : x ∈ pure (unpair n).fst ⊢ x ∈ pure (unpair n).fst case right k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (unpair n).snd) n = some x h : x ∈ pure (unpair n).snd ⊢ x ∈ pure (unpair n).snd case pair k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n) n = some x h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n ⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n case comp k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) let x ← evaln (k + 1) cg n evaln (k + 1) cf x) n = some x h : x ∈ do let x ← evaln (k + 1) cg n evaln (k + 1) cf x ⊢ x ∈ do let x ← evaln (k₂ + 1) cg n evaln (k₂ + 1) cf x case prec k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x h : x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n ⊢ x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do let i ← evaln k₂ (prec cf cg) (Nat.pair a y) evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i))) n case rfind' k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x h : x ∈ unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n ⊢ x ∈ unpaired (fun a m => do let x ← evaln (k₂ + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1))) n [PROOFSTEP] exact h [GOAL] case left k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (unpair n).fst) n = some x h : x ∈ pure (unpair n).fst ⊢ x ∈ pure (unpair n).fst case right k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (unpair n).snd) n = some x h : x ∈ pure (unpair n).snd ⊢ x ∈ pure (unpair n).snd case pair k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n) n = some x h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n ⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n case comp k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) let x ← evaln (k + 1) cg n evaln (k + 1) cf x) n = some x h : x ∈ do let x ← evaln (k + 1) cg n evaln (k + 1) cf x ⊢ x ∈ do let x ← evaln (k₂ + 1) cg n evaln (k₂ + 1) cf x case prec k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x h : x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n ⊢ x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do let i ← evaln k₂ (prec cf cg) (Nat.pair a y) evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i))) n case rfind' k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x h : x ∈ unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n ⊢ x ∈ unpaired (fun a m => do let x ← evaln (k₂ + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1))) n [PROOFSTEP] exact h [GOAL] case right k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (unpair n).snd) n = some x h : x ∈ pure (unpair n).snd ⊢ x ∈ pure (unpair n).snd case pair k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n) n = some x h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n ⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n case comp k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) let x ← evaln (k + 1) cg n evaln (k + 1) cf x) n = some x h : x ∈ do let x ← evaln (k + 1) cg n evaln (k + 1) cf x ⊢ x ∈ do let x ← evaln (k₂ + 1) cg n evaln (k₂ + 1) cf x case prec k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x h : x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n ⊢ x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do let i ← evaln k₂ (prec cf cg) (Nat.pair a y) evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i))) n case rfind' k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x h : x ∈ unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n ⊢ x ∈ unpaired (fun a m => do let x ← evaln (k₂ + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1))) n [PROOFSTEP] exact h [GOAL] case pair k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n) n = some x h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n ⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n [PROOFSTEP] simp [Seq.seq] at h ⊢ [GOAL] case pair k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n) n = some x h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x ⊢ ∃ a, evaln (k₂ + 1) cf n = some a ∧ ∃ a_1, evaln (k₂ + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x [PROOFSTEP] exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _) [GOAL] case comp k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) let x ← evaln (k + 1) cg n evaln (k + 1) cf x) n = some x h : x ∈ do let x ← evaln (k + 1) cg n evaln (k + 1) cf x ⊢ x ∈ do let x ← evaln (k₂ + 1) cg n evaln (k₂ + 1) cf x [PROOFSTEP] simp [Bind.bind] at h ⊢ [GOAL] case comp k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) let x ← evaln (k + 1) cg n evaln (k + 1) cf x) n = some x h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x ⊢ ∃ a, evaln (k₂ + 1) cg n = some a ∧ evaln (k₂ + 1) cf a = some x [PROOFSTEP] exact h.imp fun a => And.imp (hg _ _) (hf _ _) [GOAL] case prec k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x h : x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n ⊢ x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do let i ← evaln k₂ (prec cf cg) (Nat.pair a y) evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i))) n [PROOFSTEP] revert h [GOAL] case prec k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x ⊢ x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n → x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do let i ← evaln k₂ (prec cf cg) (Nat.pair a y) evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i))) n [PROOFSTEP] simp [Bind.bind] [GOAL] case prec k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x ⊢ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x → Nat.rec (evaln (k₂ + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k₂ (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k₂ + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x [PROOFSTEP] induction n.unpair.2 [GOAL] case prec.zero k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x ⊢ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) Nat.zero = some x → Nat.rec (evaln (k₂ + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k₂ (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k₂ + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) Nat.zero = some x [PROOFSTEP] simp [GOAL] case prec.succ k k₂ : ℕ c : Code n✝¹ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝¹ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x n✝ : ℕ n_ih✝ : Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) n✝ = some x → Nat.rec (evaln (k₂ + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k₂ (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k₂ + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) n✝ = some x ⊢ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (Nat.succ n✝) = some x → Nat.rec (evaln (k₂ + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k₂ (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k₂ + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (Nat.succ n✝) = some x [PROOFSTEP] simp [GOAL] case prec.zero k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x ⊢ evaln (k + 1) cf (unpair n).fst = some x → evaln (k₂ + 1) cf (unpair n).fst = some x [PROOFSTEP] apply hf [GOAL] case prec.succ k k₂ : ℕ c : Code n✝¹ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝ : evaln (k + 1) c n✝¹ = some x✝ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (prec cf cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x n✝ : ℕ n_ih✝ : Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) n✝ = some x → Nat.rec (evaln (k₂ + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k₂ (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k₂ + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) n✝ = some x ⊢ ∀ (x_1 : ℕ), evaln k (prec cf cg) (Nat.pair (unpair n).fst n✝) = some x_1 → evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ x_1)) = some x → ∃ a, evaln k₂ (prec cf cg) (Nat.pair (unpair n).fst n✝) = some a ∧ evaln (k₂ + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ a)) = some x [PROOFSTEP] exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩ [GOAL] case rfind' k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x h : x ∈ unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n ⊢ x ∈ unpaired (fun a m => do let x ← evaln (k₂ + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1))) n [PROOFSTEP] simp [Bind.bind] at h ⊢ [GOAL] case rfind' k k₂ : ℕ c : Code n✝ x✝ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x h : ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x ⊢ ∃ a, evaln (k₂ + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k₂ (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] refine' h.imp fun x => And.imp (hf _ _) _ [GOAL] case rfind' k k₂ : ℕ c : Code n✝ x✝¹ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝¹ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x✝ : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x✝ h : ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x✝ x : ℕ ⊢ (if x = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x✝ → (if x = 0 then pure (unpair n).snd else evaln k₂ (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x✝ [PROOFSTEP] by_cases x0 : x = 0 [GOAL] case pos k k₂ : ℕ c : Code n✝ x✝¹ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝¹ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x✝ : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x✝ h : ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x✝ x : ℕ x0 : x = 0 ⊢ (if x = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x✝ → (if x = 0 then pure (unpair n).snd else evaln k₂ (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x✝ [PROOFSTEP] simp [x0] [GOAL] case neg k k₂ : ℕ c : Code n✝ x✝¹ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝¹ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x✝ : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x✝ h : ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x✝ x : ℕ x0 : ¬x = 0 ⊢ (if x = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x✝ → (if x = 0 then pure (unpair n).snd else evaln k₂ (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x✝ [PROOFSTEP] simp [x0] [GOAL] case neg k k₂ : ℕ c : Code n✝ x✝¹ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ h✝¹ : evaln (k + 1) c n✝ = some x✝¹ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x✝ : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1))) n) n = some x✝ h : ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x✝ x : ℕ x0 : ¬x = 0 ⊢ evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some x✝ → evaln k₂ (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some x✝ [PROOFSTEP] exact evaln_mono hl' [GOAL] x✝ : Code n x : ℕ h : x ∈ evaln 0 x✝ n ⊢ x ∈ eval x✝ n [PROOFSTEP] simp [evaln] at h [GOAL] k : ℕ c : Code n x : ℕ h : x ∈ evaln (k + 1) c n ⊢ x ∈ eval c n [PROOFSTEP] induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n [GOAL] case zero k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ h : x ∈ evaln (k + 1) zero n ⊢ x ∈ eval zero n [PROOFSTEP] simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ [GOAL] case succ k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ h : x ∈ evaln (k + 1) succ n ⊢ x ∈ eval succ n [PROOFSTEP] simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ [GOAL] case left k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ h : x ∈ evaln (k + 1) left n ⊢ x ∈ eval left n [PROOFSTEP] simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ [GOAL] case right k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ h : x ∈ evaln (k + 1) right n ⊢ x ∈ eval right n [PROOFSTEP] simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ [GOAL] case pair k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ h : x ∈ evaln (k + 1) (pair cf cg) n ⊢ x ∈ eval (pair cf cg) n [PROOFSTEP] simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ [GOAL] case comp k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ h : x ∈ evaln (k + 1) (comp cf cg) n ⊢ x ∈ eval (comp cf cg) n [PROOFSTEP] simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ [GOAL] case prec k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ h : x ∈ evaln (k + 1) (prec cf cg) n ⊢ x ∈ eval (prec cf cg) n [PROOFSTEP] simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ [GOAL] case rfind' k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ h : x ∈ evaln (k + 1) (rfind' cf) n ⊢ x ∈ eval (rfind' cf) n [PROOFSTEP] simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ [GOAL] case zero k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ h : n ≤ k ∧ pure 0 = some x ⊢ x ∈ pure 0 n [PROOFSTEP] cases' h with _ h [GOAL] case succ k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ h : n ≤ k ∧ pure (Nat.succ n) = some x ⊢ x = Nat.succ n [PROOFSTEP] cases' h with _ h [GOAL] case left k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ h : n ≤ k ∧ pure (unpair n).fst = some x ⊢ x = (unpair n).fst [PROOFSTEP] cases' h with _ h [GOAL] case right k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ h : n ≤ k ∧ pure (unpair n).snd = some x ⊢ x = (unpair n).snd [PROOFSTEP] cases' h with _ h [GOAL] case pair k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ h : n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x ⊢ ∃ a, a ∈ eval cf n ∧ ∃ a_1, a_1 ∈ eval cg n ∧ Nat.pair a a_1 = x [PROOFSTEP] cases' h with _ h [GOAL] case comp k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ h : n ≤ k ∧ ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x ⊢ ∃ a, a ∈ eval cg n ∧ x ∈ eval cf a [PROOFSTEP] cases' h with _ h [GOAL] case prec k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ h : n ≤ k ∧ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x ⊢ x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd [PROOFSTEP] cases' h with _ h [GOAL] case rfind' k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ h : n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] cases' h with _ h [GOAL] case zero.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure 0 = some x ⊢ x ∈ pure 0 n case succ.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (Nat.succ n) = some x ⊢ x = Nat.succ n case left.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (unpair n).fst = some x ⊢ x = (unpair n).fst case right.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (unpair n).snd = some x ⊢ x = (unpair n).snd case pair.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x ⊢ ∃ a, a ∈ eval cf n ∧ ∃ a_1, a_1 ∈ eval cg n ∧ Nat.pair a a_1 = x case comp.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x ⊢ ∃ a, a ∈ eval cg n ∧ x ∈ eval cf a case prec.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x ⊢ x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd case rfind'.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] iterate 4 simpa [pure, PFun.pure, eq_comm] using h [GOAL] case zero.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure 0 = some x ⊢ x ∈ pure 0 n case succ.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (Nat.succ n) = some x ⊢ x = Nat.succ n case left.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (unpair n).fst = some x ⊢ x = (unpair n).fst case right.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (unpair n).snd = some x ⊢ x = (unpair n).snd case pair.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x ⊢ ∃ a, a ∈ eval cf n ∧ ∃ a_1, a_1 ∈ eval cg n ∧ Nat.pair a a_1 = x case comp.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x ⊢ ∃ a, a ∈ eval cg n ∧ x ∈ eval cf a case prec.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x ⊢ x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd case rfind'.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] simpa [pure, PFun.pure, eq_comm] using h [GOAL] case succ.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (Nat.succ n) = some x ⊢ x = Nat.succ n case left.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (unpair n).fst = some x ⊢ x = (unpair n).fst case right.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (unpair n).snd = some x ⊢ x = (unpair n).snd case pair.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x ⊢ ∃ a, a ∈ eval cf n ∧ ∃ a_1, a_1 ∈ eval cg n ∧ Nat.pair a a_1 = x case comp.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x ⊢ ∃ a, a ∈ eval cg n ∧ x ∈ eval cf a case prec.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x ⊢ x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd case rfind'.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] simpa [pure, PFun.pure, eq_comm] using h [GOAL] case left.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (unpair n).fst = some x ⊢ x = (unpair n).fst case right.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (unpair n).snd = some x ⊢ x = (unpair n).snd case pair.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x ⊢ ∃ a, a ∈ eval cf n ∧ ∃ a_1, a_1 ∈ eval cg n ∧ Nat.pair a a_1 = x case comp.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x ⊢ ∃ a, a ∈ eval cg n ∧ x ∈ eval cf a case prec.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x ⊢ x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd case rfind'.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] simpa [pure, PFun.pure, eq_comm] using h [GOAL] case right.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ n x : ℕ left✝ : n ≤ k h : pure (unpair n).snd = some x ⊢ x = (unpair n).snd case pair.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x ⊢ ∃ a, a ∈ eval cf n ∧ ∃ a_1, a_1 ∈ eval cg n ∧ Nat.pair a a_1 = x case comp.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x ⊢ ∃ a, a ∈ eval cg n ∧ x ∈ eval cf a case prec.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x ⊢ x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd case rfind'.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] simpa [pure, PFun.pure, eq_comm] using h [GOAL] case pair.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x ⊢ ∃ a, a ∈ eval cf n ∧ ∃ a_1, a_1 ∈ eval cg n ∧ Nat.pair a a_1 = x [PROOFSTEP] rcases h with ⟨y, ef, z, eg, rfl⟩ [GOAL] case pair.intro.intro.intro.intro.intro k : ℕ c : Code n✝ x : ℕ h : x ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n : ℕ left✝ : n ≤ k y : ℕ ef : evaln (k + 1) cf n = some y z : ℕ eg : evaln (k + 1) cg n = some z ⊢ ∃ a, a ∈ eval cf n ∧ ∃ a_1, a_1 ∈ eval cg n ∧ Nat.pair a a_1 = Nat.pair y z [PROOFSTEP] exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩ [GOAL] case comp.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x ⊢ ∃ a, a ∈ eval cg n ∧ x ∈ eval cf a [PROOFSTEP] rcases h with ⟨y, eg, ef⟩ [GOAL] case comp.intro.intro.intro k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k y : ℕ eg : evaln (k + 1) cg n = some y ef : evaln (k + 1) cf y = some x ⊢ ∃ a, a ∈ eval cg n ∧ x ∈ eval cf a [PROOFSTEP] exact ⟨_, hg _ _ eg, hf _ _ ef⟩ [GOAL] case prec.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k h : Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x ⊢ x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd [PROOFSTEP] revert h [GOAL] case prec.intro k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x : ℕ left✝ : n ≤ k ⊢ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x → x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd [PROOFSTEP] induction' n.unpair.2 with m IH generalizing x [GOAL] case prec.intro.zero k : ℕ c : Code n✝ x✝¹ : ℕ h : x✝¹ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x✝ : ℕ left✝ : n ≤ k x : ℕ ⊢ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) Nat.zero = some x → x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) Nat.zero [PROOFSTEP] simp [GOAL] case prec.intro.succ k : ℕ c : Code n✝ x✝¹ : ℕ h : x✝¹ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x✝ : ℕ left✝ : n ≤ k m : ℕ IH : ∀ (x : ℕ), Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) m = some x → x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) m x : ℕ ⊢ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (Nat.succ m) = some x → x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (Nat.succ m) [PROOFSTEP] simp [GOAL] case prec.intro.zero k : ℕ c : Code n✝ x✝¹ : ℕ h : x✝¹ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x✝ : ℕ left✝ : n ≤ k x : ℕ ⊢ evaln (k + 1) cf (unpair n).fst = some x → x ∈ eval cf (unpair n).fst [PROOFSTEP] apply hf [GOAL] case prec.intro.succ k : ℕ c : Code n✝ x✝¹ : ℕ h : x✝¹ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x✝ : ℕ left✝ : n ≤ k m : ℕ IH : ∀ (x : ℕ), Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) m = some x → x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) m x : ℕ ⊢ ∀ (x_1 : ℕ), evaln k (prec cf cg) (Nat.pair (unpair n).fst m) = some x_1 → evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair m x_1)) = some x → ∃ a, a ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) m ∧ x ∈ eval cg (Nat.pair (unpair n).fst (Nat.pair m a)) [PROOFSTEP] refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩ [GOAL] case prec.intro.succ.refine'_1 k : ℕ c : Code n✝ x✝¹ : ℕ h : x✝¹ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x✝ : ℕ left✝ : n ≤ k m : ℕ IH : ∀ (x : ℕ), Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) m = some x → x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) m x y : ℕ h₁ : evaln k (prec cf cg) (Nat.pair (unpair n).fst m) = some y h₂ : evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair m y)) = some x ⊢ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) m = some y [PROOFSTEP] have := evaln_mono k.le_succ h₁ [GOAL] case prec.intro.succ.refine'_1 k : ℕ c : Code n✝ x✝¹ : ℕ h : x✝¹ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x✝ : ℕ left✝ : n ≤ k m : ℕ IH : ∀ (x : ℕ), Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) m = some x → x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) m x y : ℕ h₁ : evaln k (prec cf cg) (Nat.pair (unpair n).fst m) = some y h₂ : evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair m y)) = some x this : y ∈ evaln (Nat.succ k) (prec cf cg) (Nat.pair (unpair n).fst m) ⊢ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) m = some y [PROOFSTEP] simp [evaln, Bind.bind] at this [GOAL] case prec.intro.succ.refine'_1 k : ℕ c : Code n✝ x✝¹ : ℕ h : x✝¹ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x✝ : ℕ left✝ : n ≤ k m : ℕ IH : ∀ (x : ℕ), Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) m = some x → x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) m x y : ℕ h₁ : evaln k (prec cf cg) (Nat.pair (unpair n).fst m) = some y h₂ : evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair m y)) = some x this : Nat.pair (unpair n).fst m ≤ k ∧ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) m = some y ⊢ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) m = some y [PROOFSTEP] exact this.2 [GOAL] case prec.intro.succ.refine'_2 k : ℕ c : Code n✝ x✝¹ : ℕ h : x✝¹ ∈ evaln (k + 1) c n✝ cf cg : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n n x✝ : ℕ left✝ : n ≤ k m : ℕ IH : ∀ (x : ℕ), Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) m = some x → x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) m x y : ℕ h₁ : evaln k (prec cf cg) (Nat.pair (unpair n).fst m) = some y h₂ : evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair m y)) = some x ⊢ x ∈ eval cg (Nat.pair (unpair n).fst (Nat.pair m y)) [PROOFSTEP] exact hg _ _ h₂ [GOAL] case rfind'.intro k : ℕ c : Code n✝ x✝ : ℕ h✝ : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k h : ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] rcases h with ⟨m, h₁, h₂⟩ [GOAL] case rfind'.intro.intro.intro k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m h₂ : (if m = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] by_cases m0 : m = 0 [GOAL] case pos k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m h₂ : (if m = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x m0 : m = 0 ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] simp [m0] at h₂ [GOAL] case neg k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m h₂ : (if m = 0 then pure (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x m0 : ¬m = 0 ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] simp [m0] at h₂ [GOAL] case pos k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : m = 0 h₂ : pure (unpair n).snd = some x ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] exact ⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by injection h₂ with h₂; simp [h₂]⟩ [GOAL] k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : m = 0 h₂ : pure (unpair n).snd = some x ⊢ 0 ∈ eval cf (Nat.pair (unpair n).fst (0 + (unpair n).snd)) [PROOFSTEP] simpa [m0] using hf _ _ h₁ [GOAL] k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : m = 0 h₂ : pure (unpair n).snd = some x ⊢ 0 + (unpair n).snd = x [PROOFSTEP] injection h₂ with h₂ [GOAL] k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : m = 0 h₂ : (unpair n).snd = x ⊢ 0 + (unpair n).snd = x [PROOFSTEP] simp [h₂] [GOAL] case neg k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some x ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] have := evaln_sound h₂ [GOAL] case neg k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some x this : x ∈ eval (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] simp [eval] at this [GOAL] case neg k : ℕ c : Code n✝ x✝ : ℕ h : x✝ ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n x : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some x this : ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + ((unpair n).snd + 1))) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + ((unpair n).snd + 1))) ∧ ¬a = 0) ∧ a + ((unpair n).snd + 1) = x ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x [PROOFSTEP] rcases this with ⟨y, ⟨hy₁, hy₂⟩, rfl⟩ [GOAL] case neg.intro.intro.intro k : ℕ c : Code n✝ x : ℕ h : x ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + ((unpair n).snd + 1))) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + ((unpair n).snd + 1))) ∧ ¬a = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some (y + ((unpair n).snd + 1)) ⊢ ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = y + ((unpair n).snd + 1) [PROOFSTEP] refine' ⟨y + 1, ⟨by simpa [add_comm, add_left_comm] using hy₁, fun {i} im => _⟩, by simp [add_comm, add_left_comm]⟩ [GOAL] k : ℕ c : Code n✝ x : ℕ h : x ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + ((unpair n).snd + 1))) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + ((unpair n).snd + 1))) ∧ ¬a = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some (y + ((unpair n).snd + 1)) ⊢ 0 ∈ eval cf (Nat.pair (unpair n).fst (y + 1 + (unpair n).snd)) [PROOFSTEP] simpa [add_comm, add_left_comm] using hy₁ [GOAL] k : ℕ c : Code n✝ x : ℕ h : x ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + ((unpair n).snd + 1))) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + ((unpair n).snd + 1))) ∧ ¬a = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some (y + ((unpair n).snd + 1)) ⊢ y + 1 + (unpair n).snd = y + ((unpair n).snd + 1) [PROOFSTEP] simp [add_comm, add_left_comm] [GOAL] case neg.intro.intro.intro k : ℕ c : Code n✝ x : ℕ h : x ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + ((unpair n).snd + 1))) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + ((unpair n).snd + 1))) ∧ ¬a = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some (y + ((unpair n).snd + 1)) i : ℕ im : i < y + 1 ⊢ ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (i + (unpair n).snd)) ∧ ¬a = 0 [PROOFSTEP] cases' i with i [GOAL] case neg.intro.intro.intro.zero k : ℕ c : Code n✝ x : ℕ h : x ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + ((unpair n).snd + 1))) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + ((unpair n).snd + 1))) ∧ ¬a = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some (y + ((unpair n).snd + 1)) im : Nat.zero < y + 1 ⊢ ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (Nat.zero + (unpair n).snd)) ∧ ¬a = 0 [PROOFSTEP] exact ⟨m, by simpa using hf _ _ h₁, m0⟩ [GOAL] k : ℕ c : Code n✝ x : ℕ h : x ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + ((unpair n).snd + 1))) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + ((unpair n).snd + 1))) ∧ ¬a = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some (y + ((unpair n).snd + 1)) im : Nat.zero < y + 1 ⊢ m ∈ eval cf (Nat.pair (unpair n).fst (Nat.zero + (unpair n).snd)) [PROOFSTEP] simpa using hf _ _ h₁ [GOAL] case neg.intro.intro.intro.succ k : ℕ c : Code n✝ x : ℕ h : x ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + ((unpair n).snd + 1))) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + ((unpair n).snd + 1))) ∧ ¬a = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some (y + ((unpair n).snd + 1)) i : ℕ im : Nat.succ i < y + 1 ⊢ ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ i + (unpair n).snd)) ∧ ¬a = 0 [PROOFSTEP] rcases hy₂ (Nat.lt_of_succ_lt_succ im) with ⟨z, hz, z0⟩ [GOAL] case neg.intro.intro.intro.succ.intro.intro k : ℕ c : Code n✝ x : ℕ h : x ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + ((unpair n).snd + 1))) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + ((unpair n).snd + 1))) ∧ ¬a = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some (y + ((unpair n).snd + 1)) i : ℕ im : Nat.succ i < y + 1 z : ℕ hz : z ∈ eval cf (Nat.pair (unpair n).fst (i + ((unpair n).snd + 1))) z0 : ¬z = 0 ⊢ ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ i + (unpair n).snd)) ∧ ¬a = 0 [PROOFSTEP] exact ⟨z, by simpa [Nat.succ_eq_add_one, add_comm, add_left_comm] using hz, z0⟩ [GOAL] k : ℕ c : Code n✝ x : ℕ h : x ∈ evaln (k + 1) c n✝ cf : Code hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n n : ℕ left✝ : n ≤ k m : ℕ h₁ : evaln (k + 1) cf n = some m m0 : ¬m = 0 y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + ((unpair n).snd + 1))) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + ((unpair n).snd + 1))) ∧ ¬a = 0 h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = some (y + ((unpair n).snd + 1)) i : ℕ im : Nat.succ i < y + 1 z : ℕ hz : z ∈ eval cf (Nat.pair (unpair n).fst (i + ((unpair n).snd + 1))) z0 : ¬z = 0 ⊢ z ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ i + (unpair n).snd)) [PROOFSTEP] simpa [Nat.succ_eq_add_one, add_comm, add_left_comm] using hz [GOAL] c : Code n x : ℕ h : x ∈ eval c n ⊢ ∃ k, x ∈ evaln k c n [PROOFSTEP] rsuffices ⟨k, h⟩ : ∃ k, x ∈ evaln (k + 1) c n [GOAL] case intro c : Code n x : ℕ h✝ : x ∈ eval c n k : ℕ h : x ∈ evaln (k + 1) c n ⊢ ∃ k, x ∈ evaln k c n [PROOFSTEP] exact ⟨k + 1, h⟩ [GOAL] c : Code n x : ℕ h : x ∈ eval c n ⊢ ∃ k, x ∈ evaln (k + 1) c n [PROOFSTEP] induction c generalizing n x [GOAL] case zero n x : ℕ h : x ∈ eval zero n ⊢ ∃ k, x ∈ evaln (k + 1) zero n [PROOFSTEP] simp [eval, evaln, pure, PFun.pure, Seq.seq, Bind.bind] at h ⊢ [GOAL] case succ n x : ℕ h : x ∈ eval succ n ⊢ ∃ k, x ∈ evaln (k + 1) succ n [PROOFSTEP] simp [eval, evaln, pure, PFun.pure, Seq.seq, Bind.bind] at h ⊢ [GOAL] case left n x : ℕ h : x ∈ eval left n ⊢ ∃ k, x ∈ evaln (k + 1) left n [PROOFSTEP] simp [eval, evaln, pure, PFun.pure, Seq.seq, Bind.bind] at h ⊢ [GOAL] case right n x : ℕ h : x ∈ eval right n ⊢ ∃ k, x ∈ evaln (k + 1) right n [PROOFSTEP] simp [eval, evaln, pure, PFun.pure, Seq.seq, Bind.bind] at h ⊢ [GOAL] case pair a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ eval (pair a✝¹ a✝) n ⊢ ∃ k, x ∈ evaln (k + 1) (pair a✝¹ a✝) n [PROOFSTEP] simp [eval, evaln, pure, PFun.pure, Seq.seq, Bind.bind] at h ⊢ [GOAL] case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ eval (comp a✝¹ a✝) n ⊢ ∃ k, x ∈ evaln (k + 1) (comp a✝¹ a✝) n [PROOFSTEP] simp [eval, evaln, pure, PFun.pure, Seq.seq, Bind.bind] at h ⊢ [GOAL] case prec a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ eval (prec a✝¹ a✝) n ⊢ ∃ k, x ∈ evaln (k + 1) (prec a✝¹ a✝) n [PROOFSTEP] simp [eval, evaln, pure, PFun.pure, Seq.seq, Bind.bind] at h ⊢ [GOAL] case rfind' a✝ : Code a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ eval (rfind' a✝) n ⊢ ∃ k, x ∈ evaln (k + 1) (rfind' a✝) n [PROOFSTEP] simp [eval, evaln, pure, PFun.pure, Seq.seq, Bind.bind] at h ⊢ [GOAL] case zero n x : ℕ h : x = 0 ⊢ (∃ x, n ≤ x) ∧ 0 = x case succ n x : ℕ h : x = Nat.succ n ⊢ (∃ x, n ≤ x) ∧ Nat.succ n = x case left n x : ℕ h : x = (unpair n).fst ⊢ (∃ x, n ≤ x) ∧ (unpair n).fst = x case right n x : ℕ h : x = (unpair n).snd ⊢ (∃ x, n ≤ x) ∧ (unpair n).snd = x case pair a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝¹ n ∧ ∃ a_1, a_1 ∈ eval a✝ n ∧ Nat.pair a a_1 = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝¹ n = some a ∧ ∃ a_1, evaln (k + 1) a✝ n = some a_1 ∧ Nat.pair a a_1 = x case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝ n ∧ x ∈ eval a✝¹ a ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ evaln (k + 1) a✝¹ a = some x case prec a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ Nat.rec (eval a✝¹ (unpair n).fst) (fun y IH => Part.bind IH fun i => eval a✝ (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd ⊢ ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) a✝¹ (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec a✝¹ a✝) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) a✝ (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x case rfind' a✝ : Code a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, (0 ∈ eval a✝ (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval a✝ (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' a✝) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] iterate 4 exact ⟨⟨_, le_rfl⟩, h.symm⟩ [GOAL] case zero n x : ℕ h : x = 0 ⊢ (∃ x, n ≤ x) ∧ 0 = x case succ n x : ℕ h : x = Nat.succ n ⊢ (∃ x, n ≤ x) ∧ Nat.succ n = x case left n x : ℕ h : x = (unpair n).fst ⊢ (∃ x, n ≤ x) ∧ (unpair n).fst = x case right n x : ℕ h : x = (unpair n).snd ⊢ (∃ x, n ≤ x) ∧ (unpair n).snd = x case pair a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝¹ n ∧ ∃ a_1, a_1 ∈ eval a✝ n ∧ Nat.pair a a_1 = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝¹ n = some a ∧ ∃ a_1, evaln (k + 1) a✝ n = some a_1 ∧ Nat.pair a a_1 = x case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝ n ∧ x ∈ eval a✝¹ a ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ evaln (k + 1) a✝¹ a = some x case prec a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ Nat.rec (eval a✝¹ (unpair n).fst) (fun y IH => Part.bind IH fun i => eval a✝ (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd ⊢ ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) a✝¹ (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec a✝¹ a✝) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) a✝ (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x case rfind' a✝ : Code a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, (0 ∈ eval a✝ (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval a✝ (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' a✝) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] exact ⟨⟨_, le_rfl⟩, h.symm⟩ [GOAL] case succ n x : ℕ h : x = Nat.succ n ⊢ (∃ x, n ≤ x) ∧ Nat.succ n = x case left n x : ℕ h : x = (unpair n).fst ⊢ (∃ x, n ≤ x) ∧ (unpair n).fst = x case right n x : ℕ h : x = (unpair n).snd ⊢ (∃ x, n ≤ x) ∧ (unpair n).snd = x case pair a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝¹ n ∧ ∃ a_1, a_1 ∈ eval a✝ n ∧ Nat.pair a a_1 = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝¹ n = some a ∧ ∃ a_1, evaln (k + 1) a✝ n = some a_1 ∧ Nat.pair a a_1 = x case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝ n ∧ x ∈ eval a✝¹ a ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ evaln (k + 1) a✝¹ a = some x case prec a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ Nat.rec (eval a✝¹ (unpair n).fst) (fun y IH => Part.bind IH fun i => eval a✝ (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd ⊢ ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) a✝¹ (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec a✝¹ a✝) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) a✝ (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x case rfind' a✝ : Code a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, (0 ∈ eval a✝ (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval a✝ (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' a✝) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] exact ⟨⟨_, le_rfl⟩, h.symm⟩ [GOAL] case left n x : ℕ h : x = (unpair n).fst ⊢ (∃ x, n ≤ x) ∧ (unpair n).fst = x case right n x : ℕ h : x = (unpair n).snd ⊢ (∃ x, n ≤ x) ∧ (unpair n).snd = x case pair a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝¹ n ∧ ∃ a_1, a_1 ∈ eval a✝ n ∧ Nat.pair a a_1 = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝¹ n = some a ∧ ∃ a_1, evaln (k + 1) a✝ n = some a_1 ∧ Nat.pair a a_1 = x case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝ n ∧ x ∈ eval a✝¹ a ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ evaln (k + 1) a✝¹ a = some x case prec a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ Nat.rec (eval a✝¹ (unpair n).fst) (fun y IH => Part.bind IH fun i => eval a✝ (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd ⊢ ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) a✝¹ (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec a✝¹ a✝) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) a✝ (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x case rfind' a✝ : Code a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, (0 ∈ eval a✝ (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval a✝ (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' a✝) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] exact ⟨⟨_, le_rfl⟩, h.symm⟩ [GOAL] case right n x : ℕ h : x = (unpair n).snd ⊢ (∃ x, n ≤ x) ∧ (unpair n).snd = x case pair a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝¹ n ∧ ∃ a_1, a_1 ∈ eval a✝ n ∧ Nat.pair a a_1 = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝¹ n = some a ∧ ∃ a_1, evaln (k + 1) a✝ n = some a_1 ∧ Nat.pair a a_1 = x case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝ n ∧ x ∈ eval a✝¹ a ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ evaln (k + 1) a✝¹ a = some x case prec a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ Nat.rec (eval a✝¹ (unpair n).fst) (fun y IH => Part.bind IH fun i => eval a✝ (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd ⊢ ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) a✝¹ (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec a✝¹ a✝) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) a✝ (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x case rfind' a✝ : Code a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, (0 ∈ eval a✝ (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval a✝ (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' a✝) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] exact ⟨⟨_, le_rfl⟩, h.symm⟩ [GOAL] case pair a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝¹ n ∧ ∃ a_1, a_1 ∈ eval a✝ n ∧ Nat.pair a a_1 = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝¹ n = some a ∧ ∃ a_1, evaln (k + 1) a✝ n = some a_1 ∧ Nat.pair a a_1 = x case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝ n ∧ x ∈ eval a✝¹ a ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ evaln (k + 1) a✝¹ a = some x case prec a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ Nat.rec (eval a✝¹ (unpair n).fst) (fun y IH => Part.bind IH fun i => eval a✝ (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd ⊢ ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) a✝¹ (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec a✝¹ a✝) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) a✝ (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x case rfind' a✝ : Code a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, (0 ∈ eval a✝ (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval a✝ (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' a✝) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] case pair cf cg hf hg => rcases h with ⟨x, hx, y, hy, rfl⟩ rcases hf hx with ⟨k₁, hk₁⟩; rcases hg hy with ⟨k₂, hk₂⟩ refine' ⟨max k₁ k₂, _⟩ refine' ⟨le_max_of_le_left <| Nat.le_of_lt_succ <| evaln_bound hk₁, _, evaln_mono (Nat.succ_le_succ <| le_max_left _ _) hk₁, _, evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk₂, rfl⟩ [GOAL] cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x : ℕ h : ∃ a, a ∈ eval cf n ∧ ∃ a_1, a_1 ∈ eval cg n ∧ Nat.pair a a_1 = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x [PROOFSTEP] case pair cf cg hf hg => rcases h with ⟨x, hx, y, hy, rfl⟩ rcases hf hx with ⟨k₁, hk₁⟩; rcases hg hy with ⟨k₂, hk₂⟩ refine' ⟨max k₁ k₂, _⟩ refine' ⟨le_max_of_le_left <| Nat.le_of_lt_succ <| evaln_bound hk₁, _, evaln_mono (Nat.succ_le_succ <| le_max_left _ _) hk₁, _, evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk₂, rfl⟩ [GOAL] cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x : ℕ h : ∃ a, a ∈ eval cf n ∧ ∃ a_1, a_1 ∈ eval cg n ∧ Nat.pair a a_1 = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x [PROOFSTEP] rcases h with ⟨x, hx, y, hy, rfl⟩ [GOAL] case intro.intro.intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x : ℕ hx : x ∈ eval cf n y : ℕ hy : y ∈ eval cg n ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = Nat.pair x y [PROOFSTEP] rcases hf hx with ⟨k₁, hk₁⟩ [GOAL] case intro.intro.intro.intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x : ℕ hx : x ∈ eval cf n y : ℕ hy : y ∈ eval cg n k₁ : ℕ hk₁ : x ∈ evaln (k₁ + 1) cf n ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = Nat.pair x y [PROOFSTEP] rcases hg hy with ⟨k₂, hk₂⟩ [GOAL] case intro.intro.intro.intro.intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x : ℕ hx : x ∈ eval cf n y : ℕ hy : y ∈ eval cg n k₁ : ℕ hk₁ : x ∈ evaln (k₁ + 1) cf n k₂ : ℕ hk₂ : y ∈ evaln (k₂ + 1) cg n ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = Nat.pair x y [PROOFSTEP] refine' ⟨max k₁ k₂, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x : ℕ hx : x ∈ eval cf n y : ℕ hy : y ∈ eval cg n k₁ : ℕ hk₁ : x ∈ evaln (k₁ + 1) cf n k₂ : ℕ hk₂ : y ∈ evaln (k₂ + 1) cg n ⊢ n ≤ max k₁ k₂ ∧ ∃ a, evaln (max k₁ k₂ + 1) cf n = some a ∧ ∃ a_1, evaln (max k₁ k₂ + 1) cg n = some a_1 ∧ Nat.pair a a_1 = Nat.pair x y [PROOFSTEP] refine' ⟨le_max_of_le_left <| Nat.le_of_lt_succ <| evaln_bound hk₁, _, evaln_mono (Nat.succ_le_succ <| le_max_left _ _) hk₁, _, evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk₂, rfl⟩ [GOAL] case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, a ∈ eval a✝ n ∧ x ∈ eval a✝¹ a ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ evaln (k + 1) a✝¹ a = some x case prec a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ Nat.rec (eval a✝¹ (unpair n).fst) (fun y IH => Part.bind IH fun i => eval a✝ (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd ⊢ ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) a✝¹ (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec a✝¹ a✝) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) a✝ (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x case rfind' a✝ : Code a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, (0 ∈ eval a✝ (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval a✝ (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' a✝) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] case comp cf cg hf hg => rcases h with ⟨y, hy, hx⟩ rcases hg hy with ⟨k₁, hk₁⟩; rcases hf hx with ⟨k₂, hk₂⟩ refine' ⟨max k₁ k₂, _⟩ exact ⟨le_max_of_le_left <| Nat.le_of_lt_succ <| evaln_bound hk₁, _, evaln_mono (Nat.succ_le_succ <| le_max_left _ _) hk₁, evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk₂⟩ [GOAL] cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x : ℕ h : ∃ a, a ∈ eval cg n ∧ x ∈ eval cf a ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x [PROOFSTEP] case comp cf cg hf hg => rcases h with ⟨y, hy, hx⟩ rcases hg hy with ⟨k₁, hk₁⟩; rcases hf hx with ⟨k₂, hk₂⟩ refine' ⟨max k₁ k₂, _⟩ exact ⟨le_max_of_le_left <| Nat.le_of_lt_succ <| evaln_bound hk₁, _, evaln_mono (Nat.succ_le_succ <| le_max_left _ _) hk₁, evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk₂⟩ [GOAL] cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x : ℕ h : ∃ a, a ∈ eval cg n ∧ x ∈ eval cf a ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x [PROOFSTEP] rcases h with ⟨y, hy, hx⟩ [GOAL] case intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x y : ℕ hy : y ∈ eval cg n hx : x ∈ eval cf y ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x [PROOFSTEP] rcases hg hy with ⟨k₁, hk₁⟩ [GOAL] case intro.intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x y : ℕ hy : y ∈ eval cg n hx : x ∈ eval cf y k₁ : ℕ hk₁ : y ∈ evaln (k₁ + 1) cg n ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x [PROOFSTEP] rcases hf hx with ⟨k₂, hk₂⟩ [GOAL] case intro.intro.intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x y : ℕ hy : y ∈ eval cg n hx : x ∈ eval cf y k₁ : ℕ hk₁ : y ∈ evaln (k₁ + 1) cg n k₂ : ℕ hk₂ : x ∈ evaln (k₂ + 1) cf y ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x [PROOFSTEP] refine' ⟨max k₁ k₂, _⟩ [GOAL] case intro.intro.intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x y : ℕ hy : y ∈ eval cg n hx : x ∈ eval cf y k₁ : ℕ hk₁ : y ∈ evaln (k₁ + 1) cg n k₂ : ℕ hk₂ : x ∈ evaln (k₂ + 1) cf y ⊢ n ≤ max k₁ k₂ ∧ ∃ a, evaln (max k₁ k₂ + 1) cg n = some a ∧ evaln (max k₁ k₂ + 1) cf a = some x [PROOFSTEP] exact ⟨le_max_of_le_left <| Nat.le_of_lt_succ <| evaln_bound hk₁, _, evaln_mono (Nat.succ_le_succ <| le_max_left _ _) hk₁, evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk₂⟩ [GOAL] case prec a✝¹ a✝ : Code a_ih✝¹ : ∀ {n x : ℕ}, x ∈ eval a✝¹ n → ∃ k, x ∈ evaln (k + 1) a✝¹ n a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : x ∈ Nat.rec (eval a✝¹ (unpair n).fst) (fun y IH => Part.bind IH fun i => eval a✝ (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd ⊢ ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) a✝¹ (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec a✝¹ a✝) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) a✝ (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x case rfind' a✝ : Code a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, (0 ∈ eval a✝ (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval a✝ (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' a✝) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] case prec cf cg hf hg => revert h generalize n.unpair.1 = n₁; generalize n.unpair.2 = n₂ induction' n₂ with m IH generalizing x n <;> simp · intro h rcases hf h with ⟨k, hk⟩ exact ⟨_, le_max_left _ _, evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk⟩ · intro y hy hx rcases IH hy with ⟨k₁, nk₁, hk₁⟩ rcases hg hx with ⟨k₂, hk₂⟩ refine' ⟨(max k₁ k₂).succ, Nat.le_succ_of_le <| le_max_of_le_left <| le_trans (le_max_left _ (Nat.pair n₁ m)) nk₁, y, evaln_mono (Nat.succ_le_succ <| le_max_left _ _) _, evaln_mono (Nat.succ_le_succ <| Nat.le_succ_of_le <| le_max_right _ _) hk₂⟩ simp [evaln, Bind.bind] exact ⟨le_trans (le_max_right _ _) nk₁, hk₁⟩ [GOAL] cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x : ℕ h : x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd ⊢ ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x [PROOFSTEP] case prec cf cg hf hg => revert h generalize n.unpair.1 = n₁; generalize n.unpair.2 = n₂ induction' n₂ with m IH generalizing x n <;> simp · intro h rcases hf h with ⟨k, hk⟩ exact ⟨_, le_max_left _ _, evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk⟩ · intro y hy hx rcases IH hy with ⟨k₁, nk₁, hk₁⟩ rcases hg hx with ⟨k₂, hk₂⟩ refine' ⟨(max k₁ k₂).succ, Nat.le_succ_of_le <| le_max_of_le_left <| le_trans (le_max_left _ (Nat.pair n₁ m)) nk₁, y, evaln_mono (Nat.succ_le_succ <| le_max_left _ _) _, evaln_mono (Nat.succ_le_succ <| Nat.le_succ_of_le <| le_max_right _ _) hk₂⟩ simp [evaln, Bind.bind] exact ⟨le_trans (le_max_right _ _) nk₁, hk₁⟩ [GOAL] cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x : ℕ h : x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd ⊢ ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x [PROOFSTEP] revert h [GOAL] cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x : ℕ ⊢ x ∈ Nat.rec (eval cf (unpair n).fst) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).fst (Nat.pair y i))) (unpair n).snd → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = some x [PROOFSTEP] generalize n.unpair.1 = n₁ [GOAL] cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x n₁ : ℕ ⊢ x ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) (unpair n).snd → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf n₁) (fun n n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k + 1) cg (Nat.pair n₁ (Nat.pair n i))) (unpair n).snd = some x [PROOFSTEP] generalize n.unpair.2 = n₂ [GOAL] cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n x n₁ n₂ : ℕ ⊢ x ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) n₂ → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf n₁) (fun n n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k + 1) cg (Nat.pair n₁ (Nat.pair n i))) n₂ = some x [PROOFSTEP] induction' n₂ with m IH generalizing x n [GOAL] case zero cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n✝ x✝ n₁ n x : ℕ ⊢ x ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) Nat.zero → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf n₁) (fun n n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k + 1) cg (Nat.pair n₁ (Nat.pair n i))) Nat.zero = some x [PROOFSTEP] simp [GOAL] case succ cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n✝ x✝ n₁ m : ℕ IH : ∀ {n x : ℕ}, x ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf n₁) (fun n n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some x n x : ℕ ⊢ x ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) (Nat.succ m) → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf n₁) (fun n n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k + 1) cg (Nat.pair n₁ (Nat.pair n i))) (Nat.succ m) = some x [PROOFSTEP] simp [GOAL] case zero cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n✝ x✝ n₁ n x : ℕ ⊢ x ∈ eval cf n₁ → ∃ k, n ≤ k ∧ evaln (k + 1) cf n₁ = some x [PROOFSTEP] intro h [GOAL] case zero cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n✝ x✝ n₁ n x : ℕ h : x ∈ eval cf n₁ ⊢ ∃ k, n ≤ k ∧ evaln (k + 1) cf n₁ = some x [PROOFSTEP] rcases hf h with ⟨k, hk⟩ [GOAL] case zero.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n✝ x✝ n₁ n x : ℕ h : x ∈ eval cf n₁ k : ℕ hk : x ∈ evaln (k + 1) cf n₁ ⊢ ∃ k, n ≤ k ∧ evaln (k + 1) cf n₁ = some x [PROOFSTEP] exact ⟨_, le_max_left _ _, evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk⟩ [GOAL] case succ cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n✝ x✝ n₁ m : ℕ IH : ∀ {n x : ℕ}, x ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf n₁) (fun n n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some x n x : ℕ ⊢ ∀ (x_1 : ℕ), x_1 ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m → x ∈ eval cg (Nat.pair n₁ (Nat.pair m x_1)) → ∃ k, n ≤ k ∧ ∃ a, evaln k (prec cf cg) (Nat.pair n₁ m) = some a ∧ evaln (k + 1) cg (Nat.pair n₁ (Nat.pair m a)) = some x [PROOFSTEP] intro y hy hx [GOAL] case succ cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n✝ x✝ n₁ m : ℕ IH : ∀ {n x : ℕ}, x ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf n₁) (fun n n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some x n x y : ℕ hy : y ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m hx : x ∈ eval cg (Nat.pair n₁ (Nat.pair m y)) ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln k (prec cf cg) (Nat.pair n₁ m) = some a ∧ evaln (k + 1) cg (Nat.pair n₁ (Nat.pair m a)) = some x [PROOFSTEP] rcases IH hy with ⟨k₁, nk₁, hk₁⟩ [GOAL] case succ.intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n✝ x✝ n₁ m : ℕ IH : ∀ {n x : ℕ}, x ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf n₁) (fun n n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some x n x y : ℕ hy : y ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m hx : x ∈ eval cg (Nat.pair n₁ (Nat.pair m y)) k₁ : ℕ nk₁ : ?m.1242894 ≤ k₁ hk₁ : Nat.rec (evaln (k₁ + 1) cf n₁) (fun n n_ih => Option.bind (evaln k₁ (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k₁ + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some y ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln k (prec cf cg) (Nat.pair n₁ m) = some a ∧ evaln (k + 1) cg (Nat.pair n₁ (Nat.pair m a)) = some x [PROOFSTEP] rcases hg hx with ⟨k₂, hk₂⟩ [GOAL] case succ.intro.intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n✝ x✝ n₁ m : ℕ IH : ∀ {n x : ℕ}, x ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf n₁) (fun n n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some x n x y : ℕ hy : y ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m hx : x ∈ eval cg (Nat.pair n₁ (Nat.pair m y)) k₁ : ℕ nk₁ : ?m.1242894 ≤ k₁ hk₁ : Nat.rec (evaln (k₁ + 1) cf n₁) (fun n n_ih => Option.bind (evaln k₁ (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k₁ + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some y k₂ : ℕ hk₂ : x ∈ evaln (k₂ + 1) cg (Nat.pair n₁ (Nat.pair m y)) ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln k (prec cf cg) (Nat.pair n₁ m) = some a ∧ evaln (k + 1) cg (Nat.pair n₁ (Nat.pair m a)) = some x [PROOFSTEP] refine' ⟨(max k₁ k₂).succ, Nat.le_succ_of_le <| le_max_of_le_left <| le_trans (le_max_left _ (Nat.pair n₁ m)) nk₁, y, evaln_mono (Nat.succ_le_succ <| le_max_left _ _) _, evaln_mono (Nat.succ_le_succ <| Nat.le_succ_of_le <| le_max_right _ _) hk₂⟩ [GOAL] case succ.intro.intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n✝ x✝ n₁ m : ℕ IH : ∀ {n x : ℕ}, x ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf n₁) (fun n n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some x n x y : ℕ hy : y ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m hx : x ∈ eval cg (Nat.pair n₁ (Nat.pair m y)) k₁ : ℕ nk₁ : max n (Nat.pair n₁ m) ≤ k₁ hk₁ : Nat.rec (evaln (k₁ + 1) cf n₁) (fun n n_ih => Option.bind (evaln k₁ (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k₁ + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some y k₂ : ℕ hk₂ : x ∈ evaln (k₂ + 1) cg (Nat.pair n₁ (Nat.pair m y)) ⊢ y ∈ evaln (Nat.succ k₁) (prec cf cg) (Nat.pair n₁ m) [PROOFSTEP] simp [evaln, Bind.bind] [GOAL] case succ.intro.intro.intro cf cg : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n hg : ∀ {n x : ℕ}, x ∈ eval cg n → ∃ k, x ∈ evaln (k + 1) cg n n✝ x✝ n₁ m : ℕ IH : ∀ {n x : ℕ}, x ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m → ∃ k, n ≤ k ∧ Nat.rec (evaln (k + 1) cf n₁) (fun n n_ih => Option.bind (evaln k (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some x n x y : ℕ hy : y ∈ Nat.rec (eval cf n₁) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair n₁ (Nat.pair y i))) m hx : x ∈ eval cg (Nat.pair n₁ (Nat.pair m y)) k₁ : ℕ nk₁ : max n (Nat.pair n₁ m) ≤ k₁ hk₁ : Nat.rec (evaln (k₁ + 1) cf n₁) (fun n n_ih => Option.bind (evaln k₁ (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k₁ + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some y k₂ : ℕ hk₂ : x ∈ evaln (k₂ + 1) cg (Nat.pair n₁ (Nat.pair m y)) ⊢ Nat.pair n₁ m ≤ k₁ ∧ Nat.rec (evaln (k₁ + 1) cf n₁) (fun n n_ih => Option.bind (evaln k₁ (prec cf cg) (Nat.pair n₁ n)) fun i => evaln (k₁ + 1) cg (Nat.pair n₁ (Nat.pair n i))) m = some y [PROOFSTEP] exact ⟨le_trans (le_max_right _ _) nk₁, hk₁⟩ [GOAL] case rfind' a✝ : Code a_ih✝ : ∀ {n x : ℕ}, x ∈ eval a✝ n → ∃ k, x ∈ evaln (k + 1) a✝ n n x : ℕ h : ∃ a, (0 ∈ eval a✝ (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval a✝ (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) a✝ n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' a✝) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] case rfind' cf hf => rcases h with ⟨y, ⟨hy₁, hy₂⟩, rfl⟩ suffices ∃ k, y + n.unpair.2 ∈ evaln (k + 1) (rfind' cf) (Nat.pair n.unpair.1 n.unpair.2) by simpa [evaln, Bind.bind] revert hy₁ hy₂ generalize n.unpair.2 = m intro hy₁ hy₂ induction' y with y IH generalizing m <;> simp [evaln, Bind.bind] · simp at hy₁ rcases hf hy₁ with ⟨k, hk⟩ exact ⟨_, Nat.le_of_lt_succ <| evaln_bound hk, _, hk, by simp; rfl⟩ · rcases hy₂ (Nat.succ_pos _) with ⟨a, ha, a0⟩ rcases hf ha with ⟨k₁, hk₁⟩ rcases IH m.succ (by simpa [Nat.succ_eq_add_one, add_comm, add_left_comm] using hy₁) fun {i} hi => by simpa [Nat.succ_eq_add_one, add_comm, add_left_comm] using hy₂ (Nat.succ_lt_succ hi) with ⟨k₂, hk₂⟩ use(max k₁ k₂).succ rw [zero_add] at hk₁ use Nat.le_succ_of_le <| le_max_of_le_left <| Nat.le_of_lt_succ <| evaln_bound hk₁ use a use evaln_mono (Nat.succ_le_succ <| Nat.le_succ_of_le <| le_max_left _ _) hk₁ simpa [Nat.succ_eq_add_one, a0, -max_eq_left, -max_eq_right, add_comm, add_left_comm] using evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk₂ [GOAL] cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n x : ℕ h : ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] case rfind' cf hf => rcases h with ⟨y, ⟨hy₁, hy₂⟩, rfl⟩ suffices ∃ k, y + n.unpair.2 ∈ evaln (k + 1) (rfind' cf) (Nat.pair n.unpair.1 n.unpair.2) by simpa [evaln, Bind.bind] revert hy₁ hy₂ generalize n.unpair.2 = m intro hy₁ hy₂ induction' y with y IH generalizing m <;> simp [evaln, Bind.bind] · simp at hy₁ rcases hf hy₁ with ⟨k, hk⟩ exact ⟨_, Nat.le_of_lt_succ <| evaln_bound hk, _, hk, by simp; rfl⟩ · rcases hy₂ (Nat.succ_pos _) with ⟨a, ha, a0⟩ rcases hf ha with ⟨k₁, hk₁⟩ rcases IH m.succ (by simpa [Nat.succ_eq_add_one, add_comm, add_left_comm] using hy₁) fun {i} hi => by simpa [Nat.succ_eq_add_one, add_comm, add_left_comm] using hy₂ (Nat.succ_lt_succ hi) with ⟨k₂, hk₂⟩ use(max k₁ k₂).succ rw [zero_add] at hk₁ use Nat.le_succ_of_le <| le_max_of_le_left <| Nat.le_of_lt_succ <| evaln_bound hk₁ use a use evaln_mono (Nat.succ_le_succ <| Nat.le_succ_of_le <| le_max_left _ _) hk₁ simpa [Nat.succ_eq_add_one, a0, -max_eq_left, -max_eq_right, add_comm, add_left_comm] using evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk₂ [GOAL] cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n x : ℕ h : ∃ a, (0 ∈ eval cf (Nat.pair (unpair n).fst (a + (unpair n).snd)) ∧ ∀ {m : ℕ}, m < a → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) ∧ a + (unpair n).snd = x ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some x [PROOFSTEP] rcases h with ⟨y, ⟨hy₁, hy₂⟩, rfl⟩ [GOAL] case intro.intro.intro cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + (unpair n).snd)) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0 ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some (y + (unpair n).snd) [PROOFSTEP] suffices ∃ k, y + n.unpair.2 ∈ evaln (k + 1) (rfind' cf) (Nat.pair n.unpair.1 n.unpair.2) by simpa [evaln, Bind.bind] [GOAL] cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + (unpair n).snd)) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0 this : ∃ k, y + (unpair n).snd ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst (unpair n).snd) ⊢ ∃ k, n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ (if a = 0 then some (unpair n).snd else evaln k (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) = some (y + (unpair n).snd) [PROOFSTEP] simpa [evaln, Bind.bind] [GOAL] case intro.intro.intro cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + (unpair n).snd)) hy₂ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0 ⊢ ∃ k, y + (unpair n).snd ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst (unpair n).snd) [PROOFSTEP] revert hy₁ hy₂ [GOAL] case intro.intro.intro cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y : ℕ ⊢ 0 ∈ eval cf (Nat.pair (unpair n).fst (y + (unpair n).snd)) → (∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + (unpair n).snd)) ∧ ¬a = 0) → ∃ k, y + (unpair n).snd ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst (unpair n).snd) [PROOFSTEP] generalize n.unpair.2 = m [GOAL] case intro.intro.intro cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y m : ℕ ⊢ 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) [PROOFSTEP] intro hy₁ hy₂ [GOAL] case intro.intro.intro cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 ⊢ ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) [PROOFSTEP] induction' y with y IH generalizing m [GOAL] case intro.intro.intro.zero cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.zero + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.zero → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 ⊢ ∃ k, Nat.zero + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) [PROOFSTEP] simp [evaln, Bind.bind] [GOAL] case intro.intro.intro.succ cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 ⊢ ∃ k, Nat.succ y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) [PROOFSTEP] simp [evaln, Bind.bind] [GOAL] case intro.intro.intro.zero cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.zero + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.zero → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 ⊢ ∃ k, Nat.pair (unpair n).fst m ≤ k ∧ ∃ a, evaln (k + 1) cf (Nat.pair (unpair n).fst m) = some a ∧ (if a = 0 then pure m else evaln k (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some m [PROOFSTEP] simp at hy₁ [GOAL] case intro.intro.intro.zero cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 m : ℕ hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.zero → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst m) ⊢ ∃ k, Nat.pair (unpair n).fst m ≤ k ∧ ∃ a, evaln (k + 1) cf (Nat.pair (unpair n).fst m) = some a ∧ (if a = 0 then pure m else evaln k (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some m [PROOFSTEP] rcases hf hy₁ with ⟨k, hk⟩ [GOAL] case intro.intro.intro.zero.intro cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 m : ℕ hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.zero → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst m) k : ℕ hk : 0 ∈ evaln (k + 1) cf (Nat.pair (unpair n).fst m) ⊢ ∃ k, Nat.pair (unpair n).fst m ≤ k ∧ ∃ a, evaln (k + 1) cf (Nat.pair (unpair n).fst m) = some a ∧ (if a = 0 then pure m else evaln k (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some m [PROOFSTEP] exact ⟨_, Nat.le_of_lt_succ <| evaln_bound hk, _, hk, by simp; rfl⟩ [GOAL] cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 m : ℕ hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.zero → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst m) k : ℕ hk : 0 ∈ evaln (k + 1) cf (Nat.pair (unpair n).fst m) ⊢ (if 0 = 0 then pure m else evaln k (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some m [PROOFSTEP] simp [GOAL] cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 m : ℕ hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.zero → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst m) k : ℕ hk : 0 ∈ evaln (k + 1) cf (Nat.pair (unpair n).fst m) ⊢ pure m = some m [PROOFSTEP] rfl [GOAL] case intro.intro.intro.succ cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 ⊢ ∃ k, Nat.pair (unpair n).fst m ≤ k ∧ ∃ a, evaln (k + 1) cf (Nat.pair (unpair n).fst m) = some a ∧ (if a = 0 then pure m else evaln k (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some (Nat.succ y + m) [PROOFSTEP] rcases hy₂ (Nat.succ_pos _) with ⟨a, ha, a0⟩ [GOAL] case intro.intro.intro.succ.intro.intro cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 a : ℕ ha : a ∈ eval cf (Nat.pair (unpair n).fst (0 + m)) a0 : ¬a = 0 ⊢ ∃ k, Nat.pair (unpair n).fst m ≤ k ∧ ∃ a, evaln (k + 1) cf (Nat.pair (unpair n).fst m) = some a ∧ (if a = 0 then pure m else evaln k (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some (Nat.succ y + m) [PROOFSTEP] rcases hf ha with ⟨k₁, hk₁⟩ [GOAL] case intro.intro.intro.succ.intro.intro.intro cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 a : ℕ ha : a ∈ eval cf (Nat.pair (unpair n).fst (0 + m)) a0 : ¬a = 0 k₁ : ℕ hk₁ : a ∈ evaln (k₁ + 1) cf (Nat.pair (unpair n).fst (0 + m)) ⊢ ∃ k, Nat.pair (unpair n).fst m ≤ k ∧ ∃ a, evaln (k + 1) cf (Nat.pair (unpair n).fst m) = some a ∧ (if a = 0 then pure m else evaln k (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some (Nat.succ y + m) [PROOFSTEP] rcases IH m.succ (by simpa [Nat.succ_eq_add_one, add_comm, add_left_comm] using hy₁) fun {i} hi => by simpa [Nat.succ_eq_add_one, add_comm, add_left_comm] using hy₂ (Nat.succ_lt_succ hi) with ⟨k₂, hk₂⟩ [GOAL] cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 a : ℕ ha : a ∈ eval cf (Nat.pair (unpair n).fst (0 + m)) a0 : ¬a = 0 k₁ : ℕ hk₁ : a ∈ evaln (k₁ + 1) cf (Nat.pair (unpair n).fst (0 + m)) ⊢ 0 ∈ eval cf (Nat.pair (unpair n).fst (y + Nat.succ m)) [PROOFSTEP] simpa [Nat.succ_eq_add_one, add_comm, add_left_comm] using hy₁ [GOAL] cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 a : ℕ ha : a ∈ eval cf (Nat.pair (unpair n).fst (0 + m)) a0 : ¬a = 0 k₁ : ℕ hk₁ : a ∈ evaln (k₁ + 1) cf (Nat.pair (unpair n).fst (0 + m)) i : ℕ hi : i < y ⊢ ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (i + Nat.succ m)) ∧ ¬a = 0 [PROOFSTEP] simpa [Nat.succ_eq_add_one, add_comm, add_left_comm] using hy₂ (Nat.succ_lt_succ hi) [GOAL] case intro.intro.intro.succ.intro.intro.intro.intro cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 a : ℕ ha : a ∈ eval cf (Nat.pair (unpair n).fst (0 + m)) a0 : ¬a = 0 k₁ : ℕ hk₁ : a ∈ evaln (k₁ + 1) cf (Nat.pair (unpair n).fst (0 + m)) k₂ : ℕ hk₂ : y + Nat.succ m ∈ evaln (k₂ + 1) (rfind' cf) (Nat.pair (unpair n).fst (Nat.succ m)) ⊢ ∃ k, Nat.pair (unpair n).fst m ≤ k ∧ ∃ a, evaln (k + 1) cf (Nat.pair (unpair n).fst m) = some a ∧ (if a = 0 then pure m else evaln k (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some (Nat.succ y + m) [PROOFSTEP] use(max k₁ k₂).succ [GOAL] case h cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 a : ℕ ha : a ∈ eval cf (Nat.pair (unpair n).fst (0 + m)) a0 : ¬a = 0 k₁ : ℕ hk₁ : a ∈ evaln (k₁ + 1) cf (Nat.pair (unpair n).fst (0 + m)) k₂ : ℕ hk₂ : y + Nat.succ m ∈ evaln (k₂ + 1) (rfind' cf) (Nat.pair (unpair n).fst (Nat.succ m)) ⊢ Nat.pair (unpair n).fst m ≤ Nat.succ (max k₁ k₂) ∧ ∃ a, evaln (Nat.succ (max k₁ k₂) + 1) cf (Nat.pair (unpair n).fst m) = some a ∧ (if a = 0 then pure m else evaln (Nat.succ (max k₁ k₂)) (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some (Nat.succ y + m) [PROOFSTEP] rw [zero_add] at hk₁ [GOAL] case h cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 a : ℕ ha : a ∈ eval cf (Nat.pair (unpair n).fst (0 + m)) a0 : ¬a = 0 k₁ : ℕ hk₁ : a ∈ evaln (k₁ + 1) cf (Nat.pair (unpair n).fst m) k₂ : ℕ hk₂ : y + Nat.succ m ∈ evaln (k₂ + 1) (rfind' cf) (Nat.pair (unpair n).fst (Nat.succ m)) ⊢ Nat.pair (unpair n).fst m ≤ Nat.succ (max k₁ k₂) ∧ ∃ a, evaln (Nat.succ (max k₁ k₂) + 1) cf (Nat.pair (unpair n).fst m) = some a ∧ (if a = 0 then pure m else evaln (Nat.succ (max k₁ k₂)) (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some (Nat.succ y + m) [PROOFSTEP] use Nat.le_succ_of_le <| le_max_of_le_left <| Nat.le_of_lt_succ <| evaln_bound hk₁ [GOAL] case right cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 a : ℕ ha : a ∈ eval cf (Nat.pair (unpair n).fst (0 + m)) a0 : ¬a = 0 k₁ : ℕ hk₁ : a ∈ evaln (k₁ + 1) cf (Nat.pair (unpair n).fst m) k₂ : ℕ hk₂ : y + Nat.succ m ∈ evaln (k₂ + 1) (rfind' cf) (Nat.pair (unpair n).fst (Nat.succ m)) ⊢ ∃ a, evaln (Nat.succ (max k₁ k₂) + 1) cf (Nat.pair (unpair n).fst m) = some a ∧ (if a = 0 then pure m else evaln (Nat.succ (max k₁ k₂)) (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some (Nat.succ y + m) [PROOFSTEP] use a [GOAL] case h cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 a : ℕ ha : a ∈ eval cf (Nat.pair (unpair n).fst (0 + m)) a0 : ¬a = 0 k₁ : ℕ hk₁ : a ∈ evaln (k₁ + 1) cf (Nat.pair (unpair n).fst m) k₂ : ℕ hk₂ : y + Nat.succ m ∈ evaln (k₂ + 1) (rfind' cf) (Nat.pair (unpair n).fst (Nat.succ m)) ⊢ evaln (Nat.succ (max k₁ k₂) + 1) cf (Nat.pair (unpair n).fst m) = some a ∧ (if a = 0 then pure m else evaln (Nat.succ (max k₁ k₂)) (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some (Nat.succ y + m) [PROOFSTEP] use evaln_mono (Nat.succ_le_succ <| Nat.le_succ_of_le <| le_max_left _ _) hk₁ [GOAL] case right cf : Code hf : ∀ {n x : ℕ}, x ∈ eval cf n → ∃ k, x ∈ evaln (k + 1) cf n n y✝ m✝ : ℕ hy₁✝ : 0 ∈ eval cf (Nat.pair (unpair n).fst (y✝ + m✝)) hy₂✝ : ∀ {m : ℕ}, m < y✝ → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m + m✝)) ∧ ¬a = 0 y : ℕ IH : ∀ (m : ℕ), 0 ∈ eval cf (Nat.pair (unpair n).fst (y + m)) → (∀ {m_1 : ℕ}, m_1 < y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0) → ∃ k, y + m ∈ evaln (k + 1) (rfind' cf) (Nat.pair (unpair n).fst m) m : ℕ hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).fst (Nat.succ y + m)) hy₂ : ∀ {m_1 : ℕ}, m_1 < Nat.succ y → ∃ a, a ∈ eval cf (Nat.pair (unpair n).fst (m_1 + m)) ∧ ¬a = 0 a : ℕ ha : a ∈ eval cf (Nat.pair (unpair n).fst (0 + m)) a0 : ¬a = 0 k₁ : ℕ hk₁ : a ∈ evaln (k₁ + 1) cf (Nat.pair (unpair n).fst m) k₂ : ℕ hk₂ : y + Nat.succ m ∈ evaln (k₂ + 1) (rfind' cf) (Nat.pair (unpair n).fst (Nat.succ m)) ⊢ (if a = 0 then pure m else evaln (Nat.succ (max k₁ k₂)) (rfind' cf) (Nat.pair (unpair n).fst (m + 1))) = some (Nat.succ y + m) [PROOFSTEP] simpa [Nat.succ_eq_add_one, a0, -max_eq_left, -max_eq_right, add_comm, add_left_comm] using evaln_mono (Nat.succ_le_succ <| le_max_right _ _) hk₂ [GOAL] ⊢ Primrec Nat.Partrec.Code.G [PROOFSTEP] have a := (Primrec.ofNat (ℕ × Code)).comp (Primrec.list_length (α := List (Option ℕ))) [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) ⊢ Primrec Nat.Partrec.Code.G [PROOFSTEP] have k := Primrec.fst.comp a [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k : Primrec fun a => (ofNat (ℕ × Code) (List.length a)).fst ⊢ Primrec Nat.Partrec.Code.G [PROOFSTEP] refine' Primrec.option_some.comp (Primrec.list_map (Primrec.list_range.comp k) (_ : Primrec _)) [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k : Primrec fun a => (ofNat (ℕ × Code) (List.length a)).fst ⊢ Primrec fun p => (fun a n => Nat.casesOn (ofNat (ℕ × Code) (List.length a)).fst Option.none fun k' => Code.recOn (ofNat (ℕ × Code) (List.length a)).snd (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) n let y ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cg) n Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) x) (fun cf cg x x => let z := (unpair n).fst; Nat.casesOn (unpair n).snd (Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) z) fun y => do let i ← Nat.Partrec.Code.lup a (k', (ofNat (ℕ × Code) (List.length a)).snd) (Nat.pair z y) Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cg) (Nat.pair z (Nat.pair y i))) fun cf x => let z := (unpair n).fst; let m := (unpair n).snd; do let x ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a (k', (ofNat (ℕ × Code) (List.length a)).snd) (Nat.pair z (m + 1))) p.fst p.snd [PROOFSTEP] replace k := k.comp (Primrec.fst (β := ℕ)) [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst ⊢ Primrec fun p => (fun a n => Nat.casesOn (ofNat (ℕ × Code) (List.length a)).fst Option.none fun k' => Code.recOn (ofNat (ℕ × Code) (List.length a)).snd (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) n let y ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cg) n Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) x) (fun cf cg x x => let z := (unpair n).fst; Nat.casesOn (unpair n).snd (Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) z) fun y => do let i ← Nat.Partrec.Code.lup a (k', (ofNat (ℕ × Code) (List.length a)).snd) (Nat.pair z y) Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cg) (Nat.pair z (Nat.pair y i))) fun cf x => let z := (unpair n).fst; let m := (unpair n).snd; do let x ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a (k', (ofNat (ℕ × Code) (List.length a)).snd) (Nat.pair z (m + 1))) p.fst p.snd [PROOFSTEP] have n := Primrec.snd (α := List (List (Option ℕ))) (β := ℕ) [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n : Primrec Prod.snd ⊢ Primrec fun p => (fun a n => Nat.casesOn (ofNat (ℕ × Code) (List.length a)).fst Option.none fun k' => Code.recOn (ofNat (ℕ × Code) (List.length a)).snd (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) n let y ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cg) n Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) x) (fun cf cg x x => let z := (unpair n).fst; Nat.casesOn (unpair n).snd (Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) z) fun y => do let i ← Nat.Partrec.Code.lup a (k', (ofNat (ℕ × Code) (List.length a)).snd) (Nat.pair z y) Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cg) (Nat.pair z (Nat.pair y i))) fun cf x => let z := (unpair n).fst; let m := (unpair n).snd; do let x ← Nat.Partrec.Code.lup a ((ofNat (ℕ × Code) (List.length a)).fst, cf) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a (k', (ofNat (ℕ × Code) (List.length a)).snd) (Nat.pair z (m + 1))) p.fst p.snd [PROOFSTEP] refine' Primrec.nat_casesOn k (_root_.Primrec.const Option.none) (_ : Primrec _) [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n : Primrec Prod.snd ⊢ Primrec fun p => (fun p n => (fun k' => Code.recOn (ofNat (ℕ × Code) (List.length p.fst)).snd (some 0) (some (Nat.succ p.snd)) (some (unpair p.snd).fst) (some (unpair p.snd).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) p.snd let y ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) p.snd some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) p.snd Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) x) (fun cf cg x x => let z := (unpair p.snd).fst; Nat.casesOn (unpair p.snd).snd (Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) z) fun y => do let i ← Nat.Partrec.Code.lup p.fst (k', (ofNat (ℕ × Code) (List.length p.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) (Nat.pair z (Nat.pair y i))) fun cf x => let z := (unpair p.snd).fst; let m := (unpair p.snd).snd; do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup p.fst (k', (ofNat (ℕ × Code) (List.length p.fst)).snd) (Nat.pair z (m + 1))) n) p.fst p.snd [PROOFSTEP] have k := k.comp (Primrec.fst (β := ℕ)) [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst ⊢ Primrec fun p => (fun p n => (fun k' => Code.recOn (ofNat (ℕ × Code) (List.length p.fst)).snd (some 0) (some (Nat.succ p.snd)) (some (unpair p.snd).fst) (some (unpair p.snd).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) p.snd let y ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) p.snd some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) p.snd Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) x) (fun cf cg x x => let z := (unpair p.snd).fst; Nat.casesOn (unpair p.snd).snd (Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) z) fun y => do let i ← Nat.Partrec.Code.lup p.fst (k', (ofNat (ℕ × Code) (List.length p.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) (Nat.pair z (Nat.pair y i))) fun cf x => let z := (unpair p.snd).fst; let m := (unpair p.snd).snd; do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup p.fst (k', (ofNat (ℕ × Code) (List.length p.fst)).snd) (Nat.pair z (m + 1))) n) p.fst p.snd [PROOFSTEP] have n := n.comp (Primrec.fst (β := ℕ)) [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd ⊢ Primrec fun p => (fun p n => (fun k' => Code.recOn (ofNat (ℕ × Code) (List.length p.fst)).snd (some 0) (some (Nat.succ p.snd)) (some (unpair p.snd).fst) (some (unpair p.snd).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) p.snd let y ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) p.snd some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) p.snd Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) x) (fun cf cg x x => let z := (unpair p.snd).fst; Nat.casesOn (unpair p.snd).snd (Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) z) fun y => do let i ← Nat.Partrec.Code.lup p.fst (k', (ofNat (ℕ × Code) (List.length p.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) (Nat.pair z (Nat.pair y i))) fun cf x => let z := (unpair p.snd).fst; let m := (unpair p.snd).snd; do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup p.fst (k', (ofNat (ℕ × Code) (List.length p.fst)).snd) (Nat.pair z (m + 1))) n) p.fst p.snd [PROOFSTEP] have k' := Primrec.snd (α := List (List (Option ℕ)) × ℕ) (β := ℕ) [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd ⊢ Primrec fun p => (fun p n => (fun k' => Code.recOn (ofNat (ℕ × Code) (List.length p.fst)).snd (some 0) (some (Nat.succ p.snd)) (some (unpair p.snd).fst) (some (unpair p.snd).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) p.snd let y ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) p.snd some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) p.snd Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) x) (fun cf cg x x => let z := (unpair p.snd).fst; Nat.casesOn (unpair p.snd).snd (Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) z) fun y => do let i ← Nat.Partrec.Code.lup p.fst (k', (ofNat (ℕ × Code) (List.length p.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) (Nat.pair z (Nat.pair y i))) fun cf x => let z := (unpair p.snd).fst; let m := (unpair p.snd).snd; do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup p.fst (k', (ofNat (ℕ × Code) (List.length p.fst)).snd) (Nat.pair z (m + 1))) n) p.fst p.snd [PROOFSTEP] have c := Primrec.snd.comp (a.comp <| (Primrec.fst (β := ℕ)).comp (Primrec.fst (β := ℕ))) [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd ⊢ Primrec fun p => (fun p n => (fun k' => Code.recOn (ofNat (ℕ × Code) (List.length p.fst)).snd (some 0) (some (Nat.succ p.snd)) (some (unpair p.snd).fst) (some (unpair p.snd).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) p.snd let y ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) p.snd some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) p.snd Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) x) (fun cf cg x x => let z := (unpair p.snd).fst; Nat.casesOn (unpair p.snd).snd (Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) z) fun y => do let i ← Nat.Partrec.Code.lup p.fst (k', (ofNat (ℕ × Code) (List.length p.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cg) (Nat.pair z (Nat.pair y i))) fun cf x => let z := (unpair p.snd).fst; let m := (unpair p.snd).snd; do let x ← Nat.Partrec.Code.lup p.fst ((ofNat (ℕ × Code) (List.length p.fst)).fst, cf) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup p.fst (k', (ofNat (ℕ × Code) (List.length p.fst)).snd) (Nat.pair z (m + 1))) n) p.fst p.snd [PROOFSTEP] apply Nat.Partrec.Code.rec_prim c (_root_.Primrec.const (some 0)) (Primrec.option_some.comp (_root_.Primrec.succ.comp n)) (Primrec.option_some.comp (Primrec.fst.comp <| Primrec.unpair.comp n)) (Primrec.option_some.comp (Primrec.snd.comp <| Primrec.unpair.comp n)) [GOAL] case hpr a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) a.fst.fst.snd let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y) [PROOFSTEP] have L := (Primrec.fst.comp Primrec.fst).comp (Primrec.fst (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hpr a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) a.fst.fst.snd let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y) [PROOFSTEP] have k := k.comp (Primrec.fst (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hpr a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) a.fst.fst.snd let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y) [PROOFSTEP] have n := n.comp (Primrec.fst (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hpr a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) a.fst.fst.snd let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y) [PROOFSTEP] have cf := Primrec.fst.comp (Primrec.snd (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hpr a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) a.fst.fst.snd let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y) [PROOFSTEP] have cg := (Primrec.fst.comp Primrec.snd).comp (Primrec.snd (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hpr a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) a.fst.fst.snd let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y) [PROOFSTEP] refine Primrec.option_bind (hlup.comp <| L.pair <| (k.pair cf).pair n) ?_ [GOAL] case hpr a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst ⊢ Primrec₂ fun a x => do let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y) [PROOFSTEP] unfold Primrec₂ [GOAL] case hpr a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst ⊢ Primrec fun p => (fun a x => do let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y)) p.fst p.snd [PROOFSTEP] conv => congr · ext p dsimp only [] erw [Option.bind_eq_bind, ← Option.map_eq_bind] [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst | Primrec fun p => (fun a x => do let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y)) p.fst p.snd [PROOFSTEP] congr · ext p dsimp only [] erw [Option.bind_eq_bind, ← Option.map_eq_bind] [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst | Primrec fun p => (fun a x => do let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y)) p.fst p.snd [PROOFSTEP] congr · ext p dsimp only [] erw [Option.bind_eq_bind, ← Option.map_eq_bind] [GOAL] a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst | Primrec fun p => (fun a x => do let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y)) p.fst p.snd [PROOFSTEP] congr [GOAL] case f a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst | fun p => (fun a x => do let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y)) p.fst p.snd [PROOFSTEP] · ext p dsimp only [] erw [Option.bind_eq_bind, ← Option.map_eq_bind] [GOAL] case f a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst | fun p => (fun a x => do let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y)) p.fst p.snd [PROOFSTEP] ext p dsimp only [] erw [Option.bind_eq_bind, ← Option.map_eq_bind] [GOAL] case f a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst | fun p => (fun a x => do let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y)) p.fst p.snd [PROOFSTEP] ext p dsimp only [] erw [Option.bind_eq_bind, ← Option.map_eq_bind] [GOAL] case f a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst | fun p => (fun a x => do let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y)) p.fst p.snd [PROOFSTEP] ext p [GOAL] case f.h a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst p : (((List (List (Option ℕ)) × ℕ) × ℕ) × Code × Code × Option ℕ × Option ℕ) × ℕ | (fun a x => do let y ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd some (Nat.pair x y)) p.fst p.snd [PROOFSTEP] dsimp only [] [GOAL] case f.h a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst p : (((List (List (Option ℕ)) × ℕ) × ℕ) × Code × Code × Option ℕ × Option ℕ) × ℕ | do let y ← Nat.Partrec.Code.lup p.fst.fst.fst.fst ((ofNat (ℕ × Code) (List.length p.fst.fst.fst.fst)).fst, p.fst.snd.snd.fst) p.fst.fst.fst.snd some (Nat.pair p.snd y) [PROOFSTEP] erw [Option.bind_eq_bind, ← Option.map_eq_bind] [GOAL] case hpr a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst ⊢ Primrec fun p => Option.map (fun y => Nat.pair p.snd y) (Nat.Partrec.Code.lup p.fst.fst.fst.fst ((ofNat (ℕ × Code) (List.length p.fst.fst.fst.fst)).fst, p.fst.snd.snd.fst) p.fst.fst.fst.snd) [PROOFSTEP] refine Primrec.option_map ((hlup.comp <| L.pair <| (k.pair cg).pair n).comp Primrec.fst) ?_ [GOAL] case hpr a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst ⊢ Primrec₂ fun p y => Nat.pair p.snd y [PROOFSTEP] unfold Primrec₂ [GOAL] case hpr a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst ⊢ Primrec fun p => (fun p y => Nat.pair p.snd y) p.fst p.snd [PROOFSTEP] exact Primrec₂.natPair.comp (Primrec.snd.comp Primrec.fst) Primrec.snd [GOAL] case hco a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) x [PROOFSTEP] have L := (Primrec.fst.comp Primrec.fst).comp (Primrec.fst (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hco a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) x [PROOFSTEP] have k := k.comp (Primrec.fst (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hco a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) x [PROOFSTEP] have n := n.comp (Primrec.fst (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hco a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) x [PROOFSTEP] have cf := Primrec.fst.comp (Primrec.snd (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hco a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) x [PROOFSTEP] have cg := (Primrec.fst.comp Primrec.snd).comp (Primrec.snd (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hco a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) a.fst.fst.snd Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) x [PROOFSTEP] refine Primrec.option_bind (hlup.comp <| L.pair <| (k.pair cg).pair n) ?_ [GOAL] case hco a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst ⊢ Primrec₂ fun a x => Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) x [PROOFSTEP] unfold Primrec₂ [GOAL] case hco a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst ⊢ Primrec fun p => (fun a x => Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) x) p.fst p.snd [PROOFSTEP] have h := hlup.comp ((L.comp Primrec.fst).pair <| ((k.pair cf).comp Primrec.fst).pair Primrec.snd) [GOAL] case hco a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst h : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).fst, a.fst.snd.fst), a.snd).fst (a.fst.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).fst, a.fst.snd.fst), a.snd).snd.fst (a.fst.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).fst, a.fst.snd.fst), a.snd).snd.snd ⊢ Primrec fun p => (fun a x => Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) x) p.fst p.snd [PROOFSTEP] exact h [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; Nat.casesOn (unpair a.fst.fst.snd).snd (Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) z) fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair z (Nat.pair y i)) [PROOFSTEP] have L := (Primrec.fst.comp Primrec.fst).comp (Primrec.fst (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; Nat.casesOn (unpair a.fst.fst.snd).snd (Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) z) fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair z (Nat.pair y i)) [PROOFSTEP] have k := k.comp (Primrec.fst (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; Nat.casesOn (unpair a.fst.fst.snd).snd (Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) z) fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair z (Nat.pair y i)) [PROOFSTEP] have n := n.comp (Primrec.fst (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; Nat.casesOn (unpair a.fst.fst.snd).snd (Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) z) fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair z (Nat.pair y i)) [PROOFSTEP] have cf := Primrec.fst.comp (Primrec.snd (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; Nat.casesOn (unpair a.fst.fst.snd).snd (Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) z) fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair z (Nat.pair y i)) [PROOFSTEP] have cg := (Primrec.fst.comp Primrec.snd).comp (Primrec.snd (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Code × Option ℕ × Option ℕ)) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; Nat.casesOn (unpair a.fst.fst.snd).snd (Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) z) fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair z (Nat.pair y i)) [PROOFSTEP] have z := Primrec.fst.comp (Primrec.unpair.comp n) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst z : Primrec fun a => (unpair a.fst.fst.snd).fst ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; Nat.casesOn (unpair a.fst.fst.snd).snd (Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) z) fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair z (Nat.pair y i)) [PROOFSTEP] refine' Primrec.nat_casesOn (Primrec.snd.comp (Primrec.unpair.comp n)) (hlup.comp <| L.pair <| (k.pair cf).pair z) (_ : Primrec _) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst z : Primrec fun a => (unpair a.fst.fst.snd).fst ⊢ Primrec fun p => (fun a n => (fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair (unpair a.fst.fst.snd).fst y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair (unpair a.fst.fst.snd).fst (Nat.pair y i))) n) p.fst p.snd [PROOFSTEP] have L := L.comp (Primrec.fst (β := ℕ)) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L✝ : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst z : Primrec fun a => (unpair a.fst.fst.snd).fst L : Primrec fun a => a.fst.fst.fst.fst ⊢ Primrec fun p => (fun a n => (fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair (unpair a.fst.fst.snd).fst y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair (unpair a.fst.fst.snd).fst (Nat.pair y i))) n) p.fst p.snd [PROOFSTEP] have z := z.comp (Primrec.fst (β := ℕ)) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L✝ : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst z✝ : Primrec fun a => (unpair a.fst.fst.snd).fst L : Primrec fun a => a.fst.fst.fst.fst z : Primrec fun a => (unpair a.fst.fst.fst.snd).fst ⊢ Primrec fun p => (fun a n => (fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair (unpair a.fst.fst.snd).fst y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair (unpair a.fst.fst.snd).fst (Nat.pair y i))) n) p.fst p.snd [PROOFSTEP] have y := Primrec.snd (α := ((List (List (Option ℕ)) × ℕ) × ℕ) × Code × Code × Option ℕ × Option ℕ) (β := ℕ) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L✝ : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst z✝ : Primrec fun a => (unpair a.fst.fst.snd).fst L : Primrec fun a => a.fst.fst.fst.fst z : Primrec fun a => (unpair a.fst.fst.fst.snd).fst y : Primrec Prod.snd ⊢ Primrec fun p => (fun a n => (fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair (unpair a.fst.fst.snd).fst y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair (unpair a.fst.fst.snd).fst (Nat.pair y i))) n) p.fst p.snd [PROOFSTEP] have h₁ := hlup.comp <| L.pair <| (((k'.pair c).comp Primrec.fst).comp Primrec.fst).pair (Primrec₂.natPair.comp z y) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L✝ : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst z✝ : Primrec fun a => (unpair a.fst.fst.snd).fst L : Primrec fun a => a.fst.fst.fst.fst z : Primrec fun a => (unpair a.fst.fst.fst.snd).fst y : Primrec Prod.snd h₁ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.snd ⊢ Primrec fun p => (fun a n => (fun y => do let i ← Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair (unpair a.fst.fst.snd).fst y) Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.snd.fst) (Nat.pair (unpair a.fst.fst.snd).fst (Nat.pair y i))) n) p.fst p.snd [PROOFSTEP] refine' Primrec.option_bind h₁ (_ : Primrec _) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L✝ : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst z✝ : Primrec fun a => (unpair a.fst.fst.snd).fst L : Primrec fun a => a.fst.fst.fst.fst z : Primrec fun a => (unpair a.fst.fst.fst.snd).fst y : Primrec Prod.snd h₁ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.snd ⊢ Primrec fun p => (fun p i => Nat.Partrec.Code.lup p.fst.fst.fst.fst ((ofNat (ℕ × Code) (List.length p.fst.fst.fst.fst)).fst, p.fst.snd.snd.fst) (Nat.pair (unpair p.fst.fst.fst.snd).fst (Nat.pair p.snd i))) p.fst p.snd [PROOFSTEP] have z := z.comp (Primrec.fst (β := ℕ)) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L✝ : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst z✝¹ : Primrec fun a => (unpair a.fst.fst.snd).fst L : Primrec fun a => a.fst.fst.fst.fst z✝ : Primrec fun a => (unpair a.fst.fst.fst.snd).fst y : Primrec Prod.snd h₁ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.snd z : Primrec fun a => (unpair a.fst.fst.fst.fst.snd).fst ⊢ Primrec fun p => (fun p i => Nat.Partrec.Code.lup p.fst.fst.fst.fst ((ofNat (ℕ × Code) (List.length p.fst.fst.fst.fst)).fst, p.fst.snd.snd.fst) (Nat.pair (unpair p.fst.fst.fst.snd).fst (Nat.pair p.snd i))) p.fst p.snd [PROOFSTEP] have y := y.comp (Primrec.fst (β := ℕ)) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L✝ : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst z✝¹ : Primrec fun a => (unpair a.fst.fst.snd).fst L : Primrec fun a => a.fst.fst.fst.fst z✝ : Primrec fun a => (unpair a.fst.fst.fst.snd).fst y✝ : Primrec Prod.snd h₁ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.snd z : Primrec fun a => (unpair a.fst.fst.fst.fst.snd).fst y : Primrec fun a => a.fst.snd ⊢ Primrec fun p => (fun p i => Nat.Partrec.Code.lup p.fst.fst.fst.fst ((ofNat (ℕ × Code) (List.length p.fst.fst.fst.fst)).fst, p.fst.snd.snd.fst) (Nat.pair (unpair p.fst.fst.fst.snd).fst (Nat.pair p.snd i))) p.fst p.snd [PROOFSTEP] have i := Primrec.snd (α := (((List (List (Option ℕ)) × ℕ) × ℕ) × Code × Code × Option ℕ × Option ℕ) × ℕ) (β := ℕ) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L✝ : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst z✝¹ : Primrec fun a => (unpair a.fst.fst.snd).fst L : Primrec fun a => a.fst.fst.fst.fst z✝ : Primrec fun a => (unpair a.fst.fst.fst.snd).fst y✝ : Primrec Prod.snd h₁ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.snd z : Primrec fun a => (unpair a.fst.fst.fst.fst.snd).fst y : Primrec fun a => a.fst.snd i : Primrec Prod.snd ⊢ Primrec fun p => (fun p i => Nat.Partrec.Code.lup p.fst.fst.fst.fst ((ofNat (ℕ × Code) (List.length p.fst.fst.fst.fst)).fst, p.fst.snd.snd.fst) (Nat.pair (unpair p.fst.fst.fst.snd).fst (Nat.pair p.snd i))) p.fst p.snd [PROOFSTEP] have h₂ := hlup.comp ((L.comp Primrec.fst).pair <| ((k.pair cg).comp <| Primrec.fst.comp Primrec.fst).pair <| Primrec₂.natPair.comp z <| Primrec₂.natPair.comp y i) [GOAL] case hpc a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L✝ : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst cg : Primrec fun a => a.snd.snd.fst z✝¹ : Primrec fun a => (unpair a.fst.fst.snd).fst L : Primrec fun a => a.fst.fst.fst.fst z✝ : Primrec fun a => (unpair a.fst.fst.fst.snd).fst y✝ : Primrec Prod.snd h₁ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.fst (a.fst.fst.fst.fst, (a.fst.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst)).snd), Nat.pair (unpair a.fst.fst.fst.snd).fst a.snd).snd.snd z : Primrec fun a => (unpair a.fst.fst.fst.fst.snd).fst y : Primrec fun a => a.fst.snd i : Primrec Prod.snd h₂ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst.fst)).fst, a.fst.fst.snd.snd.fst), Nat.pair (unpair a.fst.fst.fst.fst.snd).fst (Nat.pair a.fst.snd a.snd)).fst (a.fst.fst.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst.fst)).fst, a.fst.fst.snd.snd.fst), Nat.pair (unpair a.fst.fst.fst.fst.snd).fst (Nat.pair a.fst.snd a.snd)).snd.fst (a.fst.fst.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst.fst.fst)).fst, a.fst.fst.snd.snd.fst), Nat.pair (unpair a.fst.fst.fst.fst.snd).fst (Nat.pair a.fst.snd a.snd)).snd.snd ⊢ Primrec fun p => (fun p i => Nat.Partrec.Code.lup p.fst.fst.fst.fst ((ofNat (ℕ × Code) (List.length p.fst.fst.fst.fst)).fst, p.fst.snd.snd.fst) (Nat.pair (unpair p.fst.fst.fst.snd).fst (Nat.pair p.snd i))) p.fst p.snd [PROOFSTEP] exact h₂ [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; let m := (unpair a.fst.fst.snd).snd; do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z (m + 1)) [PROOFSTEP] have L := (Primrec.fst.comp Primrec.fst).comp (Primrec.fst (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Option ℕ)) [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; let m := (unpair a.fst.fst.snd).snd; do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z (m + 1)) [PROOFSTEP] have k := k.comp (Primrec.fst (β := Code × Option ℕ)) [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; let m := (unpair a.fst.fst.snd).snd; do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z (m + 1)) [PROOFSTEP] have n := n.comp (Primrec.fst (β := Code × Option ℕ)) [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; let m := (unpair a.fst.fst.snd).snd; do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z (m + 1)) [PROOFSTEP] have cf := Primrec.fst.comp (Primrec.snd (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Option ℕ)) [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; let m := (unpair a.fst.fst.snd).snd; do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z (m + 1)) [PROOFSTEP] have z := Primrec.fst.comp (Primrec.unpair.comp n) [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst z : Primrec fun a => (unpair a.fst.fst.snd).fst ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; let m := (unpair a.fst.fst.snd).snd; do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z (m + 1)) [PROOFSTEP] have m := Primrec.snd.comp (Primrec.unpair.comp n) [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst z : Primrec fun a => (unpair a.fst.fst.snd).fst m : Primrec fun a => (unpair a.fst.fst.snd).snd ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; let m := (unpair a.fst.fst.snd).snd; do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z (m + 1)) [PROOFSTEP] have h₁ := hlup.comp <| L.pair <| (k.pair cf).pair (Primrec₂.natPair.comp z m) [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst z : Primrec fun a => (unpair a.fst.fst.snd).fst m : Primrec fun a => (unpair a.fst.fst.snd).snd h₁ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).fst (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).snd.fst (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).snd.snd ⊢ Primrec fun a => let z := (unpair a.fst.fst.snd).fst; let m := (unpair a.fst.fst.snd).snd; do let x ← Nat.Partrec.Code.lup a.fst.fst.fst ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst) (Nat.pair z m) Nat.casesOn x (some m) fun x => Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair z (m + 1)) [PROOFSTEP] refine' Primrec.option_bind h₁ (_ : Primrec _) [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst z : Primrec fun a => (unpair a.fst.fst.snd).fst m : Primrec fun a => (unpair a.fst.fst.snd).snd h₁ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).fst (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).snd.fst (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).snd.snd ⊢ Primrec fun p => (fun a x => Nat.casesOn x (some (unpair a.fst.fst.snd).snd) fun x => Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair (unpair a.fst.fst.snd).fst ((unpair a.fst.fst.snd).snd + 1))) p.fst p.snd [PROOFSTEP] have m := m.comp (Primrec.fst (β := ℕ)) [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst z : Primrec fun a => (unpair a.fst.fst.snd).fst m✝ : Primrec fun a => (unpair a.fst.fst.snd).snd h₁ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).fst (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).snd.fst (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).snd.snd m : Primrec fun a => (unpair a.fst.fst.fst.snd).snd ⊢ Primrec fun p => (fun a x => Nat.casesOn x (some (unpair a.fst.fst.snd).snd) fun x => Nat.Partrec.Code.lup a.fst.fst.fst (a.fst.snd, (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).snd) (Nat.pair (unpair a.fst.fst.snd).fst ((unpair a.fst.fst.snd).snd + 1))) p.fst p.snd [PROOFSTEP] refine Primrec.nat_casesOn Primrec.snd (Primrec.option_some.comp m) ?_ [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst z : Primrec fun a => (unpair a.fst.fst.snd).fst m✝ : Primrec fun a => (unpair a.fst.fst.snd).snd h₁ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).fst (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).snd.fst (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).snd.snd m : Primrec fun a => (unpair a.fst.fst.fst.snd).snd ⊢ Primrec₂ fun p n => (fun x => Nat.Partrec.Code.lup p.fst.fst.fst.fst (p.fst.fst.snd, (ofNat (ℕ × Code) (List.length p.fst.fst.fst.fst)).snd) (Nat.pair (unpair p.fst.fst.fst.snd).fst ((unpair p.fst.fst.fst.snd).snd + 1))) n [PROOFSTEP] unfold Primrec₂ [GOAL] case hrf a : Primrec fun a => ofNat (ℕ × Code) (List.length a) k✝¹ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst)).fst n✝¹ : Primrec Prod.snd k✝ : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).fst n✝ : Primrec fun a => a.fst.snd k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst)).snd L : Primrec fun a => a.fst.fst.fst k : Primrec fun a => (ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst n : Primrec fun a => a.fst.fst.snd cf : Primrec fun a => a.snd.fst z : Primrec fun a => (unpair a.fst.fst.snd).fst m✝ : Primrec fun a => (unpair a.fst.fst.snd).snd h₁ : Primrec fun a => Nat.Partrec.Code.lup (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).fst (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).snd.fst (a.fst.fst.fst, ((ofNat (ℕ × Code) (List.length a.fst.fst.fst)).fst, a.snd.fst), Nat.pair (unpair a.fst.fst.snd).fst (unpair a.fst.fst.snd).snd).snd.snd m : Primrec fun a => (unpair a.fst.fst.fst.snd).snd ⊢ Primrec fun p => (fun p n => (fun x => Nat.Partrec.Code.lup p.fst.fst.fst.fst (p.fst.fst.snd, (ofNat (ℕ × Code) (List.length p.fst.fst.fst.fst)).snd) (Nat.pair (unpair p.fst.fst.fst.snd).fst ((unpair p.fst.fst.fst.snd).snd + 1))) n) p.fst p.snd [PROOFSTEP] exact (hlup.comp ((L.comp Primrec.fst).pair <| ((k'.pair c).comp <| Primrec.fst.comp Primrec.fst).pair (Primrec₂.natPair.comp (z.comp Primrec.fst) (_root_.Primrec.succ.comp m)))).comp Primrec.fst [GOAL] k : ℕ c : Code n : ℕ ⊢ (Option.bind (Option.map (evaln k c) (List.get? (List.range k) n)) fun b => b) = evaln k c n [PROOFSTEP] by_cases kn : n < k [GOAL] case pos k : ℕ c : Code n : ℕ kn : n < k ⊢ (Option.bind (Option.map (evaln k c) (List.get? (List.range k) n)) fun b => b) = evaln k c n [PROOFSTEP] simp [List.get?_range kn] [GOAL] case neg k : ℕ c : Code n : ℕ kn : ¬n < k ⊢ (Option.bind (Option.map (evaln k c) (List.get? (List.range k) n)) fun b => b) = evaln k c n [PROOFSTEP] rw [List.get?_len_le] [GOAL] case neg k : ℕ c : Code n : ℕ kn : ¬n < k ⊢ (Option.bind (Option.map (evaln k c) Option.none) fun b => b) = evaln k c n [PROOFSTEP] cases e : evaln k c n [GOAL] case neg.none k : ℕ c : Code n : ℕ kn : ¬n < k e : evaln k c n = Option.none ⊢ (Option.bind (Option.map (evaln k c) Option.none) fun b => b) = Option.none [PROOFSTEP] rfl [GOAL] case neg.some k : ℕ c : Code n : ℕ kn : ¬n < k val✝ : ℕ e : evaln k c n = some val✝ ⊢ (Option.bind (Option.map (evaln k c) Option.none) fun b => b) = some val✝ [PROOFSTEP] exact kn.elim (evaln_bound e) [GOAL] case neg k : ℕ c : Code n : ℕ kn : ¬n < k ⊢ List.length (List.range k) ≤ n [PROOFSTEP] simpa using kn [GOAL] x✝ : Unit p : ℕ ⊢ Nat.Partrec.Code.G (x✝, List.map (fun n => let a := ofNat (ℕ × Code) n; List.map (evaln a.fst a.snd) (List.range a.fst)) (List.range p)).snd = some (let a := ofNat (ℕ × Code) p; List.map (evaln a.fst a.snd) (List.range a.fst)) [PROOFSTEP] simp only [G, prod_ofNat_val, ofNat_nat, List.length_map, List.length_range, Nat.pair_unpair, Option.some_inj] [GOAL] x✝ : Unit p : ℕ ⊢ List.map (fun n => Nat.rec Option.none (fun n_1 n_ih => rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) (unpair n).fst) (fun n_2 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) n Nat.rec (some (unpair n).snd) (fun n_2 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) (ofNat Code (unpair p).snd)) (unpair p).fst) (List.range (unpair p).fst) = List.map (evaln (unpair p).fst (ofNat Code (unpair p).snd)) (List.range (unpair p).fst) [PROOFSTEP] refine List.map_congr fun n => ?_ [GOAL] x✝ : Unit p n : ℕ ⊢ n ∈ List.range (unpair p).fst → Nat.rec Option.none (fun n_1 n_ih => rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) (unpair n).fst) (fun n_2 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) n Nat.rec (some (unpair n).snd) (fun n_2 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) (ofNat Code (unpair p).snd)) (unpair p).fst = evaln (unpair p).fst (ofNat Code (unpair p).snd) n [PROOFSTEP] have : List.range p = List.range (Nat.pair p.unpair.1 (encode (ofNat Code p.unpair.2))) := by simp [GOAL] x✝ : Unit p n : ℕ ⊢ List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) [PROOFSTEP] simp [GOAL] x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) ⊢ n ∈ List.range (unpair p).fst → Nat.rec Option.none (fun n_1 n_ih => rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) (unpair n).fst) (fun n_2 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) ((unpair p).fst, cf) n Nat.rec (some (unpair n).snd) (fun n_2 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range p)) (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) (ofNat Code (unpair p).snd)) (unpair p).fst = evaln (unpair p).fst (ofNat Code (unpair p).snd) n [PROOFSTEP] rw [this] [GOAL] x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) ⊢ n ∈ List.range (unpair p).fst → Nat.rec Option.none (fun n_1 n_ih => rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))))) ((unpair p).fst, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))))) ((unpair p).fst, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))))) ((unpair p).fst, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))))) ((unpair p).fst, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))))) ((unpair p).fst, cf) (unpair n).fst) (fun n_2 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))))) (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))))) ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))))) ((unpair p).fst, cf) n Nat.rec (some (unpair n).snd) (fun n_2 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))))) (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) (ofNat Code (unpair p).snd)) (unpair p).fst = evaln (unpair p).fst (ofNat Code (unpair p).snd) n [PROOFSTEP] generalize p.unpair.1 = k [GOAL] x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k : ℕ ⊢ n ∈ List.range k → Nat.rec Option.none (fun n_1 n_ih => rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd))))) (k, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd))))) (k, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd))))) (k, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd))))) (k, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd))))) (k, cf) (unpair n).fst) (fun n_2 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd))))) (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd))))) (k, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd))))) (k, cf) n Nat.rec (some (unpair n).snd) (fun n_2 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd))))) (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) (ofNat Code (unpair p).snd)) k = evaln k (ofNat Code (unpair p).snd) n [PROOFSTEP] generalize ofNat Code p.unpair.2 = c [GOAL] x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k : ℕ c : Code ⊢ n ∈ List.range k → Nat.rec Option.none (fun n_1 n_ih => rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cf) (unpair n).fst) (fun n_2 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (n_1, c) (Nat.pair (unpair n).fst n_2) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cf) n Nat.rec (some (unpair n).snd) (fun n_2 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) c) k = evaln k c n [PROOFSTEP] intro nk [GOAL] x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k : ℕ c : Code nk : n ∈ List.range k ⊢ Nat.rec Option.none (fun n_1 n_ih => rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cf) (unpair n).fst) (fun n_2 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (n_1, c) (Nat.pair (unpair n).fst n_2) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k, cf) n Nat.rec (some (unpair n).snd) (fun n_2 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) c) k = evaln k c n [PROOFSTEP] cases' k with k' [GOAL] case zero x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) c : Code nk : n ∈ List.range Nat.zero ⊢ Nat.rec Option.none (fun n_1 n_ih => rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair Nat.zero (encode c)))) (Nat.zero, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair Nat.zero (encode c)))) (Nat.zero, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair Nat.zero (encode c)))) (Nat.zero, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair Nat.zero (encode c)))) (Nat.zero, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair Nat.zero (encode c)))) (Nat.zero, cf) (unpair n).fst) (fun n_2 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair Nat.zero (encode c)))) (n_1, c) (Nat.pair (unpair n).fst n_2) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair Nat.zero (encode c)))) (Nat.zero, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair Nat.zero (encode c)))) (Nat.zero, cf) n Nat.rec (some (unpair n).snd) (fun n_2 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair Nat.zero (encode c)))) (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) c) Nat.zero = evaln Nat.zero c n [PROOFSTEP] simp [evaln] [GOAL] case succ x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) c : Code k' : ℕ nk : n ∈ List.range (Nat.succ k') ⊢ Nat.rec Option.none (fun n_1 n_ih => rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cf) (unpair n).fst) (fun n_2 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (n_1, c) (Nat.pair (unpair n).fst n_2) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cf) n Nat.rec (some (unpair n).snd) (fun n_2 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) c) (Nat.succ k') = evaln (Nat.succ k') c n [PROOFSTEP] let k := k' + 1 [GOAL] case succ x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) c : Code k' : ℕ nk : n ∈ List.range (Nat.succ k') k : ℕ := k' + 1 ⊢ Nat.rec Option.none (fun n_1 n_ih => rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cf) (unpair n).fst) (fun n_2 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (n_1, c) (Nat.pair (unpair n).fst n_2) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (Nat.succ k', cf) n Nat.rec (some (unpair n).snd) (fun n_2 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (Nat.succ k') (encode c)))) (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) c) (Nat.succ k') = evaln (Nat.succ k') c n [PROOFSTEP] simp only [show k'.succ = k from rfl] [GOAL] case succ x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) c : Code k' : ℕ nk : n ∈ List.range (Nat.succ k') k : ℕ := k' + 1 ⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) (unpair n).fst) (fun n_1 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k', c) (Nat.pair (unpair n).fst n_1) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) n Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k', c) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) c = evaln (k' + 1) c n [PROOFSTEP] simp [Nat.lt_succ_iff] at nk [GOAL] case succ x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) c : Code k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' ⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) (unpair n).fst) (fun n_1 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k', c) (Nat.pair (unpair n).fst n_1) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) n Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k', c) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) c = evaln (k' + 1) c n [PROOFSTEP] have hg : ∀ {k' c' n}, Nat.pair k' (encode c') < Nat.pair k (encode c) → lup ((List.range (Nat.pair k (encode c))).map fun n => (List.range n.unpair.1).map (evaln n.unpair.1 (ofNat Code n.unpair.2))) (k', c') n = evaln k' c' n := by intro k₁ c₁ n₁ hl simp [lup, List.get?_range hl, evaln_map, Bind.bind] [GOAL] x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) c : Code k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' ⊢ ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode c) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k', c') n = evaln k' c' n [PROOFSTEP] intro k₁ c₁ n₁ hl [GOAL] x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) c : Code k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' k₁ : ℕ c₁ : Code n₁ : ℕ hl : Nat.pair k₁ (encode c₁) < Nat.pair k (encode c) ⊢ Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k₁, c₁) n₁ = evaln k₁ c₁ n₁ [PROOFSTEP] simp [lup, List.get?_range hl, evaln_map, Bind.bind] [GOAL] case succ x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) c : Code k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode c) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode c)))) (k', c') n = evaln k' c' n ⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) (unpair n).fst) (fun n_1 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k', c) (Nat.pair (unpair n).fst n_1) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k' + 1, cf) n Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode c)))) (k', c) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) c = evaln (k' + 1) c n [PROOFSTEP] cases' c with cf cg cf cg cf cg cf [GOAL] case succ.zero x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode zero) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode zero)))) (k', c') n = evaln k' c' n ⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode zero)))) (k' + 1, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode zero)))) (k' + 1, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode zero)))) (k' + 1, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode zero)))) (k' + 1, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode zero)))) (k' + 1, cf) (unpair n).fst) (fun n_1 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode zero)))) (k', zero) (Nat.pair (unpair n).fst n_1) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode zero)))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode zero)))) (k' + 1, cf) n Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode zero)))) (k', zero) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) zero = evaln (k' + 1) zero n [PROOFSTEP] simp [evaln, nk, Bind.bind, Functor.map, Seq.seq, pure] [GOAL] case succ.succ x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode succ) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode succ)))) (k', c') n = evaln k' c' n ⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode succ)))) (k' + 1, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode succ)))) (k' + 1, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode succ)))) (k' + 1, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode succ)))) (k' + 1, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode succ)))) (k' + 1, cf) (unpair n).fst) (fun n_1 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode succ)))) (k', succ) (Nat.pair (unpair n).fst n_1) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode succ)))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode succ)))) (k' + 1, cf) n Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode succ)))) (k', succ) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) succ = evaln (k' + 1) succ n [PROOFSTEP] simp [evaln, nk, Bind.bind, Functor.map, Seq.seq, pure] [GOAL] case succ.left x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode left) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode left)))) (k', c') n = evaln k' c' n ⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode left)))) (k' + 1, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode left)))) (k' + 1, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode left)))) (k' + 1, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode left)))) (k' + 1, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode left)))) (k' + 1, cf) (unpair n).fst) (fun n_1 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode left)))) (k', left) (Nat.pair (unpair n).fst n_1) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode left)))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode left)))) (k' + 1, cf) n Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode left)))) (k', left) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) left = evaln (k' + 1) left n [PROOFSTEP] simp [evaln, nk, Bind.bind, Functor.map, Seq.seq, pure] [GOAL] case succ.right x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode right) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode right)))) (k', c') n = evaln k' c' n ⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode right)))) (k' + 1, cf) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode right)))) (k' + 1, cg) n some (Nat.pair x y)) (fun cf cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode right)))) (k' + 1, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode right)))) (k' + 1, cf) x) (fun cf cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode right)))) (k' + 1, cf) (unpair n).fst) (fun n_1 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode right)))) (k', right) (Nat.pair (unpair n).fst n_1) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode right)))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd) (fun cf x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode right)))) (k' + 1, cf) n Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode right)))) (k', right) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) right = evaln (k' + 1) right n [PROOFSTEP] simp [evaln, nk, Bind.bind, Functor.map, Seq.seq, pure] [GOAL] case succ.pair x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (pair cf cg))))) (k', c') n = evaln k' c' n ⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf_1 cg_1 x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k' + 1, cf_1) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k' + 1, cg_1) n some (Nat.pair x y)) (fun cf_1 cg_1 x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k' + 1, cg_1) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k' + 1, cf_1) x) (fun cf_1 cg_1 x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k' + 1, cf_1) (unpair n).fst) (fun n_1 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k', pair cf cg) (Nat.pair (unpair n).fst n_1) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k' + 1, cg_1) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd) (fun cf_1 x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k' + 1, cf_1) n Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k', pair cf cg) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) (pair cf cg) = evaln (k' + 1) (pair cf cg) n [PROOFSTEP] simp [evaln, nk, Bind.bind, Functor.map, Seq.seq, pure] [GOAL] case succ.comp x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (comp cf cg))))) (k', c') n = evaln k' c' n ⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf_1 cg_1 x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cf_1) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cg_1) n some (Nat.pair x y)) (fun cf_1 cg_1 x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cg_1) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cf_1) x) (fun cf_1 cg_1 x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cf_1) (unpair n).fst) (fun n_1 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k', comp cf cg) (Nat.pair (unpair n).fst n_1) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cg_1) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd) (fun cf_1 x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cf_1) n Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k', comp cf cg) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) (comp cf cg) = evaln (k' + 1) (comp cf cg) n [PROOFSTEP] simp [evaln, nk, Bind.bind, Functor.map, Seq.seq, pure] [GOAL] case succ.prec x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (prec cf cg))))) (k', c') n = evaln k' c' n ⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf_1 cg_1 x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cf_1) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg_1) n some (Nat.pair x y)) (fun cf_1 cg_1 x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg_1) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cf_1) x) (fun cf_1 cg_1 x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cf_1) (unpair n).fst) (fun n_1 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k', prec cf cg) (Nat.pair (unpair n).fst n_1) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg_1) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd) (fun cf_1 x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cf_1) n Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k', prec cf cg) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) (prec cf cg) = evaln (k' + 1) (prec cf cg) n [PROOFSTEP] simp [evaln, nk, Bind.bind, Functor.map, Seq.seq, pure] [GOAL] case succ.rfind' x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (rfind' cf))))) (k', c') n = evaln k' c' n ⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd) (fun cf_1 cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k' + 1, cf_1) n let y ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k' + 1, cg) n some (Nat.pair x y)) (fun cf_1 cg x x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k' + 1, cg) n Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k' + 1, cf_1) x) (fun cf_1 cg x x => Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k' + 1, cf_1) (unpair n).fst) (fun n_1 n_ih => do let i ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k', rfind' cf) (Nat.pair (unpair n).fst n_1) Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd) (fun cf_1 x => do let x ← Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k' + 1, cf_1) n Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) (rfind' cf) = evaln (k' + 1) (rfind' cf) n [PROOFSTEP] simp [evaln, nk, Bind.bind, Functor.map, Seq.seq, pure] [GOAL] case succ.pair x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (pair cf cg))))) (k', c') n = evaln k' c' n ⊢ (Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k' + 1, cf) n) fun x => Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k' + 1, cg) n) fun y => some (Nat.pair x y)) = Option.bind (Option.map Nat.pair (evaln (k' + 1) cf n)) fun y => Option.map y (evaln (k' + 1) cg n) [PROOFSTEP] cases' encode_lt_pair cf cg with lf lg [GOAL] case succ.pair.intro x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (pair cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (pair cf cg) lg : encode cg < encode (pair cf cg) ⊢ (Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k' + 1, cf) n) fun x => Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (pair cf cg))))) (k' + 1, cg) n) fun y => some (Nat.pair x y)) = Option.bind (Option.map Nat.pair (evaln (k' + 1) cf n)) fun y => Option.map y (evaln (k' + 1) cg n) [PROOFSTEP] rw [hg (Nat.pair_lt_pair_right _ lf), hg (Nat.pair_lt_pair_right _ lg)] [GOAL] case succ.pair.intro x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (pair cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (pair cf cg) lg : encode cg < encode (pair cf cg) ⊢ (Option.bind (evaln k cf n) fun x => Option.bind (evaln k cg n) fun y => some (Nat.pair x y)) = Option.bind (Option.map Nat.pair (evaln (k' + 1) cf n)) fun y => Option.map y (evaln (k' + 1) cg n) [PROOFSTEP] cases evaln k cf n [GOAL] case succ.pair.intro.none x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (pair cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (pair cf cg) lg : encode cg < encode (pair cf cg) ⊢ (Option.bind Option.none fun x => Option.bind (evaln k cg n) fun y => some (Nat.pair x y)) = Option.bind (Option.map Nat.pair Option.none) fun y => Option.map y (evaln (k' + 1) cg n) [PROOFSTEP] rfl [GOAL] case succ.pair.intro.some x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (pair cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (pair cf cg) lg : encode cg < encode (pair cf cg) val✝ : ℕ ⊢ (Option.bind (some val✝) fun x => Option.bind (evaln k cg n) fun y => some (Nat.pair x y)) = Option.bind (Option.map Nat.pair (some val✝)) fun y => Option.map y (evaln (k' + 1) cg n) [PROOFSTEP] cases evaln k cg n [GOAL] case succ.pair.intro.some.none x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (pair cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (pair cf cg) lg : encode cg < encode (pair cf cg) val✝ : ℕ ⊢ (Option.bind (some val✝) fun x => Option.bind Option.none fun y => some (Nat.pair x y)) = Option.bind (Option.map Nat.pair (some val✝)) fun y => Option.map y Option.none [PROOFSTEP] rfl [GOAL] case succ.pair.intro.some.some x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (pair cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (pair cf cg) lg : encode cg < encode (pair cf cg) val✝¹ val✝ : ℕ ⊢ (Option.bind (some val✝¹) fun x => Option.bind (some val✝) fun y => some (Nat.pair x y)) = Option.bind (Option.map Nat.pair (some val✝¹)) fun y => Option.map y (some val✝) [PROOFSTEP] rfl [GOAL] case succ.comp x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (comp cf cg))))) (k', c') n = evaln k' c' n ⊢ (Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cg) n) fun x => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cf) x) = Option.bind (evaln (k' + 1) cg n) fun x => evaln (k' + 1) cf x [PROOFSTEP] cases' encode_lt_comp cf cg with lf lg [GOAL] case succ.comp.intro x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (comp cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (comp cf cg) lg : encode cg < encode (comp cf cg) ⊢ (Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cg) n) fun x => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cf) x) = Option.bind (evaln (k' + 1) cg n) fun x => evaln (k' + 1) cf x [PROOFSTEP] rw [hg (Nat.pair_lt_pair_right _ lg)] [GOAL] case succ.comp.intro x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (comp cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (comp cf cg) lg : encode cg < encode (comp cf cg) ⊢ (Option.bind (evaln k cg n) fun x => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cf) x) = Option.bind (evaln (k' + 1) cg n) fun x => evaln (k' + 1) cf x [PROOFSTEP] cases evaln k cg n [GOAL] case succ.comp.intro.none x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (comp cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (comp cf cg) lg : encode cg < encode (comp cf cg) ⊢ (Option.bind Option.none fun x => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cf) x) = Option.bind Option.none fun x => evaln (k' + 1) cf x [PROOFSTEP] rfl [GOAL] case succ.comp.intro.some x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (comp cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (comp cf cg) lg : encode cg < encode (comp cf cg) val✝ : ℕ ⊢ (Option.bind (some val✝) fun x => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (comp cf cg))))) (k' + 1, cf) x) = Option.bind (some val✝) fun x => evaln (k' + 1) cf x [PROOFSTEP] simp [hg (Nat.pair_lt_pair_right _ lf)] [GOAL] case succ.prec x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (prec cf cg))))) (k', c') n = evaln k' c' n ⊢ Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cf) (unpair n).fst) (fun n_1 n_ih => Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k', prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = Nat.rec (evaln (k' + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd [PROOFSTEP] cases' encode_lt_prec cf cg with lf lg [GOAL] case succ.prec.intro x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (prec cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (prec cf cg) lg : encode cg < encode (prec cf cg) ⊢ Nat.rec (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cf) (unpair n).fst) (fun n_1 n_ih => Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k', prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = Nat.rec (evaln (k' + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd [PROOFSTEP] rw [hg (Nat.pair_lt_pair_right _ lf)] [GOAL] case succ.prec.intro x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (prec cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (prec cf cg) lg : encode cg < encode (prec cf cg) ⊢ Nat.rec (evaln k cf (unpair n).fst) (fun n_1 n_ih => Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k', prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd = Nat.rec (evaln (k' + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (unpair n).snd [PROOFSTEP] cases n.unpair.2 [GOAL] case succ.prec.intro.zero x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (prec cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (prec cf cg) lg : encode cg < encode (prec cf cg) ⊢ Nat.rec (evaln k cf (unpair n).fst) (fun n_1 n_ih => Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k', prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) Nat.zero = Nat.rec (evaln (k' + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) Nat.zero [PROOFSTEP] rfl [GOAL] case succ.prec.intro.succ x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (prec cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (prec cf cg) lg : encode cg < encode (prec cf cg) n✝ : ℕ ⊢ Nat.rec (evaln k cf (unpair n).fst) (fun n_1 n_ih => Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k', prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (Nat.succ n✝) = Nat.rec (evaln (k' + 1) cf (unpair n).fst) (fun n_1 n_ih => Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i))) (Nat.succ n✝) [PROOFSTEP] simp [GOAL] case succ.prec.intro.succ x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (prec cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (prec cf cg) lg : encode cg < encode (prec cf cg) n✝ : ℕ ⊢ (Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k', prec cf cg) (Nat.pair (unpair n).fst n✝)) fun i => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) = Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n✝)) fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i)) [PROOFSTEP] rw [hg (Nat.pair_lt_pair_left _ k'.lt_succ_self)] [GOAL] case succ.prec.intro.succ x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (prec cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (prec cf cg) lg : encode cg < encode (prec cf cg) n✝ : ℕ ⊢ (Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n✝)) fun i => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) = Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n✝)) fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i)) [PROOFSTEP] cases evaln k' _ _ [GOAL] case succ.prec.intro.succ.none x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (prec cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (prec cf cg) lg : encode cg < encode (prec cf cg) n✝ : ℕ ⊢ (Option.bind Option.none fun i => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) = Option.bind Option.none fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i)) [PROOFSTEP] rfl [GOAL] case succ.prec.intro.succ.some x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf cg : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (prec cf cg))))) (k', c') n = evaln k' c' n lf : encode cf < encode (prec cf cg) lg : encode cg < encode (prec cf cg) n✝ val✝ : ℕ ⊢ (Option.bind (some val✝) fun i => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (prec cf cg))))) (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) = Option.bind (some val✝) fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i)) [PROOFSTEP] simp [hg (Nat.pair_lt_pair_right _ lg)] [GOAL] case succ.rfind' x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (rfind' cf))))) (k', c') n = evaln k' c' n ⊢ (Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k' + 1, cf) n) fun x => Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) = Option.bind (evaln (k' + 1) cf n) fun x => if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) [PROOFSTEP] have lf := encode_lt_rfind' cf [GOAL] case succ.rfind' x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (rfind' cf))))) (k', c') n = evaln k' c' n lf : encode cf < encode (rfind' cf) ⊢ (Option.bind (Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k' + 1, cf) n) fun x => Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) = Option.bind (evaln (k' + 1) cf n) fun x => if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) [PROOFSTEP] rw [hg (Nat.pair_lt_pair_right _ lf)] [GOAL] case succ.rfind' x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (rfind' cf))))) (k', c') n = evaln k' c' n lf : encode cf < encode (rfind' cf) ⊢ (Option.bind (evaln k cf n) fun x => Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) = Option.bind (evaln (k' + 1) cf n) fun x => if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) [PROOFSTEP] cases' evaln k cf n with x [GOAL] case succ.rfind'.none x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (rfind' cf))))) (k', c') n = evaln k' c' n lf : encode cf < encode (rfind' cf) ⊢ (Option.bind Option.none fun x => Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) = Option.bind Option.none fun x => if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) [PROOFSTEP] rfl [GOAL] case succ.rfind'.some x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (rfind' cf))))) (k', c') n = evaln k' c' n lf : encode cf < encode (rfind' cf) x : ℕ ⊢ (Option.bind (some x) fun x => Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x) = Option.bind (some x) fun x => if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) [PROOFSTEP] simp [GOAL] case succ.rfind'.some x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (rfind' cf))))) (k', c') n = evaln k' c' n lf : encode cf < encode (rfind' cf) x : ℕ ⊢ Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) x = if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) [PROOFSTEP] cases x [GOAL] case succ.rfind'.some.zero x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (rfind' cf))))) (k', c') n = evaln k' c' n lf : encode cf < encode (rfind' cf) ⊢ Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) Nat.zero = if Nat.zero = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) [PROOFSTEP] simp [Nat.succ_ne_zero] [GOAL] case succ.rfind'.some.succ x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (rfind' cf))))) (k', c') n = evaln k' c' n lf : encode cf < encode (rfind' cf) n✝ : ℕ ⊢ Nat.rec (some (unpair n).snd) (fun n_1 n_ih => Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))) (Nat.succ n✝) = if Nat.succ n✝ = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) [PROOFSTEP] simp [Nat.succ_ne_zero] [GOAL] case succ.rfind'.some.succ x✝ : Unit p n : ℕ this : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd))) k' : ℕ k : ℕ := k' + 1 nk : n ≤ k' cf : Code hg : ∀ {k' : ℕ} {c' : Code} {n : ℕ}, Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) → Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair k (encode (rfind' cf))))) (k', c') n = evaln k' c' n lf : encode cf < encode (rfind' cf) n✝ : ℕ ⊢ Nat.Partrec.Code.lup (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst)) (List.range (Nat.pair (k' + 1) (encode (rfind' cf))))) (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) = evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) [PROOFSTEP] rw [hg (Nat.pair_lt_pair_left _ k'.lt_succ_self)] [GOAL] this : Primrec₂ fun x n => let a := ofNat (ℕ × Code) n; List.map (evaln a.fst a.snd) (List.range a.fst) x✝ : (ℕ × Code) × ℕ k : ℕ c : Code n : ℕ ⊢ (Option.bind (List.get? (let a := ofNat (ℕ × Code) (encode ((k, c), n).fst); List.map (evaln a.fst a.snd) (List.range a.fst)) ((k, c), n).snd) fun b => (((k, c), n), b).snd) = evaln ((k, c), n).fst.fst ((k, c), n).fst.snd ((k, c), n).snd [PROOFSTEP] simp [evaln_map] [GOAL] c : Code n x : ℕ ⊢ x ∈ eval c n ↔ x ∈ rfindOpt fun k => evaln k c n [PROOFSTEP] refine' evaln_complete.trans (Nat.rfindOpt_mono _).symm [GOAL] c : Code n x : ℕ ⊢ ∀ {a m n_1 : ℕ}, m ≤ n_1 → a ∈ evaln m c n → a ∈ evaln n_1 c n [PROOFSTEP] intro a m n hl [GOAL] c : Code n✝ x a m n : ℕ hl : m ≤ n ⊢ a ∈ evaln m c n✝ → a ∈ evaln n c n✝ [PROOFSTEP] apply evaln_mono hl [GOAL] a : Code × ℕ ⊢ (rfindOpt fun b => evaln (((a, b).snd, (a, b).fst.fst), (a, b).fst.snd).fst.fst (((a, b).snd, (a, b).fst.fst), (a, b).fst.snd).fst.snd (((a, b).snd, (a, b).fst.fst), (a, b).fst.snd).snd) = eval a.fst a.snd [PROOFSTEP] simp [eval_eq_rfindOpt] [GOAL] f : Code → Code hf : Computable f g : ℕ → ℕ → Part ℕ := fun x y => do let b ← eval (ofNat Code x) x eval (ofNat Code b) y this : Partrec₂ g cg : Code eg : eval cg = fun n => Part.bind ↑(decode n) fun a => Part.map encode ((fun p => g p.fst p.snd) a) ⊢ ∀ (a n : ℕ), eval cg (Nat.pair a n) = Part.map encode (g a n) [PROOFSTEP] simp [eg] [GOAL] f : Code → Code hf : Computable f g : ℕ → ℕ → Part ℕ := fun x y => do let b ← eval (ofNat Code x) x eval (ofNat Code b) y this✝ : Partrec₂ g cg : Code eg : eval cg = fun n => Part.bind ↑(decode n) fun a => Part.map encode ((fun p => g p.fst p.snd) a) eg' : ∀ (a n : ℕ), eval cg (Nat.pair a n) = Part.map encode (g a n) F : ℕ → Code := fun x => f (curry cg x) this : Computable F cF : Code eF : eval cF = fun n => Part.bind ↑(decode n) fun a => Part.map encode (↑F a) ⊢ eval cF (encode cF) = Part.some (encode (F (encode cF))) [PROOFSTEP] simp [eF] [GOAL] f : Code → Code hf : Computable f g : ℕ → ℕ → Part ℕ := fun x y => do let b ← eval (ofNat Code x) x eval (ofNat Code b) y this✝ : Partrec₂ g cg : Code eg : eval cg = fun n => Part.bind ↑(decode n) fun a => Part.map encode ((fun p => g p.fst p.snd) a) eg' : ∀ (a n : ℕ), eval cg (Nat.pair a n) = Part.map encode (g a n) F : ℕ → Code := fun x => f (curry cg x) this : Computable F cF : Code eF : eval cF = fun n => Part.bind ↑(decode n) fun a => Part.map encode (↑F a) eF' : eval cF (encode cF) = Part.some (encode (F (encode cF))) n : ℕ ⊢ eval (f (curry cg (encode cF))) n = eval (curry cg (encode cF)) n [PROOFSTEP] simp [eg', eF', Part.map_id'] [GOAL] f : Code → ℕ →. ℕ hf : Partrec₂ f cf : Code ef : eval cf = fun n => Part.bind ↑(decode n) fun a => Part.map encode ((fun p => f p.fst p.snd) a) c : Code e : eval (curry cf (encode c)) = eval c n : ℕ ⊢ eval c n = f c n [PROOFSTEP] simp [e.symm, ef, Part.map_id']
{"mathlib_filename": "Mathlib.Computability.PartrecCode", "llama_tokens": 431280}
[GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory i : Δ' ⟶ [n] hi : Mono i h₁ : len Δ' ≠ n h₂ : ¬Isδ₀ i ⊢ HomologicalComplex.Hom.f PInfty n ≫ X.map i.op = 0 [PROOFSTEP] induction' Δ' using SimplexCategory.rec with m [GOAL] case h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory i✝ : Δ' ⟶ [n] hi✝ : Mono i✝ h₁✝ : len Δ' ≠ n h₂✝ : ¬Isδ₀ i✝ m : ℕ i : [m] ⟶ [n] hi : Mono i h₁ : len [m] ≠ n h₂ : ¬Isδ₀ i ⊢ HomologicalComplex.Hom.f PInfty n ≫ X.map i.op = 0 [PROOFSTEP] obtain ⟨k, hk⟩ := Nat.exists_eq_add_of_lt (len_lt_of_mono i fun h => by rw [← h] at h₁ exact h₁ rfl) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory i✝ : Δ' ⟶ [n] hi✝ : Mono i✝ h₁✝ : len Δ' ≠ n h₂✝ : ¬Isδ₀ i✝ m : ℕ i : [m] ⟶ [n] hi : Mono i h₁ : len [m] ≠ n h₂ : ¬Isδ₀ i h : [n] = [m] ⊢ False [PROOFSTEP] rw [← h] at h₁ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory i✝ : Δ' ⟶ [n] hi✝ : Mono i✝ h₁✝ : len Δ' ≠ n h₂✝ : ¬Isδ₀ i✝ m : ℕ i : [m] ⟶ [n] hi : Mono i h₁ : len [n] ≠ n h₂ : ¬Isδ₀ i h : [n] = [m] ⊢ False [PROOFSTEP] exact h₁ rfl [GOAL] case h.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory i✝ : Δ' ⟶ [n] hi✝ : Mono i✝ h₁✝ : len Δ' ≠ n h₂✝ : ¬Isδ₀ i✝ m : ℕ i : [m] ⟶ [n] hi : Mono i h₁ : len [m] ≠ n h₂ : ¬Isδ₀ i k : ℕ hk : len [n] = len [m] + k + 1 ⊢ HomologicalComplex.Hom.f PInfty n ≫ X.map i.op = 0 [PROOFSTEP] simp only [len_mk] at hk [GOAL] case h.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory i✝ : Δ' ⟶ [n] hi✝ : Mono i✝ h₁✝ : len Δ' ≠ n h₂✝ : ¬Isδ₀ i✝ m : ℕ i : [m] ⟶ [n] hi : Mono i h₁ : len [m] ≠ n h₂ : ¬Isδ₀ i k : ℕ hk : n = m + k + 1 ⊢ HomologicalComplex.Hom.f PInfty n ≫ X.map i.op = 0 [PROOFSTEP] rcases k with _ | k [GOAL] case h.intro.zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory i✝ : Δ' ⟶ [n] hi✝ : Mono i✝ h₁✝ : len Δ' ≠ n h₂✝ : ¬Isδ₀ i✝ m : ℕ i : [m] ⟶ [n] hi : Mono i h₁ : len [m] ≠ n h₂ : ¬Isδ₀ i hk : n = m + Nat.zero + 1 ⊢ HomologicalComplex.Hom.f PInfty n ≫ X.map i.op = 0 [PROOFSTEP] change n = m + 1 at hk [GOAL] case h.intro.zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory i✝ : Δ' ⟶ [n] hi✝ : Mono i✝ h₁✝ : len Δ' ≠ n h₂✝ : ¬Isδ₀ i✝ m : ℕ i : [m] ⟶ [n] hi : Mono i h₁ : len [m] ≠ n h₂ : ¬Isδ₀ i hk : n = m + 1 ⊢ HomologicalComplex.Hom.f PInfty n ≫ X.map i.op = 0 [PROOFSTEP] subst hk [GOAL] case h.intro.zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m : ℕ i✝ : Δ' ⟶ [m + 1] hi✝ : Mono i✝ h₁✝ : len Δ' ≠ m + 1 h₂✝ : ¬Isδ₀ i✝ i : [m] ⟶ [m + 1] hi : Mono i h₁ : len [m] ≠ m + 1 h₂ : ¬Isδ₀ i ⊢ HomologicalComplex.Hom.f PInfty (m + 1) ≫ X.map i.op = 0 [PROOFSTEP] obtain ⟨j, rfl⟩ := eq_δ_of_mono i [GOAL] case h.intro.zero.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m : ℕ i : Δ' ⟶ [m + 1] hi✝ : Mono i h₁✝ : len Δ' ≠ m + 1 h₂✝ : ¬Isδ₀ i h₁ : len [m] ≠ m + 1 j : Fin (m + 2) hi : Mono (SimplexCategory.δ j) h₂ : ¬Isδ₀ (SimplexCategory.δ j) ⊢ HomologicalComplex.Hom.f PInfty (m + 1) ≫ X.map (SimplexCategory.δ j).op = 0 [PROOFSTEP] rw [Isδ₀.iff] at h₂ [GOAL] case h.intro.zero.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m : ℕ i : Δ' ⟶ [m + 1] hi✝ : Mono i h₁✝ : len Δ' ≠ m + 1 h₂✝ : ¬Isδ₀ i h₁ : len [m] ≠ m + 1 j : Fin (m + 2) hi : Mono (SimplexCategory.δ j) h₂ : ¬j = 0 ⊢ HomologicalComplex.Hom.f PInfty (m + 1) ≫ X.map (SimplexCategory.δ j).op = 0 [PROOFSTEP] have h₃ : 1 ≤ (j : ℕ) := by by_contra h exact h₂ (by simpa only [Fin.ext_iff, not_le, Nat.lt_one_iff] using h) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m : ℕ i : Δ' ⟶ [m + 1] hi✝ : Mono i h₁✝ : len Δ' ≠ m + 1 h₂✝ : ¬Isδ₀ i h₁ : len [m] ≠ m + 1 j : Fin (m + 2) hi : Mono (SimplexCategory.δ j) h₂ : ¬j = 0 ⊢ 1 ≤ ↑j [PROOFSTEP] by_contra h [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m : ℕ i : Δ' ⟶ [m + 1] hi✝ : Mono i h₁✝ : len Δ' ≠ m + 1 h₂✝ : ¬Isδ₀ i h₁ : len [m] ≠ m + 1 j : Fin (m + 2) hi : Mono (SimplexCategory.δ j) h₂ : ¬j = 0 h : ¬1 ≤ ↑j ⊢ False [PROOFSTEP] exact h₂ (by simpa only [Fin.ext_iff, not_le, Nat.lt_one_iff] using h) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m : ℕ i : Δ' ⟶ [m + 1] hi✝ : Mono i h₁✝ : len Δ' ≠ m + 1 h₂✝ : ¬Isδ₀ i h₁ : len [m] ≠ m + 1 j : Fin (m + 2) hi : Mono (SimplexCategory.δ j) h₂ : ¬j = 0 h : ¬1 ≤ ↑j ⊢ j = 0 [PROOFSTEP] simpa only [Fin.ext_iff, not_le, Nat.lt_one_iff] using h [GOAL] case h.intro.zero.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m : ℕ i : Δ' ⟶ [m + 1] hi✝ : Mono i h₁✝ : len Δ' ≠ m + 1 h₂✝ : ¬Isδ₀ i h₁ : len [m] ≠ m + 1 j : Fin (m + 2) hi : Mono (SimplexCategory.δ j) h₂ : ¬j = 0 h₃ : 1 ≤ ↑j ⊢ HomologicalComplex.Hom.f PInfty (m + 1) ≫ X.map (SimplexCategory.δ j).op = 0 [PROOFSTEP] exact (HigherFacesVanish.of_P (m + 1) m).comp_δ_eq_zero j h₂ (by linarith) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m : ℕ i : Δ' ⟶ [m + 1] hi✝ : Mono i h₁✝ : len Δ' ≠ m + 1 h₂✝ : ¬Isδ₀ i h₁ : len [m] ≠ m + 1 j : Fin (m + 2) hi : Mono (SimplexCategory.δ j) h₂ : ¬j = 0 h₃ : 1 ≤ ↑j ⊢ m + 2 ≤ ↑j + (m + 1) [PROOFSTEP] linarith [GOAL] case h.intro.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory i✝ : Δ' ⟶ [n] hi✝ : Mono i✝ h₁✝ : len Δ' ≠ n h₂✝ : ¬Isδ₀ i✝ m : ℕ i : [m] ⟶ [n] hi : Mono i h₁ : len [m] ≠ n h₂ : ¬Isδ₀ i k : ℕ hk : n = m + Nat.succ k + 1 ⊢ HomologicalComplex.Hom.f PInfty n ≫ X.map i.op = 0 [PROOFSTEP] simp only [Nat.succ_eq_add_one, ← add_assoc] at hk [GOAL] case h.intro.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory i✝ : Δ' ⟶ [n] hi✝ : Mono i✝ h₁✝ : len Δ' ≠ n h₂✝ : ¬Isδ₀ i✝ m : ℕ i : [m] ⟶ [n] hi : Mono i h₁ : len [m] ≠ n h₂ : ¬Isδ₀ i k : ℕ hk : n = m + k + 1 + 1 ⊢ HomologicalComplex.Hom.f PInfty n ≫ X.map i.op = 0 [PROOFSTEP] clear h₂ hi [GOAL] case h.intro.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory i✝ : Δ' ⟶ [n] hi : Mono i✝ h₁✝ : len Δ' ≠ n h₂ : ¬Isδ₀ i✝ m : ℕ i : [m] ⟶ [n] h₁ : len [m] ≠ n k : ℕ hk : n = m + k + 1 + 1 ⊢ HomologicalComplex.Hom.f PInfty n ≫ X.map i.op = 0 [PROOFSTEP] subst hk [GOAL] case h.intro.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ i : [m] ⟶ [m + k + 1 + 1] h₁ : len [m] ≠ m + k + 1 + 1 ⊢ HomologicalComplex.Hom.f PInfty (m + k + 1 + 1) ≫ X.map i.op = 0 [PROOFSTEP] obtain ⟨j₁ : Fin (_ + 1), i, rfl⟩ := eq_comp_δ_of_not_surjective i fun h => by have h' := len_le_of_epi (SimplexCategory.epi_iff_surjective.2 h) dsimp at h' linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ i : [m] ⟶ [m + k + 1 + 1] h₁ : len [m] ≠ m + k + 1 + 1 h : Function.Surjective ↑(Hom.toOrderHom i) ⊢ False [PROOFSTEP] have h' := len_le_of_epi (SimplexCategory.epi_iff_surjective.2 h) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ i : [m] ⟶ [m + k + 1 + 1] h₁ : len [m] ≠ m + k + 1 + 1 h : Function.Surjective ↑(Hom.toOrderHom i) h' : len [m + k + 1 + 1] ≤ len [m] ⊢ False [PROOFSTEP] dsimp at h' [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ i : [m] ⟶ [m + k + 1 + 1] h₁ : len [m] ≠ m + k + 1 + 1 h : Function.Surjective ↑(Hom.toOrderHom i) h' : m + k + 1 + 1 ≤ m ⊢ False [PROOFSTEP] linarith [GOAL] case h.intro.succ.intro.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) i : [m] ⟶ [m + k + 1] ⊢ HomologicalComplex.Hom.f PInfty (m + k + 1 + 1) ≫ X.map (i ≫ SimplexCategory.δ j₁).op = 0 [PROOFSTEP] obtain ⟨j₂, i, rfl⟩ := eq_comp_δ_of_not_surjective i fun h => by have h' := len_le_of_epi (SimplexCategory.epi_iff_surjective.2 h) dsimp at h' linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) i : [m] ⟶ [m + k + 1] h : Function.Surjective ↑(Hom.toOrderHom i) ⊢ False [PROOFSTEP] have h' := len_le_of_epi (SimplexCategory.epi_iff_surjective.2 h) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) i : [m] ⟶ [m + k + 1] h : Function.Surjective ↑(Hom.toOrderHom i) h' : len [m + k + 1] ≤ len [m] ⊢ False [PROOFSTEP] dsimp at h' [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) i : [m] ⟶ [m + k + 1] h : Function.Surjective ↑(Hom.toOrderHom i) h' : m + k + 1 ≤ m ⊢ False [PROOFSTEP] linarith [GOAL] case h.intro.succ.intro.intro.intro.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] ⊢ HomologicalComplex.Hom.f PInfty (m + k + 1 + 1) ≫ X.map ((i ≫ SimplexCategory.δ j₂) ≫ SimplexCategory.δ j₁).op = 0 [PROOFSTEP] by_cases hj₁ : j₁ = 0 [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] hj₁ : j₁ = 0 ⊢ HomologicalComplex.Hom.f PInfty (m + k + 1 + 1) ≫ X.map ((i ≫ SimplexCategory.δ j₂) ≫ SimplexCategory.δ j₁).op = 0 [PROOFSTEP] subst hj₁ [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] ⊢ HomologicalComplex.Hom.f PInfty (m + k + 1 + 1) ≫ X.map ((i ≫ SimplexCategory.δ j₂) ≫ SimplexCategory.δ 0).op = 0 [PROOFSTEP] rw [assoc, ← SimplexCategory.δ_comp_δ'' (Fin.zero_le _)] [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] ⊢ HomologicalComplex.Hom.f PInfty (m + k + 1 + 1) ≫ X.map (i ≫ SimplexCategory.δ (Fin.castLT 0 (_ : ↑0 < m + k + 2)) ≫ SimplexCategory.δ (Fin.succ j₂)).op = 0 [PROOFSTEP] simp only [op_comp, X.map_comp, assoc, PInfty_f] [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] ⊢ HomologicalComplex.Hom.f (P (m + k + 1 + 1)) (m + k + 1 + 1) ≫ X.map (SimplexCategory.δ (Fin.succ j₂)).op ≫ X.map (SimplexCategory.δ (Fin.castLT 0 (_ : ↑0 < m + k + 2))).op ≫ X.map i.op = 0 [PROOFSTEP] erw [(HigherFacesVanish.of_P _ _).comp_δ_eq_zero_assoc _ j₂.succ_ne_zero, zero_comp] [GOAL] case pos.hj₂ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] ⊢ m + k + 1 + 2 ≤ ↑(Fin.succ j₂) + (m + k + 1 + 1) [PROOFSTEP] simp only [Nat.succ_eq_add_one, Nat.add, Fin.succ] [GOAL] case pos.hj₂ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] ⊢ m + k + 1 + 2 ≤ ↑j₂ + 1 + (m + k + 1 + 1) [PROOFSTEP] linarith [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] hj₁ : ¬j₁ = 0 ⊢ HomologicalComplex.Hom.f PInfty (m + k + 1 + 1) ≫ X.map ((i ≫ SimplexCategory.δ j₂) ≫ SimplexCategory.δ j₁).op = 0 [PROOFSTEP] simp only [op_comp, X.map_comp, assoc, PInfty_f] [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] hj₁ : ¬j₁ = 0 ⊢ HomologicalComplex.Hom.f (P (m + k + 1 + 1)) (m + k + 1 + 1) ≫ X.map (SimplexCategory.δ j₁).op ≫ X.map (SimplexCategory.δ j₂).op ≫ X.map i.op = 0 [PROOFSTEP] erw [(HigherFacesVanish.of_P _ _).comp_δ_eq_zero_assoc _ hj₁, zero_comp] [GOAL] case neg.hj₂ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] hj₁ : ¬j₁ = 0 ⊢ m + k + 1 + 2 ≤ ↑j₁ + (m + k + 1 + 1) [PROOFSTEP] by_contra [GOAL] case neg.hj₂ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] hj₁ : ¬j₁ = 0 x✝ : ¬m + k + 1 + 2 ≤ ↑j₁ + (m + k + 1 + 1) ⊢ False [PROOFSTEP] exact hj₁ (by simp only [Fin.ext_iff, Fin.val_zero]; linarith) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] hj₁ : ¬j₁ = 0 x✝ : ¬m + k + 1 + 2 ≤ ↑j₁ + (m + k + 1 + 1) ⊢ j₁ = 0 [PROOFSTEP] simp only [Fin.ext_iff, Fin.val_zero] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory m k : ℕ i✝ : Δ' ⟶ [m + k + 1 + 1] hi : Mono i✝ h₁✝ : len Δ' ≠ m + k + 1 + 1 h₂ : ¬Isδ₀ i✝ h₁ : len [m] ≠ m + k + 1 + 1 j₁ : Fin (m + k + 2 + 1) j₂ : Fin (m + k + 2) i : [m] ⟶ [m + k] hj₁ : ¬j₁ = 0 x✝ : ¬m + k + 1 + 2 ≤ ↑j₁ + (m + k + 1 + 1) ⊢ ↑j₁ = 0 [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i : Δ ⟶ Δ' inst✝ : Mono i ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty (len Δ) = HomologicalComplex.Hom.f PInfty (len Δ') ≫ X.map i.op [PROOFSTEP] induction' Δ using SimplexCategory.rec with n [GOAL] case h C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝ : Δ ⟶ Δ' inst✝¹ : Mono i✝ n : ℕ i : [n] ⟶ Δ' inst✝ : Mono i ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty (len [n]) = HomologicalComplex.Hom.f PInfty (len Δ') ≫ X.map i.op [PROOFSTEP] induction' Δ' using SimplexCategory.rec with n' [GOAL] case h.h C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty (len [n]) = HomologicalComplex.Hom.f PInfty (len [n']) ≫ X.map i.op [PROOFSTEP] dsimp -- We start with the case `i` is an identity [GOAL] case h.h C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op [PROOFSTEP] by_cases n = n' [GOAL] case h.h C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op [PROOFSTEP] by_cases n = n' [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : n = n' ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op [PROOFSTEP] subst h [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n] inst✝¹ : Mono i✝ i : [n] ⟶ [n] inst✝ : Mono i ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n ≫ X.map i.op [PROOFSTEP] simp only [SimplexCategory.eq_id_of_mono i, Γ₀.Obj.Termwise.mapMono_id, op_id, X.map_id] [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n] inst✝¹ : Mono i✝ i : [n] ⟶ [n] inst✝ : Mono i ⊢ 𝟙 (HomologicalComplex.X K[X] (len [n])) ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n ≫ 𝟙 (X.obj (op [n])) [PROOFSTEP] dsimp [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n] inst✝¹ : Mono i✝ i : [n] ⟶ [n] inst✝ : Mono i ⊢ 𝟙 (X.obj (op [n])) ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n ≫ 𝟙 (X.obj (op [n])) [PROOFSTEP] simp only [id_comp, comp_id] [GOAL] case neg C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op [PROOFSTEP] by_cases hi : Isδ₀ i [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' hi : Isδ₀ i ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op [PROOFSTEP] have h' : n' = n + 1 := hi.left [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' hi : Isδ₀ i h' : n' = n + 1 ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op [PROOFSTEP] subst h' [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op [PROOFSTEP] simp only [Γ₀.Obj.Termwise.mapMono_δ₀' _ i hi] [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ HomologicalComplex.d K[X] (len [n + 1]) (len [n]) ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op [PROOFSTEP] dsimp [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ HomologicalComplex.d K[X] (n + 1) n ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op [PROOFSTEP] rw [← PInfty.comm _ n, AlternatingFaceMapComplex.obj_d_eq] [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ (HomologicalComplex.Hom.f PInfty (n + 1) ≫ Finset.sum Finset.univ fun i => (-1) ^ ↑i • SimplicialObject.δ X i) = HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op [PROOFSTEP] simp only [eq_self_iff_true, id_comp, if_true, Preadditive.comp_sum] [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ (Finset.sum Finset.univ fun j => HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑j • SimplicialObject.δ X j)) = HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op [PROOFSTEP] rw [Finset.sum_eq_single (0 : Fin (n + 2))] [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) = HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op case pos.h₀ C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ ∀ (b : Fin (n + 2)), b ∈ Finset.univ → b ≠ 0 → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑b • SimplicialObject.δ X b) = 0 case pos.h₁ C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ ¬0 ∈ Finset.univ → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) = 0 [PROOFSTEP] rotate_left [GOAL] case pos.h₀ C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ ∀ (b : Fin (n + 2)), b ∈ Finset.univ → b ≠ 0 → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑b • SimplicialObject.δ X b) = 0 [PROOFSTEP] intro b _ hb [GOAL] case pos.h₀ C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i b : Fin (n + 2) a✝ : b ∈ Finset.univ hb : b ≠ 0 ⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑b • SimplicialObject.δ X b) = 0 [PROOFSTEP] rw [Preadditive.comp_zsmul] [GOAL] case pos.h₀ C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i b : Fin (n + 2) a✝ : b ∈ Finset.univ hb : b ≠ 0 ⊢ (-1) ^ ↑b • HomologicalComplex.Hom.f PInfty (n + 1) ≫ SimplicialObject.δ X b = 0 [PROOFSTEP] erw [PInfty_comp_map_mono_eq_zero X (SimplexCategory.δ b) h (by rw [Isδ₀.iff] exact hb), zsmul_zero] [GOAL] C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i b : Fin (n + 2) a✝ : b ∈ Finset.univ hb : b ≠ 0 ⊢ ¬Isδ₀ (SimplexCategory.δ b) [PROOFSTEP] rw [Isδ₀.iff] [GOAL] C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i b : Fin (n + 2) a✝ : b ∈ Finset.univ hb : b ≠ 0 ⊢ ¬b = 0 [PROOFSTEP] exact hb [GOAL] case pos.h₁ C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ ¬0 ∈ Finset.univ → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) = 0 [PROOFSTEP] simp only [Finset.mem_univ, not_true, IsEmpty.forall_iff] [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) = HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op [PROOFSTEP] simp only [hi.eq_δ₀, Fin.val_zero, pow_zero, one_zsmul] [GOAL] case pos C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ i✝ : Δ ⟶ [n + 1] inst✝¹ : Mono i✝ i : [n] ⟶ [n + 1] inst✝ : Mono i h : ¬n = n + 1 hi : Isδ₀ i ⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ SimplicialObject.δ X 0 = HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map (SimplexCategory.δ 0).op [PROOFSTEP] rfl -- The case `i ≠ δ 0` [GOAL] case neg C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i ⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op [PROOFSTEP] rw [Γ₀.Obj.Termwise.mapMono_eq_zero _ i _ hi, zero_comp] [GOAL] case neg C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i ⊢ 0 = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i ⊢ [n'] ≠ [n] [PROOFSTEP] swap [GOAL] C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i ⊢ [n'] ≠ [n] [PROOFSTEP] by_contra h' [GOAL] C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i h' : [n'] = [n] ⊢ False [PROOFSTEP] exact h (congr_arg SimplexCategory.len h'.symm) [GOAL] case neg C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i ⊢ 0 = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op [PROOFSTEP] rw [PInfty_comp_map_mono_eq_zero] [GOAL] case neg.h₁ C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i ⊢ len [n] ≠ n' [PROOFSTEP] exact h [GOAL] case neg.h₂ C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i ⊢ ¬Isδ₀ i [PROOFSTEP] by_contra h' [GOAL] case neg.h₂ C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C X : SimplicialObject C Δ Δ' : SimplexCategory i✝² : Δ ⟶ Δ' inst✝³ : Mono i✝² n : ℕ i✝¹ : [n] ⟶ Δ' inst✝² : Mono i✝¹ n' : ℕ i✝ : Δ ⟶ [n'] inst✝¹ : Mono i✝ i : [n] ⟶ [n'] inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i h' : Isδ₀ i ⊢ False [PROOFSTEP] exact hi h' [GOAL] C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C Δ Δ' : SimplexCategoryᵒᵖ θ : Δ ⟶ Δ' ⊢ ((N₁ ⋙ Γ₂).obj X).X.map θ ≫ (fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) Δ' = (fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) Δ ≫ ((toKaroubi (SimplicialObject C)).obj X).X.map θ [PROOFSTEP] apply (Γ₀.splitting K[X]).hom_ext' [GOAL] case h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C Δ Δ' : SimplexCategoryᵒᵖ θ : Δ ⟶ Δ' ⊢ ∀ (A : Splitting.IndexSet Δ), Splitting.ιSummand (Γ₀.splitting K[X]) A ≫ ((N₁ ⋙ Γ₂).obj X).X.map θ ≫ (fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) Δ' = Splitting.ιSummand (Γ₀.splitting K[X]) A ≫ (fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) Δ ≫ ((toKaroubi (SimplicialObject C)).obj X).X.map θ [PROOFSTEP] intro A [GOAL] case h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C Δ Δ' : SimplexCategoryᵒᵖ θ : Δ ⟶ Δ' A : Splitting.IndexSet Δ ⊢ Splitting.ιSummand (Γ₀.splitting K[X]) A ≫ ((N₁ ⋙ Γ₂).obj X).X.map θ ≫ (fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) Δ' = Splitting.ιSummand (Γ₀.splitting K[X]) A ≫ (fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) Δ ≫ ((toKaroubi (SimplicialObject C)).obj X).X.map θ [PROOFSTEP] change _ ≫ (Γ₀.obj K[X]).map θ ≫ _ = _ [GOAL] case h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C Δ Δ' : SimplexCategoryᵒᵖ θ : Δ ⟶ Δ' A : Splitting.IndexSet Δ ⊢ Splitting.ιSummand (Γ₀.splitting K[X]) A ≫ (Γ₀.obj K[X]).map θ ≫ (fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) Δ' = Splitting.ιSummand (Γ₀.splitting K[X]) A ≫ (fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) Δ ≫ ((toKaroubi (SimplicialObject C)).obj X).X.map θ [PROOFSTEP] simp only [Splitting.ι_desc_assoc, assoc, Γ₀.Obj.map_on_summand'_assoc, Splitting.ι_desc] [GOAL] case h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C Δ Δ' : SimplexCategoryᵒᵖ θ : Δ ⟶ Δ' A : Splitting.IndexSet Δ ⊢ Γ₀.Obj.Termwise.mapMono K[X] (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫ HomologicalComplex.Hom.f PInfty (len (Splitting.IndexSet.pull A θ).fst.unop) ≫ X.map (Splitting.IndexSet.e (Splitting.IndexSet.pull A θ)).op = HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op ≫ ((toKaroubi (SimplicialObject C)).obj X).X.map θ [PROOFSTEP] erw [Γ₀_obj_termwise_mapMono_comp_PInfty_assoc X (image.ι (θ.unop ≫ A.e))] [GOAL] case h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C Δ Δ' : SimplexCategoryᵒᵖ θ : Δ ⟶ Δ' A : Splitting.IndexSet Δ ⊢ HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (image.ι (θ.unop ≫ Splitting.IndexSet.e A)).op ≫ X.map (Splitting.IndexSet.e (Splitting.IndexSet.pull A θ)).op = HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op ≫ ((toKaroubi (SimplicialObject C)).obj X).X.map θ [PROOFSTEP] dsimp only [toKaroubi] [GOAL] case h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C Δ Δ' : SimplexCategoryᵒᵖ θ : Δ ⟶ Δ' A : Splitting.IndexSet Δ ⊢ HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (image.ι (θ.unop ≫ Splitting.IndexSet.e A)).op ≫ X.map (Splitting.IndexSet.e (Splitting.IndexSet.pull A θ)).op = HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op ≫ X.map θ [PROOFSTEP] simp only [← X.map_comp] [GOAL] case h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C Δ Δ' : SimplexCategoryᵒᵖ θ : Δ ⟶ Δ' A : Splitting.IndexSet Δ ⊢ HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map ((image.ι (θ.unop ≫ Splitting.IndexSet.e A)).op ≫ (Splitting.IndexSet.e (Splitting.IndexSet.pull A θ)).op) = HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map ((Splitting.IndexSet.e A).op ≫ θ) [PROOFSTEP] congr 2 [GOAL] case h.e_a.e_a C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C Δ Δ' : SimplexCategoryᵒᵖ θ : Δ ⟶ Δ' A : Splitting.IndexSet Δ ⊢ (image.ι (θ.unop ≫ Splitting.IndexSet.e A)).op ≫ (Splitting.IndexSet.e (Splitting.IndexSet.pull A θ)).op = (Splitting.IndexSet.e A).op ≫ θ [PROOFSTEP] simp only [eqToHom_refl, id_comp, comp_id, ← op_comp] [GOAL] case h.e_a.e_a C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C Δ Δ' : SimplexCategoryᵒᵖ θ : Δ ⟶ Δ' A : Splitting.IndexSet Δ ⊢ (Splitting.IndexSet.e (Splitting.IndexSet.pull A θ) ≫ image.ι (θ.unop ≫ Splitting.IndexSet.e A)).op = (Splitting.IndexSet.e A).op ≫ θ [PROOFSTEP] exact Quiver.Hom.unop_inj (A.fac_pull θ) [GOAL] C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) = ((N₁ ⋙ Γ₂).obj X).p ≫ (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) ≫ ((toKaroubi (SimplicialObject C)).obj X).p [PROOFSTEP] apply (Γ₀.splitting K[X]).hom_ext [GOAL] case h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ ∀ (n : ℕ), Splitting.φ (Γ₀.splitting K[X]) (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) n = Splitting.φ (Γ₀.splitting K[X]) (((N₁ ⋙ Γ₂).obj X).p ≫ (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) ≫ ((toKaroubi (SimplicialObject C)).obj X).p) n [PROOFSTEP] intro n [GOAL] case h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C n : ℕ ⊢ Splitting.φ (Γ₀.splitting K[X]) (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) n = Splitting.φ (Γ₀.splitting K[X]) (((N₁ ⋙ Γ₂).obj X).p ≫ (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) ≫ ((toKaroubi (SimplicialObject C)).obj X).p) n [PROOFSTEP] dsimp [N₁] [GOAL] case h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C n : ℕ ⊢ (Splitting.ι (Γ₀.splitting K[X]) n ≫ Splitting.desc (Γ₀.splitting K[X]) (op [n]) fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) = Splitting.ι (Γ₀.splitting K[X]) n ≫ (Splitting.desc (Γ₀.splitting K[X]) (op [n]) fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ Splitting.ιSummand (Γ₀.splitting K[X]) A) ≫ (Splitting.desc (Γ₀.splitting K[X]) (op [n]) fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) ≫ 𝟙 (X.obj (op [n])) [PROOFSTEP] simp only [← Splitting.ιSummand_id, Splitting.ι_desc, comp_id, Splitting.ι_desc_assoc, assoc, PInfty_f_idem_assoc] [GOAL] C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X Y : SimplicialObject C f : X ⟶ Y ⊢ (N₁ ⋙ Γ₂).map f ≫ (fun X => Karoubi.Hom.mk (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op)) Y = (fun X => Karoubi.Hom.mk (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op)) X ≫ (toKaroubi (SimplicialObject C)).map f [PROOFSTEP] ext1 [GOAL] case h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X Y : SimplicialObject C f : X ⟶ Y ⊢ ((N₁ ⋙ Γ₂).map f ≫ (fun X => Karoubi.Hom.mk (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op)) Y).f = ((fun X => Karoubi.Hom.mk (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op)) X ≫ (toKaroubi (SimplicialObject C)).map f).f [PROOFSTEP] apply (Γ₀.splitting K[X]).hom_ext [GOAL] case h.h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X Y : SimplicialObject C f : X ⟶ Y ⊢ ∀ (n : ℕ), Splitting.φ (Γ₀.splitting K[X]) ((N₁ ⋙ Γ₂).map f ≫ (fun X => Karoubi.Hom.mk (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op)) Y).f n = Splitting.φ (Γ₀.splitting K[X]) ((fun X => Karoubi.Hom.mk (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op)) X ≫ (toKaroubi (SimplicialObject C)).map f).f n [PROOFSTEP] intro n [GOAL] case h.h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X Y : SimplicialObject C f : X ⟶ Y n : ℕ ⊢ Splitting.φ (Γ₀.splitting K[X]) ((N₁ ⋙ Γ₂).map f ≫ (fun X => Karoubi.Hom.mk (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op)) Y).f n = Splitting.φ (Γ₀.splitting K[X]) ((fun X => Karoubi.Hom.mk (NatTrans.mk fun Δ => Splitting.desc (Γ₀.splitting K[X]) Δ fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op)) X ≫ (toKaroubi (SimplicialObject C)).map f).f n [PROOFSTEP] dsimp [N₁, toKaroubi] [GOAL] case h.h C : Type u_1 inst✝² : Category.{?u.47488, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X Y : SimplicialObject C f : X ⟶ Y n : ℕ ⊢ (Splitting.ι (Γ₀.splitting K[X]) n ≫ (Splitting.desc (Γ₀.splitting K[X]) (op [n]) fun A => (HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ NatTrans.app f A.fst) ≫ Splitting.ιSummand (Γ₀.splitting K[Y]) A) ≫ Splitting.desc (Γ₀.splitting K[Y]) (op [n]) fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ Y.map (Splitting.IndexSet.e A).op) = Splitting.ι (Γ₀.splitting K[X]) n ≫ (Splitting.desc (Γ₀.splitting K[X]) (op [n]) fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ X.map (Splitting.IndexSet.e A).op) ≫ NatTrans.app f (op [n]) [PROOFSTEP] simp only [← Splitting.ιSummand_id, Splitting.ι_desc, Splitting.ι_desc_assoc, assoc, PInfty_f_idem_assoc, Karoubi.comp_f, NatTrans.comp_app, Γ₂_map_f_app, HomologicalComplex.comp_f, AlternatingFaceMapComplex.map_f, PInfty_f_naturality_assoc, NatTrans.naturality, Splitting.IndexSet.id_fst, unop_op, len_mk] [GOAL] C : Type u_1 inst✝² : Category.{?u.59660, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C ⊢ toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ = N₁ ⋙ Γ₂ [PROOFSTEP] rw [← Functor.assoc, compatibility_N₁_N₂] [GOAL] C : Type u_1 inst✝² : Category.{?u.80371, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ (toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂).obj X = (N₁ ⋙ Γ₂).obj X [PROOFSTEP] rw [← Functor.assoc, compatibility_N₁_N₂] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.hom X = eqToHom (_ : (toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂).obj X = (N₁ ⋙ Γ₂).obj X) [PROOFSTEP] dsimp only [compatibility_Γ₂N₁_Γ₂N₂, CategoryTheory.eqToIso] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app (eqToHom (_ : toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ = N₁ ⋙ Γ₂)) X = eqToHom (_ : (toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂).obj X = (N₁ ⋙ Γ₂).obj X) [PROOFSTEP] apply eqToHom_app [GOAL] C : Type u_1 inst✝² : Category.{?u.83718, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ (N₁ ⋙ Γ₂).obj X = (toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂).obj X [PROOFSTEP] rw [← Functor.assoc, compatibility_N₁_N₂] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.inv X = eqToHom (_ : (N₁ ⋙ Γ₂).obj X = (toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂).obj X) [PROOFSTEP] rw [← cancel_mono (compatibility_Γ₂N₁_Γ₂N₂.hom.app X), Iso.inv_hom_id_app, compatibility_Γ₂N₁_Γ₂N₂_hom_app, eqToHom_trans, eqToHom_refl] [GOAL] C : Type u_1 inst✝² : Category.{?u.89220, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C ⊢ ((whiskeringLeft (SimplicialObject C) (Karoubi (SimplicialObject C)) (Karoubi (SimplicialObject C))).obj (toKaroubi (SimplicialObject C))).obj (N₂ ⋙ Γ₂) ⟶ ((whiskeringLeft (SimplicialObject C) (Karoubi (SimplicialObject C)) (Karoubi (SimplicialObject C))).obj (toKaroubi (SimplicialObject C))).obj (𝟭 (Karoubi (SimplicialObject C))) [PROOFSTEP] exact compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.natTrans [GOAL] C : Type u_1 inst✝² : Category.{?u.94055, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) ⊢ (N₂ ⋙ Γ₂).obj P ⟶ (𝟭 (Karoubi (SimplicialObject C))).obj P [PROOFSTEP] exact (N₂ ⋙ Γ₂).map P.decompId_i ≫ (compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.natTrans).app P.X ≫ P.decompId_p [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) ⊢ NatTrans.app natTrans P = (N₂ ⋙ Γ₂).map (Karoubi.decompId_i P) ≫ NatTrans.app (compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.natTrans) P.X ≫ Karoubi.decompId_p P [PROOFSTEP] dsimp only [natTrans] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) ⊢ NatTrans.app (((whiskeringLeft (SimplicialObject C) (Karoubi (SimplicialObject C)) (Karoubi (SimplicialObject C))).obj (toKaroubi (SimplicialObject C))).preimage (compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.natTrans)) P = (N₂ ⋙ Γ₂).map (Karoubi.decompId_i P) ≫ NatTrans.app (compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.natTrans) P.X ≫ Karoubi.decompId_p P [PROOFSTEP] rw [whiskeringLeft_obj_preimage_app (compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.natTrans : _ ⟶ toKaroubi _ ⋙ 𝟭 _) P, Functor.id_map] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app Γ₂N₁.natTrans X = (compatibility_Γ₂N₁_Γ₂N₂.app X).inv ≫ NatTrans.app Γ₂N₂.natTrans ((toKaroubi (SimplicialObject C)).obj X) [PROOFSTEP] rw [Γ₂N₂.natTrans_app_f_app] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app Γ₂N₁.natTrans X = (compatibility_Γ₂N₁_Γ₂N₂.app X).inv ≫ (N₂ ⋙ Γ₂).map (Karoubi.decompId_i ((toKaroubi (SimplicialObject C)).obj X)) ≫ NatTrans.app (compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.natTrans) ((toKaroubi (SimplicialObject C)).obj X).X ≫ Karoubi.decompId_p ((toKaroubi (SimplicialObject C)).obj X) [PROOFSTEP] dsimp only [Karoubi.decompId_i_toKaroubi, Karoubi.decompId_p_toKaroubi, Functor.comp_map, NatTrans.comp_app] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app Γ₂N₁.natTrans X = (compatibility_Γ₂N₁_Γ₂N₂.app X).inv ≫ Γ₂.map (N₂.map (𝟙 ((toKaroubi (SimplicialObject C)).obj X))) ≫ (NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.hom ((toKaroubi (SimplicialObject C)).obj X).X ≫ NatTrans.app Γ₂N₁.natTrans ((toKaroubi (SimplicialObject C)).obj X).X) ≫ 𝟙 (Karoubi.mk ((toKaroubi (SimplicialObject C)).obj X).X (𝟙 ((toKaroubi (SimplicialObject C)).obj X).X)) [PROOFSTEP] rw [N₂.map_id, Γ₂.map_id, Iso.app_inv] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app Γ₂N₁.natTrans X = NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.inv X ≫ 𝟙 (Γ₂.obj (N₂.obj ((toKaroubi (SimplicialObject C)).obj X))) ≫ (NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.hom ((toKaroubi (SimplicialObject C)).obj X).X ≫ NatTrans.app Γ₂N₁.natTrans ((toKaroubi (SimplicialObject C)).obj X).X) ≫ 𝟙 (Karoubi.mk ((toKaroubi (SimplicialObject C)).obj X).X (𝟙 ((toKaroubi (SimplicialObject C)).obj X).X)) [PROOFSTEP] dsimp only [toKaroubi] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app Γ₂N₁.natTrans X = NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.inv X ≫ 𝟙 (Γ₂.obj (N₂.obj (Karoubi.mk X (𝟙 X)))) ≫ (NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.hom X ≫ NatTrans.app Γ₂N₁.natTrans X) ≫ 𝟙 (Karoubi.mk X (𝟙 X)) [PROOFSTEP] erw [id_comp] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app Γ₂N₁.natTrans X = NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.inv X ≫ (NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.hom X ≫ NatTrans.app Γ₂N₁.natTrans X) ≫ 𝟙 (Karoubi.mk X (𝟙 X)) [PROOFSTEP] rw [comp_id, Iso.inv_hom_id_app_assoc] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) ⊢ NatTrans.app N₂Γ₂.inv (N₂.obj P) ≫ N₂.map (NatTrans.app Γ₂N₂.natTrans P) = 𝟙 (N₂.obj P) [PROOFSTEP] ext n [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) n : ℕ ⊢ HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv (N₂.obj P) ≫ N₂.map (NatTrans.app Γ₂N₂.natTrans P)).f n = HomologicalComplex.Hom.f (𝟙 (N₂.obj P)).f n [PROOFSTEP] have eq₁ : (N₂Γ₂.inv.app (N₂.obj P)).f.f n = PInfty.f n ≫ P.p.app (op [n]) ≫ (Γ₀.splitting (N₂.obj P).X).ιSummand (Splitting.IndexSet.id (op [n])) := by simp only [N₂Γ₂_inv_app_f_f, N₂_obj_p_f, assoc] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) n : ℕ ⊢ HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv (N₂.obj P)).f n = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) ≫ Splitting.ιSummand (Γ₀.splitting (N₂.obj P).X) (Splitting.IndexSet.id (op [n])) [PROOFSTEP] simp only [N₂Γ₂_inv_app_f_f, N₂_obj_p_f, assoc] [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) n : ℕ eq₁ : HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv (N₂.obj P)).f n = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) ≫ Splitting.ιSummand (Γ₀.splitting (N₂.obj P).X) (Splitting.IndexSet.id (op [n])) ⊢ HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv (N₂.obj P) ≫ N₂.map (NatTrans.app Γ₂N₂.natTrans P)).f n = HomologicalComplex.Hom.f (𝟙 (N₂.obj P)).f n [PROOFSTEP] have eq₂ : (Γ₀.splitting (N₂.obj P).X).ιSummand (Splitting.IndexSet.id (op [n])) ≫ (N₂.map (Γ₂N₂.natTrans.app P)).f.f n = PInfty.f n ≫ P.p.app (op [n]) := by dsimp simp only [assoc, Γ₂N₂.natTrans_app_f_app, Functor.comp_map, NatTrans.comp_app, Karoubi.comp_f, compatibility_Γ₂N₁_Γ₂N₂_hom_app, eqToHom_refl, Karoubi.eqToHom_f, PInfty_on_Γ₀_splitting_summand_eq_self_assoc, Functor.comp_obj] dsimp [N₂] simp only [Splitting.ι_desc_assoc, assoc, id_comp, unop_op, Splitting.IndexSet.id_fst, len_mk, Splitting.IndexSet.e, Splitting.IndexSet.id_snd_coe, op_id, P.X.map_id, id_comp, PInfty_f_naturality_assoc, PInfty_f_idem_assoc, app_idem] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) n : ℕ eq₁ : HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv (N₂.obj P)).f n = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) ≫ Splitting.ιSummand (Γ₀.splitting (N₂.obj P).X) (Splitting.IndexSet.id (op [n])) ⊢ Splitting.ιSummand (Γ₀.splitting (N₂.obj P).X) (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f (N₂.map (NatTrans.app Γ₂N₂.natTrans P)).f n = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) n : ℕ eq₁ : HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv (N₂.obj P)).f n = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) ≫ Splitting.ιSummand (Γ₀.splitting (N₂.obj P).X) (Splitting.IndexSet.id (op [n])) ⊢ Splitting.ιSummand (Γ₀.splitting (N₂.obj P).X) (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app (NatTrans.app Γ₂N₂.natTrans P).f (op [n]) = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) [PROOFSTEP] simp only [assoc, Γ₂N₂.natTrans_app_f_app, Functor.comp_map, NatTrans.comp_app, Karoubi.comp_f, compatibility_Γ₂N₁_Γ₂N₂_hom_app, eqToHom_refl, Karoubi.eqToHom_f, PInfty_on_Γ₀_splitting_summand_eq_self_assoc, Functor.comp_obj] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) n : ℕ eq₁ : HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv (N₂.obj P)).f n = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) ≫ Splitting.ιSummand (Γ₀.splitting (N₂.obj P).X) (Splitting.IndexSet.id (op [n])) ⊢ Splitting.ιSummand (Γ₀.splitting (N₂.obj P).X) (Splitting.IndexSet.id (op [n])) ≫ NatTrans.app ((Γ₂.map (N₂.map (Karoubi.decompId_i P))).f ≫ (Γ₂.obj (N₂.obj (Karoubi.mk P.X (𝟙 P.X)))).p ≫ 𝟙 (Γ₂.obj (N₂.obj (Karoubi.mk P.X (𝟙 P.X)))).X ≫ (NatTrans.app Γ₂N₁.natTrans P.X).f ≫ (Karoubi.decompId_p P).f) (op [n]) = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) [PROOFSTEP] dsimp [N₂] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) n : ℕ eq₁ : HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv (N₂.obj P)).f n = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) ≫ Splitting.ιSummand (Γ₀.splitting (N₂.obj P).X) (Splitting.IndexSet.id (op [n])) ⊢ Splitting.ιSummand (Γ₀.splitting K[P.X]) (Splitting.IndexSet.id (op [n])) ≫ (Splitting.desc (Γ₀.splitting K[P.X]) (op [n]) fun A => (HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ NatTrans.app P.p A.fst) ≫ Splitting.ιSummand (Γ₀.splitting K[P.X]) A) ≫ (Splitting.desc (Γ₀.splitting K[P.X]) (op [n]) fun A => (HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ 𝟙 (P.X.obj A.fst)) ≫ Splitting.ιSummand (Γ₀.splitting K[P.X]) A) ≫ 𝟙 (Γ₀.Obj.obj₂ K[P.X] (op [n])) ≫ (Splitting.desc (Γ₀.splitting K[P.X]) (op [n]) fun A => HomologicalComplex.Hom.f PInfty (len A.fst.unop) ≫ P.X.map (Splitting.IndexSet.e A).op) ≫ NatTrans.app P.p (op [n]) = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) [PROOFSTEP] simp only [Splitting.ι_desc_assoc, assoc, id_comp, unop_op, Splitting.IndexSet.id_fst, len_mk, Splitting.IndexSet.e, Splitting.IndexSet.id_snd_coe, op_id, P.X.map_id, id_comp, PInfty_f_naturality_assoc, PInfty_f_idem_assoc, app_idem] [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) n : ℕ eq₁ : HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv (N₂.obj P)).f n = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) ≫ Splitting.ιSummand (Γ₀.splitting (N₂.obj P).X) (Splitting.IndexSet.id (op [n])) eq₂ : Splitting.ιSummand (Γ₀.splitting (N₂.obj P).X) (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f (N₂.map (NatTrans.app Γ₂N₂.natTrans P)).f n = HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n]) ⊢ HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv (N₂.obj P) ≫ N₂.map (NatTrans.app Γ₂N₂.natTrans P)).f n = HomologicalComplex.Hom.f (𝟙 (N₂.obj P)).f n [PROOFSTEP] simp only [Karoubi.comp_f, HomologicalComplex.comp_f, Karoubi.id_eq, N₂_obj_p_f, assoc, eq₁, eq₂, PInfty_f_naturality_assoc, app_idem, PInfty_f_idem_assoc] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C ⊢ (𝟙 N₂ ◫ N₂Γ₂.inv) ≫ (Functor.associator N₂ Γ₂ N₂).inv ≫ Γ₂N₂.natTrans ◫ 𝟙 N₂ = 𝟙 N₂ [PROOFSTEP] ext P : 2 [GOAL] case w.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) ⊢ NatTrans.app ((𝟙 N₂ ◫ N₂Γ₂.inv) ≫ (Functor.associator N₂ Γ₂ N₂).inv ≫ Γ₂N₂.natTrans ◫ 𝟙 N₂) P = NatTrans.app (𝟙 N₂) P [PROOFSTEP] dsimp only [NatTrans.comp_app, NatTrans.hcomp_app, Functor.comp_map, Functor.associator, NatTrans.id_app, Functor.comp_obj] [GOAL] case w.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) ⊢ (NatTrans.app N₂Γ₂.inv (N₂.obj P) ≫ N₂.map (Γ₂.map (𝟙 (N₂.obj P)))) ≫ 𝟙 (N₂.obj (Γ₂.obj (N₂.obj P))) ≫ 𝟙 (N₂.obj (Γ₂.obj (N₂.obj P))) ≫ N₂.map (NatTrans.app Γ₂N₂.natTrans P) = 𝟙 (N₂.obj P) [PROOFSTEP] rw [Γ₂.map_id, N₂.map_id, comp_id, id_comp, id_comp, identity_N₂_objectwise P] [GOAL] C : Type u_1 inst✝² : Category.{?u.207135, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C ⊢ IsIso Γ₂N₂.natTrans [PROOFSTEP] have : ∀ P : Karoubi (SimplicialObject C), IsIso (Γ₂N₂.natTrans.app P) := by intro P have : IsIso (N₂.map (Γ₂N₂.natTrans.app P)) := by have h := identity_N₂_objectwise P erw [hom_comp_eq_id] at h rw [h] infer_instance exact isIso_of_reflects_iso _ N₂ [GOAL] C : Type u_1 inst✝² : Category.{?u.207135, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C ⊢ ∀ (P : Karoubi (SimplicialObject C)), IsIso (NatTrans.app Γ₂N₂.natTrans P) [PROOFSTEP] intro P [GOAL] C : Type u_1 inst✝² : Category.{?u.207135, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) ⊢ IsIso (NatTrans.app Γ₂N₂.natTrans P) [PROOFSTEP] have : IsIso (N₂.map (Γ₂N₂.natTrans.app P)) := by have h := identity_N₂_objectwise P erw [hom_comp_eq_id] at h rw [h] infer_instance [GOAL] C : Type u_1 inst✝² : Category.{?u.207135, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) ⊢ IsIso (N₂.map (NatTrans.app Γ₂N₂.natTrans P)) [PROOFSTEP] have h := identity_N₂_objectwise P [GOAL] C : Type u_1 inst✝² : Category.{?u.207135, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) h : NatTrans.app N₂Γ₂.inv (N₂.obj P) ≫ N₂.map (NatTrans.app Γ₂N₂.natTrans P) = 𝟙 (N₂.obj P) ⊢ IsIso (N₂.map (NatTrans.app Γ₂N₂.natTrans P)) [PROOFSTEP] erw [hom_comp_eq_id] at h [GOAL] C : Type u_1 inst✝² : Category.{?u.207135, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) h : N₂.map (NatTrans.app Γ₂N₂.natTrans P) = inv (NatTrans.app N₂Γ₂.inv (N₂.obj P)) ⊢ IsIso (N₂.map (NatTrans.app Γ₂N₂.natTrans P)) [PROOFSTEP] rw [h] [GOAL] C : Type u_1 inst✝² : Category.{?u.207135, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) h : N₂.map (NatTrans.app Γ₂N₂.natTrans P) = inv (NatTrans.app N₂Γ₂.inv (N₂.obj P)) ⊢ IsIso (inv (NatTrans.app N₂Γ₂.inv (N₂.obj P))) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝² : Category.{?u.207135, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C P : Karoubi (SimplicialObject C) this : IsIso (N₂.map (NatTrans.app Γ₂N₂.natTrans P)) ⊢ IsIso (NatTrans.app Γ₂N₂.natTrans P) [PROOFSTEP] exact isIso_of_reflects_iso _ N₂ [GOAL] C : Type u_1 inst✝² : Category.{?u.207135, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C this : ∀ (P : Karoubi (SimplicialObject C)), IsIso (NatTrans.app Γ₂N₂.natTrans P) ⊢ IsIso Γ₂N₂.natTrans [PROOFSTEP] apply NatIso.isIso_of_isIso_app [GOAL] C : Type u_1 inst✝² : Category.{?u.212338, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C ⊢ IsIso Γ₂N₁.natTrans [PROOFSTEP] have : ∀ X : SimplicialObject C, IsIso (Γ₂N₁.natTrans.app X) := by intro X rw [compatibility_Γ₂N₁_Γ₂N₂_natTrans] infer_instance [GOAL] C : Type u_1 inst✝² : Category.{?u.212338, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C ⊢ ∀ (X : SimplicialObject C), IsIso (NatTrans.app Γ₂N₁.natTrans X) [PROOFSTEP] intro X [GOAL] C : Type u_1 inst✝² : Category.{?u.212338, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ IsIso (NatTrans.app Γ₂N₁.natTrans X) [PROOFSTEP] rw [compatibility_Γ₂N₁_Γ₂N₂_natTrans] [GOAL] C : Type u_1 inst✝² : Category.{?u.212338, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ IsIso ((compatibility_Γ₂N₁_Γ₂N₂.app X).inv ≫ NatTrans.app Γ₂N₂.natTrans ((toKaroubi (SimplicialObject C)).obj X)) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝² : Category.{?u.212338, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C this : ∀ (X : SimplicialObject C), IsIso (NatTrans.app Γ₂N₁.natTrans X) ⊢ IsIso Γ₂N₁.natTrans [PROOFSTEP] apply NatIso.isIso_of_isIso_app
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.NCompGamma", "llama_tokens": 34977}
[GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : SemilinearMapClass 𝓕 σ₁₂ E F f : 𝓕 hf : Continuous ↑f x : E hx : ‖x‖ = 0 ⊢ ‖↑f x‖ = 0 [PROOFSTEP] rw [← mem_closure_zero_iff_norm, ← specializes_iff_mem_closure, ← map_zero f] at * [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : SemilinearMapClass 𝓕 σ₁₂ E F f : 𝓕 hf : Continuous ↑f x : E hx : 0 ⤳ x ⊢ ↑f 0 ⤳ ↑f x [PROOFSTEP] exact hx.map hf [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁵ : SeminormedAddCommGroup E inst✝¹⁴ : SeminormedAddCommGroup Eₗ inst✝¹³ : SeminormedAddCommGroup F inst✝¹² : SeminormedAddCommGroup Fₗ inst✝¹¹ : SeminormedAddCommGroup G inst✝¹⁰ : SeminormedAddCommGroup Gₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜 Eₗ inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜 Fₗ inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ v : E hv : ‖v‖ = 1 src✝ : 𝕜 →ₗ[𝕜] E := LinearMap.toSpanSingleton 𝕜 E v x : 𝕜 ⊢ ‖↑{ toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r x : 𝕜), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id 𝕜) r • AddHom.toFun src✝.toAddHom x) } x‖ = ‖x‖ [PROOFSTEP] simp [norm_smul, hv] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁵ : SeminormedAddCommGroup E inst✝¹⁴ : SeminormedAddCommGroup Eₗ inst✝¹³ : SeminormedAddCommGroup F inst✝¹² : SeminormedAddCommGroup Fₗ inst✝¹¹ : SeminormedAddCommGroup G inst✝¹⁰ : SeminormedAddCommGroup Gₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜 Eₗ inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜 Fₗ inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ f : E →SL[σ₁₂] F M : ℝ hMp : 0 ≤ M hM : ∀ (x : E), ‖x‖ ≠ 0 → ‖↑f x‖ ≤ M * ‖x‖ x : E h : ‖x‖ = 0 ⊢ ‖↑f x‖ ≤ M * ‖x‖ [PROOFSTEP] simp only [h, mul_zero, norm_image_of_norm_zero f f.2 h, le_refl] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁵ : SeminormedAddCommGroup E inst✝¹⁴ : SeminormedAddCommGroup Eₗ inst✝¹³ : SeminormedAddCommGroup F inst✝¹² : SeminormedAddCommGroup Fₗ inst✝¹¹ : SeminormedAddCommGroup G inst✝¹⁰ : SeminormedAddCommGroup Gₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜 Eₗ inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜 Fₗ inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ f : E →SL[σ₁₂] F K : ℝ≥0 hf : LipschitzWith K ↑f x : E ⊢ ‖↑f x‖ ≤ ↑K * ‖x‖ [PROOFSTEP] simpa only [dist_zero_right, f.map_zero] using hf.dist_le_mul x 0 [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁵ : SeminormedAddCommGroup E inst✝¹⁴ : SeminormedAddCommGroup Eₗ inst✝¹³ : SeminormedAddCommGroup F inst✝¹² : SeminormedAddCommGroup Fₗ inst✝¹¹ : SeminormedAddCommGroup G inst✝¹⁰ : SeminormedAddCommGroup Gₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜 Eₗ inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜 Fₗ inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ f : E →SL[σ₁₂] F ⊢ ‖-f‖ = ‖f‖ [PROOFSTEP] simp only [norm_def, neg_apply, norm_neg] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E ⊢ ‖↑f x‖ ≤ ‖f‖ * ‖x‖ [PROOFSTEP] obtain ⟨C, _, hC⟩ := f.bound [GOAL] case intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E C : ℝ left✝ : 0 < C hC : ∀ (x : E), ‖↑f x‖ ≤ C * ‖x‖ ⊢ ‖↑f x‖ ≤ ‖f‖ * ‖x‖ [PROOFSTEP] replace hC := hC x [GOAL] case intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E C : ℝ left✝ : 0 < C hC : ‖↑f x‖ ≤ C * ‖x‖ ⊢ ‖↑f x‖ ≤ ‖f‖ * ‖x‖ [PROOFSTEP] by_cases h : ‖x‖ = 0 [GOAL] case pos 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h✝ : F →SL[σ₂₃] G x : E C : ℝ left✝ : 0 < C hC : ‖↑f x‖ ≤ C * ‖x‖ h : ‖x‖ = 0 ⊢ ‖↑f x‖ ≤ ‖f‖ * ‖x‖ [PROOFSTEP] rwa [h, mul_zero] at hC ⊢ [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h✝ : F →SL[σ₂₃] G x : E C : ℝ left✝ : 0 < C hC : ‖↑f x‖ ≤ C * ‖x‖ h : ¬‖x‖ = 0 ⊢ ‖↑f x‖ ≤ ‖f‖ * ‖x‖ [PROOFSTEP] have hlt : 0 < ‖x‖ := lt_of_le_of_ne (norm_nonneg x) (Ne.symm h) [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h✝ : F →SL[σ₂₃] G x : E C : ℝ left✝ : 0 < C hC : ‖↑f x‖ ≤ C * ‖x‖ h : ¬‖x‖ = 0 hlt : 0 < ‖x‖ ⊢ ‖↑f x‖ ≤ ‖f‖ * ‖x‖ [PROOFSTEP] exact (div_le_iff hlt).mp (le_csInf bounds_nonempty fun c ⟨_, hc⟩ => (div_le_iff hlt).mpr <| by apply hc) [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h✝ : F →SL[σ₂₃] G x : E C : ℝ left✝¹ : 0 < C hC : ‖↑f x‖ ≤ C * ‖x‖ h : ¬‖x‖ = 0 hlt : 0 < ‖x‖ c : ℝ x✝ : c ∈ {c | 0 ≤ c ∧ ∀ (x : E), ‖↑f x‖ ≤ c * ‖x‖} left✝ : 0 ≤ c hc : ∀ (x : E), ‖↑f x‖ ≤ c * ‖x‖ ⊢ ‖↑f x‖ ≤ c * ‖x‖ [PROOFSTEP] apply hc [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ x y : E ⊢ dist (↑f x) (↑f y) ≤ ‖f‖ * dist x y [PROOFSTEP] simp_rw [dist_eq_norm, ← map_sub, f.le_op_norm] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ x : E a b : ℝ hf : ‖f‖ ≤ a hx : ‖x‖ ≤ b ⊢ ‖f‖ * ‖x‖ ≤ a * b [PROOFSTEP] gcongr [GOAL] case b0 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ x : E a b : ℝ hf : ‖f‖ ≤ a hx : ‖x‖ ≤ b ⊢ 0 ≤ a [PROOFSTEP] exact (op_norm_nonneg f).trans hf [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E f : E →SL[σ₁₂] F ε C : ℝ ε_pos : 0 < ε hC : 0 ≤ C hf : ∀ (x : E), x ∈ ball 0 ε → ‖↑f x‖ ≤ C * ‖x‖ ⊢ ‖f‖ ≤ C [PROOFSTEP] rcases NormedField.exists_one_lt_norm 𝕜 with ⟨c, hc⟩ [GOAL] case intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E f : E →SL[σ₁₂] F ε C : ℝ ε_pos : 0 < ε hC : 0 ≤ C hf : ∀ (x : E), x ∈ ball 0 ε → ‖↑f x‖ ≤ C * ‖x‖ c : 𝕜 hc : 1 < ‖c‖ ⊢ ‖f‖ ≤ C [PROOFSTEP] refine' op_norm_le_of_shell ε_pos hC hc fun x _ hx => hf x _ [GOAL] case intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝¹ : E f : E →SL[σ₁₂] F ε C : ℝ ε_pos : 0 < ε hC : 0 ≤ C hf : ∀ (x : E), x ∈ ball 0 ε → ‖↑f x‖ ≤ C * ‖x‖ c : 𝕜 hc : 1 < ‖c‖ x : E x✝ : ε / ‖c‖ ≤ ‖x‖ hx : ‖x‖ < ε ⊢ x ∈ ball 0 ε [PROOFSTEP] rwa [ball_zero_eq] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E f : E →SL[σ₁₂] F ε C : ℝ ε_pos : 0 < ε hC : 0 ≤ C c : 𝕜 hc : ‖c‖ < 1 hf : ∀ (x : E), ε * ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖↑f x‖ ≤ C * ‖x‖ ⊢ ‖f‖ ≤ C [PROOFSTEP] by_cases h0 : c = 0 [GOAL] case pos 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E f : E →SL[σ₁₂] F ε C : ℝ ε_pos : 0 < ε hC : 0 ≤ C c : 𝕜 hc : ‖c‖ < 1 hf : ∀ (x : E), ε * ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖↑f x‖ ≤ C * ‖x‖ h0 : c = 0 ⊢ ‖f‖ ≤ C [PROOFSTEP] refine' op_norm_le_of_ball ε_pos hC fun x hx => hf x _ _ [GOAL] case pos.refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E f : E →SL[σ₁₂] F ε C : ℝ ε_pos : 0 < ε hC : 0 ≤ C c : 𝕜 hc : ‖c‖ < 1 hf : ∀ (x : E), ε * ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖↑f x‖ ≤ C * ‖x‖ h0 : c = 0 x : E hx : x ∈ ball 0 ε ⊢ ε * ‖c‖ ≤ ‖x‖ [PROOFSTEP] simp [h0] [GOAL] case pos.refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E f : E →SL[σ₁₂] F ε C : ℝ ε_pos : 0 < ε hC : 0 ≤ C c : 𝕜 hc : ‖c‖ < 1 hf : ∀ (x : E), ε * ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖↑f x‖ ≤ C * ‖x‖ h0 : c = 0 x : E hx : x ∈ ball 0 ε ⊢ ‖x‖ < ε [PROOFSTEP] rwa [ball_zero_eq] at hx [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E f : E →SL[σ₁₂] F ε C : ℝ ε_pos : 0 < ε hC : 0 ≤ C c : 𝕜 hc : ‖c‖ < 1 hf : ∀ (x : E), ε * ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖↑f x‖ ≤ C * ‖x‖ h0 : ¬c = 0 ⊢ ‖f‖ ≤ C [PROOFSTEP] rw [← inv_inv c, norm_inv, inv_lt_one_iff_of_pos (norm_pos_iff.2 <| inv_ne_zero h0)] at hc [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E f : E →SL[σ₁₂] F ε C : ℝ ε_pos : 0 < ε hC : 0 ≤ C c : 𝕜 hc : 1 < ‖c⁻¹‖ hf : ∀ (x : E), ε * ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖↑f x‖ ≤ C * ‖x‖ h0 : ¬c = 0 ⊢ ‖f‖ ≤ C [PROOFSTEP] refine' op_norm_le_of_shell ε_pos hC hc _ [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E f : E →SL[σ₁₂] F ε C : ℝ ε_pos : 0 < ε hC : 0 ≤ C c : 𝕜 hc : 1 < ‖c⁻¹‖ hf : ∀ (x : E), ε * ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖↑f x‖ ≤ C * ‖x‖ h0 : ¬c = 0 ⊢ ∀ (x : E), ε / ‖c⁻¹‖ ≤ ‖x‖ → ‖x‖ < ε → ‖↑f x‖ ≤ C * ‖x‖ [PROOFSTEP] rwa [norm_inv, div_eq_mul_inv, inv_inv] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁹ : SeminormedAddCommGroup E inst✝¹⁸ : SeminormedAddCommGroup Eₗ inst✝¹⁷ : SeminormedAddCommGroup F inst✝¹⁶ : SeminormedAddCommGroup Fₗ inst✝¹⁵ : SeminormedAddCommGroup G inst✝¹⁴ : SeminormedAddCommGroup Gₗ inst✝¹³ : NontriviallyNormedField 𝕜 inst✝¹² : NontriviallyNormedField 𝕜₂ inst✝¹¹ : NontriviallyNormedField 𝕜₃ inst✝¹⁰ : NormedSpace 𝕜 E inst✝⁹ : NormedSpace 𝕜 Eₗ inst✝⁸ : NormedSpace 𝕜₂ F inst✝⁷ : NormedSpace 𝕜 Fₗ inst✝⁶ : NormedSpace 𝕜₃ G inst✝⁵ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : RingHomIsometric σ₁₂ inst✝² : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E inst✝¹ : NormedSpace ℝ E inst✝ : NormedSpace ℝ F f : E →L[ℝ] F C : ℝ hC : 0 ≤ C hf : ∀ (x : E), ‖x‖ = 1 → ‖↑f x‖ ≤ C ⊢ ‖f‖ ≤ C [PROOFSTEP] refine' op_norm_le_bound' f hC fun x hx => _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁹ : SeminormedAddCommGroup E inst✝¹⁸ : SeminormedAddCommGroup Eₗ inst✝¹⁷ : SeminormedAddCommGroup F inst✝¹⁶ : SeminormedAddCommGroup Fₗ inst✝¹⁵ : SeminormedAddCommGroup G inst✝¹⁴ : SeminormedAddCommGroup Gₗ inst✝¹³ : NontriviallyNormedField 𝕜 inst✝¹² : NontriviallyNormedField 𝕜₂ inst✝¹¹ : NontriviallyNormedField 𝕜₃ inst✝¹⁰ : NormedSpace 𝕜 E inst✝⁹ : NormedSpace 𝕜 Eₗ inst✝⁸ : NormedSpace 𝕜₂ F inst✝⁷ : NormedSpace 𝕜 Fₗ inst✝⁶ : NormedSpace 𝕜₃ G inst✝⁵ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : RingHomIsometric σ₁₂ inst✝² : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E inst✝¹ : NormedSpace ℝ E inst✝ : NormedSpace ℝ F f : E →L[ℝ] F C : ℝ hC : 0 ≤ C hf : ∀ (x : E), ‖x‖ = 1 → ‖↑f x‖ ≤ C x : E hx : ‖x‖ ≠ 0 ⊢ ‖↑f x‖ ≤ C * ‖x‖ [PROOFSTEP] have H₁ : ‖‖x‖⁻¹ • x‖ = 1 := by rw [norm_smul, norm_inv, norm_norm, inv_mul_cancel hx] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁹ : SeminormedAddCommGroup E inst✝¹⁸ : SeminormedAddCommGroup Eₗ inst✝¹⁷ : SeminormedAddCommGroup F inst✝¹⁶ : SeminormedAddCommGroup Fₗ inst✝¹⁵ : SeminormedAddCommGroup G inst✝¹⁴ : SeminormedAddCommGroup Gₗ inst✝¹³ : NontriviallyNormedField 𝕜 inst✝¹² : NontriviallyNormedField 𝕜₂ inst✝¹¹ : NontriviallyNormedField 𝕜₃ inst✝¹⁰ : NormedSpace 𝕜 E inst✝⁹ : NormedSpace 𝕜 Eₗ inst✝⁸ : NormedSpace 𝕜₂ F inst✝⁷ : NormedSpace 𝕜 Fₗ inst✝⁶ : NormedSpace 𝕜₃ G inst✝⁵ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : RingHomIsometric σ₁₂ inst✝² : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E inst✝¹ : NormedSpace ℝ E inst✝ : NormedSpace ℝ F f : E →L[ℝ] F C : ℝ hC : 0 ≤ C hf : ∀ (x : E), ‖x‖ = 1 → ‖↑f x‖ ≤ C x : E hx : ‖x‖ ≠ 0 ⊢ ‖‖x‖⁻¹ • x‖ = 1 [PROOFSTEP] rw [norm_smul, norm_inv, norm_norm, inv_mul_cancel hx] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁹ : SeminormedAddCommGroup E inst✝¹⁸ : SeminormedAddCommGroup Eₗ inst✝¹⁷ : SeminormedAddCommGroup F inst✝¹⁶ : SeminormedAddCommGroup Fₗ inst✝¹⁵ : SeminormedAddCommGroup G inst✝¹⁴ : SeminormedAddCommGroup Gₗ inst✝¹³ : NontriviallyNormedField 𝕜 inst✝¹² : NontriviallyNormedField 𝕜₂ inst✝¹¹ : NontriviallyNormedField 𝕜₃ inst✝¹⁰ : NormedSpace 𝕜 E inst✝⁹ : NormedSpace 𝕜 Eₗ inst✝⁸ : NormedSpace 𝕜₂ F inst✝⁷ : NormedSpace 𝕜 Fₗ inst✝⁶ : NormedSpace 𝕜₃ G inst✝⁵ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : RingHomIsometric σ₁₂ inst✝² : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E inst✝¹ : NormedSpace ℝ E inst✝ : NormedSpace ℝ F f : E →L[ℝ] F C : ℝ hC : 0 ≤ C hf : ∀ (x : E), ‖x‖ = 1 → ‖↑f x‖ ≤ C x : E hx : ‖x‖ ≠ 0 H₁ : ‖‖x‖⁻¹ • x‖ = 1 ⊢ ‖↑f x‖ ≤ C * ‖x‖ [PROOFSTEP] have H₂ := hf _ H₁ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁹ : SeminormedAddCommGroup E inst✝¹⁸ : SeminormedAddCommGroup Eₗ inst✝¹⁷ : SeminormedAddCommGroup F inst✝¹⁶ : SeminormedAddCommGroup Fₗ inst✝¹⁵ : SeminormedAddCommGroup G inst✝¹⁴ : SeminormedAddCommGroup Gₗ inst✝¹³ : NontriviallyNormedField 𝕜 inst✝¹² : NontriviallyNormedField 𝕜₂ inst✝¹¹ : NontriviallyNormedField 𝕜₃ inst✝¹⁰ : NormedSpace 𝕜 E inst✝⁹ : NormedSpace 𝕜 Eₗ inst✝⁸ : NormedSpace 𝕜₂ F inst✝⁷ : NormedSpace 𝕜 Fₗ inst✝⁶ : NormedSpace 𝕜₃ G inst✝⁵ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : RingHomIsometric σ₁₂ inst✝² : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E inst✝¹ : NormedSpace ℝ E inst✝ : NormedSpace ℝ F f : E →L[ℝ] F C : ℝ hC : 0 ≤ C hf : ∀ (x : E), ‖x‖ = 1 → ‖↑f x‖ ≤ C x : E hx : ‖x‖ ≠ 0 H₁ : ‖‖x‖⁻¹ • x‖ = 1 H₂ : ‖↑f (‖x‖⁻¹ • x)‖ ≤ C ⊢ ‖↑f x‖ ≤ C * ‖x‖ [PROOFSTEP] rwa [map_smul, norm_smul, norm_inv, norm_norm, ← div_eq_inv_mul, _root_.div_le_iff] at H₂ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁹ : SeminormedAddCommGroup E inst✝¹⁸ : SeminormedAddCommGroup Eₗ inst✝¹⁷ : SeminormedAddCommGroup F inst✝¹⁶ : SeminormedAddCommGroup Fₗ inst✝¹⁵ : SeminormedAddCommGroup G inst✝¹⁴ : SeminormedAddCommGroup Gₗ inst✝¹³ : NontriviallyNormedField 𝕜 inst✝¹² : NontriviallyNormedField 𝕜₂ inst✝¹¹ : NontriviallyNormedField 𝕜₃ inst✝¹⁰ : NormedSpace 𝕜 E inst✝⁹ : NormedSpace 𝕜 Eₗ inst✝⁸ : NormedSpace 𝕜₂ F inst✝⁷ : NormedSpace 𝕜 Fₗ inst✝⁶ : NormedSpace 𝕜₃ G inst✝⁵ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : RingHomIsometric σ₁₂ inst✝² : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E inst✝¹ : NormedSpace ℝ E inst✝ : NormedSpace ℝ F f : E →L[ℝ] F C : ℝ hC : 0 ≤ C hf : ∀ (x : E), ‖x‖ = 1 → ‖↑f x‖ ≤ C x : E hx : ‖x‖ ≠ 0 H₁ : ‖‖x‖⁻¹ • x‖ = 1 H₂ : ‖↑f x‖ / ‖x‖ ≤ C ⊢ 0 < ‖x‖ [PROOFSTEP] exact (norm_nonneg x).lt_of_ne' hx [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x x✝ : E ⊢ ‖↑0 x✝‖ = 0 * ‖x✝‖ [PROOFSTEP] rw [zero_mul] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x x✝ : E ⊢ ‖↑0 x✝‖ = 0 [PROOFSTEP] exact norm_zero [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ x : E ⊢ ‖↑(id 𝕜 E) x‖ ≤ 1 * ‖x‖ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h✝ : F →SL[σ₂₃] G x : E h : ∃ x, ‖x‖ ≠ 0 ⊢ 1 ≤ ‖id 𝕜 E‖ [PROOFSTEP] let ⟨x, hx⟩ := h [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h✝ : F →SL[σ₂₃] G x✝ : E h : ∃ x, ‖x‖ ≠ 0 x : E hx : ‖x‖ ≠ 0 ⊢ 1 ≤ ‖id 𝕜 E‖ [PROOFSTEP] have := (id 𝕜 E).ratio_le_op_norm x [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h✝ : F →SL[σ₂₃] G x✝ : E h : ∃ x, ‖x‖ ≠ 0 x : E hx : ‖x‖ ≠ 0 this : ‖↑(id 𝕜 E) x‖ / ‖x‖ ≤ ‖id 𝕜 E‖ ⊢ 1 ≤ ‖id 𝕜 E‖ [PROOFSTEP] rwa [id_apply, div_self hx] at this [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁰ : SeminormedAddCommGroup E inst✝¹⁹ : SeminormedAddCommGroup Eₗ inst✝¹⁸ : SeminormedAddCommGroup F inst✝¹⁷ : SeminormedAddCommGroup Fₗ inst✝¹⁶ : SeminormedAddCommGroup G inst✝¹⁵ : SeminormedAddCommGroup Gₗ inst✝¹⁴ : NontriviallyNormedField 𝕜 inst✝¹³ : NontriviallyNormedField 𝕜₂ inst✝¹² : NontriviallyNormedField 𝕜₃ inst✝¹¹ : NormedSpace 𝕜 E inst✝¹⁰ : NormedSpace 𝕜 Eₗ inst✝⁹ : NormedSpace 𝕜₂ F inst✝⁸ : NormedSpace 𝕜 Fₗ inst✝⁷ : NormedSpace 𝕜₃ G inst✝⁶ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E 𝕜' : Type u_11 inst✝² : NormedField 𝕜' inst✝¹ : NormedSpace 𝕜' F inst✝ : SMulCommClass 𝕜₂ 𝕜' F c : 𝕜' f : E →SL[σ₁₂] F x✝ : E ⊢ ‖↑(c • f) x✝‖ ≤ ‖c‖ * ‖f‖ * ‖x✝‖ [PROOFSTEP] erw [norm_smul, mul_assoc] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁰ : SeminormedAddCommGroup E inst✝¹⁹ : SeminormedAddCommGroup Eₗ inst✝¹⁸ : SeminormedAddCommGroup F inst✝¹⁷ : SeminormedAddCommGroup Fₗ inst✝¹⁶ : SeminormedAddCommGroup G inst✝¹⁵ : SeminormedAddCommGroup Gₗ inst✝¹⁴ : NontriviallyNormedField 𝕜 inst✝¹³ : NontriviallyNormedField 𝕜₂ inst✝¹² : NontriviallyNormedField 𝕜₃ inst✝¹¹ : NormedSpace 𝕜 E inst✝¹⁰ : NormedSpace 𝕜 Eₗ inst✝⁹ : NormedSpace 𝕜₂ F inst✝⁸ : NormedSpace 𝕜 Fₗ inst✝⁷ : NormedSpace 𝕜₃ G inst✝⁶ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E 𝕜' : Type u_11 inst✝² : NormedField 𝕜' inst✝¹ : NormedSpace 𝕜' F inst✝ : SMulCommClass 𝕜₂ 𝕜' F c : 𝕜' f : E →SL[σ₁₂] F x✝ : E ⊢ ‖c‖ * ‖↑↑f x✝‖ ≤ ‖c‖ * (‖f‖ * ‖x✝‖) [PROOFSTEP] exact mul_le_mul_of_nonneg_left (le_op_norm _ _) (norm_nonneg _) [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E a b : ℝ ha : 0 < a hb : 0 < b ⊢ closedBall 0 (a / b) ⊆ {f | ∀ (x : E), x ∈ closedBall 0 b → ↑f x ∈ closedBall 0 a} [PROOFSTEP] intro f hf x hx [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E a b : ℝ ha : 0 < a hb : 0 < b f : E →SL[σ₁₂] F hf : f ∈ closedBall 0 (a / b) x : E hx : x ∈ closedBall 0 b ⊢ ↑f x ∈ closedBall 0 a [PROOFSTEP] rw [mem_closedBall_zero_iff] at hf hx ⊢ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E a b : ℝ ha : 0 < a hb : 0 < b f : E →SL[σ₁₂] F hf : ‖f‖ ≤ a / b x : E hx : ‖x‖ ≤ b ⊢ ‖↑f x‖ ≤ a [PROOFSTEP] calc ‖f x‖ ≤ ‖f‖ * ‖x‖ := le_op_norm _ _ _ ≤ a / b * b := by gcongr _ = a := div_mul_cancel a hb.ne.symm [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E a b : ℝ ha : 0 < a hb : 0 < b f : E →SL[σ₁₂] F hf : ‖f‖ ≤ a / b x : E hx : ‖x‖ ≤ b ⊢ ‖f‖ * ‖x‖ ≤ a / b * b [PROOFSTEP] gcongr [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E ⊢ ContinuousLinearMap.tmpTopologicalSpace = topologicalSpace [PROOFSTEP] refine' ContinuousLinearMap.tmpTopologicalAddGroup.ext inferInstance ((@Metric.nhds_basis_closedBall _ ContinuousLinearMap.tmpPseudoMetricSpace 0).ext (ContinuousLinearMap.hasBasis_nhds_zero_of_basis Metric.nhds_basis_closedBall) _ _) [GOAL] case refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E ⊢ ∀ (i : ℝ), 0 < i → ∃ i', (Bornology.IsVonNBounded 𝕜 i'.fst ∧ 0 < i'.snd) ∧ {f | ∀ (x : E), x ∈ i'.fst → ↑f x ∈ closedBall 0 i'.snd} ⊆ closedBall 0 i [PROOFSTEP] rcases NormedField.exists_norm_lt_one 𝕜 with ⟨c, hc₀, hc₁⟩ [GOAL] case refine'_1.intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E c : 𝕜 hc₀ : 0 < ‖c‖ hc₁ : ‖c‖ < 1 ⊢ ∀ (i : ℝ), 0 < i → ∃ i', (Bornology.IsVonNBounded 𝕜 i'.fst ∧ 0 < i'.snd) ∧ {f | ∀ (x : E), x ∈ i'.fst → ↑f x ∈ closedBall 0 i'.snd} ⊆ closedBall 0 i [PROOFSTEP] intro ε hε [GOAL] case refine'_1.intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E c : 𝕜 hc₀ : 0 < ‖c‖ hc₁ : ‖c‖ < 1 ε : ℝ hε : 0 < ε ⊢ ∃ i', (Bornology.IsVonNBounded 𝕜 i'.fst ∧ 0 < i'.snd) ∧ {f | ∀ (x : E), x ∈ i'.fst → ↑f x ∈ closedBall 0 i'.snd} ⊆ closedBall 0 ε [PROOFSTEP] refine' ⟨⟨closedBall 0 (1 / ‖c‖), ε⟩, ⟨⟨_, hε⟩, _⟩⟩ [GOAL] case refine'_1.intro.intro.refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E c : 𝕜 hc₀ : 0 < ‖c‖ hc₁ : ‖c‖ < 1 ε : ℝ hε : 0 < ε ⊢ Bornology.IsVonNBounded 𝕜 (closedBall 0 (1 / ‖c‖), ε).fst [PROOFSTEP] exact NormedSpace.isVonNBounded_closedBall _ _ _ [GOAL] case refine'_1.intro.intro.refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E c : 𝕜 hc₀ : 0 < ‖c‖ hc₁ : ‖c‖ < 1 ε : ℝ hε : 0 < ε ⊢ {f | ∀ (x : E), x ∈ (closedBall 0 (1 / ‖c‖), ε).fst → ↑f x ∈ closedBall 0 (closedBall 0 (1 / ‖c‖), ε).snd} ⊆ closedBall 0 ε [PROOFSTEP] intro f (hf : ∀ x, _) [GOAL] case refine'_1.intro.intro.refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E c : 𝕜 hc₀ : 0 < ‖c‖ hc₁ : ‖c‖ < 1 ε : ℝ hε : 0 < ε f : E →SL[σ₁₂] F hf : ∀ (x : E), x ∈ (closedBall 0 (1 / ‖c‖), ε).fst → ↑f x ∈ closedBall 0 (closedBall 0 (1 / ‖c‖), ε).snd ⊢ f ∈ closedBall 0 ε [PROOFSTEP] simp_rw [mem_closedBall_zero_iff] at hf [GOAL] case refine'_1.intro.intro.refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E c : 𝕜 hc₀ : 0 < ‖c‖ hc₁ : ‖c‖ < 1 ε : ℝ hε : 0 < ε f : E →SL[σ₁₂] F hf : ∀ (x : E), ‖x‖ ≤ 1 / ‖c‖ → ‖↑f x‖ ≤ ε ⊢ f ∈ closedBall 0 ε [PROOFSTEP] convert (@mem_closedBall_zero_iff _ (_) f ε).2 _ -- Porting note: needed `convert` [GOAL] case refine'_1.intro.intro.refine'_2.convert_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E c : 𝕜 hc₀ : 0 < ‖c‖ hc₁ : ‖c‖ < 1 ε : ℝ hε : 0 < ε f : E →SL[σ₁₂] F hf : ∀ (x : E), ‖x‖ ≤ 1 / ‖c‖ → ‖↑f x‖ ≤ ε ⊢ ‖f‖ ≤ ε [PROOFSTEP] refine' op_norm_le_of_shell' (div_pos one_pos hc₀) hε.le hc₁ fun x hx₁ hxc => _ [GOAL] case refine'_1.intro.intro.refine'_2.convert_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E c : 𝕜 hc₀ : 0 < ‖c‖ hc₁ : ‖c‖ < 1 ε : ℝ hε : 0 < ε f : E →SL[σ₁₂] F hf : ∀ (x : E), ‖x‖ ≤ 1 / ‖c‖ → ‖↑f x‖ ≤ ε x : E hx₁ : 1 / ‖c‖ * ‖c‖ ≤ ‖x‖ hxc : ‖x‖ < 1 / ‖c‖ ⊢ ‖↑f x‖ ≤ ε * ‖x‖ [PROOFSTEP] rw [div_mul_cancel 1 hc₀.ne.symm] at hx₁ [GOAL] case refine'_1.intro.intro.refine'_2.convert_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E c : 𝕜 hc₀ : 0 < ‖c‖ hc₁ : ‖c‖ < 1 ε : ℝ hε : 0 < ε f : E →SL[σ₁₂] F hf : ∀ (x : E), ‖x‖ ≤ 1 / ‖c‖ → ‖↑f x‖ ≤ ε x : E hx₁ : 1 ≤ ‖x‖ hxc : ‖x‖ < 1 / ‖c‖ ⊢ ‖↑f x‖ ≤ ε * ‖x‖ [PROOFSTEP] exact (hf x hxc.le).trans (le_mul_of_one_le_right hε.le hx₁) [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E ⊢ ∀ (i' : Set E × ℝ), Bornology.IsVonNBounded 𝕜 i'.fst ∧ 0 < i'.snd → ∃ i, 0 < i ∧ closedBall 0 i ⊆ {f | ∀ (x : E), x ∈ i'.fst → ↑f x ∈ closedBall 0 i'.snd} [PROOFSTEP] rintro ⟨S, ε⟩ ⟨hS, hε⟩ [GOAL] case refine'_2.mk.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E S : Set E ε : ℝ hS : Bornology.IsVonNBounded 𝕜 (S, ε).fst hε : 0 < (S, ε).snd ⊢ ∃ i, 0 < i ∧ closedBall 0 i ⊆ {f | ∀ (x : E), x ∈ (S, ε).fst → ↑f x ∈ closedBall 0 (S, ε).snd} [PROOFSTEP] rw [NormedSpace.isVonNBounded_iff, ← bounded_iff_isBounded] at hS [GOAL] case refine'_2.mk.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E S : Set E ε : ℝ hS : Metric.Bounded (S, ε).fst hε : 0 < (S, ε).snd ⊢ ∃ i, 0 < i ∧ closedBall 0 i ⊆ {f | ∀ (x : E), x ∈ (S, ε).fst → ↑f x ∈ closedBall 0 (S, ε).snd} [PROOFSTEP] rcases hS.subset_ball_lt 0 0 with ⟨δ, hδ, hSδ⟩ [GOAL] case refine'_2.mk.intro.intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E S : Set E ε : ℝ hS : Metric.Bounded (S, ε).fst hε : 0 < (S, ε).snd δ : ℝ hδ : 0 < δ hSδ : (S, ε).fst ⊆ closedBall 0 δ ⊢ ∃ i, 0 < i ∧ closedBall 0 i ⊆ {f | ∀ (x : E), x ∈ (S, ε).fst → ↑f x ∈ closedBall 0 (S, ε).snd} [PROOFSTEP] exact ⟨ε / δ, div_pos hε hδ, (ContinuousLinearMap.tmp_closedBall_div_subset hε hδ).trans fun f hf x hx => hf x <| hSδ hx⟩ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E ⊢ ContinuousLinearMap.tmpUniformSpace = uniformSpace [PROOFSTEP] rw [← @UniformAddGroup.toUniformSpace_eq _ ContinuousLinearMap.tmpUniformSpace, ← @UniformAddGroup.toUniformSpace_eq _ ContinuousLinearMap.uniformSpace] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E ⊢ TopologicalAddGroup.toUniformSpace (E →SL[σ₁₂] F) = TopologicalAddGroup.toUniformSpace (E →SL[σ₁₂] F) [PROOFSTEP] congr! 1 [GOAL] case h.e'_3 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E ⊢ UniformSpace.toTopologicalSpace = UniformSpace.toTopologicalSpace [PROOFSTEP] exact ContinuousLinearMap.tmp_topology_eq [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E f : E →SL[σ₁₂] F ⊢ ‖f‖₊ = sInf {c | ∀ (x : E), ‖↑f x‖₊ ≤ c * ‖x‖₊} [PROOFSTEP] ext [GOAL] case a 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E f : E →SL[σ₁₂] F ⊢ ↑‖f‖₊ = ↑(sInf {c | ∀ (x : E), ‖↑f x‖₊ ≤ c * ‖x‖₊}) [PROOFSTEP] rw [NNReal.coe_sInf, coe_nnnorm, norm_def, NNReal.coe_image] [GOAL] case a 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E f : E →SL[σ₁₂] F ⊢ sInf {c | 0 ≤ c ∧ ∀ (x : E), ‖↑f x‖ ≤ c * ‖x‖} = sInf {x | ∃ h, { val := x, property := h } ∈ {c | ∀ (x : E), ‖↑f x‖₊ ≤ c * ‖x‖₊}} [PROOFSTEP] simp_rw [← NNReal.coe_le_coe, NNReal.coe_mul, coe_nnnorm, mem_setOf_eq, NNReal.coe_mk, exists_prop] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E f : E →SL[σ₁₂] F M : ℝ≥0 hM : ∀ (x : E), ‖x‖₊ ≠ 0 → ‖↑f x‖₊ ≤ M * ‖x‖₊ x : E hx : ‖x‖ ≠ 0 ⊢ ‖x‖₊ ≠ 0 [PROOFSTEP] rwa [← NNReal.coe_ne_zero] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁹ : SeminormedAddCommGroup E inst✝¹⁸ : SeminormedAddCommGroup Eₗ inst✝¹⁷ : SeminormedAddCommGroup F inst✝¹⁶ : SeminormedAddCommGroup Fₗ inst✝¹⁵ : SeminormedAddCommGroup G inst✝¹⁴ : SeminormedAddCommGroup Gₗ inst✝¹³ : NontriviallyNormedField 𝕜 inst✝¹² : NontriviallyNormedField 𝕜₂ inst✝¹¹ : NontriviallyNormedField 𝕜₃ inst✝¹⁰ : NormedSpace 𝕜 E inst✝⁹ : NormedSpace 𝕜 Eₗ inst✝⁸ : NormedSpace 𝕜₂ F inst✝⁷ : NormedSpace 𝕜 Fₗ inst✝⁶ : NormedSpace 𝕜₃ G inst✝⁵ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : RingHomIsometric σ₁₂ inst✝² : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E inst✝¹ : NormedSpace ℝ E inst✝ : NormedSpace ℝ F f : E →L[ℝ] F C : ℝ≥0 hf : ∀ (x : E), ‖x‖₊ = 1 → ‖↑f x‖₊ ≤ C x : E hx : ‖x‖ = 1 ⊢ ‖x‖₊ = 1 [PROOFSTEP] rwa [← NNReal.coe_eq_one] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E f : E →SL[σ₁₂] F x : E ⊢ ‖↑(comp h f) x‖ ≤ ‖h‖ * ‖f‖ * ‖x‖ [PROOFSTEP] rw [mul_assoc] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x✝ : E f : E →SL[σ₁₂] F x : E ⊢ ‖↑(comp h f) x‖ ≤ ‖h‖ * (‖f‖ * ‖x‖) [PROOFSTEP] exact h.le_op_norm_of_le (f.le_op_norm x) [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E src✝ : Algebra 𝕜 (E →L[𝕜] E) := algebra ⊢ ∀ (r : 𝕜) (x : E →L[𝕜] E), ‖r • x‖ ≤ ‖r‖ * ‖x‖ [PROOFSTEP] intro c f [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : RingHomIsometric σ₂₃ f✝ g : E →SL[σ₁₂] F h : F →SL[σ₂₃] G x : E src✝ : Algebra 𝕜 (E →L[𝕜] E) := algebra c : 𝕜 f : E →L[𝕜] E ⊢ ‖c • f‖ ≤ ‖c‖ * ‖f‖ [PROOFSTEP] apply op_norm_smul_le c f [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : r < ‖f‖₊ ⊢ ∃ x, r * ‖x‖₊ < ‖↑f x‖₊ [PROOFSTEP] simpa only [not_forall, not_le, Set.mem_setOf] using not_mem_of_lt_csInf (nnnorm_def f ▸ hr : r < sInf {c : ℝ≥0 | ∀ x, ‖f x‖₊ ≤ c * ‖x‖₊}) (OrderBot.bddBelow _) [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ hr₀ : 0 ≤ r hr : r < ‖f‖ ⊢ ∃ x, r * ‖x‖ < ‖↑f x‖ [PROOFSTEP] lift r to ℝ≥0 using hr₀ [GOAL] case intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : ↑r < ‖f‖ ⊢ ∃ x, ↑r * ‖x‖ < ‖↑f x‖ [PROOFSTEP] exact f.exists_mul_lt_apply_of_lt_op_nnnorm hr [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : r < ‖f‖₊ ⊢ ∃ x, ‖x‖₊ < 1 ∧ r < ‖↑f x‖₊ [PROOFSTEP] obtain ⟨y, hy⟩ := f.exists_mul_lt_apply_of_lt_op_nnnorm hr [GOAL] case intro 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : r < ‖f‖₊ y : E hy : r * ‖y‖₊ < ‖↑f y‖₊ ⊢ ∃ x, ‖x‖₊ < 1 ∧ r < ‖↑f x‖₊ [PROOFSTEP] have hy' : ‖y‖₊ ≠ 0 := nnnorm_ne_zero_iff.2 fun heq => by simp [heq, nnnorm_zero, map_zero, not_lt_zero'] at hy [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : r < ‖f‖₊ y : E hy : r * ‖y‖₊ < ‖↑f y‖₊ heq : y = 0 ⊢ False [PROOFSTEP] simp [heq, nnnorm_zero, map_zero, not_lt_zero'] at hy [GOAL] case intro 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : r < ‖f‖₊ y : E hy : r * ‖y‖₊ < ‖↑f y‖₊ hy' : ‖y‖₊ ≠ 0 ⊢ ∃ x, ‖x‖₊ < 1 ∧ r < ‖↑f x‖₊ [PROOFSTEP] have hfy : ‖f y‖₊ ≠ 0 := (zero_le'.trans_lt hy).ne' [GOAL] case intro 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : r < ‖f‖₊ y : E hy : r * ‖y‖₊ < ‖↑f y‖₊ hy' : ‖y‖₊ ≠ 0 hfy : ‖↑f y‖₊ ≠ 0 ⊢ ∃ x, ‖x‖₊ < 1 ∧ r < ‖↑f x‖₊ [PROOFSTEP] rw [← inv_inv ‖f y‖₊, NNReal.lt_inv_iff_mul_lt (inv_ne_zero hfy), mul_assoc, mul_comm ‖y‖₊, ← mul_assoc, ← NNReal.lt_inv_iff_mul_lt hy'] at hy [GOAL] case intro 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : r < ‖f‖₊ y : E hy : r * ‖↑f y‖₊⁻¹ < ‖y‖₊⁻¹ hy' : ‖y‖₊ ≠ 0 hfy : ‖↑f y‖₊ ≠ 0 ⊢ ∃ x, ‖x‖₊ < 1 ∧ r < ‖↑f x‖₊ [PROOFSTEP] obtain ⟨k, hk₁, hk₂⟩ := NormedField.exists_lt_nnnorm_lt 𝕜 hy [GOAL] case intro.intro.intro 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : r < ‖f‖₊ y : E hy : r * ‖↑f y‖₊⁻¹ < ‖y‖₊⁻¹ hy' : ‖y‖₊ ≠ 0 hfy : ‖↑f y‖₊ ≠ 0 k : 𝕜 hk₁ : r * ‖↑f y‖₊⁻¹ < ‖k‖₊ hk₂ : ‖k‖₊ < ‖y‖₊⁻¹ ⊢ ∃ x, ‖x‖₊ < 1 ∧ r < ‖↑f x‖₊ [PROOFSTEP] refine' ⟨k • y, (nnnorm_smul k y).symm ▸ (NNReal.lt_inv_iff_mul_lt hy').1 hk₂, _⟩ [GOAL] case intro.intro.intro 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : r < ‖f‖₊ y : E hy : r * ‖↑f y‖₊⁻¹ < ‖y‖₊⁻¹ hy' : ‖y‖₊ ≠ 0 hfy : ‖↑f y‖₊ ≠ 0 k : 𝕜 hk₁ : r * ‖↑f y‖₊⁻¹ < ‖k‖₊ hk₂ : ‖k‖₊ < ‖y‖₊⁻¹ ⊢ r < ‖↑f (k • y)‖₊ [PROOFSTEP] have : ‖σ₁₂ k‖₊ = ‖k‖₊ := Subtype.ext RingHomIsometric.is_iso [GOAL] case intro.intro.intro 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : r < ‖f‖₊ y : E hy : r * ‖↑f y‖₊⁻¹ < ‖y‖₊⁻¹ hy' : ‖y‖₊ ≠ 0 hfy : ‖↑f y‖₊ ≠ 0 k : 𝕜 hk₁ : r * ‖↑f y‖₊⁻¹ < ‖k‖₊ hk₂ : ‖k‖₊ < ‖y‖₊⁻¹ this : ‖↑σ₁₂ k‖₊ = ‖k‖₊ ⊢ r < ‖↑f (k • y)‖₊ [PROOFSTEP] rwa [map_smulₛₗ f, nnnorm_smul, ← NNReal.div_lt_iff hfy, div_eq_mul_inv, this] [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ hr : r < ‖f‖ ⊢ ∃ x, ‖x‖ < 1 ∧ r < ‖↑f x‖ [PROOFSTEP] by_cases hr₀ : r < 0 [GOAL] case pos 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ hr : r < ‖f‖ hr₀ : r < 0 ⊢ ∃ x, ‖x‖ < 1 ∧ r < ‖↑f x‖ [PROOFSTEP] exact ⟨0, by simpa using hr₀⟩ [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ hr : r < ‖f‖ hr₀ : r < 0 ⊢ ‖0‖ < 1 ∧ r < ‖↑f 0‖ [PROOFSTEP] simpa using hr₀ [GOAL] case neg 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ hr : r < ‖f‖ hr₀ : ¬r < 0 ⊢ ∃ x, ‖x‖ < 1 ∧ r < ‖↑f x‖ [PROOFSTEP] lift r to ℝ≥0 using not_lt.1 hr₀ [GOAL] case neg.intro 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F r : ℝ≥0 hr : ↑r < ‖f‖ hr₀ : ¬↑r < 0 ⊢ ∃ x, ‖x‖ < 1 ∧ ↑r < ‖↑f x‖ [PROOFSTEP] exact f.exists_lt_apply_of_lt_op_nnnorm hr [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F ⊢ sSup ((fun x => ‖↑f x‖₊) '' ball 0 1) = ‖f‖₊ [PROOFSTEP] refine' csSup_eq_of_forall_le_of_forall_lt_exists_gt ((nonempty_ball.mpr zero_lt_one).image _) _ fun ub hub => _ [GOAL] case refine'_1 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F ⊢ ∀ (a : ℝ≥0), a ∈ (fun x => ‖↑f x‖₊) '' ball 0 1 → a ≤ ‖f‖₊ [PROOFSTEP] rintro - ⟨x, hx, rfl⟩ [GOAL] case refine'_1.intro.intro 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F x : E hx : x ∈ ball 0 1 ⊢ (fun x => ‖↑f x‖₊) x ≤ ‖f‖₊ [PROOFSTEP] simpa only [mul_one] using f.le_op_norm_of_le (mem_ball_zero_iff.1 hx).le [GOAL] case refine'_2 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F ub : ℝ≥0 hub : ub < ‖f‖₊ ⊢ ∃ a, a ∈ (fun x => ‖↑f x‖₊) '' ball 0 1 ∧ ub < a [PROOFSTEP] obtain ⟨x, hx, hxf⟩ := f.exists_lt_apply_of_lt_op_nnnorm hub [GOAL] case refine'_2.intro.intro 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F ub : ℝ≥0 hub : ub < ‖f‖₊ x : E hx : ‖x‖₊ < 1 hxf : ub < ‖↑f x‖₊ ⊢ ∃ a, a ∈ (fun x => ‖↑f x‖₊) '' ball 0 1 ∧ ub < a [PROOFSTEP] exact ⟨_, ⟨x, mem_ball_zero_iff.2 hx, rfl⟩, hxf⟩ [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F ⊢ sSup ((fun x => ‖↑f x‖) '' ball 0 1) = ‖f‖ [PROOFSTEP] simpa only [NNReal.coe_sSup, Set.image_image] using NNReal.coe_eq.2 f.sSup_unit_ball_eq_nnnorm [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F ⊢ sSup ((fun x => ‖↑f x‖₊) '' closedBall 0 1) = ‖f‖₊ [PROOFSTEP] have hbdd : ∀ y ∈ (fun x => ‖f x‖₊) '' closedBall 0 1, y ≤ ‖f‖₊ := by rintro - ⟨x, hx, rfl⟩ exact f.unit_le_op_norm x (mem_closedBall_zero_iff.1 hx) [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F ⊢ ∀ (y : ℝ≥0), y ∈ (fun x => ‖↑f x‖₊) '' closedBall 0 1 → y ≤ ‖f‖₊ [PROOFSTEP] rintro - ⟨x, hx, rfl⟩ [GOAL] case intro.intro 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F x : E hx : x ∈ closedBall 0 1 ⊢ (fun x => ‖↑f x‖₊) x ≤ ‖f‖₊ [PROOFSTEP] exact f.unit_le_op_norm x (mem_closedBall_zero_iff.1 hx) [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F hbdd : ∀ (y : ℝ≥0), y ∈ (fun x => ‖↑f x‖₊) '' closedBall 0 1 → y ≤ ‖f‖₊ ⊢ sSup ((fun x => ‖↑f x‖₊) '' closedBall 0 1) = ‖f‖₊ [PROOFSTEP] refine' le_antisymm (csSup_le ((nonempty_closedBall.mpr zero_le_one).image _) hbdd) _ [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F hbdd : ∀ (y : ℝ≥0), y ∈ (fun x => ‖↑f x‖₊) '' closedBall 0 1 → y ≤ ‖f‖₊ ⊢ ‖f‖₊ ≤ sSup ((fun x => ‖↑f x‖₊) '' closedBall 0 1) [PROOFSTEP] rw [← sSup_unit_ball_eq_nnnorm] [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F hbdd : ∀ (y : ℝ≥0), y ∈ (fun x => ‖↑f x‖₊) '' closedBall 0 1 → y ≤ ‖f‖₊ ⊢ sSup ((fun x => ‖↑f x‖₊) '' ball 0 1) ≤ sSup ((fun x => ‖↑f x‖₊) '' closedBall 0 1) [PROOFSTEP] exact csSup_le_csSup ⟨‖f‖₊, hbdd⟩ ((nonempty_ball.2 zero_lt_one).image _) (Set.image_subset _ ball_subset_closedBall) [GOAL] 𝕜✝ : Type u_1 𝕜₂✝ : Type u_2 𝕜₃ : Type u_3 E✝ : Type u_4 Eₗ : Type u_5 F✝ : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²³ : SeminormedAddCommGroup E✝ inst✝²² : SeminormedAddCommGroup Eₗ inst✝²¹ : SeminormedAddCommGroup F✝ inst✝²⁰ : SeminormedAddCommGroup Fₗ inst✝¹⁹ : SeminormedAddCommGroup G inst✝¹⁸ : SeminormedAddCommGroup Gₗ inst✝¹⁷ : NontriviallyNormedField 𝕜✝ inst✝¹⁶ : NontriviallyNormedField 𝕜₂✝ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜✝ E✝ inst✝¹³ : NormedSpace 𝕜✝ Eₗ inst✝¹² : NormedSpace 𝕜₂✝ F✝ inst✝¹¹ : NormedSpace 𝕜✝ Fₗ inst✝¹⁰ : NormedSpace 𝕜₃ G inst✝⁹ : NormedSpace 𝕜✝ Gₗ σ₁₂✝ : 𝕜✝ →+* 𝕜₂✝ σ₂₃ : 𝕜₂✝ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝⁸ : RingHomCompTriple σ₁₂✝ σ₂₃ σ₁₃ inst✝⁷ : RingHomIsometric σ₁₂✝ 𝕜 : Type u_11 𝕜₂ : Type u_12 E : Type u_13 F : Type u_14 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : DenselyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F ⊢ sSup ((fun x => ‖↑f x‖) '' closedBall 0 1) = ‖f‖ [PROOFSTEP] simpa only [NNReal.coe_sSup, Set.image_image] using NNReal.coe_eq.2 f.sSup_closed_unit_ball_eq_nnnorm [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₂] F g : E →SL[σ₁₃] G h : ∀ (x : E), ‖↑f x‖ = ‖↑g x‖ x : E ⊢ ‖↑f x‖ ≤ ‖g‖ * ‖x‖ [PROOFSTEP] rw [h x] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₂] F g : E →SL[σ₁₃] G h : ∀ (x : E), ‖↑f x‖ = ‖↑g x‖ x : E ⊢ ‖↑g x‖ ≤ ‖g‖ * ‖x‖ [PROOFSTEP] exact le_op_norm _ _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₂] F g : E →SL[σ₁₃] G h : ∀ (x : E), ‖↑f x‖ = ‖↑g x‖ c : ℝ hc : c ≥ 0 h₂ : ∀ (x : E), ‖↑f x‖ ≤ c * ‖x‖ z : E ⊢ ‖↑g z‖ ≤ c * ‖z‖ [PROOFSTEP] rw [← h z] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₂] F g : E →SL[σ₁₃] G h : ∀ (x : E), ‖↑f x‖ = ‖↑g x‖ c : ℝ hc : c ≥ 0 h₂ : ∀ (x : E), ‖↑f x‖ ≤ c * ‖x‖ z : E ⊢ ‖↑f z‖ ≤ c * ‖z‖ [PROOFSTEP] exact h₂ z [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁵ : SeminormedAddCommGroup E inst✝¹⁴ : SeminormedAddCommGroup Eₗ inst✝¹³ : SeminormedAddCommGroup F inst✝¹² : SeminormedAddCommGroup Fₗ inst✝¹¹ : SeminormedAddCommGroup G inst✝¹⁰ : SeminormedAddCommGroup Gₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜 Eₗ inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜 Fₗ inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ f : E →L[𝕜] Fₗ g : E →L[𝕜] Gₗ x : E ⊢ ‖↑(ContinuousLinearMap.prod f g) x‖ ≤ ‖(f, g)‖ * ‖x‖ [PROOFSTEP] simpa only [prod_apply, Prod.norm_def, max_mul_of_nonneg, norm_nonneg] using max_le_max (le_op_norm f x) (le_op_norm g x) [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F inst✝ : Subsingleton E ⊢ ‖f‖ = 0 [PROOFSTEP] refine' le_antisymm _ (norm_nonneg _) [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F inst✝ : Subsingleton E ⊢ ‖f‖ ≤ 0 [PROOFSTEP] apply op_norm_le_bound _ rfl.ge [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F inst✝ : Subsingleton E ⊢ ∀ (x : E), ‖↑f x‖ ≤ 0 * ‖x‖ [PROOFSTEP] intro x [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F inst✝ : Subsingleton E x : E ⊢ ‖↑f x‖ ≤ 0 * ‖x‖ [PROOFSTEP] simp [Subsingleton.elim x 0] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁵ : SeminormedAddCommGroup E inst✝¹⁴ : SeminormedAddCommGroup Eₗ inst✝¹³ : SeminormedAddCommGroup F inst✝¹² : SeminormedAddCommGroup Fₗ inst✝¹¹ : SeminormedAddCommGroup G inst✝¹⁰ : SeminormedAddCommGroup Gₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜 Eₗ inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜 Fₗ inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ f : E →ₛₗᵢ[σ₁₂] F x : E ⊢ ‖↑(toContinuousLinearMap f) x‖ ≤ 1 * ‖x‖ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₂₃ f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G C : ℝ h : ∀ (x : E) (y : F), ‖↑(↑f x) y‖ ≤ C * ‖x‖ * ‖y‖ x : E ⊢ max (C * ‖x‖) 0 = max C 0 * ‖x‖ [PROOFSTEP] rw [max_mul_of_nonneg _ _ (norm_nonneg x), zero_mul] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₂₃ f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G h : ∃ C, ∀ (x : E) (y : F), ‖↑(↑f x) y‖ ≤ C * ‖x‖ * ‖y‖ x y : E ⊢ (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) (x + y) = (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) x + (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) y [PROOFSTEP] ext z [GOAL] case h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₂₃ f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G h : ∃ C, ∀ (x : E) (y : F), ‖↑(↑f x) y‖ ≤ C * ‖x‖ * ‖y‖ x y : E z : F ⊢ ↑((fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) (x + y)) z = ↑((fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) x + (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) y) z [PROOFSTEP] rw [ContinuousLinearMap.add_apply, mkContinuousOfExistsBound_apply, mkContinuousOfExistsBound_apply, mkContinuousOfExistsBound_apply, map_add, add_apply] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₂₃ f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G h : ∃ C, ∀ (x : E) (y : F), ‖↑(↑f x) y‖ ≤ C * ‖x‖ * ‖y‖ c : 𝕜 x : E ⊢ AddHom.toFun { toFun := fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖), map_add' := (_ : ∀ (x y : E), (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) (x + y) = (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) x + (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) y) } (c • x) = ↑σ₁₃ c • AddHom.toFun { toFun := fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖), map_add' := (_ : ∀ (x y : E), (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) (x + y) = (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) x + (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) y) } x [PROOFSTEP] ext z [GOAL] case h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁶ : SeminormedAddCommGroup E inst✝¹⁵ : SeminormedAddCommGroup Eₗ inst✝¹⁴ : SeminormedAddCommGroup F inst✝¹³ : SeminormedAddCommGroup Fₗ inst✝¹² : SeminormedAddCommGroup G inst✝¹¹ : SeminormedAddCommGroup Gₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 Eₗ inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜 Fₗ inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₂₃ f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G h : ∃ C, ∀ (x : E) (y : F), ‖↑(↑f x) y‖ ≤ C * ‖x‖ * ‖y‖ c : 𝕜 x : E z : F ⊢ ↑(AddHom.toFun { toFun := fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖), map_add' := (_ : ∀ (x y : E), (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) (x + y) = (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) x + (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) y) } (c • x)) z = ↑(↑σ₁₃ c • AddHom.toFun { toFun := fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖), map_add' := (_ : ∀ (x y : E), (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) (x + y) = (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) x + (fun x => mkContinuousOfExistsBound (↑f x) (_ : ∃ C, ∀ (x_1 : F), ‖↑(↑f x) x_1‖ ≤ C * ‖x_1‖)) y) } x) z [PROOFSTEP] rw [ContinuousLinearMap.smul_apply, mkContinuousOfExistsBound_apply, mkContinuousOfExistsBound_apply, map_smulₛₗ, smul_apply] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₂₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₃] F →SL[σ₂₃] G z : F x y : E ⊢ (fun y x => ↑(↑f x) y) z (x + y) = (fun y x => ↑(↑f x) y) z x + (fun y x => ↑(↑f x) y) z y [PROOFSTEP] simp only [f.map_add, add_apply] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₂₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₃] F →SL[σ₂₃] G c : 𝕜 y : F x : E ⊢ (fun y x => ↑(↑f x) y) y (c • x) = ↑σ₁₃ c • (fun y x => ↑(↑f x) y) y x [PROOFSTEP] simp only [f.map_smulₛₗ, smul_apply] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₂₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₃] F →SL[σ₂₃] G y : F x : E ⊢ ‖f‖ * ‖x‖ * ‖y‖ = ‖f‖ * ‖y‖ * ‖x‖ [PROOFSTEP] simp only [mul_right_comm] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₂₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₃] F →SL[σ₂₃] G x : E y : F ⊢ ‖↑(↑f x) y‖ ≤ ‖flip f‖ * ‖x‖ * ‖y‖ [PROOFSTEP] rw [mul_right_comm] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₂₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₃] F →SL[σ₂₃] G x : E y : F ⊢ ‖↑(↑f x) y‖ ≤ ‖flip f‖ * ‖y‖ * ‖x‖ [PROOFSTEP] exact (flip f).le_op_norm₂ y x [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₂₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₃] F →SL[σ₂₃] G ⊢ flip (flip f) = f [PROOFSTEP] ext [GOAL] case h.h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₂₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₃] F →SL[σ₂₃] G x✝¹ : E x✝ : F ⊢ ↑(↑(flip (flip f)) x✝¹) x✝ = ↑(↑f x✝¹) x✝ [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁷ : SeminormedAddCommGroup E inst✝¹⁶ : SeminormedAddCommGroup Eₗ inst✝¹⁵ : SeminormedAddCommGroup F inst✝¹⁴ : SeminormedAddCommGroup Fₗ inst✝¹³ : SeminormedAddCommGroup G inst✝¹² : SeminormedAddCommGroup Gₗ inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜₂ inst✝⁹ : NontriviallyNormedField 𝕜₃ inst✝⁸ : NormedSpace 𝕜 E inst✝⁷ : NormedSpace 𝕜 Eₗ inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜 Fₗ inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomIsometric σ₂₃ inst✝ : RingHomIsometric σ₁₃ f : E →SL[σ₁₃] F →SL[σ₂₃] G ⊢ ‖flip f‖ ≤ ‖f‖ [PROOFSTEP] simpa only [flip_flip] using le_norm_flip f.flip [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁸ : SeminormedAddCommGroup E inst✝¹⁷ : SeminormedAddCommGroup Eₗ inst✝¹⁶ : SeminormedAddCommGroup F inst✝¹⁵ : SeminormedAddCommGroup Fₗ inst✝¹⁴ : SeminormedAddCommGroup G inst✝¹³ : SeminormedAddCommGroup Gₗ inst✝¹² : NontriviallyNormedField 𝕜 inst✝¹¹ : NontriviallyNormedField 𝕜₂ inst✝¹⁰ : NontriviallyNormedField 𝕜₃ inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 Eₗ inst✝⁷ : NormedSpace 𝕜₂ F inst✝⁶ : NormedSpace 𝕜 Fₗ inst✝⁵ : NormedSpace 𝕜₃ G inst✝⁴ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomIsometric σ₂₃ inst✝¹ : RingHomIsometric σ₁₃ inst✝ : RingHomIsometric σ₁₂ c : 𝕜₂ f : F →SL[σ₂₃] G g : E →SL[σ₁₂] F ⊢ comp f (c • g) = ↑σ₂₃ c • comp f g [PROOFSTEP] ext [GOAL] case h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁸ : SeminormedAddCommGroup E inst✝¹⁷ : SeminormedAddCommGroup Eₗ inst✝¹⁶ : SeminormedAddCommGroup F inst✝¹⁵ : SeminormedAddCommGroup Fₗ inst✝¹⁴ : SeminormedAddCommGroup G inst✝¹³ : SeminormedAddCommGroup Gₗ inst✝¹² : NontriviallyNormedField 𝕜 inst✝¹¹ : NontriviallyNormedField 𝕜₂ inst✝¹⁰ : NontriviallyNormedField 𝕜₃ inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 Eₗ inst✝⁷ : NormedSpace 𝕜₂ F inst✝⁶ : NormedSpace 𝕜 Fₗ inst✝⁵ : NormedSpace 𝕜₃ G inst✝⁴ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomIsometric σ₂₃ inst✝¹ : RingHomIsometric σ₁₃ inst✝ : RingHomIsometric σ₁₂ c : 𝕜₂ f : F →SL[σ₂₃] G g : E →SL[σ₁₂] F x✝ : E ⊢ ↑(comp f (c • g)) x✝ = ↑(↑σ₂₃ c • comp f g) x✝ [PROOFSTEP] simp only [ContinuousLinearMap.map_smulₛₗ, coe_smul', coe_comp', Function.comp_apply, Pi.smul_apply] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁸ : SeminormedAddCommGroup E inst✝¹⁷ : SeminormedAddCommGroup Eₗ inst✝¹⁶ : SeminormedAddCommGroup F inst✝¹⁵ : SeminormedAddCommGroup Fₗ inst✝¹⁴ : SeminormedAddCommGroup G inst✝¹³ : SeminormedAddCommGroup Gₗ inst✝¹² : NontriviallyNormedField 𝕜 inst✝¹¹ : NontriviallyNormedField 𝕜₂ inst✝¹⁰ : NontriviallyNormedField 𝕜₃ inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 Eₗ inst✝⁷ : NormedSpace 𝕜₂ F inst✝⁶ : NormedSpace 𝕜 Fₗ inst✝⁵ : NormedSpace 𝕜₃ G inst✝⁴ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomIsometric σ₂₃ inst✝¹ : RingHomIsometric σ₁₃ inst✝ : RingHomIsometric σ₁₂ f : F →SL[σ₂₃] G g : E →SL[σ₁₂] F ⊢ ‖↑(↑(LinearMap.mk₂'ₛₗ (RingHom.id 𝕜₃) σ₂₃ comp (_ : ∀ (g₁ g₂ : F →SL[σ₂₃] G) (f : E →SL[σ₁₂] F), comp (g₁ + g₂) f = comp g₁ f + comp g₂ f) (_ : ∀ (c : 𝕜₃) (h : F →SL[σ₂₃] G) (f : E →SL[σ₁₂] F), comp (c • h) f = c • comp h f) (_ : ∀ (g : F →SL[σ₂₃] G) (f₁ f₂ : E →SL[σ₁₂] F), comp g (f₁ + f₂) = comp g f₁ + comp g f₂) (_ : ∀ (c : 𝕜₂) (f : F →SL[σ₂₃] G) (g : E →SL[σ₁₂] F), comp f (c • g) = ↑σ₂₃ c • comp f g)) f) g‖ ≤ 1 * ‖f‖ * ‖g‖ [PROOFSTEP] simpa only [one_mul] using op_norm_comp_le f g [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁸ : SeminormedAddCommGroup E inst✝¹⁷ : SeminormedAddCommGroup Eₗ inst✝¹⁶ : SeminormedAddCommGroup F inst✝¹⁵ : SeminormedAddCommGroup Fₗ inst✝¹⁴ : SeminormedAddCommGroup G inst✝¹³ : SeminormedAddCommGroup Gₗ inst✝¹² : NontriviallyNormedField 𝕜 inst✝¹¹ : NontriviallyNormedField 𝕜₂ inst✝¹⁰ : NontriviallyNormedField 𝕜₃ inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 Eₗ inst✝⁷ : NormedSpace 𝕜₂ F inst✝⁶ : NormedSpace 𝕜 Fₗ inst✝⁵ : NormedSpace 𝕜₃ G inst✝⁴ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomIsometric σ₂₃ inst✝¹ : RingHomIsometric σ₁₃ inst✝ : RingHomIsometric σ₁₂ L : E →L[𝕜] Fₗ →L[𝕜] Gₗ ⊢ 1 * ‖L‖ = ‖L‖ [PROOFSTEP] rw [one_mul] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁸ : SeminormedAddCommGroup E inst✝¹⁷ : SeminormedAddCommGroup Eₗ inst✝¹⁶ : SeminormedAddCommGroup F inst✝¹⁵ : SeminormedAddCommGroup Fₗ inst✝¹⁴ : SeminormedAddCommGroup G inst✝¹³ : SeminormedAddCommGroup Gₗ inst✝¹² : NontriviallyNormedField 𝕜 inst✝¹¹ : NontriviallyNormedField 𝕜₂ inst✝¹⁰ : NontriviallyNormedField 𝕜₃ inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 Eₗ inst✝⁷ : NormedSpace 𝕜₂ F inst✝⁶ : NormedSpace 𝕜 Fₗ inst✝⁵ : NormedSpace 𝕜₃ G inst✝⁴ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomIsometric σ₂₃ inst✝¹ : RingHomIsometric σ₁₃ inst✝ : RingHomIsometric σ₁₂ L : E →L[𝕜] Fₗ →L[𝕜] Gₗ ⊢ ‖precompL Eₗ L‖ ≤ ‖L‖ [PROOFSTEP] rw [precompL, op_norm_flip, ← op_norm_flip L] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁸ : SeminormedAddCommGroup E inst✝¹⁷ : SeminormedAddCommGroup Eₗ inst✝¹⁶ : SeminormedAddCommGroup F inst✝¹⁵ : SeminormedAddCommGroup Fₗ inst✝¹⁴ : SeminormedAddCommGroup G inst✝¹³ : SeminormedAddCommGroup Gₗ inst✝¹² : NontriviallyNormedField 𝕜 inst✝¹¹ : NontriviallyNormedField 𝕜₂ inst✝¹⁰ : NontriviallyNormedField 𝕜₃ inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 Eₗ inst✝⁷ : NormedSpace 𝕜₂ F inst✝⁶ : NormedSpace 𝕜 Fₗ inst✝⁵ : NormedSpace 𝕜₃ G inst✝⁴ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomIsometric σ₂₃ inst✝¹ : RingHomIsometric σ₁₃ inst✝ : RingHomIsometric σ₁₂ L : E →L[𝕜] Fₗ →L[𝕜] Gₗ ⊢ ‖precompR Eₗ (flip L)‖ ≤ ‖flip L‖ [PROOFSTEP] exact norm_precompR_le _ L.flip [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ ⊢ (fun p => prodMap p.fst p.snd) = ↑(let_fun Φ₁ := ↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄); let_fun Φ₂ := ↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄); let_fun Φ₁' := ↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃); let_fun Φ₂' := ↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃); let_fun Ψ₁ := fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); let_fun Ψ₂ := snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); comp Φ₁' (comp Φ₁ Ψ₁) + comp Φ₂' (comp Φ₂ Ψ₂)) [PROOFSTEP] apply funext [GOAL] case h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ ⊢ ∀ (x : (M₁ →L[𝕜] M₂) × (M₃ →L[𝕜] M₄)), prodMap x.fst x.snd = ↑(let_fun Φ₁ := ↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄); let_fun Φ₂ := ↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄); let_fun Φ₁' := ↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃); let_fun Φ₂' := ↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃); let_fun Ψ₁ := fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); let_fun Ψ₂ := snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); comp Φ₁' (comp Φ₁ Ψ₁) + comp Φ₂' (comp Φ₂ Ψ₂)) x [PROOFSTEP] rintro ⟨φ, ψ⟩ [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ ⊢ prodMap (φ, ψ).fst (φ, ψ).snd = ↑(let_fun Φ₁ := ↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄); let_fun Φ₂ := ↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄); let_fun Φ₁' := ↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃); let_fun Φ₂' := ↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃); let_fun Ψ₁ := fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); let_fun Ψ₂ := snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); comp Φ₁' (comp Φ₁ Ψ₁) + comp Φ₂' (comp Φ₂ Ψ₂)) (φ, ψ) [PROOFSTEP] refine' ContinuousLinearMap.ext fun ⟨x₁, x₂⟩ => _ -- Porting note: mathport suggested: -- ``` -- simp only [add_apply, coe_comp', coe_fst', Function.comp_apply, compL_apply, flip_apply, -- coe_snd', inl_apply, inr_apply, Prod.mk_add_mk, add_zero, zero_add, coe_prodMap' -- Prod_map, Prod.mk.inj_iff, eq_self_iff_true, and_self_iff] -- rfl -- ``` -- Frustratingly, in `mathlib3` we can use: -- ``` -- dsimp -- ⊢ (⇑φ x.fst, ⇑ψ x.snd) = (⇑φ x.fst + 0, 0 + ⇑ψ x.snd) -- simp -- ``` -- Here neither `dsimp` or `simp` seem to make progress. [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(let_fun Φ₁ := ↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄); let_fun Φ₂ := ↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄); let_fun Φ₁' := ↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃); let_fun Φ₂' := ↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃); let_fun Ψ₁ := fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); let_fun Ψ₂ := snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); comp Φ₁' (comp Φ₁ Ψ₁) + comp Φ₂' (comp Φ₂ Ψ₂)) (φ, ψ)) (x₁, x₂) [PROOFSTEP] repeat first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(let_fun Φ₁ := ↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄); let_fun Φ₂ := ↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄); let_fun Φ₁' := ↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃); let_fun Φ₂' := ↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃); let_fun Ψ₁ := fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); let_fun Ψ₂ := snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); comp Φ₁' (comp Φ₁ Ψ₁) + comp Φ₂' (comp Φ₂ Ψ₂)) (φ, ψ)) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(let_fun Φ₁ := ↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄); let_fun Φ₂ := ↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄); let_fun Φ₁' := ↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃); let_fun Φ₂' := ↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃); let_fun Ψ₁ := fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); let_fun Ψ₂ := snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄); comp Φ₁' (comp Φ₁ Ψ₁) + comp Φ₂' (comp Φ₂ Ψ₂)) (φ, ψ)) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ) + ↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ) + ↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) + ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) + ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) + ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(comp (↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄))) (φ, ψ))) (x₁, x₂) + ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(comp (↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄))) (φ, ψ))) (x₁, x₂) + ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(comp (↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄))) (φ, ψ))) (x₁, x₂) + ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) + ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) + ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) + ↑(↑(comp (↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)))) (φ, ψ)) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) + ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (↑(comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄))) (φ, ψ))) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) + ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (↑(comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄))) (φ, ψ))) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) + ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (↑(comp (↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄))) (φ, ψ))) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) + ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) + ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) + ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄))) (fst 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) + ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) [PROOFSTEP] rw [flip_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(flip (compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄))) (snd 𝕜 M₁ M₃)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (x₁, x₂) [PROOFSTEP] rw [flip_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [flip_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₁ (M₂ × M₄)) (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(comp (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(comp (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(comp (↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (fst 𝕜 M₁ M₃)) (x₁, x₂) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(fst 𝕜 M₁ M₃) (x₁, x₂)) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(fst 𝕜 M₁ M₃) (x₁, x₂)) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(fst 𝕜 M₁ M₃) (x₁, x₂)) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(fst 𝕜 M₁ M₃) (x₁, x₂)) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [flip_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(↑(↑(compL 𝕜 M₁ M₂ (M₂ × M₄)) (inl 𝕜 M₂ M₄)) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(fst 𝕜 M₁ M₃) (x₁, x₂)) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(comp (inl 𝕜 M₂ M₄) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(fst 𝕜 M₁ M₃) (x₁, x₂)) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(comp (inl 𝕜 M₂ M₄) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(fst 𝕜 M₁ M₃) (x₁, x₂)) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(comp (inl 𝕜 M₂ M₄) (↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(fst 𝕜 M₁ M₃) (x₁, x₂)) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [flip_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(↑(↑(compL 𝕜 (M₁ × M₃) M₃ (M₂ × M₄)) (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(comp (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(comp (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(comp (↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (snd 𝕜 M₁ M₃)) (x₁, x₂) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(snd 𝕜 M₁ M₃) (x₁, x₂)) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(snd 𝕜 M₁ M₃) (x₁, x₂)) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(snd 𝕜 M₁ M₃) (x₁, x₂)) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(snd 𝕜 M₁ M₃) (x₁, x₂)) [PROOFSTEP] rw [flip_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(↑(↑(compL 𝕜 M₃ M₄ (M₂ × M₄)) (inr 𝕜 M₂ M₄)) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(snd 𝕜 M₁ M₃) (x₁, x₂)) [PROOFSTEP] rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(comp (inr 𝕜 M₂ M₄) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(snd 𝕜 M₁ M₃) (x₁, x₂)) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(comp (inr 𝕜 M₂ M₄) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(snd 𝕜 M₁ M₃) (x₁, x₂)) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(comp (inr 𝕜 M₂ M₄) (↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ))) (↑(snd 𝕜 M₁ M₃) (x₁, x₂)) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(inr 𝕜 M₂ M₄) (↑(↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(snd 𝕜 M₁ M₃) (x₁, x₂))) [PROOFSTEP] first | rw [add_apply] | rw [comp_apply] | rw [flip_apply] | rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(inr 𝕜 M₂ M₄) (↑(↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(snd 𝕜 M₁ M₃) (x₁, x₂))) [PROOFSTEP] rw [add_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(inr 𝕜 M₂ M₄) (↑(↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(snd 𝕜 M₁ M₃) (x₁, x₂))) [PROOFSTEP] rw [comp_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(inr 𝕜 M₂ M₄) (↑(↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(snd 𝕜 M₁ M₃) (x₁, x₂))) [PROOFSTEP] rw [flip_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(inr 𝕜 M₂ M₄) (↑(↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(snd 𝕜 M₁ M₃) (x₁, x₂))) [PROOFSTEP] rw [compL_apply] [GOAL] case h.mk 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜 E inst✝¹⁶ : NormedSpace 𝕜 Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜 Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ M₁ : Type u₁ inst✝⁷ : SeminormedAddCommGroup M₁ inst✝⁶ : NormedSpace 𝕜 M₁ M₂ : Type u₂ inst✝⁵ : SeminormedAddCommGroup M₂ inst✝⁴ : NormedSpace 𝕜 M₂ M₃ : Type u₃ inst✝³ : SeminormedAddCommGroup M₃ inst✝² : NormedSpace 𝕜 M₃ M₄ : Type u₄ inst✝¹ : SeminormedAddCommGroup M₄ inst✝ : NormedSpace 𝕜 M₄ φ : M₁ →L[𝕜] M₂ ψ : M₃ →L[𝕜] M₄ x✝ : M₁ × M₃ x₁ : M₁ x₂ : M₃ ⊢ ↑(prodMap (φ, ψ).fst (φ, ψ).snd) (x₁, x₂) = ↑(inl 𝕜 M₂ M₄) (↑(↑(fst 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(fst 𝕜 M₁ M₃) (x₁, x₂))) + ↑(inr 𝕜 M₂ M₄) (↑(↑(snd 𝕜 (M₁ →L[𝕜] M₂) (M₃ →L[𝕜] M₄)) (φ, ψ)) (↑(snd 𝕜 M₁ M₃) (x₁, x₂))) [PROOFSTEP] simp only [coe_prodMap', Prod_map, coe_fst', inl_apply, coe_snd', inr_apply, Prod.mk_add_mk, add_zero, zero_add] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²² : SeminormedAddCommGroup E inst✝²¹ : SeminormedAddCommGroup Eₗ inst✝²⁰ : SeminormedAddCommGroup F inst✝¹⁹ : SeminormedAddCommGroup Fₗ inst✝¹⁸ : SeminormedAddCommGroup G inst✝¹⁷ : SeminormedAddCommGroup Gₗ inst✝¹⁶ : NontriviallyNormedField 𝕜 inst✝¹⁵ : NontriviallyNormedField 𝕜₂ inst✝¹⁴ : NontriviallyNormedField 𝕜₃ inst✝¹³ : NormedSpace 𝕜 E inst✝¹² : NormedSpace 𝕜 Eₗ inst✝¹¹ : NormedSpace 𝕜₂ F inst✝¹⁰ : NormedSpace 𝕜 Fₗ inst✝⁹ : NormedSpace 𝕜₃ G inst✝⁸ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomIsometric σ₂₃ inst✝⁵ : RingHomIsometric σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ 𝕜' : Type u_11 inst✝³ : NonUnitalSeminormedRing 𝕜' inst✝² : NormedSpace 𝕜 𝕜' inst✝¹ : IsScalarTower 𝕜 𝕜' 𝕜' inst✝ : SMulCommClass 𝕜 𝕜' 𝕜' x y : 𝕜' ⊢ ‖↑(↑(LinearMap.mul 𝕜 𝕜') x) y‖ ≤ 1 * ‖x‖ * ‖y‖ [PROOFSTEP] simpa using norm_mul_le x y [GOAL] 𝕜✝ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜✝ inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜✝ E inst✝¹⁶ : NormedSpace 𝕜✝ Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜✝ Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜✝ Gₗ σ₁₂ : 𝕜✝ →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ 𝕜'✝ : Type u_11 inst✝⁷ : NonUnitalSeminormedRing 𝕜'✝ inst✝⁶ : NormedSpace 𝕜✝ 𝕜'✝ inst✝⁵ : IsScalarTower 𝕜✝ 𝕜'✝ 𝕜'✝ inst✝⁴ : SMulCommClass 𝕜✝ 𝕜'✝ 𝕜'✝ 𝕜 : Type ?u.2283380 𝕜' : Type ?u.2283383 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : SeminormedRing 𝕜' inst✝¹ : NormedAlgebra 𝕜 𝕜' inst✝ : NormOneClass 𝕜' x : 𝕜' ⊢ ‖x‖ ≤ ‖↑(mul 𝕜 𝕜') x‖ [PROOFSTEP] convert ratio_le_op_norm ((mul 𝕜 𝕜') x) (1 : 𝕜') [GOAL] case h.e'_3 𝕜✝ : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : SeminormedAddCommGroup E inst✝²⁵ : SeminormedAddCommGroup Eₗ inst✝²⁴ : SeminormedAddCommGroup F inst✝²³ : SeminormedAddCommGroup Fₗ inst✝²² : SeminormedAddCommGroup G inst✝²¹ : SeminormedAddCommGroup Gₗ inst✝²⁰ : NontriviallyNormedField 𝕜✝ inst✝¹⁹ : NontriviallyNormedField 𝕜₂ inst✝¹⁸ : NontriviallyNormedField 𝕜₃ inst✝¹⁷ : NormedSpace 𝕜✝ E inst✝¹⁶ : NormedSpace 𝕜✝ Eₗ inst✝¹⁵ : NormedSpace 𝕜₂ F inst✝¹⁴ : NormedSpace 𝕜✝ Fₗ inst✝¹³ : NormedSpace 𝕜₃ G inst✝¹² : NormedSpace 𝕜✝ Gₗ σ₁₂ : 𝕜✝ →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜✝ →+* 𝕜₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : RingHomIsometric σ₂₃ inst✝⁹ : RingHomIsometric σ₁₃ inst✝⁸ : RingHomIsometric σ₁₂ 𝕜'✝ : Type u_11 inst✝⁷ : NonUnitalSeminormedRing 𝕜'✝ inst✝⁶ : NormedSpace 𝕜✝ 𝕜'✝ inst✝⁵ : IsScalarTower 𝕜✝ 𝕜'✝ 𝕜'✝ inst✝⁴ : SMulCommClass 𝕜✝ 𝕜'✝ 𝕜'✝ 𝕜 : Type ?u.2283380 𝕜' : Type ?u.2283383 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : SeminormedRing 𝕜' inst✝¹ : NormedAlgebra 𝕜 𝕜' inst✝ : NormOneClass 𝕜' x : 𝕜' ⊢ ‖x‖ = ‖↑(↑(mul 𝕜 𝕜') x) 1‖ / ‖1‖ [PROOFSTEP] simp [norm_one] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²² : SeminormedAddCommGroup E inst✝²¹ : SeminormedAddCommGroup Eₗ inst✝²⁰ : SeminormedAddCommGroup F inst✝¹⁹ : SeminormedAddCommGroup Fₗ inst✝¹⁸ : SeminormedAddCommGroup G inst✝¹⁷ : SeminormedAddCommGroup Gₗ inst✝¹⁶ : NontriviallyNormedField 𝕜 inst✝¹⁵ : NontriviallyNormedField 𝕜₂ inst✝¹⁴ : NontriviallyNormedField 𝕜₃ inst✝¹³ : NormedSpace 𝕜 E inst✝¹² : NormedSpace 𝕜 Eₗ inst✝¹¹ : NormedSpace 𝕜₂ F inst✝¹⁰ : NormedSpace 𝕜 Fₗ inst✝⁹ : NormedSpace 𝕜₃ G inst✝⁸ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomIsometric σ₂₃ inst✝⁵ : RingHomIsometric σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ 𝕜' : Type u_11 inst✝³ : NormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' E inst✝ : IsScalarTower 𝕜 𝕜' E c : 𝕜' x : E ⊢ ‖↑(↑(AlgHom.toLinearMap (Algebra.lsmul 𝕜 𝕜 E)) c) x‖ ≤ 1 * ‖c‖ * ‖x‖ [PROOFSTEP] simpa only [one_mul] using norm_smul_le c x [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²² : SeminormedAddCommGroup E inst✝²¹ : SeminormedAddCommGroup Eₗ inst✝²⁰ : SeminormedAddCommGroup F inst✝¹⁹ : SeminormedAddCommGroup Fₗ inst✝¹⁸ : SeminormedAddCommGroup G inst✝¹⁷ : SeminormedAddCommGroup Gₗ inst✝¹⁶ : NontriviallyNormedField 𝕜 inst✝¹⁵ : NontriviallyNormedField 𝕜₂ inst✝¹⁴ : NontriviallyNormedField 𝕜₃ inst✝¹³ : NormedSpace 𝕜 E inst✝¹² : NormedSpace 𝕜 Eₗ inst✝¹¹ : NormedSpace 𝕜₂ F inst✝¹⁰ : NormedSpace 𝕜 Fₗ inst✝⁹ : NormedSpace 𝕜₃ G inst✝⁸ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomIsometric σ₂₃ inst✝⁵ : RingHomIsometric σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ 𝕜' : Type u_11 inst✝³ : NormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' E inst✝ : IsScalarTower 𝕜 𝕜' E x : E ⊢ ‖toSpanSingleton 𝕜 x‖ = ‖x‖ [PROOFSTEP] refine' op_norm_eq_of_bounds (norm_nonneg _) (fun x => _) fun N _ h => _ [GOAL] case refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²² : SeminormedAddCommGroup E inst✝²¹ : SeminormedAddCommGroup Eₗ inst✝²⁰ : SeminormedAddCommGroup F inst✝¹⁹ : SeminormedAddCommGroup Fₗ inst✝¹⁸ : SeminormedAddCommGroup G inst✝¹⁷ : SeminormedAddCommGroup Gₗ inst✝¹⁶ : NontriviallyNormedField 𝕜 inst✝¹⁵ : NontriviallyNormedField 𝕜₂ inst✝¹⁴ : NontriviallyNormedField 𝕜₃ inst✝¹³ : NormedSpace 𝕜 E inst✝¹² : NormedSpace 𝕜 Eₗ inst✝¹¹ : NormedSpace 𝕜₂ F inst✝¹⁰ : NormedSpace 𝕜 Fₗ inst✝⁹ : NormedSpace 𝕜₃ G inst✝⁸ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomIsometric σ₂₃ inst✝⁵ : RingHomIsometric σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ 𝕜' : Type u_11 inst✝³ : NormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' E inst✝ : IsScalarTower 𝕜 𝕜' E x✝ : E x : 𝕜 ⊢ ‖↑(toSpanSingleton 𝕜 x✝) x‖ ≤ ‖x✝‖ * ‖x‖ [PROOFSTEP] rw [toSpanSingleton_apply, norm_smul, mul_comm] [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²² : SeminormedAddCommGroup E inst✝²¹ : SeminormedAddCommGroup Eₗ inst✝²⁰ : SeminormedAddCommGroup F inst✝¹⁹ : SeminormedAddCommGroup Fₗ inst✝¹⁸ : SeminormedAddCommGroup G inst✝¹⁷ : SeminormedAddCommGroup Gₗ inst✝¹⁶ : NontriviallyNormedField 𝕜 inst✝¹⁵ : NontriviallyNormedField 𝕜₂ inst✝¹⁴ : NontriviallyNormedField 𝕜₃ inst✝¹³ : NormedSpace 𝕜 E inst✝¹² : NormedSpace 𝕜 Eₗ inst✝¹¹ : NormedSpace 𝕜₂ F inst✝¹⁰ : NormedSpace 𝕜 Fₗ inst✝⁹ : NormedSpace 𝕜₃ G inst✝⁸ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomIsometric σ₂₃ inst✝⁵ : RingHomIsometric σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ 𝕜' : Type u_11 inst✝³ : NormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' E inst✝ : IsScalarTower 𝕜 𝕜' E x : E N : ℝ x✝ : N ≥ 0 h : ∀ (x_1 : 𝕜), ‖↑(toSpanSingleton 𝕜 x) x_1‖ ≤ N * ‖x_1‖ ⊢ ‖x‖ ≤ N [PROOFSTEP] specialize h 1 [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²² : SeminormedAddCommGroup E inst✝²¹ : SeminormedAddCommGroup Eₗ inst✝²⁰ : SeminormedAddCommGroup F inst✝¹⁹ : SeminormedAddCommGroup Fₗ inst✝¹⁸ : SeminormedAddCommGroup G inst✝¹⁷ : SeminormedAddCommGroup Gₗ inst✝¹⁶ : NontriviallyNormedField 𝕜 inst✝¹⁵ : NontriviallyNormedField 𝕜₂ inst✝¹⁴ : NontriviallyNormedField 𝕜₃ inst✝¹³ : NormedSpace 𝕜 E inst✝¹² : NormedSpace 𝕜 Eₗ inst✝¹¹ : NormedSpace 𝕜₂ F inst✝¹⁰ : NormedSpace 𝕜 Fₗ inst✝⁹ : NormedSpace 𝕜₃ G inst✝⁸ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomIsometric σ₂₃ inst✝⁵ : RingHomIsometric σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ 𝕜' : Type u_11 inst✝³ : NormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' E inst✝ : IsScalarTower 𝕜 𝕜' E x : E N : ℝ x✝ : N ≥ 0 h : ‖↑(toSpanSingleton 𝕜 x) 1‖ ≤ N * ‖1‖ ⊢ ‖x‖ ≤ N [PROOFSTEP] rw [toSpanSingleton_apply, norm_smul, mul_comm] at h [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²² : SeminormedAddCommGroup E inst✝²¹ : SeminormedAddCommGroup Eₗ inst✝²⁰ : SeminormedAddCommGroup F inst✝¹⁹ : SeminormedAddCommGroup Fₗ inst✝¹⁸ : SeminormedAddCommGroup G inst✝¹⁷ : SeminormedAddCommGroup Gₗ inst✝¹⁶ : NontriviallyNormedField 𝕜 inst✝¹⁵ : NontriviallyNormedField 𝕜₂ inst✝¹⁴ : NontriviallyNormedField 𝕜₃ inst✝¹³ : NormedSpace 𝕜 E inst✝¹² : NormedSpace 𝕜 Eₗ inst✝¹¹ : NormedSpace 𝕜₂ F inst✝¹⁰ : NormedSpace 𝕜 Fₗ inst✝⁹ : NormedSpace 𝕜₃ G inst✝⁸ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomIsometric σ₂₃ inst✝⁵ : RingHomIsometric σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ 𝕜' : Type u_11 inst✝³ : NormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' E inst✝ : IsScalarTower 𝕜 𝕜' E x : E N : ℝ x✝ : N ≥ 0 h : ‖x‖ * ‖1‖ ≤ N * ‖1‖ ⊢ ‖x‖ ≤ N [PROOFSTEP] exact (mul_le_mul_right (by simp)).mp h [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²² : SeminormedAddCommGroup E inst✝²¹ : SeminormedAddCommGroup Eₗ inst✝²⁰ : SeminormedAddCommGroup F inst✝¹⁹ : SeminormedAddCommGroup Fₗ inst✝¹⁸ : SeminormedAddCommGroup G inst✝¹⁷ : SeminormedAddCommGroup Gₗ inst✝¹⁶ : NontriviallyNormedField 𝕜 inst✝¹⁵ : NontriviallyNormedField 𝕜₂ inst✝¹⁴ : NontriviallyNormedField 𝕜₃ inst✝¹³ : NormedSpace 𝕜 E inst✝¹² : NormedSpace 𝕜 Eₗ inst✝¹¹ : NormedSpace 𝕜₂ F inst✝¹⁰ : NormedSpace 𝕜 Fₗ inst✝⁹ : NormedSpace 𝕜₃ G inst✝⁸ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomIsometric σ₂₃ inst✝⁵ : RingHomIsometric σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ 𝕜' : Type u_11 inst✝³ : NormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' E inst✝ : IsScalarTower 𝕜 𝕜' E x : E N : ℝ x✝ : N ≥ 0 h : ‖x‖ * ‖1‖ ≤ N * ‖1‖ ⊢ 0 < ‖1‖ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²² : SeminormedAddCommGroup E inst✝²¹ : SeminormedAddCommGroup Eₗ inst✝²⁰ : SeminormedAddCommGroup F inst✝¹⁹ : SeminormedAddCommGroup Fₗ inst✝¹⁸ : SeminormedAddCommGroup G inst✝¹⁷ : SeminormedAddCommGroup Gₗ inst✝¹⁶ : NontriviallyNormedField 𝕜 inst✝¹⁵ : NontriviallyNormedField 𝕜₂ inst✝¹⁴ : NontriviallyNormedField 𝕜₃ inst✝¹³ : NormedSpace 𝕜 E inst✝¹² : NormedSpace 𝕜 Eₗ inst✝¹¹ : NormedSpace 𝕜₂ F inst✝¹⁰ : NormedSpace 𝕜 Fₗ inst✝⁹ : NormedSpace 𝕜₃ G inst✝⁸ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomIsometric σ₂₃ inst✝⁵ : RingHomIsometric σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ 𝕜' : Type u_11 inst✝³ : NormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' E inst✝ : IsScalarTower 𝕜 𝕜' E ⊢ ‖lsmul 𝕜 𝕜'‖ ≤ 1 [PROOFSTEP] refine' ContinuousLinearMap.op_norm_le_bound _ zero_le_one fun x => _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²² : SeminormedAddCommGroup E inst✝²¹ : SeminormedAddCommGroup Eₗ inst✝²⁰ : SeminormedAddCommGroup F inst✝¹⁹ : SeminormedAddCommGroup Fₗ inst✝¹⁸ : SeminormedAddCommGroup G inst✝¹⁷ : SeminormedAddCommGroup Gₗ inst✝¹⁶ : NontriviallyNormedField 𝕜 inst✝¹⁵ : NontriviallyNormedField 𝕜₂ inst✝¹⁴ : NontriviallyNormedField 𝕜₃ inst✝¹³ : NormedSpace 𝕜 E inst✝¹² : NormedSpace 𝕜 Eₗ inst✝¹¹ : NormedSpace 𝕜₂ F inst✝¹⁰ : NormedSpace 𝕜 Fₗ inst✝⁹ : NormedSpace 𝕜₃ G inst✝⁸ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomIsometric σ₂₃ inst✝⁵ : RingHomIsometric σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ 𝕜' : Type u_11 inst✝³ : NormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' E inst✝ : IsScalarTower 𝕜 𝕜' E x : 𝕜' ⊢ ‖↑(lsmul 𝕜 𝕜') x‖ ≤ 1 * ‖x‖ [PROOFSTEP] simp_rw [one_mul] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²² : SeminormedAddCommGroup E inst✝²¹ : SeminormedAddCommGroup Eₗ inst✝²⁰ : SeminormedAddCommGroup F inst✝¹⁹ : SeminormedAddCommGroup Fₗ inst✝¹⁸ : SeminormedAddCommGroup G inst✝¹⁷ : SeminormedAddCommGroup Gₗ inst✝¹⁶ : NontriviallyNormedField 𝕜 inst✝¹⁵ : NontriviallyNormedField 𝕜₂ inst✝¹⁴ : NontriviallyNormedField 𝕜₃ inst✝¹³ : NormedSpace 𝕜 E inst✝¹² : NormedSpace 𝕜 Eₗ inst✝¹¹ : NormedSpace 𝕜₂ F inst✝¹⁰ : NormedSpace 𝕜 Fₗ inst✝⁹ : NormedSpace 𝕜₃ G inst✝⁸ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomIsometric σ₂₃ inst✝⁵ : RingHomIsometric σ₁₃ inst✝⁴ : RingHomIsometric σ₁₂ 𝕜' : Type u_11 inst✝³ : NormedField 𝕜' inst✝² : NormedAlgebra 𝕜 𝕜' inst✝¹ : NormedSpace 𝕜' E inst✝ : IsScalarTower 𝕜 𝕜' E x : 𝕜' ⊢ ‖↑(lsmul 𝕜 𝕜') x‖ ≤ ‖x‖ [PROOFSTEP] exact op_norm_lsmul_apply_le _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝³¹ : SeminormedAddCommGroup E inst✝³⁰ : SeminormedAddCommGroup Eₗ inst✝²⁹ : SeminormedAddCommGroup F inst✝²⁸ : SeminormedAddCommGroup Fₗ inst✝²⁷ : SeminormedAddCommGroup G inst✝²⁶ : SeminormedAddCommGroup Gₗ inst✝²⁵ : NontriviallyNormedField 𝕜 inst✝²⁴ : NontriviallyNormedField 𝕜₂ inst✝²³ : NontriviallyNormedField 𝕜₃ inst✝²² : NormedSpace 𝕜 E inst✝²¹ : NormedSpace 𝕜 Eₗ inst✝²⁰ : NormedSpace 𝕜₂ F inst✝¹⁹ : NormedSpace 𝕜 Fₗ inst✝¹⁸ : NormedSpace 𝕜₃ G inst✝¹⁷ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹⁶ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝¹⁵ : RingHomInvPair σ₁₂ σ₂₁ inst✝¹⁴ : RingHomInvPair σ₂₁ σ₁₂ E' : Type u_11 F' : Type u_12 inst✝¹³ : SeminormedAddCommGroup E' inst✝¹² : SeminormedAddCommGroup F' 𝕜₁' : Type u_13 𝕜₂' : Type u_14 inst✝¹¹ : NontriviallyNormedField 𝕜₁' inst✝¹⁰ : NontriviallyNormedField 𝕜₂' inst✝⁹ : NormedSpace 𝕜₁' E' inst✝⁸ : NormedSpace 𝕜₂' F' σ₁' : 𝕜₁' →+* 𝕜 σ₁₃' : 𝕜₁' →+* 𝕜₃ σ₂' : 𝕜₂' →+* 𝕜₂ σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁' σ₁₃ σ₁₃' inst✝⁶ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁵ : RingHomIsometric σ₂₃ inst✝⁴ : RingHomIsometric σ₁₃' inst✝³ : RingHomIsometric σ₂₃' inst✝² : RingHomIsometric σ₁₃ inst✝¹ : RingHomIsometric σ₁' inst✝ : RingHomIsometric σ₂' f : E →L[𝕜] Fₗ →L[𝕜] Gₗ x x' : E y y' : Fₗ ⊢ ↑(↑f (x + x')) (y + y') = ↑(↑f x) y + ↑(↑(deriv₂ f) (x, y)) (x', y') + ↑(↑f x') y' [PROOFSTEP] simp only [map_add, add_apply, coe_deriv₂, add_assoc] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝³¹ : SeminormedAddCommGroup E inst✝³⁰ : SeminormedAddCommGroup Eₗ inst✝²⁹ : SeminormedAddCommGroup F inst✝²⁸ : SeminormedAddCommGroup Fₗ inst✝²⁷ : SeminormedAddCommGroup G inst✝²⁶ : SeminormedAddCommGroup Gₗ inst✝²⁵ : NontriviallyNormedField 𝕜 inst✝²⁴ : NontriviallyNormedField 𝕜₂ inst✝²³ : NontriviallyNormedField 𝕜₃ inst✝²² : NormedSpace 𝕜 E inst✝²¹ : NormedSpace 𝕜 Eₗ inst✝²⁰ : NormedSpace 𝕜₂ F inst✝¹⁹ : NormedSpace 𝕜 Fₗ inst✝¹⁸ : NormedSpace 𝕜₃ G inst✝¹⁷ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹⁶ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝¹⁵ : RingHomInvPair σ₁₂ σ₂₁ inst✝¹⁴ : RingHomInvPair σ₂₁ σ₁₂ E' : Type u_11 F' : Type u_12 inst✝¹³ : SeminormedAddCommGroup E' inst✝¹² : SeminormedAddCommGroup F' 𝕜₁' : Type u_13 𝕜₂' : Type u_14 inst✝¹¹ : NontriviallyNormedField 𝕜₁' inst✝¹⁰ : NontriviallyNormedField 𝕜₂' inst✝⁹ : NormedSpace 𝕜₁' E' inst✝⁸ : NormedSpace 𝕜₂' F' σ₁' : 𝕜₁' →+* 𝕜 σ₁₃' : 𝕜₁' →+* 𝕜₃ σ₂' : 𝕜₂' →+* 𝕜₂ σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁' σ₁₃ σ₁₃' inst✝⁶ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁵ : RingHomIsometric σ₂₃ inst✝⁴ : RingHomIsometric σ₁₃' inst✝³ : RingHomIsometric σ₂₃' inst✝² : RingHomIsometric σ₁₃ inst✝¹ : RingHomIsometric σ₁' inst✝ : RingHomIsometric σ₂' f : E →L[𝕜] Fₗ →L[𝕜] Gₗ x x' : E y y' : Fₗ ⊢ ↑(↑f x) y + (↑(↑f x') y + (↑(↑f x) y' + ↑(↑f x') y')) = ↑(↑f x) y + (↑(↑f x) y' + (↑(↑f x') y + ↑(↑f x') y')) [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝³¹ : SeminormedAddCommGroup E inst✝³⁰ : SeminormedAddCommGroup Eₗ inst✝²⁹ : SeminormedAddCommGroup F inst✝²⁸ : SeminormedAddCommGroup Fₗ inst✝²⁷ : SeminormedAddCommGroup G inst✝²⁶ : SeminormedAddCommGroup Gₗ inst✝²⁵ : NontriviallyNormedField 𝕜 inst✝²⁴ : NontriviallyNormedField 𝕜₂ inst✝²³ : NontriviallyNormedField 𝕜₃ inst✝²² : NormedSpace 𝕜 E inst✝²¹ : NormedSpace 𝕜 Eₗ inst✝²⁰ : NormedSpace 𝕜₂ F inst✝¹⁹ : NormedSpace 𝕜 Fₗ inst✝¹⁸ : NormedSpace 𝕜₃ G inst✝¹⁷ : NormedSpace 𝕜 Gₗ σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹⁶ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝¹⁵ : RingHomInvPair σ₁₂ σ₂₁ inst✝¹⁴ : RingHomInvPair σ₂₁ σ₁₂ E' : Type u_11 F' : Type u_12 inst✝¹³ : SeminormedAddCommGroup E' inst✝¹² : SeminormedAddCommGroup F' 𝕜₁' : Type u_13 𝕜₂' : Type u_14 inst✝¹¹ : NontriviallyNormedField 𝕜₁' inst✝¹⁰ : NontriviallyNormedField 𝕜₂' inst✝⁹ : NormedSpace 𝕜₁' E' inst✝⁸ : NormedSpace 𝕜₂' F' σ₁' : 𝕜₁' →+* 𝕜 σ₁₃' : 𝕜₁' →+* 𝕜₃ σ₂' : 𝕜₂' →+* 𝕜₂ σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomCompTriple σ₁' σ₁₃ σ₁₃' inst✝⁶ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁵ : RingHomIsometric σ₂₃ inst✝⁴ : RingHomIsometric σ₁₃' inst✝³ : RingHomIsometric σ₂₃' inst✝² : RingHomIsometric σ₁₃ inst✝¹ : RingHomIsometric σ₁' inst✝ : RingHomIsometric σ₂' f : E →L[𝕜] Fₗ →L[𝕜] Gₗ x x' : E y y' : Fₗ ⊢ ↑(↑f x) y + (↑(↑f x') y + (↑(↑f x) y' + ↑(↑f x') y')) = ↑(↑f x) y + (↑(↑f x) y' + (↑(↑f x') y + ↑(↑f x') y')) [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E inst✝ : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F ε C : ℝ ε_pos : 0 < ε c : 𝕜 hc : 1 < ‖c‖ hf : ∀ (x : E), ε / ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖↑f x‖ ≤ C * ‖x‖ x : E ⊢ ‖↑f x‖ ≤ C * ‖x‖ [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E inst✝ : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F ε C : ℝ ε_pos : 0 < ε c : 𝕜 hc : 1 < ‖c‖ hf : ∀ (x : E), ε / ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖↑f x‖ ≤ C * ‖x‖ x : E hx : x = 0 ⊢ ‖↑f x‖ ≤ C * ‖x‖ [PROOFSTEP] simp [hx] [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E inst✝ : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F ε C : ℝ ε_pos : 0 < ε c : 𝕜 hc : 1 < ‖c‖ hf : ∀ (x : E), ε / ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖↑f x‖ ≤ C * ‖x‖ x : E hx : ¬x = 0 ⊢ ‖↑f x‖ ≤ C * ‖x‖ [PROOFSTEP] exact SemilinearMapClass.bound_of_shell_semi_normed f ε_pos hc hf (ne_of_lt (norm_pos_iff.2 hx)).symm [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E r : ℝ r_pos : 0 < r c : ℝ f : E →ₗ[𝕜] Fₗ h : ∀ (z : E), z ∈ ball 0 r → ‖↑f z‖ ≤ c ⊢ ∃ C, ∀ (z : E), ‖↑f z‖ ≤ C * ‖z‖ [PROOFSTEP] cases' @NontriviallyNormedField.non_trivial 𝕜 _ with k hk [GOAL] case intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E r : ℝ r_pos : 0 < r c : ℝ f : E →ₗ[𝕜] Fₗ h : ∀ (z : E), z ∈ ball 0 r → ‖↑f z‖ ≤ c k : 𝕜 hk : 1 < ‖k‖ ⊢ ∃ C, ∀ (z : E), ‖↑f z‖ ≤ C * ‖z‖ [PROOFSTEP] use c * (‖k‖ / r) [GOAL] case h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E r : ℝ r_pos : 0 < r c : ℝ f : E →ₗ[𝕜] Fₗ h : ∀ (z : E), z ∈ ball 0 r → ‖↑f z‖ ≤ c k : 𝕜 hk : 1 < ‖k‖ ⊢ ∀ (z : E), ‖↑f z‖ ≤ c * (‖k‖ / r) * ‖z‖ [PROOFSTEP] intro z [GOAL] case h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z✝ : E r : ℝ r_pos : 0 < r c : ℝ f : E →ₗ[𝕜] Fₗ h : ∀ (z : E), z ∈ ball 0 r → ‖↑f z‖ ≤ c k : 𝕜 hk : 1 < ‖k‖ z : E ⊢ ‖↑f z‖ ≤ c * (‖k‖ / r) * ‖z‖ [PROOFSTEP] refine' bound_of_shell _ r_pos hk (fun x hko hxo => _) _ [GOAL] case h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z✝ : E r : ℝ r_pos : 0 < r c : ℝ f : E →ₗ[𝕜] Fₗ h : ∀ (z : E), z ∈ ball 0 r → ‖↑f z‖ ≤ c k : 𝕜 hk : 1 < ‖k‖ z x : E hko : r / ‖k‖ ≤ ‖x‖ hxo : ‖x‖ < r ⊢ ‖↑f x‖ ≤ c * (‖k‖ / r) * ‖x‖ [PROOFSTEP] calc ‖f x‖ ≤ c := h _ (mem_ball_zero_iff.mpr hxo) _ ≤ c * (‖x‖ * ‖k‖ / r) := (le_mul_of_one_le_right ?_ ?_) _ = _ := by ring [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z✝ : E r : ℝ r_pos : 0 < r c : ℝ f : E →ₗ[𝕜] Fₗ h : ∀ (z : E), z ∈ ball 0 r → ‖↑f z‖ ≤ c k : 𝕜 hk : 1 < ‖k‖ z x : E hko : r / ‖k‖ ≤ ‖x‖ hxo : ‖x‖ < r ⊢ c * (‖x‖ * ‖k‖ / r) = c * (‖k‖ / r) * ‖x‖ [PROOFSTEP] ring [GOAL] case h.calc_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z✝ : E r : ℝ r_pos : 0 < r c : ℝ f : E →ₗ[𝕜] Fₗ h : ∀ (z : E), z ∈ ball 0 r → ‖↑f z‖ ≤ c k : 𝕜 hk : 1 < ‖k‖ z x : E hko : r / ‖k‖ ≤ ‖x‖ hxo : ‖x‖ < r ⊢ 0 ≤ c [PROOFSTEP] exact le_trans (norm_nonneg _) (h 0 (by simp [r_pos])) [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z✝ : E r : ℝ r_pos : 0 < r c : ℝ f : E →ₗ[𝕜] Fₗ h : ∀ (z : E), z ∈ ball 0 r → ‖↑f z‖ ≤ c k : 𝕜 hk : 1 < ‖k‖ z x : E hko : r / ‖k‖ ≤ ‖x‖ hxo : ‖x‖ < r ⊢ 0 ∈ ball 0 r [PROOFSTEP] simp [r_pos] [GOAL] case h.calc_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z✝ : E r : ℝ r_pos : 0 < r c : ℝ f : E →ₗ[𝕜] Fₗ h : ∀ (z : E), z ∈ ball 0 r → ‖↑f z‖ ≤ c k : 𝕜 hk : 1 < ‖k‖ z x : E hko : r / ‖k‖ ≤ ‖x‖ hxo : ‖x‖ < r ⊢ 1 ≤ ‖x‖ * ‖k‖ / r [PROOFSTEP] rw [div_le_iff (zero_lt_one.trans hk)] at hko [GOAL] case h.calc_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z✝ : E r : ℝ r_pos : 0 < r c : ℝ f : E →ₗ[𝕜] Fₗ h : ∀ (z : E), z ∈ ball 0 r → ‖↑f z‖ ≤ c k : 𝕜 hk : 1 < ‖k‖ z x : E hko : r ≤ ‖x‖ * ‖k‖ hxo : ‖x‖ < r ⊢ 1 ≤ ‖x‖ * ‖k‖ / r [PROOFSTEP] exact (one_le_div r_pos).mpr hko [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ⊢ ∃ K, AntilipschitzWith K ↑f [PROOFSTEP] rcases((nhds_basis_ball.comap _).le_basis_iff nhds_basis_ball).1 hf 1 one_pos with ⟨ε, ε0, hε⟩ [GOAL] case intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ ε0 : 0 < ε hε : ↑f ⁻¹' ball 0 ε ⊆ ball 0 1 ⊢ ∃ K, AntilipschitzWith K ↑f [PROOFSTEP] simp only [Set.subset_def, Set.mem_preimage, mem_ball_zero_iff] at hε [GOAL] case intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ ε0 : 0 < ε hε : ∀ (x : E), ‖↑f x‖ < ε → ‖x‖ < 1 ⊢ ∃ K, AntilipschitzWith K ↑f [PROOFSTEP] lift ε to ℝ≥0 using ε0.le [GOAL] case intro.intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 ⊢ ∃ K, AntilipschitzWith K ↑f [PROOFSTEP] rcases NormedField.exists_one_lt_norm 𝕜 with ⟨c, hc⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖c‖ ⊢ ∃ K, AntilipschitzWith K ↑f [PROOFSTEP] refine' ⟨ε⁻¹ * ‖c‖₊, AddMonoidHomClass.antilipschitz_of_bound f fun x => _⟩ [GOAL] case intro.intro.intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖c‖ x : E ⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖↑f x‖ [PROOFSTEP] by_cases hx : f x = 0 [GOAL] case pos 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖c‖ x : E hx : ↑f x = 0 ⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖↑f x‖ [PROOFSTEP] rw [← hx] at hf [GOAL] case pos 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖c‖ x : E hf : Filter.comap (↑f) (𝓝 (↑f x)) ≤ 𝓝 0 hx : ↑f x = 0 ⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖↑f x‖ [PROOFSTEP] obtain rfl : x = 0 := Specializes.eq (specializes_iff_pure.2 <| ((Filter.tendsto_pure_pure _ _).mono_right (pure_le_nhds _)).le_comap.trans hf) [GOAL] case pos 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖c‖ hf : Filter.comap (↑f) (𝓝 (↑f 0)) ≤ 𝓝 0 hx : ↑f 0 = 0 ⊢ ‖0‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖↑f 0‖ [PROOFSTEP] exact norm_zero.trans_le (mul_nonneg (NNReal.coe_nonneg _) (norm_nonneg _)) [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖c‖ x : E hx : ¬↑f x = 0 ⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖↑f x‖ [PROOFSTEP] have hc₀ : c ≠ 0 := norm_pos_iff.1 (one_pos.trans hc) [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖c‖ x : E hx : ¬↑f x = 0 hc₀ : c ≠ 0 ⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖↑f x‖ [PROOFSTEP] rw [← h.1] at hc [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖↑σ₁₂ c‖ x : E hx : ¬↑f x = 0 hc₀ : c ≠ 0 ⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖↑f x‖ [PROOFSTEP] rcases rescale_to_shell_zpow hc ε0 hx with ⟨n, -, hlt, -, hle⟩ [GOAL] case neg.intro.intro.intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖↑σ₁₂ c‖ x : E hx : ¬↑f x = 0 hc₀ : c ≠ 0 n : ℤ hlt : ‖↑σ₁₂ c ^ n • ↑f x‖ < ↑ε hle : ‖↑σ₁₂ c ^ n‖⁻¹ ≤ (↑ε)⁻¹ * ‖↑σ₁₂ c‖ * ‖↑f x‖ ⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖↑f x‖ [PROOFSTEP] simp only [← map_zpow₀, h.1, ← map_smulₛₗ] at hlt hle [GOAL] case neg.intro.intro.intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖↑σ₁₂ c‖ x : E hx : ¬↑f x = 0 hc₀ : c ≠ 0 n : ℤ hlt : ‖↑f (c ^ n • x)‖ < ↑ε hle : ‖c ^ n‖⁻¹ ≤ (↑ε)⁻¹ * ‖c‖ * ‖↑f x‖ ⊢ ‖x‖ ≤ ↑(ε⁻¹ * ‖c‖₊) * ‖↑f x‖ [PROOFSTEP] calc ‖x‖ = ‖c ^ n‖⁻¹ * ‖c ^ n • x‖ := by rwa [← norm_inv, ← norm_smul, inv_smul_smul₀ (zpow_ne_zero _ _)] _ ≤ ‖c ^ n‖⁻¹ * 1 := (mul_le_mul_of_nonneg_left (hε _ hlt).le (inv_nonneg.2 (norm_nonneg _))) _ ≤ ε⁻¹ * ‖c‖ * ‖f x‖ := by rwa [mul_one] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖↑σ₁₂ c‖ x : E hx : ¬↑f x = 0 hc₀ : c ≠ 0 n : ℤ hlt : ‖↑f (c ^ n • x)‖ < ↑ε hle : ‖c ^ n‖⁻¹ ≤ (↑ε)⁻¹ * ‖c‖ * ‖↑f x‖ ⊢ ‖x‖ = ‖c ^ n‖⁻¹ * ‖c ^ n • x‖ [PROOFSTEP] rwa [← norm_inv, ← norm_smul, inv_smul_smul₀ (zpow_ne_zero _ _)] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NontriviallyNormedField 𝕜₃ inst✝³ : NormedSpace 𝕜 E inst✝² : NormedSpace 𝕜₂ F inst✝¹ : NormedSpace 𝕜₃ G inst✝ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E h : RingHomIsometric σ₁₂ f : E →ₛₗ[σ₁₂] F hf : Filter.comap (↑f) (𝓝 0) ≤ 𝓝 0 ε : ℝ≥0 ε0 : 0 < ↑ε hε : ∀ (x : E), ‖↑f x‖ < ↑ε → ‖x‖ < 1 c : 𝕜 hc : 1 < ‖↑σ₁₂ c‖ x : E hx : ¬↑f x = 0 hc₀ : c ≠ 0 n : ℤ hlt : ‖↑f (c ^ n • x)‖ < ↑ε hle : ‖c ^ n‖⁻¹ ≤ (↑ε)⁻¹ * ‖c‖ * ‖↑f x‖ ⊢ ‖c ^ n‖⁻¹ * 1 ≤ ↑ε⁻¹ * ‖c‖ * ‖↑f x‖ [PROOFSTEP] rwa [mul_one] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x✝ y z : E inst✝ : RingHomIsometric σ₁₂ hn : ‖f‖ = 0 x : E ⊢ ‖f‖ * ‖x‖ = 0 [PROOFSTEP] rw [hn, zero_mul] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝ : RingHomIsometric σ₁₂ ⊢ f = 0 → ‖f‖ = 0 [PROOFSTEP] rintro rfl [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ g : E →SL[σ₁₂] F x y z : E inst✝ : RingHomIsometric σ₁₂ ⊢ ‖0‖ = 0 [PROOFSTEP] exact op_norm_zero [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝ : Nontrivial E ⊢ ‖id 𝕜 E‖ = 1 [PROOFSTEP] refine' norm_id_of_nontrivial_seminorm _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝ : Nontrivial E ⊢ ∃ x, ‖x‖ ≠ 0 [PROOFSTEP] obtain ⟨x, hx⟩ := exists_ne (0 : E) [GOAL] case intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x✝ y z : E inst✝ : Nontrivial E x : E hx : x ≠ 0 ⊢ ∃ x, ‖x‖ ≠ 0 [PROOFSTEP] exact ⟨x, ne_of_gt (norm_pos_iff.2 hx)⟩ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E inst✝¹ : RingHomIsometric σ₁₂ inst✝ : Nontrivial E f : E →SL[σ₁₂] F a : ℝ hf : ∀ (x : E), ‖↑f x‖ = a * ‖x‖ ⊢ ‖f‖ = a [PROOFSTEP] obtain ⟨x, hx⟩ : ∃ x : E, x ≠ 0 := exists_ne 0 [GOAL] case intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E inst✝¹ : RingHomIsometric σ₁₂ inst✝ : Nontrivial E f : E →SL[σ₁₂] F a : ℝ hf : ∀ (x : E), ‖↑f x‖ = a * ‖x‖ x : E hx : x ≠ 0 ⊢ ‖f‖ = a [PROOFSTEP] rw [← norm_pos_iff] at hx [GOAL] case intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E inst✝¹ : RingHomIsometric σ₁₂ inst✝ : Nontrivial E f : E →SL[σ₁₂] F a : ℝ hf : ∀ (x : E), ‖↑f x‖ = a * ‖x‖ x : E hx : 0 < ‖x‖ ⊢ ‖f‖ = a [PROOFSTEP] have ha : 0 ≤ a := by simpa only [hf, hx, zero_le_mul_right] using norm_nonneg (f x) [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E inst✝¹ : RingHomIsometric σ₁₂ inst✝ : Nontrivial E f : E →SL[σ₁₂] F a : ℝ hf : ∀ (x : E), ‖↑f x‖ = a * ‖x‖ x : E hx : 0 < ‖x‖ ⊢ 0 ≤ a [PROOFSTEP] simpa only [hf, hx, zero_le_mul_right] using norm_nonneg (f x) [GOAL] case intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E inst✝¹ : RingHomIsometric σ₁₂ inst✝ : Nontrivial E f : E →SL[σ₁₂] F a : ℝ hf : ∀ (x : E), ‖↑f x‖ = a * ‖x‖ x : E hx : 0 < ‖x‖ ha : 0 ≤ a ⊢ ‖f‖ = a [PROOFSTEP] apply le_antisymm (f.op_norm_le_bound ha fun y => le_of_eq (hf y)) [GOAL] case intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E inst✝¹ : RingHomIsometric σ₁₂ inst✝ : Nontrivial E f : E →SL[σ₁₂] F a : ℝ hf : ∀ (x : E), ‖↑f x‖ = a * ‖x‖ x : E hx : 0 < ‖x‖ ha : 0 ≤ a ⊢ a ≤ ‖f‖ [PROOFSTEP] simpa only [hf, hx, mul_le_mul_right] using f.le_op_norm x [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : E' → F s : Set (E' →SL[σ₁₂] F) hs : Metric.Bounded s hf : f ∈ closure (FunLike.coe '' s) ⊢ E' →SL[σ₁₂] F [PROOFSTEP] refine' (linearMapOfMemClosureRangeCoe f _).mkContinuousOfExistsBound _ [GOAL] case refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : E' → F s : Set (E' →SL[σ₁₂] F) hs : Metric.Bounded s hf : f ∈ closure (FunLike.coe '' s) ⊢ f ∈ closure (range FunLike.coe) [PROOFSTEP] refine' closure_mono (image_subset_iff.2 fun g _ => _) hf [GOAL] case refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : E' → F s : Set (E' →SL[σ₁₂] F) hs : Metric.Bounded s hf : f ∈ closure (FunLike.coe '' s) g : E' →SL[σ₁₂] F x✝ : g ∈ s ⊢ g ∈ FunLike.coe ⁻¹' range FunLike.coe [PROOFSTEP] exact ⟨g, rfl⟩ [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : E' → F s : Set (E' →SL[σ₁₂] F) hs : Metric.Bounded s hf : f ∈ closure (FunLike.coe '' s) ⊢ ∃ C, ∀ (x : E'), ‖↑(linearMapOfMemClosureRangeCoe f (_ : f ∈ closure (range FunLike.coe))) x‖ ≤ C * ‖x‖ [PROOFSTEP] rcases bounded_iff_forall_norm_le.1 hs with ⟨C, hC⟩ -- Then `‖g x‖ ≤ C * ‖x‖` for all `g ∈ s`, `x : E`, hence `‖f x‖ ≤ C * ‖x‖` for all `x`. [GOAL] case refine'_2.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : E' → F s : Set (E' →SL[σ₁₂] F) hs : Metric.Bounded s hf : f ∈ closure (FunLike.coe '' s) C : ℝ hC : ∀ (x : E' →SL[σ₁₂] F), x ∈ s → ‖x‖ ≤ C ⊢ ∃ C, ∀ (x : E'), ‖↑(linearMapOfMemClosureRangeCoe f (_ : f ∈ closure (range FunLike.coe))) x‖ ≤ C * ‖x‖ [PROOFSTEP] have : ∀ x, IsClosed {g : E' → F | ‖g x‖ ≤ C * ‖x‖} := fun x => isClosed_Iic.preimage (@continuous_apply E' (fun _ => F) _ x).norm [GOAL] case refine'_2.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : E' → F s : Set (E' →SL[σ₁₂] F) hs : Metric.Bounded s hf : f ∈ closure (FunLike.coe '' s) C : ℝ hC : ∀ (x : E' →SL[σ₁₂] F), x ∈ s → ‖x‖ ≤ C this : ∀ (x : E'), IsClosed {g | ‖g x‖ ≤ C * ‖x‖} ⊢ ∃ C, ∀ (x : E'), ‖↑(linearMapOfMemClosureRangeCoe f (_ : f ∈ closure (range FunLike.coe))) x‖ ≤ C * ‖x‖ [PROOFSTEP] refine' ⟨C, fun x => (this x).closure_subset_iff.2 (image_subset_iff.2 fun g hg => _) hf⟩ [GOAL] case refine'_2.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x✝ y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : E' → F s : Set (E' →SL[σ₁₂] F) hs : Metric.Bounded s hf : f ∈ closure (FunLike.coe '' s) C : ℝ hC : ∀ (x : E' →SL[σ₁₂] F), x ∈ s → ‖x‖ ≤ C this : ∀ (x : E'), IsClosed {g | ‖g x‖ ≤ C * ‖x‖} x : E' g : E' →SL[σ₁₂] F hg : g ∈ s ⊢ g ∈ FunLike.coe ⁻¹' {g | ‖g x‖ ≤ C * ‖x‖} [PROOFSTEP] exact g.le_of_op_norm_le (hC _ hg) _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : ℕ → E' →SL[σ₁₂] F g : E' →SL[σ₁₂] F hg : Tendsto (fun n x => ↑(f n) x) atTop (𝓝 ↑g) hf : CauchySeq f ⊢ Tendsto f atTop (𝓝 g) [PROOFSTEP] rcases cauchySeq_iff_le_tendsto_0.1 hf with ⟨b, hb₀, hfb, hb_lim⟩ -- Since `b → 0`, it suffices to show that `‖f n x - g x‖ ≤ b n * ‖x‖` for all `n` and `x`. [GOAL] case intro.intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : ℕ → E' →SL[σ₁₂] F g : E' →SL[σ₁₂] F hg : Tendsto (fun n x => ↑(f n) x) atTop (𝓝 ↑g) hf : CauchySeq f b : ℕ → ℝ hb₀ : ∀ (n : ℕ), 0 ≤ b n hfb : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N hb_lim : Tendsto b atTop (𝓝 0) ⊢ Tendsto f atTop (𝓝 g) [PROOFSTEP] suffices : ∀ n x, ‖f n x - g x‖ ≤ b n * ‖x‖ [GOAL] case intro.intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : ℕ → E' →SL[σ₁₂] F g : E' →SL[σ₁₂] F hg : Tendsto (fun n x => ↑(f n) x) atTop (𝓝 ↑g) hf : CauchySeq f b : ℕ → ℝ hb₀ : ∀ (n : ℕ), 0 ≤ b n hfb : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N hb_lim : Tendsto b atTop (𝓝 0) this : ∀ (n : ℕ) (x : E'), ‖↑(f n) x - ↑g x‖ ≤ b n * ‖x‖ ⊢ Tendsto f atTop (𝓝 g) case this 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : ℕ → E' →SL[σ₁₂] F g : E' →SL[σ₁₂] F hg : Tendsto (fun n x => ↑(f n) x) atTop (𝓝 ↑g) hf : CauchySeq f b : ℕ → ℝ hb₀ : ∀ (n : ℕ), 0 ≤ b n hfb : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N hb_lim : Tendsto b atTop (𝓝 0) ⊢ ∀ (n : ℕ) (x : E'), ‖↑(f n) x - ↑g x‖ ≤ b n * ‖x‖ [PROOFSTEP] exact tendsto_iff_norm_tendsto_zero.2 (squeeze_zero (fun n => norm_nonneg _) (fun n => op_norm_le_bound _ (hb₀ n) (this n)) hb_lim) [GOAL] case this 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : ℕ → E' →SL[σ₁₂] F g : E' →SL[σ₁₂] F hg : Tendsto (fun n x => ↑(f n) x) atTop (𝓝 ↑g) hf : CauchySeq f b : ℕ → ℝ hb₀ : ∀ (n : ℕ), 0 ≤ b n hfb : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N hb_lim : Tendsto b atTop (𝓝 0) ⊢ ∀ (n : ℕ) (x : E'), ‖↑(f n) x - ↑g x‖ ≤ b n * ‖x‖ [PROOFSTEP] intro n x [GOAL] case this 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x✝ y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : ℕ → E' →SL[σ₁₂] F g : E' →SL[σ₁₂] F hg : Tendsto (fun n x => ↑(f n) x) atTop (𝓝 ↑g) hf : CauchySeq f b : ℕ → ℝ hb₀ : ∀ (n : ℕ), 0 ≤ b n hfb : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N hb_lim : Tendsto b atTop (𝓝 0) n : ℕ x : E' ⊢ ‖↑(f n) x - ↑g x‖ ≤ b n * ‖x‖ [PROOFSTEP] have : Tendsto (fun m => ‖f n x - f m x‖) atTop (𝓝 ‖f n x - g x‖) := (tendsto_const_nhds.sub <| tendsto_pi_nhds.1 hg _).norm [GOAL] case this 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x✝ y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : ℕ → E' →SL[σ₁₂] F g : E' →SL[σ₁₂] F hg : Tendsto (fun n x => ↑(f n) x) atTop (𝓝 ↑g) hf : CauchySeq f b : ℕ → ℝ hb₀ : ∀ (n : ℕ), 0 ≤ b n hfb : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N hb_lim : Tendsto b atTop (𝓝 0) n : ℕ x : E' this : Tendsto (fun m => ‖↑(f n) x - ↑(f m) x‖) atTop (𝓝 ‖↑(f n) x - ↑g x‖) ⊢ ‖↑(f n) x - ↑g x‖ ≤ b n * ‖x‖ [PROOFSTEP] refine' le_of_tendsto this (eventually_atTop.2 ⟨n, fun m hm => _⟩) -- This inequality follows from `‖f n - f m‖ ≤ b n`. [GOAL] case this 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x✝ y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f : ℕ → E' →SL[σ₁₂] F g : E' →SL[σ₁₂] F hg : Tendsto (fun n x => ↑(f n) x) atTop (𝓝 ↑g) hf : CauchySeq f b : ℕ → ℝ hb₀ : ∀ (n : ℕ), 0 ≤ b n hfb : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N hb_lim : Tendsto b atTop (𝓝 0) n : ℕ x : E' this : Tendsto (fun m => ‖↑(f n) x - ↑(f m) x‖) atTop (𝓝 ‖↑(f n) x - ↑g x‖) m : ℕ hm : m ≥ n ⊢ ‖↑(f n) x - ↑(f m) x‖ ≤ b n * ‖x‖ [PROOFSTEP] exact (f n - f m).le_of_op_norm_le (hfb _ _ _ le_rfl hm) _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedAddCommGroup G inst✝¹¹ : NormedAddCommGroup Fₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜₃ G inst✝⁴ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝³ : SeminormedAddCommGroup E' inst✝² : NormedSpace 𝕜 E' inst✝¹ : RingHomIsometric σ₁₂ inst✝ : CompleteSpace F ⊢ CompleteSpace (E' →SL[σ₁₂] F) [PROOFSTEP] refine' Metric.complete_of_cauchySeq_tendsto fun f hf => _ -- The evaluation at any point `v : E` is Cauchy. [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedAddCommGroup G inst✝¹¹ : NormedAddCommGroup Fₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜₃ G inst✝⁴ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝³ : SeminormedAddCommGroup E' inst✝² : NormedSpace 𝕜 E' inst✝¹ : RingHomIsometric σ₁₂ inst✝ : CompleteSpace F f : ℕ → E' →SL[σ₁₂] F hf : CauchySeq f ⊢ ∃ a, Tendsto f atTop (𝓝 a) [PROOFSTEP] have cau : ∀ v, CauchySeq fun n => f n v := fun v => hf.map (lipschitz_apply v).uniformContinuous [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedAddCommGroup G inst✝¹¹ : NormedAddCommGroup Fₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜₃ G inst✝⁴ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝³ : SeminormedAddCommGroup E' inst✝² : NormedSpace 𝕜 E' inst✝¹ : RingHomIsometric σ₁₂ inst✝ : CompleteSpace F f : ℕ → E' →SL[σ₁₂] F hf : CauchySeq f cau : ∀ (v : E'), CauchySeq fun n => ↑(f n) v ⊢ ∃ a, Tendsto f atTop (𝓝 a) [PROOFSTEP] choose G hG using fun v => cauchySeq_tendsto_of_complete (cau v) -- Next, we show that this `G` is a continuous linear map. -- This is done in `ContinuousLinearMap.ofTendstoOfBoundedRange`. [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G✝ : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedAddCommGroup G✝ inst✝¹¹ : NormedAddCommGroup Fₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜₃ G✝ inst✝⁴ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝³ : SeminormedAddCommGroup E' inst✝² : NormedSpace 𝕜 E' inst✝¹ : RingHomIsometric σ₁₂ inst✝ : CompleteSpace F f : ℕ → E' →SL[σ₁₂] F hf : CauchySeq f cau : ∀ (v : E'), CauchySeq fun n => ↑(f n) v G : (v : E') → (fun x => F) v hG : ∀ (v : E'), Tendsto (fun n => ↑(f n) v) atTop (𝓝 (G v)) ⊢ ∃ a, Tendsto f atTop (𝓝 a) [PROOFSTEP] set Glin : E' →SL[σ₁₂] F := ofTendstoOfBoundedRange _ _ (tendsto_pi_nhds.mpr hG) hf.bounded_range [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G✝ : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedAddCommGroup G✝ inst✝¹¹ : NormedAddCommGroup Fₗ inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜₂ inst✝⁸ : NontriviallyNormedField 𝕜₃ inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜₂ F inst✝⁵ : NormedSpace 𝕜₃ G✝ inst✝⁴ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝³ : SeminormedAddCommGroup E' inst✝² : NormedSpace 𝕜 E' inst✝¹ : RingHomIsometric σ₁₂ inst✝ : CompleteSpace F f : ℕ → E' →SL[σ₁₂] F hf : CauchySeq f cau : ∀ (v : E'), CauchySeq fun n => ↑(f n) v G : (v : E') → (fun x => F) v hG : ∀ (v : E'), Tendsto (fun n => ↑(f n) v) atTop (𝓝 (G v)) Glin : E' →SL[σ₁₂] F := ofTendstoOfBoundedRange (fun x => G x) (fun i => f i) (_ : Tendsto (fun a x => ↑(f a) x) atTop (𝓝 fun x => G x)) (_ : Metric.Bounded (range f)) ⊢ ∃ a, Tendsto f atTop (𝓝 a) [PROOFSTEP] exact ⟨Glin, tendsto_of_tendsto_pointwise_of_cauchySeq (tendsto_pi_nhds.2 hG) hf⟩ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f₀ : E' →SL[σ₁₂] F r : ℝ f : E' →SL[σ₁₂] F hf : ↑f ∈ closure (FunLike.coe '' closedBall f₀ r) ⊢ f ∈ closedBall f₀ r [PROOFSTEP] have hr : 0 ≤ r := nonempty_closedBall.1 (nonempty_image_iff.1 (closure_nonempty_iff.1 ⟨_, hf⟩)) [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f₀ : E' →SL[σ₁₂] F r : ℝ f : E' →SL[σ₁₂] F hf : ↑f ∈ closure (FunLike.coe '' closedBall f₀ r) hr : 0 ≤ r ⊢ f ∈ closedBall f₀ r [PROOFSTEP] refine' mem_closedBall_iff_norm.2 (op_norm_le_bound _ hr fun x => _) [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f₀ : E' →SL[σ₁₂] F r : ℝ f : E' →SL[σ₁₂] F hf : ↑f ∈ closure (FunLike.coe '' closedBall f₀ r) hr : 0 ≤ r x : E' ⊢ ‖↑(f - f₀) x‖ ≤ r * ‖x‖ [PROOFSTEP] have : IsClosed {g : E' → F | ‖g x - f₀ x‖ ≤ r * ‖x‖} := isClosed_Iic.preimage ((@continuous_apply E' (fun _ => F) _ x).sub continuous_const).norm [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x✝ y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f₀ : E' →SL[σ₁₂] F r : ℝ f : E' →SL[σ₁₂] F hf : ↑f ∈ closure (FunLike.coe '' closedBall f₀ r) hr : 0 ≤ r x : E' this : IsClosed {g | ‖g x - ↑f₀ x‖ ≤ r * ‖x‖} ⊢ ‖↑(f - f₀) x‖ ≤ r * ‖x‖ [PROOFSTEP] refine' this.closure_subset_iff.2 (image_subset_iff.2 fun g hg => _) hf [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F inst✝⁴ : NormedSpace 𝕜₃ G inst✝³ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x✝ y z : E E' : Type u_11 inst✝² : SeminormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' inst✝ : RingHomIsometric σ₁₂ f₀ : E' →SL[σ₁₂] F r : ℝ f : E' →SL[σ₁₂] F hf : ↑f ∈ closure (FunLike.coe '' closedBall f₀ r) hr : 0 ≤ r x : E' this : IsClosed {g | ‖g x - ↑f₀ x‖ ≤ r * ‖x‖} g : E' →SL[σ₁₂] F hg : g ∈ closedBall f₀ r ⊢ g ∈ FunLike.coe ⁻¹' {g | ‖g x - ↑f₀ x‖ ≤ r * ‖x‖} [PROOFSTEP] exact (g - f₀).le_of_op_norm_le (mem_closedBall_iff_norm.1 hg) _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e h_e : UniformInducing ↑e cont : Continuous (DenseInducing.extend (_ : DenseInducing ↑e) ↑f) eq : ∀ (b : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e b) = ↑f b ⊢ ∀ (x y : Fₗ), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (x + y) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) x + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) y [PROOFSTEP] refine' h_dense.induction_on₂ _ _ [GOAL] case refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e h_e : UniformInducing ↑e cont : Continuous (DenseInducing.extend (_ : DenseInducing ↑e) ↑f) eq : ∀ (b : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e b) = ↑f b ⊢ IsClosed {q | DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (q.fst + q.snd) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) q.fst + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) q.snd} [PROOFSTEP] exact isClosed_eq (cont.comp continuous_add) ((cont.comp continuous_fst).add (cont.comp continuous_snd)) [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e h_e : UniformInducing ↑e cont : Continuous (DenseInducing.extend (_ : DenseInducing ↑e) ↑f) eq : ∀ (b : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e b) = ↑f b ⊢ ∀ (a₁ a₂ : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e a₁ + ↑e a₂) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e a₁) + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e a₂) [PROOFSTEP] intro x y [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x✝ y✝ z : E inst✝ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e h_e : UniformInducing ↑e cont : Continuous (DenseInducing.extend (_ : DenseInducing ↑e) ↑f) eq : ∀ (b : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e b) = ↑f b x y : E ⊢ DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e x + ↑e y) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e x) + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e y) [PROOFSTEP] simp only [eq, ← e.map_add] [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x✝ y✝ z : E inst✝ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e h_e : UniformInducing ↑e cont : Continuous (DenseInducing.extend (_ : DenseInducing ↑e) ↑f) eq : ∀ (b : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e b) = ↑f b x y : E ⊢ ↑f (x + y) = ↑f x + ↑f y [PROOFSTEP] exact f.map_add _ _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e h_e : UniformInducing ↑e cont : Continuous (DenseInducing.extend (_ : DenseInducing ↑e) ↑f) eq : ∀ (b : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e b) = ↑f b k : 𝕜 ⊢ ∀ (x : Fₗ), AddHom.toFun { toFun := DenseInducing.extend (_ : DenseInducing ↑e) ↑f, map_add' := (_ : ∀ (b₁ b₂ : Fₗ), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (b₁ + b₂) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₁ + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₂) } (k • x) = ↑σ₁₂ k • AddHom.toFun { toFun := DenseInducing.extend (_ : DenseInducing ↑e) ↑f, map_add' := (_ : ∀ (b₁ b₂ : Fₗ), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (b₁ + b₂) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₁ + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₂) } x [PROOFSTEP] refine' fun b => h_dense.induction_on b _ _ [GOAL] case refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e h_e : UniformInducing ↑e cont : Continuous (DenseInducing.extend (_ : DenseInducing ↑e) ↑f) eq : ∀ (b : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e b) = ↑f b k : 𝕜 b : Fₗ ⊢ IsClosed {b | AddHom.toFun { toFun := DenseInducing.extend (_ : DenseInducing ↑e) ↑f, map_add' := (_ : ∀ (b₁ b₂ : Fₗ), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (b₁ + b₂) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₁ + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₂) } (k • b) = ↑σ₁₂ k • AddHom.toFun { toFun := DenseInducing.extend (_ : DenseInducing ↑e) ↑f, map_add' := (_ : ∀ (b₁ b₂ : Fₗ), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (b₁ + b₂) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₁ + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₂) } b} [PROOFSTEP] exact isClosed_eq (cont.comp (continuous_const_smul _)) ((continuous_const_smul _).comp cont) [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e h_e : UniformInducing ↑e cont : Continuous (DenseInducing.extend (_ : DenseInducing ↑e) ↑f) eq : ∀ (b : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e b) = ↑f b k : 𝕜 b : Fₗ ⊢ ∀ (a : E), AddHom.toFun { toFun := DenseInducing.extend (_ : DenseInducing ↑e) ↑f, map_add' := (_ : ∀ (b₁ b₂ : Fₗ), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (b₁ + b₂) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₁ + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₂) } (k • ↑e a) = ↑σ₁₂ k • AddHom.toFun { toFun := DenseInducing.extend (_ : DenseInducing ↑e) ↑f, map_add' := (_ : ∀ (b₁ b₂ : Fₗ), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (b₁ + b₂) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₁ + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₂) } (↑e a) [PROOFSTEP] intro x [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x✝ y z : E inst✝ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e h_e : UniformInducing ↑e cont : Continuous (DenseInducing.extend (_ : DenseInducing ↑e) ↑f) eq : ∀ (b : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e b) = ↑f b k : 𝕜 b : Fₗ x : E ⊢ AddHom.toFun { toFun := DenseInducing.extend (_ : DenseInducing ↑e) ↑f, map_add' := (_ : ∀ (b₁ b₂ : Fₗ), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (b₁ + b₂) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₁ + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₂) } (k • ↑e x) = ↑σ₁₂ k • AddHom.toFun { toFun := DenseInducing.extend (_ : DenseInducing ↑e) ↑f, map_add' := (_ : ∀ (b₁ b₂ : Fₗ), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (b₁ + b₂) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₁ + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₂) } (↑e x) [PROOFSTEP] rw [← map_smul] [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x✝ y z : E inst✝ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e h_e : UniformInducing ↑e cont : Continuous (DenseInducing.extend (_ : DenseInducing ↑e) ↑f) eq : ∀ (b : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e b) = ↑f b k : 𝕜 b : Fₗ x : E ⊢ AddHom.toFun { toFun := DenseInducing.extend (_ : DenseInducing ↑e) ↑f, map_add' := (_ : ∀ (b₁ b₂ : Fₗ), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (b₁ + b₂) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₁ + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₂) } (↑e (k • x)) = ↑σ₁₂ k • AddHom.toFun { toFun := DenseInducing.extend (_ : DenseInducing ↑e) ↑f, map_add' := (_ : ∀ (b₁ b₂ : Fₗ), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (b₁ + b₂) = DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₁ + DenseInducing.extend (_ : DenseInducing ↑e) (↑f) b₂) } (↑e x) [PROOFSTEP] simp only [eq] [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜₃ G inst✝¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x✝ y z : E inst✝ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e h_e : UniformInducing ↑e cont : Continuous (DenseInducing.extend (_ : DenseInducing ↑e) ↑f) eq : ∀ (b : E), DenseInducing.extend (_ : DenseInducing ↑e) (↑f) (↑e b) = ↑f b k : 𝕜 b : Fₗ x : E ⊢ ↑f (k • x) = ↑σ₁₂ k • ↑f x [PROOFSTEP] exact ContinuousLinearMap.map_smulₛₗ _ _ _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ ⊢ ‖extend f e h_dense (_ : UniformInducing ↑e)‖ ≤ ↑N * ‖f‖ [PROOFSTEP] refine op_norm_le_bound _ ?_ (isClosed_property h_dense (isClosed_le ?_ ?_) fun x ↦ ?_) [GOAL] case refine_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ ⊢ 0 ≤ ↑N * ‖f‖ [PROOFSTEP] cases le_total 0 N with | inl hN => exact mul_nonneg hN (norm_nonneg _) | inr hN => have : Unique E := ⟨⟨0⟩, fun x ↦ norm_le_zero_iff.mp <| (h_e x).trans (mul_nonpos_of_nonpos_of_nonneg hN (norm_nonneg _))⟩ obtain rfl : f = 0 := Subsingleton.elim .. simp [GOAL] case refine_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ x✝ : 0 ≤ N ∨ N ≤ 0 ⊢ 0 ≤ ↑N * ‖f‖ [PROOFSTEP] cases le_total 0 N with | inl hN => exact mul_nonneg hN (norm_nonneg _) | inr hN => have : Unique E := ⟨⟨0⟩, fun x ↦ norm_le_zero_iff.mp <| (h_e x).trans (mul_nonpos_of_nonpos_of_nonneg hN (norm_nonneg _))⟩ obtain rfl : f = 0 := Subsingleton.elim .. simp [GOAL] case refine_1.inl 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ hN : 0 ≤ N ⊢ 0 ≤ ↑N * ‖f‖ [PROOFSTEP] | inl hN => exact mul_nonneg hN (norm_nonneg _) [GOAL] case refine_1.inl 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ hN : 0 ≤ N ⊢ 0 ≤ ↑N * ‖f‖ [PROOFSTEP] exact mul_nonneg hN (norm_nonneg _) [GOAL] case refine_1.inr 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ hN : N ≤ 0 ⊢ 0 ≤ ↑N * ‖f‖ [PROOFSTEP] | inr hN => have : Unique E := ⟨⟨0⟩, fun x ↦ norm_le_zero_iff.mp <| (h_e x).trans (mul_nonpos_of_nonpos_of_nonneg hN (norm_nonneg _))⟩ obtain rfl : f = 0 := Subsingleton.elim .. simp [GOAL] case refine_1.inr 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ hN : N ≤ 0 ⊢ 0 ≤ ↑N * ‖f‖ [PROOFSTEP] have : Unique E := ⟨⟨0⟩, fun x ↦ norm_le_zero_iff.mp <| (h_e x).trans (mul_nonpos_of_nonpos_of_nonneg hN (norm_nonneg _))⟩ [GOAL] case refine_1.inr 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ hN : N ≤ 0 this : Unique E ⊢ 0 ≤ ↑N * ‖f‖ [PROOFSTEP] obtain rfl : f = 0 := Subsingleton.elim .. [GOAL] case refine_1.inr 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ g : E →SL[σ₁₂] F x y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ hN : N ≤ 0 this : Unique E ⊢ 0 ≤ ↑N * ‖0‖ [PROOFSTEP] simp [GOAL] case refine_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ ⊢ Continuous fun x => ‖↑(extend f e h_dense (_ : UniformInducing ↑e)) x‖ [PROOFSTEP] exact (cont _).norm [GOAL] case refine_3 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ ⊢ Continuous fun x => ↑N * ‖f‖ * ‖x‖ [PROOFSTEP] exact continuous_const.mul continuous_norm [GOAL] case refine_4 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x✝ y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ x : E ⊢ ‖↑(extend f e h_dense (_ : UniformInducing ↑e)) (↑e x)‖ ≤ ↑N * ‖f‖ * ‖↑e x‖ [PROOFSTEP] rw [extend_eq] [GOAL] case refine_4 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x✝ y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ x : E ⊢ ‖↑f x‖ ≤ ↑N * ‖f‖ * ‖↑e x‖ [PROOFSTEP] calc ‖f x‖ ≤ ‖f‖ * ‖x‖ := le_op_norm _ _ _ ≤ ‖f‖ * (N * ‖e x‖) := (mul_le_mul_of_nonneg_left (h_e x) (norm_nonneg _)) _ ≤ N * ‖f‖ * ‖e x‖ := by rw [mul_comm ↑N ‖f‖, mul_assoc] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f g : E →SL[σ₁₂] F x✝ y z : E inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ↑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖↑e x‖ inst✝ : RingHomIsometric σ₁₂ x : E ⊢ ‖f‖ * (↑N * ‖↑e x‖) ≤ ↑N * ‖f‖ * ‖↑e x‖ [PROOFSTEP] rw [mul_comm ↑N ‖f‖, mul_assoc] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g : E →SL[σ₁₂] F x y z : E inst✝¹ : Nontrivial E inst✝ : RingHomIsometric σ₁₂ f : E →ₛₗᵢ[σ₁₂] F ⊢ ∀ (x : E), ‖↑(toContinuousLinearMap f) x‖ = 1 * ‖x‖ [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F inst✝³ : NormedSpace 𝕜₃ G inst✝² : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ f✝ g✝ : E →SL[σ₁₂] F x✝ y z : E σ₁₃ : 𝕜 →+* 𝕜₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomIsometric σ₁₂ f : F →ₛₗᵢ[σ₂₃] G g : E →SL[σ₁₂] F x : E ⊢ ‖↑(ContinuousLinearMap.comp (toContinuousLinearMap f) g) x‖ = ‖↑g x‖ [PROOFSTEP] simp only [norm_map, coe_toContinuousLinearMap, coe_comp', Function.comp_apply] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' f : F →SL[σ₂₃] G g : F' ≃ₛₗᵢ[σ₂'] F ⊢ ‖comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))‖ = ‖f‖ [PROOFSTEP] cases subsingleton_or_nontrivial F' [GOAL] case inl 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' f : F →SL[σ₂₃] G g : F' ≃ₛₗᵢ[σ₂'] F h✝ : Subsingleton F' ⊢ ‖comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))‖ = ‖f‖ [PROOFSTEP] haveI := g.symm.toLinearEquiv.toEquiv.subsingleton [GOAL] case inl 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' f : F →SL[σ₂₃] G g : F' ≃ₛₗᵢ[σ₂'] F h✝ : Subsingleton F' this : Subsingleton F ⊢ ‖comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))‖ = ‖f‖ [PROOFSTEP] simp [GOAL] case inr 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' f : F →SL[σ₂₃] G g : F' ≃ₛₗᵢ[σ₂'] F h✝ : Nontrivial F' ⊢ ‖comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))‖ = ‖f‖ [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case inr.refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' f : F →SL[σ₂₃] G g : F' ≃ₛₗᵢ[σ₂'] F h✝ : Nontrivial F' ⊢ ‖comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))‖ ≤ ‖f‖ [PROOFSTEP] convert f.op_norm_comp_le g.toLinearIsometry.toContinuousLinearMap [GOAL] case h.e'_4 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' f : F →SL[σ₂₃] G g : F' ≃ₛₗᵢ[σ₂'] F h✝ : Nontrivial F' ⊢ ‖f‖ = ‖f‖ * ‖LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g)‖ [PROOFSTEP] simp [g.toLinearIsometry.norm_toContinuousLinearMap] [GOAL] case inr.refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' f : F →SL[σ₂₃] G g : F' ≃ₛₗᵢ[σ₂'] F h✝ : Nontrivial F' ⊢ ‖f‖ ≤ ‖comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))‖ [PROOFSTEP] convert (f.comp g.toLinearIsometry.toContinuousLinearMap).op_norm_comp_le g.symm.toLinearIsometry.toContinuousLinearMap [GOAL] case h.e'_3.h.e'_3 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' f : F →SL[σ₂₃] G g : F' ≃ₛₗᵢ[σ₂'] F h✝ : Nontrivial F' ⊢ f = comp (comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))) (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry (LinearIsometryEquiv.symm g))) [PROOFSTEP] ext [GOAL] case h.e'_3.h.e'_3.h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' f : F →SL[σ₂₃] G g : F' ≃ₛₗᵢ[σ₂'] F h✝ : Nontrivial F' x✝ : F ⊢ ↑f x✝ = ↑(comp (comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))) (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry (LinearIsometryEquiv.symm g)))) x✝ [PROOFSTEP] simp [GOAL] case h.e'_4 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' f : F →SL[σ₂₃] G g : F' ≃ₛₗᵢ[σ₂'] F h✝ : Nontrivial F' ⊢ ‖comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))‖ = ‖comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))‖ * ‖LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry (LinearIsometryEquiv.symm g))‖ [PROOFSTEP] haveI := g.symm.surjective.nontrivial [GOAL] case h.e'_4 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' f : F →SL[σ₂₃] G g : F' ≃ₛₗᵢ[σ₂'] F h✝ : Nontrivial F' this : Nontrivial F ⊢ ‖comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))‖ = ‖comp f (LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry g))‖ * ‖LinearIsometry.toContinuousLinearMap (LinearIsometryEquiv.toLinearIsometry (LinearIsometryEquiv.symm g))‖ [PROOFSTEP] simp [g.symm.toLinearIsometry.norm_toContinuousLinearMap] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 f : Fₗ ⊢ ‖smulRight c f‖ = ‖c‖ * ‖f‖ [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 f : Fₗ ⊢ ‖smulRight c f‖ ≤ ‖c‖ * ‖f‖ [PROOFSTEP] refine' op_norm_le_bound _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) fun x => _ [GOAL] case refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 f : Fₗ x : E ⊢ ‖↑(smulRight c f) x‖ ≤ ‖c‖ * ‖f‖ * ‖x‖ [PROOFSTEP] calc ‖c x • f‖ = ‖c x‖ * ‖f‖ := norm_smul _ _ _ ≤ ‖c‖ * ‖x‖ * ‖f‖ := (mul_le_mul_of_nonneg_right (le_op_norm _ _) (norm_nonneg _)) _ = ‖c‖ * ‖f‖ * ‖x‖ := by ring [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 f : Fₗ x : E ⊢ ‖c‖ * ‖x‖ * ‖f‖ = ‖c‖ * ‖f‖ * ‖x‖ [PROOFSTEP] ring [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 f : Fₗ ⊢ ‖c‖ * ‖f‖ ≤ ‖smulRight c f‖ [PROOFSTEP] by_cases h : f = 0 [GOAL] case pos 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 f : Fₗ h : f = 0 ⊢ ‖c‖ * ‖f‖ ≤ ‖smulRight c f‖ [PROOFSTEP] simp [h] [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 f : Fₗ h : ¬f = 0 ⊢ ‖c‖ * ‖f‖ ≤ ‖smulRight c f‖ [PROOFSTEP] have : 0 < ‖f‖ := norm_pos_iff.2 h [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 f : Fₗ h : ¬f = 0 this : 0 < ‖f‖ ⊢ ‖c‖ * ‖f‖ ≤ ‖smulRight c f‖ [PROOFSTEP] rw [← le_div_iff this] [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 f : Fₗ h : ¬f = 0 this : 0 < ‖f‖ ⊢ ‖c‖ ≤ ‖smulRight c f‖ / ‖f‖ [PROOFSTEP] refine' op_norm_le_bound _ (div_nonneg (norm_nonneg _) (norm_nonneg f)) fun x => _ [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 f : Fₗ h : ¬f = 0 this : 0 < ‖f‖ x : E ⊢ ‖↑c x‖ ≤ ‖smulRight c f‖ / ‖f‖ * ‖x‖ [PROOFSTEP] rw [div_mul_eq_mul_div, le_div_iff this] [GOAL] case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 f : Fₗ h : ¬f = 0 this : 0 < ‖f‖ x : E ⊢ ‖↑c x‖ * ‖f‖ ≤ ‖smulRight c f‖ * ‖x‖ [PROOFSTEP] calc ‖c x‖ * ‖f‖ = ‖c x • f‖ := (norm_smul _ _).symm _ = ‖smulRight c f x‖ := rfl _ ≤ ‖smulRight c f‖ * ‖x‖ := le_op_norm _ _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c₁ c₂ : E →L[𝕜] 𝕜 ⊢ smulRightₗ (c₁ + c₂) = smulRightₗ c₁ + smulRightₗ c₂ [PROOFSTEP] ext x [GOAL] case h.h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c₁ c₂ : E →L[𝕜] 𝕜 x : Fₗ x✝ : E ⊢ ↑(↑(smulRightₗ (c₁ + c₂)) x) x✝ = ↑(↑(smulRightₗ c₁ + smulRightₗ c₂) x) x✝ [PROOFSTEP] simp only [add_smul, coe_smulRightₗ, add_apply, smulRight_apply, LinearMap.add_apply] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' m : 𝕜 c : E →L[𝕜] 𝕜 ⊢ AddHom.toFun { toFun := smulRightₗ, map_add' := (_ : ∀ (c₁ c₂ : E →L[𝕜] 𝕜), smulRightₗ (c₁ + c₂) = smulRightₗ c₁ + smulRightₗ c₂) } (m • c) = ↑(RingHom.id 𝕜) m • AddHom.toFun { toFun := smulRightₗ, map_add' := (_ : ∀ (c₁ c₂ : E →L[𝕜] 𝕜), smulRightₗ (c₁ + c₂) = smulRightₗ c₁ + smulRightₗ c₂) } c [PROOFSTEP] ext x [GOAL] case h.h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' m : 𝕜 c : E →L[𝕜] 𝕜 x : Fₗ x✝ : E ⊢ ↑(↑(AddHom.toFun { toFun := smulRightₗ, map_add' := (_ : ∀ (c₁ c₂ : E →L[𝕜] 𝕜), smulRightₗ (c₁ + c₂) = smulRightₗ c₁ + smulRightₗ c₂) } (m • c)) x) x✝ = ↑(↑(↑(RingHom.id 𝕜) m • AddHom.toFun { toFun := smulRightₗ, map_add' := (_ : ∀ (c₁ c₂ : E →L[𝕜] 𝕜), smulRightₗ (c₁ + c₂) = smulRightₗ c₁ + smulRightₗ c₂) } c) x) x✝ [PROOFSTEP] simp only [smul_smul, coe_smulRightₗ, Algebra.id.smul_eq_mul, coe_smul', smulRight_apply, LinearMap.smul_apply, RingHom.id_apply, Pi.smul_apply] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²¹ : NormedAddCommGroup E inst✝²⁰ : NormedAddCommGroup F inst✝¹⁹ : NormedAddCommGroup G inst✝¹⁸ : NormedAddCommGroup Fₗ inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : NontriviallyNormedField 𝕜₂ inst✝¹⁵ : NontriviallyNormedField 𝕜₃ inst✝¹⁴ : NormedSpace 𝕜 E inst✝¹³ : NormedSpace 𝕜₂ F inst✝¹² : NormedSpace 𝕜₃ G inst✝¹¹ : NormedSpace 𝕜 Fₗ c✝ : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁰ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝⁹ : NormedAddCommGroup F' inst✝⁸ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝⁷ : RingHomInvPair σ₂' σ₂'' inst✝⁶ : RingHomInvPair σ₂'' σ₂' inst✝⁵ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁴ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝³ : RingHomIsometric σ₂₃ inst✝² : RingHomIsometric σ₂' inst✝¹ : RingHomIsometric σ₂'' inst✝ : RingHomIsometric σ₂₃' c : E →L[𝕜] 𝕜 x : Fₗ ⊢ ‖↑(↑{ toAddHom := { toFun := smulRightₗ, map_add' := (_ : ∀ (c₁ c₂ : E →L[𝕜] 𝕜), smulRightₗ (c₁ + c₂) = smulRightₗ c₁ + smulRightₗ c₂) }, map_smul' := (_ : ∀ (m : 𝕜) (c : E →L[𝕜] 𝕜), AddHom.toFun { toFun := smulRightₗ, map_add' := (_ : ∀ (c₁ c₂ : E →L[𝕜] 𝕜), smulRightₗ (c₁ + c₂) = smulRightₗ c₁ + smulRightₗ c₂) } (m • c) = ↑(RingHom.id 𝕜) m • AddHom.toFun { toFun := smulRightₗ, map_add' := (_ : ∀ (c₁ c₂ : E →L[𝕜] 𝕜), smulRightₗ (c₁ + c₂) = smulRightₗ c₁ + smulRightₗ c₂) } c) } c) x‖ ≤ 1 * ‖c‖ * ‖x‖ [PROOFSTEP] simp only [coe_smulRightₗ, one_mul, norm_smulRight_apply, LinearMap.coe_mk, AddHom.coe_mk, le_refl] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : NormedAddCommGroup E inst✝²⁵ : NormedAddCommGroup F inst✝²⁴ : NormedAddCommGroup G inst✝²³ : NormedAddCommGroup Fₗ inst✝²² : NontriviallyNormedField 𝕜 inst✝²¹ : NontriviallyNormedField 𝕜₂ inst✝²⁰ : NontriviallyNormedField 𝕜₃ inst✝¹⁹ : NormedSpace 𝕜 E inst✝¹⁸ : NormedSpace 𝕜₂ F inst✝¹⁷ : NormedSpace 𝕜₃ G inst✝¹⁶ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁵ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝¹⁴ : NormedAddCommGroup F' inst✝¹³ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝¹² : RingHomInvPair σ₂' σ₂'' inst✝¹¹ : RingHomInvPair σ₂'' σ₂' inst✝¹⁰ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁹ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝⁸ : RingHomIsometric σ₂₃ inst✝⁷ : RingHomIsometric σ₂' inst✝⁶ : RingHomIsometric σ₂'' inst✝⁵ : RingHomIsometric σ₂₃' 𝕜' : Type u_13 inst✝⁴ : NormedField 𝕜' inst✝³ : NormedAlgebra 𝕜 𝕜' inst✝² : NormedSpace 𝕜' E inst✝¹ : IsScalarTower 𝕜 𝕜' E inst✝ : Nontrivial E ⊢ ‖lsmul 𝕜 𝕜'‖ = 1 [PROOFSTEP] refine' ContinuousLinearMap.op_norm_eq_of_bounds zero_le_one (fun x => _) fun N _ h => _ [GOAL] case refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : NormedAddCommGroup E inst✝²⁵ : NormedAddCommGroup F inst✝²⁴ : NormedAddCommGroup G inst✝²³ : NormedAddCommGroup Fₗ inst✝²² : NontriviallyNormedField 𝕜 inst✝²¹ : NontriviallyNormedField 𝕜₂ inst✝²⁰ : NontriviallyNormedField 𝕜₃ inst✝¹⁹ : NormedSpace 𝕜 E inst✝¹⁸ : NormedSpace 𝕜₂ F inst✝¹⁷ : NormedSpace 𝕜₃ G inst✝¹⁶ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁵ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝¹⁴ : NormedAddCommGroup F' inst✝¹³ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝¹² : RingHomInvPair σ₂' σ₂'' inst✝¹¹ : RingHomInvPair σ₂'' σ₂' inst✝¹⁰ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁹ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝⁸ : RingHomIsometric σ₂₃ inst✝⁷ : RingHomIsometric σ₂' inst✝⁶ : RingHomIsometric σ₂'' inst✝⁵ : RingHomIsometric σ₂₃' 𝕜' : Type u_13 inst✝⁴ : NormedField 𝕜' inst✝³ : NormedAlgebra 𝕜 𝕜' inst✝² : NormedSpace 𝕜' E inst✝¹ : IsScalarTower 𝕜 𝕜' E inst✝ : Nontrivial E x : 𝕜' ⊢ ‖↑(lsmul 𝕜 𝕜') x‖ ≤ 1 * ‖x‖ [PROOFSTEP] rw [one_mul] [GOAL] case refine'_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : NormedAddCommGroup E inst✝²⁵ : NormedAddCommGroup F inst✝²⁴ : NormedAddCommGroup G inst✝²³ : NormedAddCommGroup Fₗ inst✝²² : NontriviallyNormedField 𝕜 inst✝²¹ : NontriviallyNormedField 𝕜₂ inst✝²⁰ : NontriviallyNormedField 𝕜₃ inst✝¹⁹ : NormedSpace 𝕜 E inst✝¹⁸ : NormedSpace 𝕜₂ F inst✝¹⁷ : NormedSpace 𝕜₃ G inst✝¹⁶ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁵ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝¹⁴ : NormedAddCommGroup F' inst✝¹³ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝¹² : RingHomInvPair σ₂' σ₂'' inst✝¹¹ : RingHomInvPair σ₂'' σ₂' inst✝¹⁰ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁹ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝⁸ : RingHomIsometric σ₂₃ inst✝⁷ : RingHomIsometric σ₂' inst✝⁶ : RingHomIsometric σ₂'' inst✝⁵ : RingHomIsometric σ₂₃' 𝕜' : Type u_13 inst✝⁴ : NormedField 𝕜' inst✝³ : NormedAlgebra 𝕜 𝕜' inst✝² : NormedSpace 𝕜' E inst✝¹ : IsScalarTower 𝕜 𝕜' E inst✝ : Nontrivial E x : 𝕜' ⊢ ‖↑(lsmul 𝕜 𝕜') x‖ ≤ ‖x‖ [PROOFSTEP] apply op_norm_lsmul_apply_le [GOAL] case refine'_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : NormedAddCommGroup E inst✝²⁵ : NormedAddCommGroup F inst✝²⁴ : NormedAddCommGroup G inst✝²³ : NormedAddCommGroup Fₗ inst✝²² : NontriviallyNormedField 𝕜 inst✝²¹ : NontriviallyNormedField 𝕜₂ inst✝²⁰ : NontriviallyNormedField 𝕜₃ inst✝¹⁹ : NormedSpace 𝕜 E inst✝¹⁸ : NormedSpace 𝕜₂ F inst✝¹⁷ : NormedSpace 𝕜₃ G inst✝¹⁶ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁵ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝¹⁴ : NormedAddCommGroup F' inst✝¹³ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝¹² : RingHomInvPair σ₂' σ₂'' inst✝¹¹ : RingHomInvPair σ₂'' σ₂' inst✝¹⁰ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁹ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝⁸ : RingHomIsometric σ₂₃ inst✝⁷ : RingHomIsometric σ₂' inst✝⁶ : RingHomIsometric σ₂'' inst✝⁵ : RingHomIsometric σ₂₃' 𝕜' : Type u_13 inst✝⁴ : NormedField 𝕜' inst✝³ : NormedAlgebra 𝕜 𝕜' inst✝² : NormedSpace 𝕜' E inst✝¹ : IsScalarTower 𝕜 𝕜' E inst✝ : Nontrivial E N : ℝ x✝ : N ≥ 0 h : ∀ (x : 𝕜'), ‖↑(lsmul 𝕜 𝕜') x‖ ≤ N * ‖x‖ ⊢ 1 ≤ N [PROOFSTEP] obtain ⟨y, hy⟩ := exists_ne (0 : E) [GOAL] case refine'_2.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : NormedAddCommGroup E inst✝²⁵ : NormedAddCommGroup F inst✝²⁴ : NormedAddCommGroup G inst✝²³ : NormedAddCommGroup Fₗ inst✝²² : NontriviallyNormedField 𝕜 inst✝²¹ : NontriviallyNormedField 𝕜₂ inst✝²⁰ : NontriviallyNormedField 𝕜₃ inst✝¹⁹ : NormedSpace 𝕜 E inst✝¹⁸ : NormedSpace 𝕜₂ F inst✝¹⁷ : NormedSpace 𝕜₃ G inst✝¹⁶ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁵ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝¹⁴ : NormedAddCommGroup F' inst✝¹³ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝¹² : RingHomInvPair σ₂' σ₂'' inst✝¹¹ : RingHomInvPair σ₂'' σ₂' inst✝¹⁰ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁹ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝⁸ : RingHomIsometric σ₂₃ inst✝⁷ : RingHomIsometric σ₂' inst✝⁶ : RingHomIsometric σ₂'' inst✝⁵ : RingHomIsometric σ₂₃' 𝕜' : Type u_13 inst✝⁴ : NormedField 𝕜' inst✝³ : NormedAlgebra 𝕜 𝕜' inst✝² : NormedSpace 𝕜' E inst✝¹ : IsScalarTower 𝕜 𝕜' E inst✝ : Nontrivial E N : ℝ x✝ : N ≥ 0 h : ∀ (x : 𝕜'), ‖↑(lsmul 𝕜 𝕜') x‖ ≤ N * ‖x‖ y : E hy : y ≠ 0 ⊢ 1 ≤ N [PROOFSTEP] have := le_of_op_norm_le _ (h 1) y [GOAL] case refine'_2.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : NormedAddCommGroup E inst✝²⁵ : NormedAddCommGroup F inst✝²⁴ : NormedAddCommGroup G inst✝²³ : NormedAddCommGroup Fₗ inst✝²² : NontriviallyNormedField 𝕜 inst✝²¹ : NontriviallyNormedField 𝕜₂ inst✝²⁰ : NontriviallyNormedField 𝕜₃ inst✝¹⁹ : NormedSpace 𝕜 E inst✝¹⁸ : NormedSpace 𝕜₂ F inst✝¹⁷ : NormedSpace 𝕜₃ G inst✝¹⁶ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁵ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝¹⁴ : NormedAddCommGroup F' inst✝¹³ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝¹² : RingHomInvPair σ₂' σ₂'' inst✝¹¹ : RingHomInvPair σ₂'' σ₂' inst✝¹⁰ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁹ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝⁸ : RingHomIsometric σ₂₃ inst✝⁷ : RingHomIsometric σ₂' inst✝⁶ : RingHomIsometric σ₂'' inst✝⁵ : RingHomIsometric σ₂₃' 𝕜' : Type u_13 inst✝⁴ : NormedField 𝕜' inst✝³ : NormedAlgebra 𝕜 𝕜' inst✝² : NormedSpace 𝕜' E inst✝¹ : IsScalarTower 𝕜 𝕜' E inst✝ : Nontrivial E N : ℝ x✝ : N ≥ 0 h : ∀ (x : 𝕜'), ‖↑(lsmul 𝕜 𝕜') x‖ ≤ N * ‖x‖ y : E hy : y ≠ 0 this : ‖↑(↑(lsmul 𝕜 𝕜') 1) y‖ ≤ N * ‖1‖ * ‖y‖ ⊢ 1 ≤ N [PROOFSTEP] simp_rw [lsmul_apply, one_smul, norm_one, mul_one] at this [GOAL] case refine'_2.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : NormedAddCommGroup E inst✝²⁵ : NormedAddCommGroup F inst✝²⁴ : NormedAddCommGroup G inst✝²³ : NormedAddCommGroup Fₗ inst✝²² : NontriviallyNormedField 𝕜 inst✝²¹ : NontriviallyNormedField 𝕜₂ inst✝²⁰ : NontriviallyNormedField 𝕜₃ inst✝¹⁹ : NormedSpace 𝕜 E inst✝¹⁸ : NormedSpace 𝕜₂ F inst✝¹⁷ : NormedSpace 𝕜₃ G inst✝¹⁶ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁵ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝¹⁴ : NormedAddCommGroup F' inst✝¹³ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝¹² : RingHomInvPair σ₂' σ₂'' inst✝¹¹ : RingHomInvPair σ₂'' σ₂' inst✝¹⁰ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁹ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝⁸ : RingHomIsometric σ₂₃ inst✝⁷ : RingHomIsometric σ₂' inst✝⁶ : RingHomIsometric σ₂'' inst✝⁵ : RingHomIsometric σ₂₃' 𝕜' : Type u_13 inst✝⁴ : NormedField 𝕜' inst✝³ : NormedAlgebra 𝕜 𝕜' inst✝² : NormedSpace 𝕜' E inst✝¹ : IsScalarTower 𝕜 𝕜' E inst✝ : Nontrivial E N : ℝ x✝ : N ≥ 0 h : ∀ (x : 𝕜'), ‖↑(lsmul 𝕜 𝕜') x‖ ≤ N * ‖x‖ y : E hy : y ≠ 0 this : ‖y‖ ≤ N * ‖y‖ ⊢ 1 ≤ N [PROOFSTEP] refine' le_of_mul_le_mul_right _ (norm_pos_iff.mpr hy) [GOAL] case refine'_2.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝²⁶ : NormedAddCommGroup E inst✝²⁵ : NormedAddCommGroup F inst✝²⁴ : NormedAddCommGroup G inst✝²³ : NormedAddCommGroup Fₗ inst✝²² : NontriviallyNormedField 𝕜 inst✝²¹ : NontriviallyNormedField 𝕜₂ inst✝²⁰ : NontriviallyNormedField 𝕜₃ inst✝¹⁹ : NormedSpace 𝕜 E inst✝¹⁸ : NormedSpace 𝕜₂ F inst✝¹⁷ : NormedSpace 𝕜₃ G inst✝¹⁶ : NormedSpace 𝕜 Fₗ c : 𝕜 σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₃ : 𝕜₂ →+* 𝕜₃ 𝕜₂' : Type u_11 inst✝¹⁵ : NontriviallyNormedField 𝕜₂' F' : Type u_12 inst✝¹⁴ : NormedAddCommGroup F' inst✝¹³ : NormedSpace 𝕜₂' F' σ₂' : 𝕜₂' →+* 𝕜₂ σ₂'' : 𝕜₂ →+* 𝕜₂' σ₂₃' : 𝕜₂' →+* 𝕜₃ inst✝¹² : RingHomInvPair σ₂' σ₂'' inst✝¹¹ : RingHomInvPair σ₂'' σ₂' inst✝¹⁰ : RingHomCompTriple σ₂' σ₂₃ σ₂₃' inst✝⁹ : RingHomCompTriple σ₂'' σ₂₃' σ₂₃ inst✝⁸ : RingHomIsometric σ₂₃ inst✝⁷ : RingHomIsometric σ₂' inst✝⁶ : RingHomIsometric σ₂'' inst✝⁵ : RingHomIsometric σ₂₃' 𝕜' : Type u_13 inst✝⁴ : NormedField 𝕜' inst✝³ : NormedAlgebra 𝕜 𝕜' inst✝² : NormedSpace 𝕜' E inst✝¹ : IsScalarTower 𝕜 𝕜' E inst✝ : Nontrivial E N : ℝ x✝ : N ≥ 0 h : ∀ (x : 𝕜'), ‖↑(lsmul 𝕜 𝕜') x‖ ≤ N * ‖x‖ y : E hy : y ≠ 0 this : ‖y‖ ≤ N * ‖y‖ ⊢ 1 * ‖y‖ ≤ N * ‖y‖ [PROOFSTEP] simp_rw [one_mul, this] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝⁴ : RingHomInvPair σ₁₂ σ₂₁ inst✝³ : RingHomInvPair σ₂₁ σ₁₂ inst✝² : RingHomIsometric σ₂₁ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : Nontrivial E e : E ≃SL[σ₁₂] F ⊢ 1 ≤ ‖↑e‖ * ‖↑(ContinuousLinearEquiv.symm e)‖ [PROOFSTEP] rw [mul_comm] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝⁴ : RingHomInvPair σ₁₂ σ₂₁ inst✝³ : RingHomInvPair σ₂₁ σ₁₂ inst✝² : RingHomIsometric σ₂₁ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : Nontrivial E e : E ≃SL[σ₁₂] F ⊢ 1 ≤ ‖↑(ContinuousLinearEquiv.symm e)‖ * ‖↑e‖ [PROOFSTEP] convert (e.symm : F →SL[σ₂₁] E).op_norm_comp_le (e : E →SL[σ₁₂] F) [GOAL] case h.e'_3 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup F inst✝¹¹ : NormedAddCommGroup G inst✝¹⁰ : NormedAddCommGroup Fₗ inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NontriviallyNormedField 𝕜₂ inst✝⁷ : NontriviallyNormedField 𝕜₃ inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝⁴ : RingHomInvPair σ₁₂ σ₂₁ inst✝³ : RingHomInvPair σ₂₁ σ₁₂ inst✝² : RingHomIsometric σ₂₁ inst✝¹ : RingHomIsometric σ₁₂ inst✝ : Nontrivial E e : E ≃SL[σ₁₂] F ⊢ 1 = ‖comp ↑(ContinuousLinearEquiv.symm e) ↑e‖ [PROOFSTEP] rw [e.coe_symm_comp_coe, ContinuousLinearMap.norm_id] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomIsometric σ₂₁ inst✝ : RingHomIsometric σ₁₂ e : E ≃SL[σ₁₂] F ⊢ Subsingleton E ∨ 0 < ‖↑(ContinuousLinearEquiv.symm e)‖ [PROOFSTEP] rcases subsingleton_or_nontrivial E with (_i | _i) [GOAL] case inl 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomIsometric σ₂₁ inst✝ : RingHomIsometric σ₁₂ e : E ≃SL[σ₁₂] F _i : Subsingleton E ⊢ Subsingleton E ∨ 0 < ‖↑(ContinuousLinearEquiv.symm e)‖ [PROOFSTEP] skip [GOAL] case inr 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomIsometric σ₂₁ inst✝ : RingHomIsometric σ₁₂ e : E ≃SL[σ₁₂] F _i : Nontrivial E ⊢ Subsingleton E ∨ 0 < ‖↑(ContinuousLinearEquiv.symm e)‖ [PROOFSTEP] skip [GOAL] case inl 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomIsometric σ₂₁ inst✝ : RingHomIsometric σ₁₂ e : E ≃SL[σ₁₂] F _i : Subsingleton E ⊢ Subsingleton E ∨ 0 < ‖↑(ContinuousLinearEquiv.symm e)‖ [PROOFSTEP] left [GOAL] case inl.h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomIsometric σ₂₁ inst✝ : RingHomIsometric σ₁₂ e : E ≃SL[σ₁₂] F _i : Subsingleton E ⊢ Subsingleton E [PROOFSTEP] infer_instance [GOAL] case inr 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomIsometric σ₂₁ inst✝ : RingHomIsometric σ₁₂ e : E ≃SL[σ₁₂] F _i : Nontrivial E ⊢ Subsingleton E ∨ 0 < ‖↑(ContinuousLinearEquiv.symm e)‖ [PROOFSTEP] right [GOAL] case inr.h 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedAddCommGroup F inst✝¹⁰ : NormedAddCommGroup G inst✝⁹ : NormedAddCommGroup Fₗ inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NontriviallyNormedField 𝕜₂ inst✝⁶ : NontriviallyNormedField 𝕜₃ inst✝⁵ : NormedSpace 𝕜 E inst✝⁴ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomIsometric σ₂₁ inst✝ : RingHomIsometric σ₁₂ e : E ≃SL[σ₁₂] F _i : Nontrivial E ⊢ 0 < ‖↑(ContinuousLinearEquiv.symm e)‖ [PROOFSTEP] exact e.norm_symm_pos [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomIsometric σ₂₁ x : E h : x ≠ 0 ⊢ ‖coord 𝕜 x h‖ = ‖x‖⁻¹ [PROOFSTEP] have hx : 0 < ‖x‖ := norm_pos_iff.mpr h [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomIsometric σ₂₁ x : E h : x ≠ 0 hx : 0 < ‖x‖ ⊢ ‖coord 𝕜 x h‖ = ‖x‖⁻¹ [PROOFSTEP] haveI : Nontrivial (𝕜 ∙ x) := Submodule.nontrivial_span_singleton h [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup F inst✝⁹ : NormedAddCommGroup G inst✝⁸ : NormedAddCommGroup Fₗ inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NontriviallyNormedField 𝕜₂ inst✝⁵ : NontriviallyNormedField 𝕜₃ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ σ₂₁ : 𝕜₂ →+* 𝕜 inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomIsometric σ₂₁ x : E h : x ≠ 0 hx : 0 < ‖x‖ this : Nontrivial { x_1 // x_1 ∈ Submodule.span 𝕜 {x} } ⊢ ‖coord 𝕜 x h‖ = ‖x‖⁻¹ [PROOFSTEP] exact ContinuousLinearMap.homothety_norm _ fun y => homothety_inverse _ hx _ (toSpanNonzeroSingleton_homothety 𝕜 x h) _ [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F ⊢ List.TFAE [EquicontinuousAt (FunLike.coe ∘ f) 0, Equicontinuous (FunLike.coe ∘ f), UniformEquicontinuous (FunLike.coe ∘ f), ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, ∀ (i : ι), ‖f i‖ ≤ C, ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C, BddAbove (Set.range fun x => ‖f x‖), ⨆ (i : ι), ↑‖f i‖₊ < ⊤] [PROOFSTEP] tfae_have 1 → 3 [GOAL] case tfae_1_to_3 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F ⊢ EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) [PROOFSTEP] exact uniformEquicontinuous_of_equicontinuousAt_zero f [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) ⊢ List.TFAE [EquicontinuousAt (FunLike.coe ∘ f) 0, Equicontinuous (FunLike.coe ∘ f), UniformEquicontinuous (FunLike.coe ∘ f), ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, ∀ (i : ι), ‖f i‖ ≤ C, ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C, BddAbove (Set.range fun x => ‖f x‖), ⨆ (i : ι), ↑‖f i‖₊ < ⊤] [PROOFSTEP] tfae_have 3 → 2 [GOAL] case tfae_3_to_2 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) ⊢ UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) [PROOFSTEP] exact UniformEquicontinuous.equicontinuous [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) ⊢ List.TFAE [EquicontinuousAt (FunLike.coe ∘ f) 0, Equicontinuous (FunLike.coe ∘ f), UniformEquicontinuous (FunLike.coe ∘ f), ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, ∀ (i : ι), ‖f i‖ ≤ C, ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C, BddAbove (Set.range fun x => ‖f x‖), ⨆ (i : ι), ↑‖f i‖₊ < ⊤] [PROOFSTEP] tfae_have 2 → 1 [GOAL] case tfae_2_to_1 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) ⊢ Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 [PROOFSTEP] exact fun H ↦ H 0 -- `4 ↔ 5 ↔ 6 ↔ 7 ↔ 8 ↔ 9` is morally trivial, we just have to use a lot of rewriting -- and `congr` lemmas [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 ⊢ List.TFAE [EquicontinuousAt (FunLike.coe ∘ f) 0, Equicontinuous (FunLike.coe ∘ f), UniformEquicontinuous (FunLike.coe ∘ f), ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, ∀ (i : ι), ‖f i‖ ≤ C, ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C, BddAbove (Set.range fun x => ‖f x‖), ⨆ (i : ι), ↑‖f i‖₊ < ⊤] [PROOFSTEP] tfae_have 4 ↔ 5 [GOAL] case tfae_4_iff_5 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 ⊢ (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ [PROOFSTEP] rw [exists_ge_and_iff_exists] [GOAL] case tfae_4_iff_5 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 ⊢ Monotone fun C => ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ [PROOFSTEP] exact fun C₁ C₂ hC ↦ forall₂_imp fun i x ↦ le_trans' <| by gcongr [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 C₁ C₂ : ℝ hC : C₁ ≤ C₂ i : ι x : E ⊢ C₁ * ‖x‖ ≤ C₂ * ‖x‖ [PROOFSTEP] gcongr [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ ⊢ List.TFAE [EquicontinuousAt (FunLike.coe ∘ f) 0, Equicontinuous (FunLike.coe ∘ f), UniformEquicontinuous (FunLike.coe ∘ f), ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, ∀ (i : ι), ‖f i‖ ≤ C, ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C, BddAbove (Set.range fun x => ‖f x‖), ⨆ (i : ι), ↑‖f i‖₊ < ⊤] [PROOFSTEP] tfae_have 5 ↔ 7 [GOAL] case tfae_5_iff_7 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ ⊢ (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C [PROOFSTEP] refine exists_congr (fun C ↦ and_congr_right fun hC ↦ forall_congr' fun i ↦ ?_) [GOAL] case tfae_5_iff_7 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ C : ℝ hC : C ≥ 0 i : ι ⊢ (∀ (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ‖f i‖ ≤ C [PROOFSTEP] rw [ContinuousLinearMap.op_norm_le_iff hC] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C ⊢ List.TFAE [EquicontinuousAt (FunLike.coe ∘ f) 0, Equicontinuous (FunLike.coe ∘ f), UniformEquicontinuous (FunLike.coe ∘ f), ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, ∀ (i : ι), ‖f i‖ ≤ C, ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C, BddAbove (Set.range fun x => ‖f x‖), ⨆ (i : ι), ↑‖f i‖₊ < ⊤] [PROOFSTEP] tfae_have 7 ↔ 8 [GOAL] case tfae_7_iff_8 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C ⊢ (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) [PROOFSTEP] simp_rw [bddAbove_iff_exists_ge (0 : ℝ), Set.forall_range_iff] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) ⊢ List.TFAE [EquicontinuousAt (FunLike.coe ∘ f) 0, Equicontinuous (FunLike.coe ∘ f), UniformEquicontinuous (FunLike.coe ∘ f), ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, ∀ (i : ι), ‖f i‖ ≤ C, ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C, BddAbove (Set.range fun x => ‖f x‖), ⨆ (i : ι), ↑‖f i‖₊ < ⊤] [PROOFSTEP] tfae_have 6 ↔ 8 [GOAL] case tfae_6_iff_8 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) ⊢ (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) [PROOFSTEP] simp_rw [bddAbove_def, Set.forall_range_iff] [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) ⊢ List.TFAE [EquicontinuousAt (FunLike.coe ∘ f) 0, Equicontinuous (FunLike.coe ∘ f), UniformEquicontinuous (FunLike.coe ∘ f), ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, ∀ (i : ι), ‖f i‖ ≤ C, ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C, BddAbove (Set.range fun x => ‖f x‖), ⨆ (i : ι), ↑‖f i‖₊ < ⊤] [PROOFSTEP] tfae_have 8 ↔ 9 [GOAL] case tfae_8_iff_9 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) ⊢ BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ [PROOFSTEP] rw [ENNReal.iSup_coe_lt_top (fun i ↦ ‖f i‖₊), ← NNReal.bddAbove_coe, ← Set.range_comp] [GOAL] case tfae_8_iff_9 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) ⊢ BddAbove (Set.range fun x => ‖f x‖) ↔ BddAbove (Set.range (toReal ∘ fun i => ‖f i‖₊)) [PROOFSTEP] rfl -- `3 ↔ 4` is the interesting part of the result. It is essentially a combination of -- `WithSeminorms.uniformEquicontinuous_iff_exists_continuous_seminorm` which turns -- equicontinuity into existence of some continuous seminorm and -- `Seminorm.bound_of_continuous_normedSpace` which characterize such seminorms. [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_8_iff_9 : BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ ⊢ List.TFAE [EquicontinuousAt (FunLike.coe ∘ f) 0, Equicontinuous (FunLike.coe ∘ f), UniformEquicontinuous (FunLike.coe ∘ f), ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, ∀ (i : ι), ‖f i‖ ≤ C, ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C, BddAbove (Set.range fun x => ‖f x‖), ⨆ (i : ι), ↑‖f i‖₊ < ⊤] [PROOFSTEP] tfae_have 3 ↔ 4 [GOAL] case tfae_3_iff_4 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_8_iff_9 : BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ ⊢ UniformEquicontinuous (FunLike.coe ∘ f) ↔ ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ [PROOFSTEP] refine ((norm_withSeminorms 𝕜₂ F).uniformEquicontinuous_iff_exists_continuous_seminorm _).trans ?_ [GOAL] case tfae_3_iff_4 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_8_iff_9 : BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ ⊢ (Fin 1 → ∃ p, Continuous ↑p ∧ ∀ (k : ι), Seminorm.comp (normSeminorm 𝕜₂ F) ↑(f k) ≤ p) ↔ ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ [PROOFSTEP] rw [forall_const] [GOAL] case tfae_3_iff_4 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_8_iff_9 : BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ ⊢ (∃ p, Continuous ↑p ∧ ∀ (k : ι), Seminorm.comp (normSeminorm 𝕜₂ F) ↑(f k) ≤ p) ↔ ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ [PROOFSTEP] constructor [GOAL] case tfae_3_iff_4.mp 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_8_iff_9 : BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ ⊢ (∃ p, Continuous ↑p ∧ ∀ (k : ι), Seminorm.comp (normSeminorm 𝕜₂ F) ↑(f k) ≤ p) → ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ [PROOFSTEP] intro ⟨p, hp, hpf⟩ [GOAL] case tfae_3_iff_4.mp 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_8_iff_9 : BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ p : Seminorm 𝕜 E hp : Continuous ↑p hpf : ∀ (k : ι), Seminorm.comp (normSeminorm 𝕜₂ F) ↑(f k) ≤ p ⊢ ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ [PROOFSTEP] rcases p.bound_of_continuous_normedSpace hp with ⟨C, -, hC⟩ [GOAL] case tfae_3_iff_4.mp.intro.intro 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_8_iff_9 : BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ p : Seminorm 𝕜 E hp : Continuous ↑p hpf : ∀ (k : ι), Seminorm.comp (normSeminorm 𝕜₂ F) ↑(f k) ≤ p C : ℝ hC : ∀ (x : E), ↑p x ≤ C * ‖x‖ ⊢ ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ [PROOFSTEP] exact ⟨C, fun i x ↦ (hpf i x).trans (hC x)⟩ [GOAL] case tfae_3_iff_4.mpr 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_8_iff_9 : BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ ⊢ (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) → ∃ p, Continuous ↑p ∧ ∀ (k : ι), Seminorm.comp (normSeminorm 𝕜₂ F) ↑(f k) ≤ p [PROOFSTEP] intro ⟨C, hC⟩ [GOAL] case tfae_3_iff_4.mpr 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_8_iff_9 : BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ C : ℝ hC : ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ ⊢ ∃ p, Continuous ↑p ∧ ∀ (k : ι), Seminorm.comp (normSeminorm 𝕜₂ F) ↑(f k) ≤ p [PROOFSTEP] refine ⟨C.toNNReal • normSeminorm 𝕜 E, ((norm_withSeminorms 𝕜 E).continuous_seminorm 0).const_smul C.toNNReal, fun i x ↦ ?_⟩ [GOAL] case tfae_3_iff_4.mpr 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_8_iff_9 : BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ C : ℝ hC : ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ i : ι x : E ⊢ (fun f => ↑f) (Seminorm.comp (normSeminorm 𝕜₂ F) ↑(f i)) x ≤ (fun f => ↑f) (Real.toNNReal C • normSeminorm 𝕜 E) x [PROOFSTEP] refine (hC i x).trans (mul_le_mul_of_nonneg_right (C.le_coe_toNNReal) (norm_nonneg x)) [GOAL] 𝕜 : Type u_1 𝕜₂ : Type u_2 𝕜₃ : Type u_3 E : Type u_4 Eₗ : Type u_5 F : Type u_6 Fₗ : Type u_7 G : Type u_8 Gₗ : Type u_9 𝓕 : Type u_10 ι : Type u_11 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ σ₁₂ : 𝕜 →+* 𝕜₂ inst✝⁴ : RingHomIsometric σ₁₂ inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜₂ F f : ι → E →SL[σ₁₂] F tfae_1_to_3 : EquicontinuousAt (FunLike.coe ∘ f) 0 → UniformEquicontinuous (FunLike.coe ∘ f) tfae_3_to_2 : UniformEquicontinuous (FunLike.coe ∘ f) → Equicontinuous (FunLike.coe ∘ f) tfae_2_to_1 : Equicontinuous (FunLike.coe ∘ f) → EquicontinuousAt (FunLike.coe ∘ f) 0 tfae_4_iff_5 : (∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ tfae_5_iff_7 : (∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖) ↔ ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C tfae_7_iff_8 : (∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_6_iff_8 : (∃ C, ∀ (i : ι), ‖f i‖ ≤ C) ↔ BddAbove (Set.range fun x => ‖f x‖) tfae_8_iff_9 : BddAbove (Set.range fun x => ‖f x‖) ↔ ⨆ (i : ι), ↑‖f i‖₊ < ⊤ tfae_3_iff_4 : UniformEquicontinuous (FunLike.coe ∘ f) ↔ ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖ ⊢ List.TFAE [EquicontinuousAt (FunLike.coe ∘ f) 0, Equicontinuous (FunLike.coe ∘ f), UniformEquicontinuous (FunLike.coe ∘ f), ∃ C, ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, C ≥ 0 ∧ ∀ (i : ι) (x : E), ‖↑(f i) x‖ ≤ C * ‖x‖, ∃ C, ∀ (i : ι), ‖f i‖ ≤ C, ∃ C, C ≥ 0 ∧ ∀ (i : ι), ‖f i‖ ≤ C, BddAbove (Set.range fun x => ‖f x‖), ⨆ (i : ι), ↑‖f i‖₊ < ⊤] [PROOFSTEP] tfae_finish
{"mathlib_filename": "Mathlib.Analysis.NormedSpace.OperatorNorm", "llama_tokens": 244412}
[GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a b : α inst✝ : IsTrichotomous α r h : IsAntichain r s ⊢ Set.Subsingleton s [PROOFSTEP] rintro a ha b hb [GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a✝ b✝ : α inst✝ : IsTrichotomous α r h : IsAntichain r s a : α ha : a ∈ s b : α hb : b ∈ s ⊢ a = b [PROOFSTEP] obtain hab | hab | hab := trichotomous_of r a b [GOAL] case inl α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a✝ b✝ : α inst✝ : IsTrichotomous α r h : IsAntichain r s a : α ha : a ∈ s b : α hb : b ∈ s hab : r a b ⊢ a = b [PROOFSTEP] exact h.eq ha hb hab [GOAL] case inr.inl α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a✝ b✝ : α inst✝ : IsTrichotomous α r h : IsAntichain r s a : α ha : a ∈ s b : α hb : b ∈ s hab : a = b ⊢ a = b [PROOFSTEP] exact hab [GOAL] case inr.inr α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a✝ b✝ : α inst✝ : IsTrichotomous α r h : IsAntichain r s a : α ha : a ∈ s b : α hb : b ∈ s hab : r b a ⊢ a = b [PROOFSTEP] exact h.eq' ha hb hab [GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a b : α hs : IsAntichain r s f : α → β h : ∀ ⦃a b : α⦄, r' (f a) (f b) → r a b ⊢ IsAntichain r' (f '' s) [PROOFSTEP] rintro _ ⟨b, hb, rfl⟩ _ ⟨c, hc, rfl⟩ hbc hr [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a b✝ : α hs : IsAntichain r s f : α → β h : ∀ ⦃a b : α⦄, r' (f a) (f b) → r a b b : α hb : b ∈ s c : α hc : c ∈ s hbc : f b ≠ f c hr : r' (f b) (f c) ⊢ False [PROOFSTEP] exact hs hb hc (ne_of_apply_ne _ hbc) (h hr) [GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a b : α hs : IsAntichain r s φ : r ↪r r' ⊢ IsAntichain r' (↑φ '' s) [PROOFSTEP] intro b hb b' hb' h₁ h₂ [GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a b✝ : α hs : IsAntichain r s φ : r ↪r r' b : β hb : b ∈ ↑φ '' s b' : β hb' : b' ∈ ↑φ '' s h₁ : b ≠ b' h₂ : r' b b' ⊢ False [PROOFSTEP] rw [Set.mem_image] at hb hb' [GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a b✝ : α hs : IsAntichain r s φ : r ↪r r' b : β hb : ∃ x, x ∈ s ∧ ↑φ x = b b' : β hb' : ∃ x, x ∈ s ∧ ↑φ x = b' h₁ : b ≠ b' h₂ : r' b b' ⊢ False [PROOFSTEP] obtain ⟨⟨a, has, rfl⟩, ⟨a', has', rfl⟩⟩ := hb, hb' [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a✝ b : α hs : IsAntichain r s φ : r ↪r r' a : α has : a ∈ s a' : α has' : a' ∈ s h₁ : ↑φ a ≠ ↑φ a' h₂ : r' (↑φ a) (↑φ a') ⊢ False [PROOFSTEP] exact hs has has' (fun haa' => h₁ (by rw [haa'])) (φ.map_rel_iff.mp h₂) [GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a✝ b : α hs : IsAntichain r s φ : r ↪r r' a : α has : a ∈ s a' : α has' : a' ∈ s h₁ : ↑φ a ≠ ↑φ a' h₂ : r' (↑φ a) (↑φ a') haa' : a = a' ⊢ ↑φ a = ↑φ a' [PROOFSTEP] rw [haa'] [GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a b : α inst✝ : Preorder α ⊢ s = {a} → IsAntichain (fun x x_1 => x ≤ x_1) s ∧ IsLeast s a [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop t : Set α a b : α inst✝ : Preorder α ⊢ IsAntichain (fun x x_1 => x ≤ x_1) {a} ∧ IsLeast {a} a [PROOFSTEP] exact ⟨isAntichain_singleton _ _, isLeast_singleton⟩ [GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a b : α inst✝ : Preorder α ⊢ s = {a} → IsAntichain (fun x x_1 => x ≤ x_1) s ∧ IsGreatest s a [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop t : Set α a b : α inst✝ : Preorder α ⊢ IsAntichain (fun x x_1 => x ≤ x_1) {a} ∧ IsGreatest {a} a [PROOFSTEP] exact ⟨isAntichain_singleton _ _, isGreatest_singleton⟩ [GOAL] α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a b : α hs : IsStrongAntichain r s f : α → β hf : Surjective f h : ∀ (a b : α), r' (f a) (f b) → r a b ⊢ IsStrongAntichain r' (f '' s) [PROOFSTEP] rintro _ ⟨a, ha, rfl⟩ _ ⟨b, hb, rfl⟩ hab c [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a✝ b✝ : α hs : IsStrongAntichain r s f : α → β hf : Surjective f h : ∀ (a b : α), r' (f a) (f b) → r a b a : α ha : a ∈ s b : α hb : b ∈ s hab : f a ≠ f b c : β ⊢ ¬r' (f a) c ∨ ¬r' (f b) c [PROOFSTEP] obtain ⟨c, rfl⟩ := hf c [GOAL] case intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 r r₁ r₂ : α → α → Prop r' : β → β → Prop s t : Set α a✝ b✝ : α hs : IsStrongAntichain r s f : α → β hf : Surjective f h : ∀ (a b : α), r' (f a) (f b) → r a b a : α ha : a ∈ s b : α hb : b ∈ s hab : f a ≠ f b c : α ⊢ ¬r' (f a) (f c) ∨ ¬r' (f b) (f c) [PROOFSTEP] exact (hs ha hb (ne_of_apply_ne _ hab) _).imp (mt <| h _ _) (mt <| h _ _)
{"mathlib_filename": "Mathlib.Order.Antichain", "llama_tokens": 2833}
[GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β f : Filter α ⊢ smallSets f = generate (powerset '' f.sets) [PROOFSTEP] simp_rw [generate_eq_biInf, smallSets, iInf_image] [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β f : Filter α ⊢ Filter.lift' f powerset = ⨅ (b : Set α) (_ : b ∈ f.sets), 𝓟 (𝒫 b) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β p : Set α → Prop ⊢ (∀ᶠ (s : Set α) in smallSets l, p s) ↔ ∃ s, s ∈ l ∧ ∀ (t : Set α), t ⊆ s → p t [PROOFSTEP] rw [smallSets, eventually_lift'_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β p : Set α → Prop ⊢ (∃ t, t ∈ l ∧ ∀ (y : Set α), y ∈ 𝒫 t → p y) ↔ ∃ s, s ∈ l ∧ ∀ (t : Set α), t ⊆ s → p t case hh α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β p : Set α → Prop ⊢ Monotone powerset [PROOFSTEP] rfl [GOAL] case hh α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β p : Set α → Prop ⊢ Monotone powerset [PROOFSTEP] exact monotone_powerset [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β ⊢ smallSets ⊥ = pure ∅ [PROOFSTEP] rw [smallSets, lift'_bot, powerset_empty, principal_singleton] [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β ⊢ Monotone powerset [PROOFSTEP] exact monotone_powerset [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β ⊢ smallSets ⊤ = ⊤ [PROOFSTEP] rw [smallSets, lift'_top, powerset_univ, principal_univ] [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l✝ l' la : Filter α lb : Filter β l : Filter α ⊢ NeBot (smallSets l) [PROOFSTEP] refine' (lift'_neBot_iff _).2 fun _ _ => powerset_nonempty [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l✝ l' la : Filter α lb : Filter β l : Filter α ⊢ Monotone powerset [PROOFSTEP] exact monotone_powerset [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β s t : α → Set β ht : Tendsto t la (smallSets lb) hst : ∀ᶠ (x : α) in la, s x ⊆ t x ⊢ Tendsto s la (smallSets lb) [PROOFSTEP] rw [tendsto_smallSets_iff] at ht ⊢ [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β s t : α → Set β ht : ∀ (t_1 : Set β), t_1 ∈ lb → ∀ᶠ (x : α) in la, t x ⊆ t_1 hst : ∀ᶠ (x : α) in la, s x ⊆ t x ⊢ ∀ (t : Set β), t ∈ lb → ∀ᶠ (x : α) in la, s x ⊆ t [PROOFSTEP] exact fun u hu => (ht u hu).mp (hst.mono fun _ hst ht => hst.trans ht) [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β p : α → Prop ⊢ (∃ s, s ∈ l ∧ ∀ᶠ (x : α) in l', x ∈ s → p x) ↔ ∃ s, s ∈ l ∧ ∃ t, t ∈ l' ∧ ∀ (x : α), x ∈ t → x ∈ s → p x [PROOFSTEP] simp only [eventually_iff_exists_mem] [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β p : α → Prop ⊢ (∃ s, s ∈ l ∧ ∃ t, t ∈ l' ∧ ∀ (x : α), x ∈ t → x ∈ s → p x) ↔ ∀ᶠ (x : α) in l ⊓ l', p x [PROOFSTEP] simp only [eventually_inf, and_comm, mem_inter_iff, ← and_imp] [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 l l' la : Filter α lb : Filter β p : α → Prop ⊢ (∀ᶠ (s : Set α) in smallSets l, ∀ (x : α), x ∈ s → p x) ↔ ∀ᶠ (x : α) in l, p x [PROOFSTEP] simpa only [inf_top_eq, eventually_top] using @eventually_smallSets_eventually α l ⊤ p
{"mathlib_filename": "Mathlib.Order.Filter.SmallSets", "llama_tokens": 1653}
[GOAL] R : Type u M : Type v N : Type w inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Finite R M ⊢ Fintype (ChooseBasisIndex R M) [PROOFSTEP] refine @Fintype.ofFinite _ ?_ [GOAL] R : Type u M : Type v N : Type w inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Finite R M ⊢ _root_.Finite (ChooseBasisIndex R M) [PROOFSTEP] cases subsingleton_or_nontrivial R [GOAL] case inl R : Type u M : Type v N : Type w inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Finite R M h✝ : Subsingleton R ⊢ _root_.Finite (ChooseBasisIndex R M) [PROOFSTEP] have := Module.subsingleton R M [GOAL] case inl R : Type u M : Type v N : Type w inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Finite R M h✝ : Subsingleton R this : Subsingleton M ⊢ _root_.Finite (ChooseBasisIndex R M) [PROOFSTEP] rw [ChooseBasisIndex] [GOAL] case inl R : Type u M : Type v N : Type w inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Finite R M h✝ : Subsingleton R this : Subsingleton M ⊢ _root_.Finite ↑(Exists.choose (_ : ∃ S, Nonempty (Basis (↑S) R M))) [PROOFSTEP] infer_instance [GOAL] case inr R : Type u M : Type v N : Type w inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Finite R M h✝ : Nontrivial R ⊢ _root_.Finite (ChooseBasisIndex R M) [PROOFSTEP] obtain ⟨s, hs⟩ := id ‹Module.Finite R M› [GOAL] case inr.mk.intro R : Type u M : Type v N : Type w inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Finite R M h✝ : Nontrivial R s : Finset M hs : Submodule.span R ↑s = ⊤ ⊢ _root_.Finite (ChooseBasisIndex R M) [PROOFSTEP] exact basis_finite_of_finite_spans (↑s) s.finite_toSet hs (chooseBasis _ _) [GOAL] R✝ : Type u M✝ : Type v N : Type w inst✝¹⁰ : CommRing R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : Free R✝ M✝ inst✝⁶ : AddCommGroup N inst✝⁵ : Module R✝ N inst✝⁴ : Free R✝ N R : Type u_1 M : Type u_2 ι : Type u_3 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : _root_.Finite ι b : Basis ι R M ⊢ Finite R M [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro R✝ : Type u M✝ : Type v N : Type w inst✝¹⁰ : CommRing R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : Free R✝ M✝ inst✝⁶ : AddCommGroup N inst✝⁵ : Module R✝ N inst✝⁴ : Free R✝ N R : Type u_1 M : Type u_2 ι : Type u_3 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : _root_.Finite ι b : Basis ι R M val✝ : Fintype ι ⊢ Finite R M [PROOFSTEP] classical refine' ⟨⟨Finset.univ.image b, _⟩⟩ simp only [Set.image_univ, Finset.coe_univ, Finset.coe_image, Basis.span_eq] [GOAL] case intro R✝ : Type u M✝ : Type v N : Type w inst✝¹⁰ : CommRing R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : Free R✝ M✝ inst✝⁶ : AddCommGroup N inst✝⁵ : Module R✝ N inst✝⁴ : Free R✝ N R : Type u_1 M : Type u_2 ι : Type u_3 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : _root_.Finite ι b : Basis ι R M val✝ : Fintype ι ⊢ Finite R M [PROOFSTEP] refine' ⟨⟨Finset.univ.image b, _⟩⟩ [GOAL] case intro R✝ : Type u M✝ : Type v N : Type w inst✝¹⁰ : CommRing R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : Free R✝ M✝ inst✝⁶ : AddCommGroup N inst✝⁵ : Module R✝ N inst✝⁴ : Free R✝ N R : Type u_1 M : Type u_2 ι : Type u_3 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : _root_.Finite ι b : Basis ι R M val✝ : Fintype ι ⊢ Submodule.span R ↑(Finset.image (↑b) Finset.univ) = ⊤ [PROOFSTEP] simp only [Set.image_univ, Finset.coe_univ, Finset.coe_image, Basis.span_eq] [GOAL] R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N ι₁ : Type u_1 ι₂ : Type u_2 inst✝¹ : _root_.Finite ι₁ inst✝ : _root_.Finite ι₂ ⊢ Finite R (Matrix ι₁ ι₂ R) [PROOFSTEP] cases nonempty_fintype ι₁ [GOAL] case intro R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N ι₁ : Type u_1 ι₂ : Type u_2 inst✝¹ : _root_.Finite ι₁ inst✝ : _root_.Finite ι₂ val✝ : Fintype ι₁ ⊢ Finite R (Matrix ι₁ ι₂ R) [PROOFSTEP] cases nonempty_fintype ι₂ [GOAL] case intro.intro R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N ι₁ : Type u_1 ι₂ : Type u_2 inst✝¹ : _root_.Finite ι₁ inst✝ : _root_.Finite ι₂ val✝¹ : Fintype ι₁ val✝ : Fintype ι₂ ⊢ Finite R (Matrix ι₁ ι₂ R) [PROOFSTEP] exact Module.Finite.of_basis (Pi.basis fun _ => Pi.basisFun R _)
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Finite.Basic", "llama_tokens": 2480}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : PartialOrder α inst✝³ : OrderTop α inst✝² : Preorder β inst✝¹ : OrderTop β inst✝ : PseudoEpimorphismClass F α β f : F ⊢ ↑f ⊤ = ⊤ [PROOFSTEP] let ⟨b, h⟩ := exists_map_eq_of_map_le f (@le_top _ _ _ <| f ⊤) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : PartialOrder α inst✝³ : OrderTop α inst✝² : Preorder β inst✝¹ : OrderTop β inst✝ : PseudoEpimorphismClass F α β f : F b : α h : ⊤ ≤ b ∧ ↑f b = ⊤ ⊢ ↑f ⊤ = ⊤ [PROOFSTEP] rw [← top_le_iff.1 h.1, h.2] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ f g : PseudoEpimorphism α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ g : PseudoEpimorphism α β toFun✝ : α → β monotone'✝ : Monotone toFun✝ exists_map_eq_of_map_le'✝ : ∀ ⦃a : α⦄ ⦃b : β⦄, OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } a ≤ b → ∃ c, a ≤ c ∧ OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } c = b h : (fun f => f.toFun) { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝ } = (fun f => f.toFun) g ⊢ { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ toFun✝¹ : α → β monotone'✝¹ : Monotone toFun✝¹ exists_map_eq_of_map_le'✝¹ : ∀ ⦃a : α⦄ ⦃b : β⦄, OrderHom.toFun { toFun := toFun✝¹, monotone' := monotone'✝¹ } a ≤ b → ∃ c, a ≤ c ∧ OrderHom.toFun { toFun := toFun✝¹, monotone' := monotone'✝¹ } c = b toFun✝ : α → β monotone'✝ : Monotone toFun✝ exists_map_eq_of_map_le'✝ : ∀ ⦃a : α⦄ ⦃b : β⦄, OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } a ≤ b → ∃ c, a ≤ c ∧ OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } c = b h : (fun f => f.toFun) { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝¹ } = (fun f => f.toFun) { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝ } ⊢ { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝¹ } = { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ f : PseudoEpimorphism α β f' : α → β h : f' = ↑f ⊢ ∀ ⦃a : α⦄ ⦃b : β⦄, OrderHom.toFun (OrderHom.copy f.toOrderHom f' h) a ≤ b → ∃ c, a ≤ c ∧ OrderHom.toFun (OrderHom.copy f.toOrderHom f' h) c = b [PROOFSTEP] simpa only [h.symm, toFun_eq_coe] using f.exists_map_eq_of_map_le' [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ g : PseudoEpimorphism β γ f : PseudoEpimorphism α β a : α b : γ h₀ : OrderHom.toFun (OrderHom.comp g.toOrderHom f.toOrderHom) a ≤ b ⊢ ∃ c, a ≤ c ∧ OrderHom.toFun (OrderHom.comp g.toOrderHom f.toOrderHom) c = b [PROOFSTEP] obtain ⟨b, h₁, rfl⟩ := g.exists_map_eq_of_map_le' h₀ [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ g : PseudoEpimorphism β γ f : PseudoEpimorphism α β a : α b : β h₁ : ↑f.toOrderHom a ≤ b h₀ : OrderHom.toFun (OrderHom.comp g.toOrderHom f.toOrderHom) a ≤ OrderHom.toFun g.toOrderHom b ⊢ ∃ c, a ≤ c ∧ OrderHom.toFun (OrderHom.comp g.toOrderHom f.toOrderHom) c = OrderHom.toFun g.toOrderHom b [PROOFSTEP] obtain ⟨b, h₂, rfl⟩ := f.exists_map_eq_of_map_le' h₁ [GOAL] case intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ g : PseudoEpimorphism β γ f : PseudoEpimorphism α β a b : α h₂ : a ≤ b h₁ : ↑f.toOrderHom a ≤ OrderHom.toFun f.toOrderHom b h₀ : OrderHom.toFun (OrderHom.comp g.toOrderHom f.toOrderHom) a ≤ OrderHom.toFun g.toOrderHom (OrderHom.toFun f.toOrderHom b) ⊢ ∃ c, a ≤ c ∧ OrderHom.toFun (OrderHom.comp g.toOrderHom f.toOrderHom) c = OrderHom.toFun g.toOrderHom (OrderHom.toFun f.toOrderHom b) [PROOFSTEP] exact ⟨b, h₂, rfl⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ g : PseudoEpimorphism β γ f₁ f₂ : PseudoEpimorphism α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ f g : EsakiaHom α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f [GOAL] case mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ g : EsakiaHom α β toFun✝ : α → β monotone'✝ : Monotone toFun✝ continuous_toFun✝ : Continuous { toFun := toFun✝, monotone' := monotone'✝ }.toFun exists_map_eq_of_map_le'✝ : ∀ ⦃a : α⦄ ⦃b : β⦄, OrderHom.toFun { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ }.toOrderHom a ≤ b → ∃ c, a ≤ c ∧ OrderHom.toFun { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ }.toOrderHom c = b h : (fun f => f.toFun) { toContinuousOrderHom := { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝ } = (fun f => f.toFun) g ⊢ { toContinuousOrderHom := { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝ } = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ toFun✝¹ : α → β monotone'✝¹ : Monotone toFun✝¹ continuous_toFun✝¹ : Continuous { toFun := toFun✝¹, monotone' := monotone'✝¹ }.toFun exists_map_eq_of_map_le'✝¹ : ∀ ⦃a : α⦄ ⦃b : β⦄, OrderHom.toFun { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, continuous_toFun := continuous_toFun✝¹ }.toOrderHom a ≤ b → ∃ c, a ≤ c ∧ OrderHom.toFun { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, continuous_toFun := continuous_toFun✝¹ }.toOrderHom c = b toFun✝ : α → β monotone'✝ : Monotone toFun✝ continuous_toFun✝ : Continuous { toFun := toFun✝, monotone' := monotone'✝ }.toFun exists_map_eq_of_map_le'✝ : ∀ ⦃a : α⦄ ⦃b : β⦄, OrderHom.toFun { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ }.toOrderHom a ≤ b → ∃ c, a ≤ c ∧ OrderHom.toFun { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ }.toOrderHom c = b h : (fun f => f.toFun) { toContinuousOrderHom := { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, continuous_toFun := continuous_toFun✝¹ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝¹ } = (fun f => f.toFun) { toContinuousOrderHom := { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝ } ⊢ { toContinuousOrderHom := { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, continuous_toFun := continuous_toFun✝¹ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝¹ } = { toContinuousOrderHom := { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ }, exists_map_eq_of_map_le' := exists_map_eq_of_map_le'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ f : EsakiaHom α β f' : α → β h : f' = ↑f ⊢ ∀ ⦃a : α⦄ ⦃b : β⦄, OrderHom.toFun (ContinuousOrderHom.copy f.toContinuousOrderHom f' h).toOrderHom a ≤ b → ∃ c, a ≤ c ∧ OrderHom.toFun (ContinuousOrderHom.copy f.toContinuousOrderHom f' h).toOrderHom c = b [PROOFSTEP] simpa only [h.symm, toFun_eq_coe] using f.exists_map_eq_of_map_le' [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ g : EsakiaHom β γ f : EsakiaHom α β a : α b : γ h₀ : OrderHom.toFun (ContinuousOrderHom.comp g.toContinuousOrderHom f.toContinuousOrderHom).toOrderHom a ≤ b ⊢ ∃ c, a ≤ c ∧ OrderHom.toFun (ContinuousOrderHom.comp g.toContinuousOrderHom f.toContinuousOrderHom).toOrderHom c = b [PROOFSTEP] obtain ⟨b, h₁, rfl⟩ := g.exists_map_eq_of_map_le' h₀ [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ g : EsakiaHom β γ f : EsakiaHom α β a : α b : β h₁ : ↑f.toOrderHom a ≤ b h₀ : OrderHom.toFun (ContinuousOrderHom.comp g.toContinuousOrderHom f.toContinuousOrderHom).toOrderHom a ≤ OrderHom.toFun g.toOrderHom b ⊢ ∃ c, a ≤ c ∧ OrderHom.toFun (ContinuousOrderHom.comp g.toContinuousOrderHom f.toContinuousOrderHom).toOrderHom c = OrderHom.toFun g.toOrderHom b [PROOFSTEP] obtain ⟨b, h₂, rfl⟩ := f.exists_map_eq_of_map_le' h₁ [GOAL] case intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ g : EsakiaHom β γ f : EsakiaHom α β a b : α h₂ : a ≤ b h₁ : ↑f.toOrderHom a ≤ OrderHom.toFun f.toOrderHom b h₀ : OrderHom.toFun (ContinuousOrderHom.comp g.toContinuousOrderHom f.toContinuousOrderHom).toOrderHom a ≤ OrderHom.toFun g.toOrderHom (OrderHom.toFun f.toOrderHom b) ⊢ ∃ c, a ≤ c ∧ OrderHom.toFun (ContinuousOrderHom.comp g.toContinuousOrderHom f.toContinuousOrderHom).toOrderHom c = OrderHom.toFun g.toOrderHom (OrderHom.toFun f.toOrderHom b) [PROOFSTEP] exact ⟨b, h₂, rfl⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ g : EsakiaHom β γ f₁ f₂ : EsakiaHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply]
{"mathlib_filename": "Mathlib.Topology.Order.Hom.Esakia", "llama_tokens": 6053}
[GOAL] ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X ⊢ ∀ᶠ (p : ℝ≥0∞ × X) in 𝓝 0 ×ˢ 𝓝 x, ∀ (i : ι), p.snd ∈ K i → closedBall p.snd p.fst ⊆ U i [PROOFSTEP] suffices ∀ i, x ∈ K i → ∀ᶠ p : ℝ≥0∞ × X in 𝓝 0 ×ˢ 𝓝 x, closedBall p.2 p.1 ⊆ U i by apply mp_mem ((eventually_all_finite (hfin.point_finite x)).2 this) (mp_mem (@tendsto_snd ℝ≥0∞ _ (𝓝 0) _ _ (hfin.iInter_compl_mem_nhds hK x)) _) apply univ_mem' rintro ⟨r, y⟩ hxy hyU i hi simp only [mem_iInter, mem_compl_iff, not_imp_not, mem_preimage] at hxy exact hyU _ (hxy _ hi) [GOAL] ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X this : ∀ (i : ι), x ∈ K i → ∀ᶠ (p : ℝ≥0∞ × X) in 𝓝 0 ×ˢ 𝓝 x, closedBall p.snd p.fst ⊆ U i ⊢ ∀ᶠ (p : ℝ≥0∞ × X) in 𝓝 0 ×ˢ 𝓝 x, ∀ (i : ι), p.snd ∈ K i → closedBall p.snd p.fst ⊆ U i [PROOFSTEP] apply mp_mem ((eventually_all_finite (hfin.point_finite x)).2 this) (mp_mem (@tendsto_snd ℝ≥0∞ _ (𝓝 0) _ _ (hfin.iInter_compl_mem_nhds hK x)) _) [GOAL] ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X this : ∀ (i : ι), x ∈ K i → ∀ᶠ (p : ℝ≥0∞ × X) in 𝓝 0 ×ˢ 𝓝 x, closedBall p.snd p.fst ⊆ U i ⊢ {x_1 | x_1 ∈ Prod.snd ⁻¹' ⋂ (i : ι) (_ : ¬x ∈ K i), (K i)ᶜ → x_1 ∈ {x_2 | x_2 ∈ {x_3 | (fun x_4 => ∀ (i : ι), i ∈ {b | x ∈ K b} → closedBall x_4.snd x_4.fst ⊆ U i) x_3} → x_2 ∈ {x | (fun p => ∀ (i : ι), p.snd ∈ K i → closedBall p.snd p.fst ⊆ U i) x}}} ∈ 𝓝 0 ×ˢ 𝓝 x [PROOFSTEP] apply univ_mem' [GOAL] case h ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X this : ∀ (i : ι), x ∈ K i → ∀ᶠ (p : ℝ≥0∞ × X) in 𝓝 0 ×ˢ 𝓝 x, closedBall p.snd p.fst ⊆ U i ⊢ ∀ (a : ℝ≥0∞ × X), a ∈ {x_1 | x_1 ∈ Prod.snd ⁻¹' ⋂ (i : ι) (_ : ¬x ∈ K i), (K i)ᶜ → x_1 ∈ {x_2 | x_2 ∈ {x_3 | (fun x_4 => ∀ (i : ι), i ∈ {b | x ∈ K b} → closedBall x_4.snd x_4.fst ⊆ U i) x_3} → x_2 ∈ {x | (fun p => ∀ (i : ι), p.snd ∈ K i → closedBall p.snd p.fst ⊆ U i) x}}} [PROOFSTEP] rintro ⟨r, y⟩ hxy hyU i hi [GOAL] case h.mk ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X this : ∀ (i : ι), x ∈ K i → ∀ᶠ (p : ℝ≥0∞ × X) in 𝓝 0 ×ˢ 𝓝 x, closedBall p.snd p.fst ⊆ U i r : ℝ≥0∞ y : X hxy : (r, y) ∈ Prod.snd ⁻¹' ⋂ (i : ι) (_ : ¬x ∈ K i), (K i)ᶜ hyU : (r, y) ∈ {x_1 | (fun x_2 => ∀ (i : ι), i ∈ {b | x ∈ K b} → closedBall x_2.snd x_2.fst ⊆ U i) x_1} i : ι hi : (r, y).snd ∈ K i ⊢ closedBall (r, y).snd (r, y).fst ⊆ U i [PROOFSTEP] simp only [mem_iInter, mem_compl_iff, not_imp_not, mem_preimage] at hxy [GOAL] case h.mk ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X this : ∀ (i : ι), x ∈ K i → ∀ᶠ (p : ℝ≥0∞ × X) in 𝓝 0 ×ˢ 𝓝 x, closedBall p.snd p.fst ⊆ U i r : ℝ≥0∞ y : X hyU : (r, y) ∈ {x_1 | (fun x_2 => ∀ (i : ι), i ∈ {b | x ∈ K b} → closedBall x_2.snd x_2.fst ⊆ U i) x_1} i : ι hi : (r, y).snd ∈ K i hxy : ∀ (i : ι), y ∈ K i → x ∈ K i ⊢ closedBall (r, y).snd (r, y).fst ⊆ U i [PROOFSTEP] exact hyU _ (hxy _ hi) [GOAL] ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X ⊢ ∀ (i : ι), x ∈ K i → ∀ᶠ (p : ℝ≥0∞ × X) in 𝓝 0 ×ˢ 𝓝 x, closedBall p.snd p.fst ⊆ U i [PROOFSTEP] intro i hi [GOAL] ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X i : ι hi : x ∈ K i ⊢ ∀ᶠ (p : ℝ≥0∞ × X) in 𝓝 0 ×ˢ 𝓝 x, closedBall p.snd p.fst ⊆ U i [PROOFSTEP] rcases nhds_basis_closed_eball.mem_iff.1 ((hU i).mem_nhds <| hKU i hi) with ⟨R, hR₀, hR⟩ [GOAL] case intro.intro ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X i : ι hi : x ∈ K i R : ℝ≥0∞ hR₀ : 0 < R hR : closedBall x R ⊆ U i ⊢ ∀ᶠ (p : ℝ≥0∞ × X) in 𝓝 0 ×ˢ 𝓝 x, closedBall p.snd p.fst ⊆ U i [PROOFSTEP] rcases ENNReal.lt_iff_exists_nnreal_btwn.mp hR₀ with ⟨r, hr₀, hrR⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X i : ι hi : x ∈ K i R : ℝ≥0∞ hR₀ : 0 < R hR : closedBall x R ⊆ U i r : ℝ≥0 hr₀ : 0 < ↑r hrR : ↑r < R ⊢ ∀ᶠ (p : ℝ≥0∞ × X) in 𝓝 0 ×ˢ 𝓝 x, closedBall p.snd p.fst ⊆ U i [PROOFSTEP] filter_upwards [prod_mem_prod (eventually_lt_nhds hr₀) (closedBall_mem_nhds x (tsub_pos_iff_lt.2 hrR))] with p hp z hz [GOAL] case h ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X i : ι hi : x ∈ K i R : ℝ≥0∞ hR₀ : 0 < R hR : closedBall x R ⊆ U i r : ℝ≥0 hr₀ : 0 < ↑r hrR : ↑r < R p : ℝ≥0∞ × X hp : p ∈ {x | x < ↑r} ×ˢ closedBall x (R - ↑r) z : X hz : z ∈ closedBall p.snd p.fst ⊢ z ∈ U i [PROOFSTEP] apply hR [GOAL] case h.a ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X i : ι hi : x ∈ K i R : ℝ≥0∞ hR₀ : 0 < R hR : closedBall x R ⊆ U i r : ℝ≥0 hr₀ : 0 < ↑r hrR : ↑r < R p : ℝ≥0∞ × X hp : p ∈ {x | x < ↑r} ×ˢ closedBall x (R - ↑r) z : X hz : z ∈ closedBall p.snd p.fst ⊢ z ∈ closedBall x R [PROOFSTEP] calc edist z x ≤ edist z p.2 + edist p.2 x := edist_triangle _ _ _ _ ≤ p.1 + (R - p.1) := (add_le_add hz <| le_trans hp.2 <| tsub_le_tsub_left hp.1.out.le _) _ = R := add_tsub_cancel_of_le (lt_trans (by exact hp.1) hrR).le [GOAL] ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X i : ι hi : x ∈ K i R : ℝ≥0∞ hR₀ : 0 < R hR : closedBall x R ⊆ U i r : ℝ≥0 hr₀ : 0 < ↑r hrR : ↑r < R p : ℝ≥0∞ × X hp : p ∈ {x | x < ↑r} ×ˢ closedBall x (R - ↑r) z : X hz : z ∈ closedBall p.snd p.fst ⊢ p.fst < ↑r [PROOFSTEP] exact hp.1 [GOAL] ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X ⊢ ∃ r, ∀ᶠ (y : X) in 𝓝 x, r ∈ Ioi 0 ∩ ENNReal.ofReal ⁻¹' ⋂ (i : ι) (_ : y ∈ K i), {r | closedBall y r ⊆ U i} [PROOFSTEP] have := (ENNReal.continuous_ofReal.tendsto' 0 0 ENNReal.ofReal_zero).eventually (eventually_nhds_zero_forall_closedBall_subset hK hU hKU hfin x).curry [GOAL] ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X this : ∀ᶠ (x_1 : ℝ) in 𝓝 0, ∀ᶠ (y : X) in 𝓝 x, ∀ (i : ι), (ENNReal.ofReal x_1, y).snd ∈ K i → closedBall (ENNReal.ofReal x_1, y).snd (ENNReal.ofReal x_1, y).fst ⊆ U i ⊢ ∃ r, ∀ᶠ (y : X) in 𝓝 x, r ∈ Ioi 0 ∩ ENNReal.ofReal ⁻¹' ⋂ (i : ι) (_ : y ∈ K i), {r | closedBall y r ⊆ U i} [PROOFSTEP] rcases this.exists_gt with ⟨r, hr0, hr⟩ [GOAL] case intro.intro ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X this : ∀ᶠ (x_1 : ℝ) in 𝓝 0, ∀ᶠ (y : X) in 𝓝 x, ∀ (i : ι), (ENNReal.ofReal x_1, y).snd ∈ K i → closedBall (ENNReal.ofReal x_1, y).snd (ENNReal.ofReal x_1, y).fst ⊆ U i r : ℝ hr0 : r > 0 hr : ∀ᶠ (y : X) in 𝓝 x, ∀ (i : ι), (ENNReal.ofReal r, y).snd ∈ K i → closedBall (ENNReal.ofReal r, y).snd (ENNReal.ofReal r, y).fst ⊆ U i ⊢ ∃ r, ∀ᶠ (y : X) in 𝓝 x, r ∈ Ioi 0 ∩ ENNReal.ofReal ⁻¹' ⋂ (i : ι) (_ : y ∈ K i), {r | closedBall y r ⊆ U i} [PROOFSTEP] refine' ⟨r, hr.mono fun y hy => ⟨hr0, _⟩⟩ [GOAL] case intro.intro ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K x : X this : ∀ᶠ (x_1 : ℝ) in 𝓝 0, ∀ᶠ (y : X) in 𝓝 x, ∀ (i : ι), (ENNReal.ofReal x_1, y).snd ∈ K i → closedBall (ENNReal.ofReal x_1, y).snd (ENNReal.ofReal x_1, y).fst ⊆ U i r : ℝ hr0 : r > 0 hr : ∀ᶠ (y : X) in 𝓝 x, ∀ (i : ι), (ENNReal.ofReal r, y).snd ∈ K i → closedBall (ENNReal.ofReal r, y).snd (ENNReal.ofReal r, y).fst ⊆ U i y : X hy : ∀ (i : ι), (ENNReal.ofReal r, y).snd ∈ K i → closedBall (ENNReal.ofReal r, y).snd (ENNReal.ofReal r, y).fst ⊆ U i ⊢ r ∈ ENNReal.ofReal ⁻¹' ⋂ (i : ι) (_ : y ∈ K i), {r | closedBall y r ⊆ U i} [PROOFSTEP] rwa [mem_preimage, mem_iInter₂] [GOAL] ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K ⊢ ∃ δ, (∀ (x : X), 0 < ↑δ x) ∧ ∀ (i : ι) (x : X), x ∈ K i → closedBall x (ENNReal.ofReal (↑δ x)) ⊆ U i [PROOFSTEP] simpa only [mem_inter_iff, forall_and, mem_preimage, mem_iInter, @forall_swap ι X] using exists_continuous_forall_mem_convex_of_local_const exists_forall_closedBall_subset_aux₂ (exists_forall_closedBall_subset_aux₁ hK hU hKU hfin) [GOAL] ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K ⊢ ∃ δ, (∀ (x : X), 0 < ↑δ x) ∧ ∀ (i : ι) (x : X), x ∈ K i → closedBall x ↑(↑δ x) ⊆ U i [PROOFSTEP] rcases exists_continuous_real_forall_closedBall_subset hK hU hKU hfin with ⟨δ, hδ₀, hδ⟩ [GOAL] case intro.intro ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K δ : C(X, ℝ) hδ₀ : ∀ (x : X), 0 < ↑δ x hδ : ∀ (i : ι) (x : X), x ∈ K i → closedBall x (ENNReal.ofReal (↑δ x)) ⊆ U i ⊢ ∃ δ, (∀ (x : X), 0 < ↑δ x) ∧ ∀ (i : ι) (x : X), x ∈ K i → closedBall x ↑(↑δ x) ⊆ U i [PROOFSTEP] lift δ to C(X, ℝ≥0) using fun x => (hδ₀ x).le [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K δ : C(X, ℝ≥0) hδ₀ : ∀ (x : X), 0 < ↑(ContinuousMap.comp ContinuousMap.coeNNRealReal δ) x hδ : ∀ (i : ι) (x : X), x ∈ K i → closedBall x (ENNReal.ofReal (↑(ContinuousMap.comp ContinuousMap.coeNNRealReal δ) x)) ⊆ U i ⊢ ∃ δ, (∀ (x : X), 0 < ↑δ x) ∧ ∀ (i : ι) (x : X), x ∈ K i → closedBall x ↑(↑δ x) ⊆ U i [PROOFSTEP] refine' ⟨δ, hδ₀, fun i x hi => _⟩ [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 inst✝ : EMetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K δ : C(X, ℝ≥0) hδ₀ : ∀ (x : X), 0 < ↑(ContinuousMap.comp ContinuousMap.coeNNRealReal δ) x hδ : ∀ (i : ι) (x : X), x ∈ K i → closedBall x (ENNReal.ofReal (↑(ContinuousMap.comp ContinuousMap.coeNNRealReal δ) x)) ⊆ U i i : ι x : X hi : x ∈ K i ⊢ closedBall x ↑(↑δ x) ⊆ U i [PROOFSTEP] simpa only [← ENNReal.ofReal_coe_nnreal] using hδ i x hi [GOAL] ι : Type u_1 X : Type u_2 inst✝ : MetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K ⊢ ∃ δ, (∀ (x : X), 0 < ↑δ x) ∧ ∀ (i : ι) (x : X), x ∈ K i → closedBall x ↑(↑δ x) ⊆ U i [PROOFSTEP] rcases EMetric.exists_continuous_nNReal_forall_closedBall_subset hK hU hKU hfin with ⟨δ, hδ0, hδ⟩ [GOAL] case intro.intro ι : Type u_1 X : Type u_2 inst✝ : MetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K δ : C(X, ℝ≥0) hδ0 : ∀ (x : X), 0 < ↑δ x hδ : ∀ (i : ι) (x : X), x ∈ K i → EMetric.closedBall x ↑(↑δ x) ⊆ U i ⊢ ∃ δ, (∀ (x : X), 0 < ↑δ x) ∧ ∀ (i : ι) (x : X), x ∈ K i → closedBall x ↑(↑δ x) ⊆ U i [PROOFSTEP] refine' ⟨δ, hδ0, fun i x hx => _⟩ [GOAL] case intro.intro ι : Type u_1 X : Type u_2 inst✝ : MetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K δ : C(X, ℝ≥0) hδ0 : ∀ (x : X), 0 < ↑δ x hδ : ∀ (i : ι) (x : X), x ∈ K i → EMetric.closedBall x ↑(↑δ x) ⊆ U i i : ι x : X hx : x ∈ K i ⊢ closedBall x ↑(↑δ x) ⊆ U i [PROOFSTEP] rw [← emetric_closedBall_nnreal] [GOAL] case intro.intro ι : Type u_1 X : Type u_2 inst✝ : MetricSpace X K U : ι → Set X hK : ∀ (i : ι), IsClosed (K i) hU : ∀ (i : ι), IsOpen (U i) hKU : ∀ (i : ι), K i ⊆ U i hfin : LocallyFinite K δ : C(X, ℝ≥0) hδ0 : ∀ (x : X), 0 < ↑δ x hδ : ∀ (i : ι) (x : X), x ∈ K i → EMetric.closedBall x ↑(↑δ x) ⊆ U i i : ι x : X hx : x ∈ K i ⊢ EMetric.closedBall x ↑(↑δ x) ⊆ U i [PROOFSTEP] exact hδ i x hx
{"mathlib_filename": "Mathlib.Topology.MetricSpace.PartitionOfUnity", "llama_tokens": 7717}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Bornology α inst✝² : Bornology β inst✝¹ : Bornology γ inst✝ : Bornology δ f g : LocallyBoundedMap α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Bornology α inst✝² : Bornology β inst✝¹ : Bornology γ inst✝ : Bornology δ g : LocallyBoundedMap α β toFun✝ : α → β comap_cobounded_le'✝ : comap toFun✝ (cobounded β) ≤ cobounded α h : (fun f => f.toFun) { toFun := toFun✝, comap_cobounded_le' := comap_cobounded_le'✝ } = (fun f => f.toFun) g ⊢ { toFun := toFun✝, comap_cobounded_le' := comap_cobounded_le'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Bornology α inst✝² : Bornology β inst✝¹ : Bornology γ inst✝ : Bornology δ toFun✝¹ : α → β comap_cobounded_le'✝¹ : comap toFun✝¹ (cobounded β) ≤ cobounded α toFun✝ : α → β comap_cobounded_le'✝ : comap toFun✝ (cobounded β) ≤ cobounded α h : (fun f => f.toFun) { toFun := toFun✝¹, comap_cobounded_le' := comap_cobounded_le'✝¹ } = (fun f => f.toFun) { toFun := toFun✝, comap_cobounded_le' := comap_cobounded_le'✝ } ⊢ { toFun := toFun✝¹, comap_cobounded_le' := comap_cobounded_le'✝¹ } = { toFun := toFun✝, comap_cobounded_le' := comap_cobounded_le'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Bornology α inst✝² : Bornology β inst✝¹ : Bornology γ inst✝ : Bornology δ g : LocallyBoundedMap β γ f₁ f₂ : LocallyBoundedMap α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply]
{"mathlib_filename": "Mathlib.Topology.Bornology.Hom", "llama_tokens": 909}
[GOAL] R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²² : CommSemiring R inst✝²¹ : Semiring A inst✝²⁰ : Semiring B inst✝¹⁹ : Algebra R A inst✝¹⁸ : Algebra R B inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M inst✝¹⁵ : Module A M inst✝¹⁴ : Module B M inst✝¹³ : IsScalarTower R A M inst✝¹² : IsScalarTower R B M inst✝¹¹ : SMulCommClass A B M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P inst✝⁶ : Module A P inst✝⁵ : Module B P inst✝⁴ : IsScalarTower R A P inst✝³ : IsScalarTower R B P inst✝² : SMulCommClass A B P inst✝¹ : AddCommMonoid Q inst✝ : Module R Q f : M →ₗ[A] N →ₗ[R] P src✝ : M ⊗[R] N →ₗ[R] P := TensorProduct.lift (↑R f) c : A x : M y : N ⊢ ↑(comp (TensorProduct.lift (↑R f)) (↑(Algebra.lsmul R R (M ⊗[R] N)) c)) (x ⊗ₜ[R] y) = ↑(comp (↑(Algebra.lsmul R R P) c) (TensorProduct.lift (↑R f))) (x ⊗ₜ[R] y) [PROOFSTEP] simp only [comp_apply, Algebra.lsmul_coe, smul_tmul', lift.tmul, coe_restrictScalars, f.map_smul, smul_apply] [GOAL] R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²² : CommSemiring R inst✝²¹ : Semiring A inst✝²⁰ : Semiring B inst✝¹⁹ : Algebra R A inst✝¹⁸ : Algebra R B inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M inst✝¹⁵ : Module A M inst✝¹⁴ : Module B M inst✝¹³ : IsScalarTower R A M inst✝¹² : IsScalarTower R B M inst✝¹¹ : SMulCommClass A B M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P inst✝⁶ : Module A P inst✝⁵ : Module B P inst✝⁴ : IsScalarTower R A P inst✝³ : IsScalarTower R B P inst✝² : SMulCommClass A B P inst✝¹ : AddCommMonoid Q inst✝ : Module R Q x✝¹ x✝ : M →ₗ[A] N →ₗ[R] P x : M y : N ⊢ ↑(lift (x✝¹ + x✝)) (x ⊗ₜ[R] y) = ↑(lift x✝¹ + lift x✝) (x ⊗ₜ[R] y) [PROOFSTEP] simp only [lift_tmul, add_apply] [GOAL] R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²² : CommSemiring R inst✝²¹ : Semiring A inst✝²⁰ : Semiring B inst✝¹⁹ : Algebra R A inst✝¹⁸ : Algebra R B inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M inst✝¹⁵ : Module A M inst✝¹⁴ : Module B M inst✝¹³ : IsScalarTower R A M inst✝¹² : IsScalarTower R B M inst✝¹¹ : SMulCommClass A B M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P inst✝⁶ : Module A P inst✝⁵ : Module B P inst✝⁴ : IsScalarTower R A P inst✝³ : IsScalarTower R B P inst✝² : SMulCommClass A B P inst✝¹ : AddCommMonoid Q inst✝ : Module R Q x✝¹ : B x✝ : M →ₗ[A] N →ₗ[R] P x : M y : N ⊢ ↑(AddHom.toFun { toFun := lift, map_add' := (_ : ∀ (x x_1 : M →ₗ[A] N →ₗ[R] P), lift (x + x_1) = lift x + lift x_1) } (x✝¹ • x✝)) (x ⊗ₜ[R] y) = ↑(↑(RingHom.id B) x✝¹ • AddHom.toFun { toFun := lift, map_add' := (_ : ∀ (x x_1 : M →ₗ[A] N →ₗ[R] P), lift (x + x_1) = lift x + lift x_1) } x✝) (x ⊗ₜ[R] y) [PROOFSTEP] simp only [lift_tmul, smul_apply, RingHom.id_apply] -- porting note: new `B` argument [GOAL] R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²² : CommSemiring R inst✝²¹ : Semiring A inst✝²⁰ : Semiring B inst✝¹⁹ : Algebra R A inst✝¹⁸ : Algebra R B inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M inst✝¹⁵ : Module A M inst✝¹⁴ : Module B M inst✝¹³ : IsScalarTower R A M inst✝¹² : IsScalarTower R B M inst✝¹¹ : SMulCommClass A B M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P inst✝⁶ : Module A P inst✝⁵ : Module B P inst✝⁴ : IsScalarTower R A P inst✝³ : IsScalarTower R B P inst✝² : SMulCommClass A B P inst✝¹ : AddCommMonoid Q inst✝ : Module R Q f₁ f₂ : M →ₗ[A] P g : N →ₗ[R] Q ⊢ map (f₁ + f₂) g = map f₁ g + map f₂ g [PROOFSTEP] ext [GOAL] case a.h.h R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²² : CommSemiring R inst✝²¹ : Semiring A inst✝²⁰ : Semiring B inst✝¹⁹ : Algebra R A inst✝¹⁸ : Algebra R B inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M inst✝¹⁵ : Module A M inst✝¹⁴ : Module B M inst✝¹³ : IsScalarTower R A M inst✝¹² : IsScalarTower R B M inst✝¹¹ : SMulCommClass A B M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P inst✝⁶ : Module A P inst✝⁵ : Module B P inst✝⁴ : IsScalarTower R A P inst✝³ : IsScalarTower R B P inst✝² : SMulCommClass A B P inst✝¹ : AddCommMonoid Q inst✝ : Module R Q f₁ f₂ : M →ₗ[A] P g : N →ₗ[R] Q x✝¹ : M x✝ : N ⊢ ↑(↑(curry (map (f₁ + f₂) g)) x✝¹) x✝ = ↑(↑(curry (map f₁ g + map f₂ g)) x✝¹) x✝ [PROOFSTEP] simp_rw [curry_apply, TensorProduct.curry_apply, restrictScalars_apply, add_apply, map_tmul, add_apply, add_tmul] [GOAL] R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²² : CommSemiring R inst✝²¹ : Semiring A inst✝²⁰ : Semiring B inst✝¹⁹ : Algebra R A inst✝¹⁸ : Algebra R B inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M inst✝¹⁵ : Module A M inst✝¹⁴ : Module B M inst✝¹³ : IsScalarTower R A M inst✝¹² : IsScalarTower R B M inst✝¹¹ : SMulCommClass A B M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P inst✝⁶ : Module A P inst✝⁵ : Module B P inst✝⁴ : IsScalarTower R A P inst✝³ : IsScalarTower R B P inst✝² : SMulCommClass A B P inst✝¹ : AddCommMonoid Q inst✝ : Module R Q f : M →ₗ[A] P g₁ g₂ : N →ₗ[R] Q ⊢ map f (g₁ + g₂) = map f g₁ + map f g₂ [PROOFSTEP] ext [GOAL] case a.h.h R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²² : CommSemiring R inst✝²¹ : Semiring A inst✝²⁰ : Semiring B inst✝¹⁹ : Algebra R A inst✝¹⁸ : Algebra R B inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M inst✝¹⁵ : Module A M inst✝¹⁴ : Module B M inst✝¹³ : IsScalarTower R A M inst✝¹² : IsScalarTower R B M inst✝¹¹ : SMulCommClass A B M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P inst✝⁶ : Module A P inst✝⁵ : Module B P inst✝⁴ : IsScalarTower R A P inst✝³ : IsScalarTower R B P inst✝² : SMulCommClass A B P inst✝¹ : AddCommMonoid Q inst✝ : Module R Q f : M →ₗ[A] P g₁ g₂ : N →ₗ[R] Q x✝¹ : M x✝ : N ⊢ ↑(↑(curry (map f (g₁ + g₂))) x✝¹) x✝ = ↑(↑(curry (map f g₁ + map f g₂)) x✝¹) x✝ [PROOFSTEP] simp_rw [curry_apply, TensorProduct.curry_apply, restrictScalars_apply, add_apply, map_tmul, add_apply, tmul_add] [GOAL] R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²² : CommSemiring R inst✝²¹ : Semiring A inst✝²⁰ : Semiring B inst✝¹⁹ : Algebra R A inst✝¹⁸ : Algebra R B inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M inst✝¹⁵ : Module A M inst✝¹⁴ : Module B M inst✝¹³ : IsScalarTower R A M inst✝¹² : IsScalarTower R B M inst✝¹¹ : SMulCommClass A B M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P inst✝⁶ : Module A P inst✝⁵ : Module B P inst✝⁴ : IsScalarTower R A P inst✝³ : IsScalarTower R B P inst✝² : SMulCommClass A B P inst✝¹ : AddCommMonoid Q inst✝ : Module R Q r : R f : M →ₗ[A] P g : N →ₗ[R] Q ⊢ map f (r • g) = r • map f g [PROOFSTEP] ext [GOAL] case a.h.h R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²² : CommSemiring R inst✝²¹ : Semiring A inst✝²⁰ : Semiring B inst✝¹⁹ : Algebra R A inst✝¹⁸ : Algebra R B inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M inst✝¹⁵ : Module A M inst✝¹⁴ : Module B M inst✝¹³ : IsScalarTower R A M inst✝¹² : IsScalarTower R B M inst✝¹¹ : SMulCommClass A B M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P inst✝⁶ : Module A P inst✝⁵ : Module B P inst✝⁴ : IsScalarTower R A P inst✝³ : IsScalarTower R B P inst✝² : SMulCommClass A B P inst✝¹ : AddCommMonoid Q inst✝ : Module R Q r : R f : M →ₗ[A] P g : N →ₗ[R] Q x✝¹ : M x✝ : N ⊢ ↑(↑(curry (map f (r • g))) x✝¹) x✝ = ↑(↑(curry (r • map f g)) x✝¹) x✝ [PROOFSTEP] simp_rw [curry_apply, TensorProduct.curry_apply, restrictScalars_apply, smul_apply, map_tmul, smul_apply, tmul_smul] [GOAL] R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²² : CommSemiring R inst✝²¹ : Semiring A inst✝²⁰ : Semiring B inst✝¹⁹ : Algebra R A inst✝¹⁸ : Algebra R B inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M inst✝¹⁵ : Module A M inst✝¹⁴ : Module B M inst✝¹³ : IsScalarTower R A M inst✝¹² : IsScalarTower R B M inst✝¹¹ : SMulCommClass A B M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P inst✝⁶ : Module A P inst✝⁵ : Module B P inst✝⁴ : IsScalarTower R A P inst✝³ : IsScalarTower R B P inst✝² : SMulCommClass A B P inst✝¹ : AddCommMonoid Q inst✝ : Module R Q b : B f : M →ₗ[A] P g : N →ₗ[R] Q ⊢ map (b • f) g = b • map f g [PROOFSTEP] ext [GOAL] case a.h.h R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²² : CommSemiring R inst✝²¹ : Semiring A inst✝²⁰ : Semiring B inst✝¹⁹ : Algebra R A inst✝¹⁸ : Algebra R B inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M inst✝¹⁵ : Module A M inst✝¹⁴ : Module B M inst✝¹³ : IsScalarTower R A M inst✝¹² : IsScalarTower R B M inst✝¹¹ : SMulCommClass A B M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P inst✝⁶ : Module A P inst✝⁵ : Module B P inst✝⁴ : IsScalarTower R A P inst✝³ : IsScalarTower R B P inst✝² : SMulCommClass A B P inst✝¹ : AddCommMonoid Q inst✝ : Module R Q b : B f : M →ₗ[A] P g : N →ₗ[R] Q x✝¹ : M x✝ : N ⊢ ↑(↑(curry (map (b • f) g)) x✝¹) x✝ = ↑(↑(curry (b • map f g)) x✝¹) x✝ [PROOFSTEP] simp_rw [curry_apply, TensorProduct.curry_apply, restrictScalars_apply, smul_apply, map_tmul, smul_apply, smul_tmul'] [GOAL] R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²⁴ : CommSemiring R inst✝²³ : CommSemiring A inst✝²² : Semiring B inst✝²¹ : Algebra R A inst✝²⁰ : Algebra R B inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M inst✝¹⁷ : Module A M inst✝¹⁶ : Module B M inst✝¹⁵ : IsScalarTower R A M inst✝¹⁴ : IsScalarTower R B M inst✝¹³ : SMulCommClass A B M inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P inst✝⁸ : Module A P inst✝⁷ : Module B P inst✝⁶ : IsScalarTower R A P inst✝⁵ : IsScalarTower R B P inst✝⁴ : SMulCommClass A B P inst✝³ : AddCommMonoid Q inst✝² : Module R Q inst✝¹ : Algebra A B inst✝ : IsScalarTower A B M ⊢ comp (lift (lift (comp (lcurry R A B P Q (M ⊗[A] P ⊗[R] Q)) (mk A B M (P ⊗[R] Q))))) (lift (comp (uncurry R A B P Q ((M ⊗[A] P) ⊗[R] Q)) (curry (mk R B (M ⊗[A] P) Q)))) = LinearMap.id [PROOFSTEP] ext [GOAL] case a.h.a.h.h R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²⁴ : CommSemiring R inst✝²³ : CommSemiring A inst✝²² : Semiring B inst✝²¹ : Algebra R A inst✝²⁰ : Algebra R B inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M inst✝¹⁷ : Module A M inst✝¹⁶ : Module B M inst✝¹⁵ : IsScalarTower R A M inst✝¹⁴ : IsScalarTower R B M inst✝¹³ : SMulCommClass A B M inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P inst✝⁸ : Module A P inst✝⁷ : Module B P inst✝⁶ : IsScalarTower R A P inst✝⁵ : IsScalarTower R B P inst✝⁴ : SMulCommClass A B P inst✝³ : AddCommMonoid Q inst✝² : Module R Q inst✝¹ : Algebra A B inst✝ : IsScalarTower A B M x✝² : M x✝¹ : P x✝ : Q ⊢ ↑(↑(curry (↑(curry (comp (lift (lift (comp (lcurry R A B P Q (M ⊗[A] P ⊗[R] Q)) (mk A B M (P ⊗[R] Q))))) (lift (comp (uncurry R A B P Q ((M ⊗[A] P) ⊗[R] Q)) (curry (mk R B (M ⊗[A] P) Q)))))) x✝²)) x✝¹) x✝ = ↑(↑(curry (↑(curry LinearMap.id) x✝²)) x✝¹) x✝ [PROOFSTEP] rfl [GOAL] R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²⁴ : CommSemiring R inst✝²³ : CommSemiring A inst✝²² : Semiring B inst✝²¹ : Algebra R A inst✝²⁰ : Algebra R B inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M inst✝¹⁷ : Module A M inst✝¹⁶ : Module B M inst✝¹⁵ : IsScalarTower R A M inst✝¹⁴ : IsScalarTower R B M inst✝¹³ : SMulCommClass A B M inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P inst✝⁸ : Module A P inst✝⁷ : Module B P inst✝⁶ : IsScalarTower R A P inst✝⁵ : IsScalarTower R B P inst✝⁴ : SMulCommClass A B P inst✝³ : AddCommMonoid Q inst✝² : Module R Q inst✝¹ : Algebra A B inst✝ : IsScalarTower A B M ⊢ comp (lift (comp (uncurry R A B P Q ((M ⊗[A] P) ⊗[R] Q)) (curry (mk R B (M ⊗[A] P) Q)))) (lift (lift (comp (lcurry R A B P Q (M ⊗[A] P ⊗[R] Q)) (mk A B M (P ⊗[R] Q))))) = LinearMap.id [PROOFSTEP] ext [GOAL] case a.a.h.h.h R : Type uR A : Type uA B : Type uB M : Type uM N : Type uN P : Type uP Q : Type uQ inst✝²⁴ : CommSemiring R inst✝²³ : CommSemiring A inst✝²² : Semiring B inst✝²¹ : Algebra R A inst✝²⁰ : Algebra R B inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M inst✝¹⁷ : Module A M inst✝¹⁶ : Module B M inst✝¹⁵ : IsScalarTower R A M inst✝¹⁴ : IsScalarTower R B M inst✝¹³ : SMulCommClass A B M inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P inst✝⁸ : Module A P inst✝⁷ : Module B P inst✝⁶ : IsScalarTower R A P inst✝⁵ : IsScalarTower R B P inst✝⁴ : SMulCommClass A B P inst✝³ : AddCommMonoid Q inst✝² : Module R Q inst✝¹ : Algebra A B inst✝ : IsScalarTower A B M x✝² : M x✝¹ : P x✝ : Q ⊢ ↑(↑(↑(curry (curry (comp (lift (comp (uncurry R A B P Q ((M ⊗[A] P) ⊗[R] Q)) (curry (mk R B (M ⊗[A] P) Q)))) (lift (lift (comp (lcurry R A B P Q (M ⊗[A] P ⊗[R] Q)) (mk A B M (P ⊗[R] Q)))))))) x✝²) x✝¹) x✝ = ↑(↑(↑(curry (curry LinearMap.id)) x✝²) x✝¹) x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.LinearAlgebra.TensorProduct.Tower", "llama_tokens": 7173}
[GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : CommSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 l : Filter α f : α → WeakBilin B x : WeakBilin B hB : Function.Injective ↑B ⊢ Tendsto f l (𝓝 x) ↔ ∀ (y : F), Tendsto (fun i => ↑(↑B (f i)) y) l (𝓝 (↑(↑B x) y)) [PROOFSTEP] rw [← tendsto_pi_nhds, Embedding.tendsto_nhds_iff (embedding hB)] [GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : CommSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : Module 𝕜 E inst✝¹ : AddCommMonoid F inst✝ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 l : Filter α f : α → WeakBilin B x : WeakBilin B hB : Function.Injective ↑B ⊢ Tendsto ((fun x y => ↑(↑B x) y) ∘ f) l (𝓝 fun y => ↑(↑B x) y) ↔ Tendsto (fun i y => ↑(↑B (f i)) y) l (𝓝 fun y => ↑(↑B x) y) [PROOFSTEP] rfl [GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 ⊢ ContinuousAdd (WeakBilin B) [PROOFSTEP] refine' ⟨continuous_induced_rng.2 _⟩ [GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 ⊢ Continuous ((fun x y => ↑(↑B x) y) ∘ fun p => p.fst + p.snd) [PROOFSTEP] refine' cast (congr_arg _ _) (((coeFn_continuous B).comp continuous_fst).add ((coeFn_continuous B).comp continuous_snd)) [GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 ⊢ (fun x => ((fun x y => ↑(↑B x) y) ∘ Prod.fst) x + ((fun x y => ↑(↑B x) y) ∘ Prod.snd) x) = (fun x y => ↑(↑B x) y) ∘ fun p => p.fst + p.snd [PROOFSTEP] ext [GOAL] case h.h α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 x✝¹ : WeakBilin B × WeakBilin B x✝ : F ⊢ (((fun x y => ↑(↑B x) y) ∘ Prod.fst) x✝¹ + ((fun x y => ↑(↑B x) y) ∘ Prod.snd) x✝¹) x✝ = ((fun x y => ↑(↑B x) y) ∘ fun p => p.fst + p.snd) x✝¹ x✝ [PROOFSTEP] simp only [Function.comp_apply, Pi.add_apply, map_add, LinearMap.add_apply] [GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousSMul 𝕜 𝕜 ⊢ ContinuousSMul 𝕜 (WeakBilin B) [PROOFSTEP] refine' ⟨continuous_induced_rng.2 _⟩ [GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousSMul 𝕜 𝕜 ⊢ Continuous ((fun x y => ↑(↑B x) y) ∘ fun p => p.fst • p.snd) [PROOFSTEP] refine' cast (congr_arg _ _) (continuous_fst.smul ((coeFn_continuous B).comp continuous_snd)) [GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousSMul 𝕜 𝕜 ⊢ (fun x => x.fst • ((fun x y => ↑(↑B x) y) ∘ Prod.snd) x) = (fun x y => ↑(↑B x) y) ∘ fun p => p.fst • p.snd [PROOFSTEP] ext [GOAL] case h.h α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : Module 𝕜 E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousSMul 𝕜 𝕜 x✝¹ : 𝕜 × WeakBilin B x✝ : F ⊢ (x✝¹.fst • ((fun x y => ↑(↑B x) y) ∘ Prod.snd) x✝¹) x✝ = ((fun x y => ↑(↑B x) y) ∘ fun p => p.fst • p.snd) x✝¹ x✝ [PROOFSTEP] simp only [Function.comp_apply, Pi.smul_apply, LinearMap.map_smulₛₗ, RingHom.id_apply, LinearMap.smul_apply] [GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 ⊢ ContinuousAdd (WeakBilin B) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 ⊢ Continuous fun a => -a [PROOFSTEP] refine' continuous_induced_rng.2 (continuous_pi_iff.mpr fun y => _) [GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 y : F ⊢ Continuous fun a => ((fun x y => ↑(↑B x) y) ∘ fun a => -a) a y [PROOFSTEP] refine' cast (congr_arg _ _) (eval_continuous B (-y)) [GOAL] α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 y : F ⊢ (fun x => ↑(↑B x) (-y)) = fun a => ((fun x y => ↑(↑B x) y) ∘ fun a => -a) a y [PROOFSTEP] ext x [GOAL] case h α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 y : F x : WeakBilin B ⊢ ↑(↑B x) (-y) = ((fun x y => ↑(↑B x) y) ∘ fun a => -a) x y [PROOFSTEP] simp only [map_neg, Function.comp_apply, LinearMap.neg_apply] -- Porting note: mathlib3 proof was done here [GOAL] case h α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 y : F x : WeakBilin B ⊢ -↑(↑B x) y = ↑(↑B (-x)) y [PROOFSTEP] rw [← (B x).neg_apply] [GOAL] case h α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 y : F x : WeakBilin B ⊢ ↑(-↑B x) y = ↑(↑B (-x)) y [PROOFSTEP] congr [GOAL] case h.e_a α : Type u_1 𝕜 : Type u_2 𝕝 : Type u_3 R : Type u_4 E : Type u_5 F : Type u_6 M : Type u_7 inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : CommRing 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 inst✝ : ContinuousAdd 𝕜 y : F x : WeakBilin B ⊢ -↑B x = ↑B (-x) [PROOFSTEP] exact (map_neg B x).symm
{"mathlib_filename": "Mathlib.Topology.Algebra.Module.WeakDual", "llama_tokens": 4227}
[GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] have hB := TopCat.isTopologicalBasis_cofiltered_limit.{u, u} (F ⋙ Profinite.toTopCat) (Profinite.toTopCat.mapCone C) (isLimitOfPreserves _ hC) (fun j => {W | IsClopen W}) ?_ (fun i => isClopen_univ) (fun i U1 U2 hU1 hU2 => hU1.inter hU2) ?_ [GOAL] case refine_3 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U hB : TopologicalSpace.IsTopologicalBasis {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V case refine_1 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U ⊢ ∀ (j : J), TopologicalSpace.IsTopologicalBasis ((fun j => {W | IsClopen W}) j) case refine_2 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U ⊢ ∀ (i j : J) (f : i ⟶ j) (V : Set ↑((F ⋙ toTopCat).obj j)), V ∈ (fun j => {W | IsClopen W}) j → ↑((F ⋙ toTopCat).map f) ⁻¹' V ∈ (fun j => {W | IsClopen W}) i [PROOFSTEP] rotate_left [GOAL] case refine_1 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U ⊢ ∀ (j : J), TopologicalSpace.IsTopologicalBasis ((fun j => {W | IsClopen W}) j) [PROOFSTEP] intro i [GOAL] case refine_1 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U i : J ⊢ TopologicalSpace.IsTopologicalBasis ((fun j => {W | IsClopen W}) i) [PROOFSTEP] change TopologicalSpace.IsTopologicalBasis {W : Set (F.obj i) | IsClopen W} [GOAL] case refine_1 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U i : J ⊢ TopologicalSpace.IsTopologicalBasis {W | IsClopen W} [PROOFSTEP] apply isTopologicalBasis_clopen [GOAL] case refine_2 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U ⊢ ∀ (i j : J) (f : i ⟶ j) (V : Set ↑((F ⋙ toTopCat).obj j)), V ∈ (fun j => {W | IsClopen W}) j → ↑((F ⋙ toTopCat).map f) ⁻¹' V ∈ (fun j => {W | IsClopen W}) i [PROOFSTEP] rintro i j f V (hV : IsClopen _) [GOAL] case refine_2 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U i j : J f : i ⟶ j V : Set ↑((F ⋙ toTopCat).obj j) hV : IsClopen V ⊢ ↑((F ⋙ toTopCat).map f) ⁻¹' V ∈ (fun j => {W | IsClopen W}) i [PROOFSTEP] exact ⟨hV.1.preimage ((F ⋙ toTopCat).map f).continuous, hV.2.preimage ((F ⋙ toTopCat).map f).continuous⟩ -- Porting note: `<;> continuity` fails -- Using this, since `U` is open, we can write `U` as a union of clopen sets all of which -- are preimages of clopens from the factors in the limit. [GOAL] case refine_3 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U hB : TopologicalSpace.IsTopologicalBasis {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] obtain ⟨S, hS, h⟩ := hB.open_eq_sUnion hU.1 [GOAL] case refine_3.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U hB : TopologicalSpace.IsTopologicalBasis {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] clear hB [GOAL] case refine_3.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] let j : S → J := fun s => (hS s.2).choose [GOAL] case refine_3.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] let V : ∀ s : S, Set (F.obj (j s)) := fun s => (hS s.2).choose_spec.choose [GOAL] case refine_3.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] have hV : ∀ s : S, IsClopen (V s) ∧ s.1 = C.π.app (j s) ⁻¹' V s := fun s => (hS s.2).choose_spec.choose_spec [GOAL] case refine_3.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] have hUo : ∀ (i : ↑S), IsOpen ((fun s ↦ (forget Profinite).map (C.π.app (j s)) ⁻¹' V s) i) [GOAL] case hUo J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s ⊢ ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) [PROOFSTEP] intro s [GOAL] case hUo J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s s : ↑S ⊢ IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) s) [PROOFSTEP] exact (hV s).1.1.preimage (C.π.app (j s)).continuous [GOAL] case refine_3.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] have hsU : U ⊆ ⋃ (i : ↑S), (fun s ↦ (forget Profinite).map (C.π.app (j s)) ⁻¹' V s) i [GOAL] case hsU J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) ⊢ U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i [PROOFSTEP] dsimp only [GOAL] case hsU J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) ⊢ U ⊆ ⋃ (i : ↑S), (forget Profinite).map (NatTrans.app C.π (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ {W | IsClopen W} ∧ ↑i = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) [PROOFSTEP] rw [h] [GOAL] case hsU J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) ⊢ ⋃₀ S ⊆ ⋃ (i : ↑S), (forget Profinite).map (NatTrans.app C.π (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ {W | IsClopen W} ∧ ↑i = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) [PROOFSTEP] rintro x ⟨T, hT, hx⟩ [GOAL] case hsU.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) x : ↑C.pt.toCompHaus.toTop T : Set ↑(toTopCat.mapCone C).pt hT : T ∈ S hx : x ∈ T ⊢ x ∈ ⋃ (i : ↑S), (forget Profinite).map (NatTrans.app C.π (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ {W | IsClopen W} ∧ ↑i = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) [PROOFSTEP] refine' ⟨_, ⟨⟨T, hT⟩, rfl⟩, _⟩ [GOAL] case hsU.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) x : ↑C.pt.toCompHaus.toTop T : Set ↑(toTopCat.mapCone C).pt hT : T ∈ S hx : x ∈ T ⊢ x ∈ (fun i => (forget Profinite).map (NatTrans.app C.π (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ {W | IsClopen W} ∧ ↑i = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V)) { val := T, property := hT } [PROOFSTEP] dsimp only [forget_map_eq_coe] [GOAL] case hsU.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) x : ↑C.pt.toCompHaus.toTop T : Set ↑(toTopCat.mapCone C).pt hT : T ∈ S hx : x ∈ T ⊢ x ∈ ↑(NatTrans.app C.π (Exists.choose (_ : T ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ {W | IsClopen W} ∧ T = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : T ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) [PROOFSTEP] rwa [← (hV ⟨T, hT⟩).2] [GOAL] case refine_3.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] have := hU.2.isCompact.elim_finite_subcover (fun s : S => C.π.app (j s) ⁻¹' V s) hUo hsU [GOAL] case refine_3.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i this : ∃ t, U ⊆ ⋃ (i : ↑S) (_ : i ∈ t), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] obtain ⟨G, hG⟩ := this [GOAL] case refine_3.intro.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] obtain ⟨j0, hj0⟩ := IsCofiltered.inf_objs_exists (G.image j) [GOAL] case refine_3.intro.intro.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] let f : ∀ (s : S) (_ : s ∈ G), j0 ⟶ j s := fun s hs => (hj0 (Finset.mem_image.mpr ⟨s, hs, rfl⟩)).some [GOAL] case refine_3.intro.intro.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] let W : S → Set (F.obj j0) := fun s => if hs : s ∈ G then F.map (f s hs) ⁻¹' V s else Set.univ [GOAL] case refine_3.intro.intro.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ ⊢ ∃ j V x, U = ↑(NatTrans.app C.π j) ⁻¹' V [PROOFSTEP] refine' ⟨j0, ⋃ (s : S) (_ : s ∈ G), W s, _, _⟩ [GOAL] case refine_3.intro.intro.intro.intro.refine'_1 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ ⊢ IsClopen (⋃ (s : ↑S) (_ : s ∈ G), W s) [PROOFSTEP] apply isClopen_biUnion_finset [GOAL] case refine_3.intro.intro.intro.intro.refine'_1.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ ⊢ ∀ (i : ↑S), i ∈ G → IsClopen (W i) [PROOFSTEP] intro s hs [GOAL] case refine_3.intro.intro.intro.intro.refine'_1.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ s : ↑S hs : s ∈ G ⊢ IsClopen (W s) [PROOFSTEP] dsimp [GOAL] case refine_3.intro.intro.intro.intro.refine'_1.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ s : ↑S hs : s ∈ G ⊢ IsClopen (if hs : s ∈ G then ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))))) ⁻¹' Exists.choose (_ : ∃ V, IsClopen V ∧ ↑s = ↑(NatTrans.app C.π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) else Set.univ) [PROOFSTEP] rw [dif_pos hs] [GOAL] case refine_3.intro.intro.intro.intro.refine'_1.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ s : ↑S hs : s ∈ G ⊢ IsClopen (↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))))) ⁻¹' Exists.choose (_ : ∃ V, IsClopen V ∧ ↑s = ↑(NatTrans.app C.π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V)) [PROOFSTEP] exact ⟨(hV s).1.1.preimage (F.map _).continuous, (hV s).1.2.preimage (F.map _).continuous⟩ [GOAL] case refine_3.intro.intro.intro.intro.refine'_2 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ ⊢ U = ↑(NatTrans.app C.π j0) ⁻¹' ⋃ (s : ↑S) (_ : s ∈ G), W s [PROOFSTEP] ext x [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop ⊢ x ∈ U ↔ x ∈ ↑(NatTrans.app C.π j0) ⁻¹' ⋃ (s : ↑S) (_ : s ∈ G), W s [PROOFSTEP] constructor [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mp J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop ⊢ x ∈ U → x ∈ ↑(NatTrans.app C.π j0) ⁻¹' ⋃ (s : ↑S) (_ : s ∈ G), W s [PROOFSTEP] intro hx [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mp J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop hx : x ∈ U ⊢ x ∈ ↑(NatTrans.app C.π j0) ⁻¹' ⋃ (s : ↑S) (_ : s ∈ G), W s [PROOFSTEP] simp_rw [Set.preimage_iUnion, Set.mem_iUnion] [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mp J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop hx : x ∈ U ⊢ ∃ i i_1, x ∈ ↑(NatTrans.app C.π j0) ⁻¹' if h : i ∈ G then ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j i)))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑i = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) else Set.univ [PROOFSTEP] obtain ⟨_, ⟨s, rfl⟩, _, ⟨hs, rfl⟩, hh⟩ := hG hx [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mp.intro.intro.intro.intro.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop hx : x ∈ U s : ↑S hs : s ∈ G hh : x ∈ (fun h => (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) s) hs ⊢ ∃ i i_1, x ∈ ↑(NatTrans.app C.π j0) ⁻¹' if h : i ∈ G then ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j i)))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑i = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) else Set.univ [PROOFSTEP] refine' ⟨s, hs, _⟩ [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mp.intro.intro.intro.intro.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop hx : x ∈ U s : ↑S hs : s ∈ G hh : x ∈ (fun h => (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) s) hs ⊢ x ∈ ↑(NatTrans.app C.π j0) ⁻¹' if h : s ∈ G then ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j s)))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) else Set.univ [PROOFSTEP] rwa [dif_pos hs, ← Set.preimage_comp, ← Profinite.coe_comp, ← Functor.map_comp, C.w] [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mpr J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop ⊢ x ∈ ↑(NatTrans.app C.π j0) ⁻¹' ⋃ (s : ↑S) (_ : s ∈ G), W s → x ∈ U [PROOFSTEP] intro hx [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mpr J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop hx : x ∈ ↑(NatTrans.app C.π j0) ⁻¹' ⋃ (s : ↑S) (_ : s ∈ G), W s ⊢ x ∈ U [PROOFSTEP] simp_rw [Set.preimage_iUnion, Set.mem_iUnion] at hx [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mpr J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop hx : ∃ i i_1, x ∈ ↑(NatTrans.app C.π j0) ⁻¹' if h : i ∈ G then ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j i)))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑i = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑i ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) else Set.univ ⊢ x ∈ U [PROOFSTEP] obtain ⟨s, hs, hx⟩ := hx [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mpr.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop s : ↑S hs : s ∈ G hx : x ∈ ↑(NatTrans.app C.π j0) ⁻¹' if h : s ∈ G then ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j s)))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) else Set.univ ⊢ x ∈ U [PROOFSTEP] rw [h] [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mpr.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop s : ↑S hs : s ∈ G hx : x ∈ ↑(NatTrans.app C.π j0) ⁻¹' if h : s ∈ G then ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j s)))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) else Set.univ ⊢ x ∈ ⋃₀ S [PROOFSTEP] refine' ⟨s.1, s.2, _⟩ [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mpr.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop s : ↑S hs : s ∈ G hx : x ∈ ↑(NatTrans.app C.π j0) ⁻¹' if h : s ∈ G then ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j s)))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) else Set.univ ⊢ x ∈ ↑s [PROOFSTEP] rw [(hV s).2] [GOAL] case refine_3.intro.intro.intro.intro.refine'_2.h.mpr.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toCompHaus.toTop hC : IsLimit C hU : IsClopen U S : Set (Set ↑(toTopCat.mapCone C).pt) hS : S ⊆ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V} h : U = ⋃₀ S j : ↑S → J := fun s => Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}) V : (s : ↑S) → Set ↑(F.obj (j s)).toCompHaus.toTop := fun s => Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) hV : ∀ (s : ↑S), IsClopen (V s) ∧ ↑s = ↑(NatTrans.app C.π (j s)) ⁻¹' V s hUo : ∀ (i : ↑S), IsOpen ((fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i) hsU : U ⊆ ⋃ (i : ↑S), (fun s => (forget Profinite).map (NatTrans.app C.π (j s)) ⁻¹' V s) i G : Finset ↑S hG : U ⊆ ⋃ (i : ↑S) (_ : i ∈ G), (fun s => ↑(NatTrans.app C.π (j s)) ⁻¹' V s) i j0 : J hj0 : ∀ {X : J}, X ∈ Finset.image j G → Nonempty (j0 ⟶ X) f : (s : ↑S) → s ∈ G → (j0 ⟶ j s) := fun s hs => Nonempty.some (_ : Nonempty (j0 ⟶ j s)) W : ↑S → Set ↑(F.obj j0).toCompHaus.toTop := fun s => if hs : s ∈ G then ↑(F.map (f s hs)) ⁻¹' V s else Set.univ x : ↑C.pt.toCompHaus.toTop s : ↑S hs : s ∈ G hx : x ∈ ↑(NatTrans.app C.π j0) ⁻¹' if h : s ∈ G then ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j s)))) ⁻¹' Exists.choose (_ : ∃ V, V ∈ (fun j => {W | IsClopen W}) (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V})) ∧ ↑s = ↑(NatTrans.app (toTopCat.mapCone C).π (Exists.choose (_ : ↑s ∈ {U | ∃ j V, V ∈ (fun j => {W | IsClopen W}) j ∧ U = ↑(NatTrans.app (toTopCat.mapCone C).π j) ⁻¹' V}))) ⁻¹' V) else Set.univ ⊢ x ∈ ↑(NatTrans.app C.π (j s)) ⁻¹' V s [PROOFSTEP] rwa [dif_pos hs, ← Set.preimage_comp, ← Profinite.coe_comp, ← Functor.map_comp, C.w] at hx [GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let U := f ⁻¹' {0} [GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) U : Set ↑C.pt.toCompHaus.toTop := ↑f ⁻¹' {0} ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] have hU : IsClopen U := f.isLocallyConstant.isClopen_fiber _ [GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) U : Set ↑C.pt.toCompHaus.toTop := ↑f ⁻¹' {0} hU : IsClopen U ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] obtain ⟨j, V, hV, h⟩ := exists_clopen_of_cofiltered C hC hU [GOAL] case intro.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) U : Set ↑C.pt.toCompHaus.toTop := ↑f ⁻¹' {0} hU : IsClopen U j : J V : Set ↑(F.obj j).toCompHaus.toTop hV : IsClopen V h : U = ↑(NatTrans.app C.π j) ⁻¹' V ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] use j, LocallyConstant.ofClopen hV [GOAL] case h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) U : Set ↑C.pt.toCompHaus.toTop := ↑f ⁻¹' {0} hU : IsClopen U j : J V : Set ↑(F.obj j).toCompHaus.toTop hV : IsClopen V h : U = ↑(NatTrans.app C.π j) ⁻¹' V ⊢ f = LocallyConstant.comap (↑(NatTrans.app C.π j)) (LocallyConstant.ofClopen hV) [PROOFSTEP] apply LocallyConstant.locallyConstant_eq_of_fiber_zero_eq [GOAL] case h.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) U : Set ↑C.pt.toCompHaus.toTop := ↑f ⁻¹' {0} hU : IsClopen U j : J V : Set ↑(F.obj j).toCompHaus.toTop hV : IsClopen V h : U = ↑(NatTrans.app C.π j) ⁻¹' V ⊢ ↑f ⁻¹' {0} = ↑(LocallyConstant.comap (↑(NatTrans.app C.π j)) (LocallyConstant.ofClopen hV)) ⁻¹' {0} [PROOFSTEP] rw [LocallyConstant.coe_comap _ _ (C.π.app j).continuous] [GOAL] case h.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) U : Set ↑C.pt.toCompHaus.toTop := ↑f ⁻¹' {0} hU : IsClopen U j : J V : Set ↑(F.obj j).toCompHaus.toTop hV : IsClopen V h : U = ↑(NatTrans.app C.π j) ⁻¹' V ⊢ ↑f ⁻¹' {0} = ↑(LocallyConstant.ofClopen hV) ∘ ↑(NatTrans.app C.π j) ⁻¹' {0} [PROOFSTEP] conv_rhs => rw [Set.preimage_comp] [GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) U : Set ↑C.pt.toCompHaus.toTop := ↑f ⁻¹' {0} hU : IsClopen U j : J V : Set ↑(F.obj j).toCompHaus.toTop hV : IsClopen V h : U = ↑(NatTrans.app C.π j) ⁻¹' V | ↑(LocallyConstant.ofClopen hV) ∘ ↑(NatTrans.app C.π j) ⁻¹' {0} [PROOFSTEP] rw [Set.preimage_comp] [GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) U : Set ↑C.pt.toCompHaus.toTop := ↑f ⁻¹' {0} hU : IsClopen U j : J V : Set ↑(F.obj j).toCompHaus.toTop hV : IsClopen V h : U = ↑(NatTrans.app C.π j) ⁻¹' V | ↑(LocallyConstant.ofClopen hV) ∘ ↑(NatTrans.app C.π j) ⁻¹' {0} [PROOFSTEP] rw [Set.preimage_comp] [GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) U : Set ↑C.pt.toCompHaus.toTop := ↑f ⁻¹' {0} hU : IsClopen U j : J V : Set ↑(F.obj j).toCompHaus.toTop hV : IsClopen V h : U = ↑(NatTrans.app C.π j) ⁻¹' V | ↑(LocallyConstant.ofClopen hV) ∘ ↑(NatTrans.app C.π j) ⁻¹' {0} [PROOFSTEP] rw [Set.preimage_comp] [GOAL] case h.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) U : Set ↑C.pt.toCompHaus.toTop := ↑f ⁻¹' {0} hU : IsClopen U j : J V : Set ↑(F.obj j).toCompHaus.toTop hV : IsClopen V h : U = ↑(NatTrans.app C.π j) ⁻¹' V ⊢ ↑f ⁻¹' {0} = ↑(NatTrans.app C.π j) ⁻¹' (↑(LocallyConstant.ofClopen hV) ⁻¹' {0}) [PROOFSTEP] rw [LocallyConstant.ofClopen_fiber_zero hV, ← h] [GOAL] J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] cases nonempty_fintype α [GOAL] case intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 [GOAL] case intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let ff := (f.map ι).flip [GOAL] case intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] have hff := fun a : α => exists_locallyConstant_fin_two _ hC (ff a) [GOAL] case intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) hff : ∀ (a : α), ∃ j g, ff a = LocallyConstant.comap (↑(NatTrans.app C.π j)) g ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] choose j g h using hff [GOAL] case intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let G : Finset J := Finset.univ.image j [GOAL] case intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] obtain ⟨j0, hj0⟩ := IsCofiltered.inf_objs_exists G [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] have hj : ∀ a, j a ∈ (Finset.univ.image j : Finset J) := by intro a simp only [Finset.mem_image, Finset.mem_univ, true_and, exists_apply_eq_apply] [GOAL] J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) ⊢ ∀ (a : α), j a ∈ Finset.image j Finset.univ [PROOFSTEP] intro a [GOAL] J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) a : α ⊢ j a ∈ Finset.image j Finset.univ [PROOFSTEP] simp only [Finset.mem_image, Finset.mem_univ, true_and, exists_apply_eq_apply] [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let fs : ∀ a : α, j0 ⟶ j a := fun a => (hj0 (hj a)).some [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let gg : α → LocallyConstant (F.obj j0) (Fin 2) := fun a => (g a).comap (F.map (fs _)) [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let ggg := LocallyConstant.unflip gg [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg ⊢ ∃ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] refine' ⟨j0, ggg, _⟩ [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg ⊢ LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg [PROOFSTEP] have : f.map ι = LocallyConstant.unflip (f.map ι).flip := by simp [GOAL] J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg ⊢ LocallyConstant.map ι f = LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.map ι f)) [PROOFSTEP] simp [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg this : LocallyConstant.map ι f = LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.map ι f)) ⊢ LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg [PROOFSTEP] rw [this] [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg this : LocallyConstant.map ι f = LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.map ι f)) ⊢ LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.map ι f)) = LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg [PROOFSTEP] clear this [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg ⊢ LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.map ι f)) = LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg [PROOFSTEP] have : LocallyConstant.comap (C.π.app j0) ggg = LocallyConstant.unflip (LocallyConstant.comap (C.π.app j0) ggg).flip := by simp [GOAL] J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg ⊢ LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg = LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg)) [PROOFSTEP] simp [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg this : LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg = LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg)) ⊢ LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.map ι f)) = LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg [PROOFSTEP] rw [this] [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg this : LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg = LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg)) ⊢ LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.map ι f)) = LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg)) [PROOFSTEP] clear this [GOAL] case intro.intro J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg ⊢ LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.map ι f)) = LocallyConstant.unflip (LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg)) [PROOFSTEP] congr 1 [GOAL] case intro.intro.e_f J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg ⊢ LocallyConstant.flip (LocallyConstant.map ι f) = LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg) [PROOFSTEP] ext1 a [GOAL] case intro.intro.e_f.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α ⊢ LocallyConstant.flip (LocallyConstant.map ι f) a = LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg) a [PROOFSTEP] change ff a = _ [GOAL] case intro.intro.e_f.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α ⊢ ff a = LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg) a [PROOFSTEP] rw [h] [GOAL] case intro.intro.e_f.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α ⊢ LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) = LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) ggg) a [PROOFSTEP] dsimp [GOAL] case intro.intro.e_f.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α ⊢ LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) = LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) (LocallyConstant.unflip fun a => LocallyConstant.comap (↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a))))) (g a))) a [PROOFSTEP] ext1 x [GOAL] case intro.intro.e_f.h.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α x : (forget Profinite).obj C.pt ⊢ ↑(LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a)) x = ↑(LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) (LocallyConstant.unflip fun a => LocallyConstant.comap (↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a))))) (g a))) a) x [PROOFSTEP] rw [LocallyConstant.coe_comap _ _ (C.π.app (j a)).continuous] [GOAL] case intro.intro.e_f.h.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α x : (forget Profinite).obj C.pt ⊢ (↑(g a) ∘ ↑(NatTrans.app C.π (j a))) x = ↑(LocallyConstant.flip (LocallyConstant.comap (↑(NatTrans.app C.π j0)) (LocallyConstant.unflip fun a => LocallyConstant.comap (↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a))))) (g a))) a) x [PROOFSTEP] dsimp [LocallyConstant.flip, LocallyConstant.unflip] [GOAL] case intro.intro.e_f.h.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α x : (forget Profinite).obj C.pt ⊢ ↑(g a) (↑(NatTrans.app C.π (j a)) x) = ↑(LocallyConstant.comap ↑(NatTrans.app C.π j0) { toFun := fun x a => ↑(LocallyConstant.comap (↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a))))) (g a)) x, isLocallyConstant := (_ : IsLocallyConstant fun x a => ↑(LocallyConstant.comap (↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a))))) (g a)) x) }) x a [PROOFSTEP] rw [LocallyConstant.coe_comap _ _ (C.π.app j0).continuous] [GOAL] case intro.intro.e_f.h.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α x : (forget Profinite).obj C.pt ⊢ ↑(g a) (↑(NatTrans.app C.π (j a)) x) = (↑{ toFun := fun x a => ↑(LocallyConstant.comap (↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a))))) (g a)) x, isLocallyConstant := (_ : IsLocallyConstant fun x a => ↑(LocallyConstant.comap (↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a))))) (g a)) x) } ∘ ↑(NatTrans.app C.π j0)) x a [PROOFSTEP] dsimp [GOAL] case intro.intro.e_f.h.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α x : (forget Profinite).obj C.pt ⊢ ↑(g a) (↑(NatTrans.app C.π (j a)) x) = ↑(LocallyConstant.comap (↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a))))) (g a)) (↑(NatTrans.app C.π j0) x) [PROOFSTEP] rw [LocallyConstant.coe_comap _ _ _] -- Porting note: `repeat' rw [LocallyConstant.coe_comap]` didn't work -- so I did all three rewrites manually [GOAL] case intro.intro.e_f.h.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α x : (forget Profinite).obj C.pt ⊢ ↑(g a) (↑(NatTrans.app C.π (j a)) x) = (↑(g a) ∘ ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a))))) (↑(NatTrans.app C.π j0) x) [PROOFSTEP] dsimp [GOAL] case intro.intro.e_f.h.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α x : (forget Profinite).obj C.pt ⊢ ↑(g a) (↑(NatTrans.app C.π (j a)) x) = ↑(g a) (↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a)))) (↑(NatTrans.app C.π j0) x)) [PROOFSTEP] congr! 1 [GOAL] case intro.intro.e_f.h.h.h.e'_6.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α x : (forget Profinite).obj C.pt e_2✝ : ↑(F.obj (j a)).toCompHaus.toTop = (forget Profinite).obj (F.obj (j a)) ⊢ ↑(NatTrans.app C.π (j a)) x = ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a)))) (↑(NatTrans.app C.π j0) x) [PROOFSTEP] change _ = (C.π.app j0 ≫ F.map (fs a)) x [GOAL] case intro.intro.e_f.h.h.h.e'_6.h J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α x : (forget Profinite).obj C.pt e_2✝ : ↑(F.obj (j a)).toCompHaus.toTop = (forget Profinite).obj (F.obj (j a)) ⊢ ↑(NatTrans.app C.π (j a)) x = ↑(NatTrans.app C.π j0 ≫ F.map (fs a)) x [PROOFSTEP] rw [C.w] [GOAL] J : Type u inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toCompHaus.toTop) (Fin 2) := LocallyConstant.flip (LocallyConstant.map ι f) j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toCompHaus.toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (↑(NatTrans.app C.π (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => Nonempty.some (_ : Nonempty (j0 ⟶ j a)) gg : α → LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (Fin 2) := fun a => LocallyConstant.comap (↑(F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toCompHaus.toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α x : (forget Profinite).obj C.pt ⊢ Continuous ↑(F.map (Nonempty.some (_ : Nonempty (j0 ⟶ j a)))) [PROOFSTEP] exact (F.map _).continuous [GOAL] J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] inhabit α [GOAL] J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] obtain ⟨j, gg, h⟩ := exists_locallyConstant_finite_aux _ hC f [GOAL] case intro.intro J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 [GOAL] case intro.intro J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let σ : (α → Fin 2) → α := fun f => if h : ∃ a : α, ι a = f then h.choose else default [GOAL] case intro.intro J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] refine' ⟨j, gg.map σ, _⟩ [GOAL] case intro.intro J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default ⊢ f = LocallyConstant.comap (↑(NatTrans.app C.π j)) (LocallyConstant.map σ gg) [PROOFSTEP] ext x [GOAL] case intro.intro.h J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop ⊢ ↑f x = ↑(LocallyConstant.comap (↑(NatTrans.app C.π j)) (LocallyConstant.map σ gg)) x [PROOFSTEP] rw [LocallyConstant.coe_comap _ _ (C.π.app j).continuous] [GOAL] case intro.intro.h J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop ⊢ ↑f x = (↑(LocallyConstant.map σ gg) ∘ ↑(NatTrans.app C.π j)) x [PROOFSTEP] dsimp [GOAL] case intro.intro.h J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop ⊢ ↑f x = if h : ∃ a, (fun b => if a = b then 0 else 1) = ↑gg (↑(NatTrans.app C.π j) x) then Exists.choose h else default [PROOFSTEP] have h1 : ι (f x) = gg (C.π.app j x) := by change f.map (fun a b => if a = b then (0 : Fin 2) else 1) x = _ rw [h, LocallyConstant.coe_comap _ _ (C.π.app j).continuous] rfl [GOAL] J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop ⊢ ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) [PROOFSTEP] change f.map (fun a b => if a = b then (0 : Fin 2) else 1) x = _ [GOAL] J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop ⊢ ↑(LocallyConstant.map (fun a b => if a = b then 0 else 1) f) x = ↑gg (↑(NatTrans.app C.π j) x) [PROOFSTEP] rw [h, LocallyConstant.coe_comap _ _ (C.π.app j).continuous] [GOAL] J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop ⊢ (↑gg ∘ ↑(NatTrans.app C.π j)) x = ↑gg (↑(NatTrans.app C.π j) x) [PROOFSTEP] rfl [GOAL] case intro.intro.h J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) ⊢ ↑f x = if h : ∃ a, (fun b => if a = b then 0 else 1) = ↑gg (↑(NatTrans.app C.π j) x) then Exists.choose h else default [PROOFSTEP] have h2 : ∃ a : α, ι a = gg (C.π.app j x) := ⟨f x, h1⟩ [GOAL] case intro.intro.h J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) h2 : ∃ a, ι a = ↑gg (↑(NatTrans.app C.π j) x) ⊢ ↑f x = if h : ∃ a, (fun b => if a = b then 0 else 1) = ↑gg (↑(NatTrans.app C.π j) x) then Exists.choose h else default [PROOFSTEP] rw [dif_pos h2] [GOAL] case intro.intro.h J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) h2 : ∃ a, ι a = ↑gg (↑(NatTrans.app C.π j) x) ⊢ ↑f x = Exists.choose h2 [PROOFSTEP] apply_fun ι [GOAL] case intro.intro.h J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) h2 : ∃ a, ι a = ↑gg (↑(NatTrans.app C.π j) x) ⊢ ι (↑f x) = ι (Exists.choose h2) [PROOFSTEP] rw [h2.choose_spec] [GOAL] case intro.intro.h J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) h2 : ∃ a, ι a = ↑gg (↑(NatTrans.app C.π j) x) ⊢ ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) [PROOFSTEP] exact h1 [GOAL] case intro.intro.h.inj J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) h2 : ∃ a, ι a = ↑gg (↑(NatTrans.app C.π j) x) ⊢ Function.Injective ι [PROOFSTEP] intro a b hh [GOAL] case intro.intro.h.inj J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) h2 : ∃ a, ι a = ↑gg (↑(NatTrans.app C.π j) x) a b : α hh : ι a = ι b ⊢ a = b [PROOFSTEP] have hhh := congr_fun hh a [GOAL] case intro.intro.h.inj J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) h2 : ∃ a, ι a = ↑gg (↑(NatTrans.app C.π j) x) a b : α hh : ι a = ι b hhh : ι a a = ι b a ⊢ a = b [PROOFSTEP] dsimp at hhh [GOAL] case intro.intro.h.inj J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) h2 : ∃ a, ι a = ↑gg (↑(NatTrans.app C.π j) x) a b : α hh : ι a = ι b hhh : (if a = a then 0 else 1) = if b = a then 0 else 1 ⊢ a = b [PROOFSTEP] rw [if_pos rfl] at hhh [GOAL] case intro.intro.h.inj J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) h2 : ∃ a, ι a = ↑gg (↑(NatTrans.app C.π j) x) a b : α hh : ι a = ι b hhh : 0 = if b = a then 0 else 1 ⊢ a = b [PROOFSTEP] split_ifs at hhh with hh1 [GOAL] case pos J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) h2 : ∃ a, ι a = ↑gg (↑(NatTrans.app C.π j) x) a b : α hh : ι a = ι b hh1 : b = a hhh : 0 = 0 ⊢ a = b [PROOFSTEP] exact hh1.symm [GOAL] case neg J : Type u inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (↑(NatTrans.app C.π j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then Exists.choose h else default x : ↑C.pt.toCompHaus.toTop h1 : ι (↑f x) = ↑gg (↑(NatTrans.app C.π j) x) h2 : ∃ a, ι a = ↑gg (↑(NatTrans.app C.π j) x) a b : α hh : ι a = ι b hh1 : ¬b = a hhh : 0 = 1 ⊢ a = b [PROOFSTEP] exact False.elim (bot_ne_top hhh) [GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let S := f.discreteQuotient [GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let ff : S → α := f.lift [GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] cases isEmpty_or_nonempty S [GOAL] case inl J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] suffices ∃ j, IsEmpty (F.obj j) by refine' this.imp fun j hj => _ refine' ⟨⟨hj.elim, fun A => _⟩, _⟩ · suffices : (fun a ↦ IsEmpty.elim hj a) ⁻¹' A = ∅ · rw [this] exact isOpen_empty exact @Set.eq_empty_of_isEmpty _ hj _ · ext x exact hj.elim' (C.π.app j x) [GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) this : ∃ j, IsEmpty ↑(F.obj j).toCompHaus.toTop ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] refine' this.imp fun j hj => _ [GOAL] J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) this : ∃ j, IsEmpty ↑(F.obj j).toCompHaus.toTop j : J hj : IsEmpty ↑(F.obj j).toCompHaus.toTop ⊢ ∃ g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] refine' ⟨⟨hj.elim, fun A => _⟩, _⟩ [GOAL] case refine'_1 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) this : ∃ j, IsEmpty ↑(F.obj j).toCompHaus.toTop j : J hj : IsEmpty ↑(F.obj j).toCompHaus.toTop A : Set α ⊢ IsOpen ((fun a => IsEmpty.elim hj a) ⁻¹' A) [PROOFSTEP] suffices : (fun a ↦ IsEmpty.elim hj a) ⁻¹' A = ∅ [GOAL] case refine'_1 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) this✝ : ∃ j, IsEmpty ↑(F.obj j).toCompHaus.toTop j : J hj : IsEmpty ↑(F.obj j).toCompHaus.toTop A : Set α this : (fun a => IsEmpty.elim hj a) ⁻¹' A = ∅ ⊢ IsOpen ((fun a => IsEmpty.elim hj a) ⁻¹' A) [PROOFSTEP] rw [this] [GOAL] case refine'_1 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) this✝ : ∃ j, IsEmpty ↑(F.obj j).toCompHaus.toTop j : J hj : IsEmpty ↑(F.obj j).toCompHaus.toTop A : Set α this : (fun a => IsEmpty.elim hj a) ⁻¹' A = ∅ ⊢ IsOpen ∅ [PROOFSTEP] exact isOpen_empty [GOAL] case this J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) this : ∃ j, IsEmpty ↑(F.obj j).toCompHaus.toTop j : J hj : IsEmpty ↑(F.obj j).toCompHaus.toTop A : Set α ⊢ (fun a => IsEmpty.elim hj a) ⁻¹' A = ∅ [PROOFSTEP] exact @Set.eq_empty_of_isEmpty _ hj _ [GOAL] case refine'_2 J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) this : ∃ j, IsEmpty ↑(F.obj j).toCompHaus.toTop j : J hj : IsEmpty ↑(F.obj j).toCompHaus.toTop ⊢ f = LocallyConstant.comap ↑(NatTrans.app C.π j) { toFun := fun a => IsEmpty.elim hj a, isLocallyConstant := (_ : ∀ (A : Set α), IsOpen ((fun a => IsEmpty.elim hj a) ⁻¹' A)) } [PROOFSTEP] ext x [GOAL] case refine'_2.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) this : ∃ j, IsEmpty ↑(F.obj j).toCompHaus.toTop j : J hj : IsEmpty ↑(F.obj j).toCompHaus.toTop x : ↑C.pt.toCompHaus.toTop ⊢ ↑f x = ↑(LocallyConstant.comap ↑(NatTrans.app C.π j) { toFun := fun a => IsEmpty.elim hj a, isLocallyConstant := (_ : ∀ (A : Set α), IsOpen ((fun a => IsEmpty.elim hj a) ⁻¹' A)) }) x [PROOFSTEP] exact hj.elim' (C.π.app j x) [GOAL] case inl J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) ⊢ ∃ j, IsEmpty ↑(F.obj j).toCompHaus.toTop [PROOFSTEP] simp only [← not_nonempty_iff, ← not_forall] [GOAL] case inl J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) ⊢ ¬∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop [PROOFSTEP] intro h [GOAL] case inl J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) h : ∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop ⊢ False [PROOFSTEP] haveI : ∀ j : J, Nonempty ((F ⋙ Profinite.toTopCat).obj j) := h [GOAL] case inl J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) h : ∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop this : ∀ (j : J), Nonempty ↑((F ⋙ toTopCat).obj j) ⊢ False [PROOFSTEP] haveI : ∀ j : J, T2Space ((F ⋙ Profinite.toTopCat).obj j) := fun j => (inferInstance : T2Space (F.obj j)) [GOAL] case inl J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) h : ∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop this✝ : ∀ (j : J), Nonempty ↑((F ⋙ toTopCat).obj j) this : ∀ (j : J), T2Space ↑((F ⋙ toTopCat).obj j) ⊢ False [PROOFSTEP] haveI : ∀ j : J, CompactSpace ((F ⋙ Profinite.toTopCat).obj j) := fun j => (inferInstance : CompactSpace (F.obj j)) [GOAL] case inl J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) h : ∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop this✝¹ : ∀ (j : J), Nonempty ↑((F ⋙ toTopCat).obj j) this✝ : ∀ (j : J), T2Space ↑((F ⋙ toTopCat).obj j) this : ∀ (j : J), CompactSpace ↑((F ⋙ toTopCat).obj j) ⊢ False [PROOFSTEP] have cond := TopCat.nonempty_limitCone_of_compact_t2_cofiltered_system.{u} (F ⋙ Profinite.toTopCat) [GOAL] case inl J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) h : ∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop this✝¹ : ∀ (j : J), Nonempty ↑((F ⋙ toTopCat).obj j) this✝ : ∀ (j : J), T2Space ↑((F ⋙ toTopCat).obj j) this : ∀ (j : J), CompactSpace ↑((F ⋙ toTopCat).obj j) cond : Nonempty ↑(TopCat.limitCone (F ⋙ toTopCat)).pt ⊢ False [PROOFSTEP] suffices : Nonempty C.pt [GOAL] case inl J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) h : ∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop this✝² : ∀ (j : J), Nonempty ↑((F ⋙ toTopCat).obj j) this✝¹ : ∀ (j : J), T2Space ↑((F ⋙ toTopCat).obj j) this✝ : ∀ (j : J), CompactSpace ↑((F ⋙ toTopCat).obj j) cond : Nonempty ↑(TopCat.limitCone (F ⋙ toTopCat)).pt this : Nonempty ↑C.pt.toCompHaus.toTop ⊢ False case this J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) h : ∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop this✝¹ : ∀ (j : J), Nonempty ↑((F ⋙ toTopCat).obj j) this✝ : ∀ (j : J), T2Space ↑((F ⋙ toTopCat).obj j) this : ∀ (j : J), CompactSpace ↑((F ⋙ toTopCat).obj j) cond : Nonempty ↑(TopCat.limitCone (F ⋙ toTopCat)).pt ⊢ Nonempty ↑C.pt.toCompHaus.toTop [PROOFSTEP] exact IsEmpty.false (S.proj this.some) [GOAL] case this J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) h : ∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop this✝¹ : ∀ (j : J), Nonempty ↑((F ⋙ toTopCat).obj j) this✝ : ∀ (j : J), T2Space ↑((F ⋙ toTopCat).obj j) this : ∀ (j : J), CompactSpace ↑((F ⋙ toTopCat).obj j) cond : Nonempty ↑(TopCat.limitCone (F ⋙ toTopCat)).pt ⊢ Nonempty ↑C.pt.toCompHaus.toTop [PROOFSTEP] let D := Profinite.toTopCat.mapCone C [GOAL] case this J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) h : ∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop this✝¹ : ∀ (j : J), Nonempty ↑((F ⋙ toTopCat).obj j) this✝ : ∀ (j : J), T2Space ↑((F ⋙ toTopCat).obj j) this : ∀ (j : J), CompactSpace ↑((F ⋙ toTopCat).obj j) cond : Nonempty ↑(TopCat.limitCone (F ⋙ toTopCat)).pt D : Cone (F ⋙ toTopCat) := toTopCat.mapCone C ⊢ Nonempty ↑C.pt.toCompHaus.toTop [PROOFSTEP] have hD : IsLimit D := isLimitOfPreserves Profinite.toTopCat hC [GOAL] case this J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) h : ∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop this✝¹ : ∀ (j : J), Nonempty ↑((F ⋙ toTopCat).obj j) this✝ : ∀ (j : J), T2Space ↑((F ⋙ toTopCat).obj j) this : ∀ (j : J), CompactSpace ↑((F ⋙ toTopCat).obj j) cond : Nonempty ↑(TopCat.limitCone (F ⋙ toTopCat)).pt D : Cone (F ⋙ toTopCat) := toTopCat.mapCone C hD : IsLimit D ⊢ Nonempty ↑C.pt.toCompHaus.toTop [PROOFSTEP] have CD := (hD.conePointUniqueUpToIso (TopCat.limitConeIsLimit.{u, u} _)).inv [GOAL] case this J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : IsEmpty (Quotient S.toSetoid) h : ∀ (x : J), Nonempty ↑(F.obj x).toCompHaus.toTop this✝¹ : ∀ (j : J), Nonempty ↑((F ⋙ toTopCat).obj j) this✝ : ∀ (j : J), T2Space ↑((F ⋙ toTopCat).obj j) this : ∀ (j : J), CompactSpace ↑((F ⋙ toTopCat).obj j) cond : Nonempty ↑(TopCat.limitCone (F ⋙ toTopCat)).pt D : Cone (F ⋙ toTopCat) := toTopCat.mapCone C hD : IsLimit D CD : (TopCat.limitCone (F ⋙ toTopCat)).pt ⟶ D.pt ⊢ Nonempty ↑C.pt.toCompHaus.toTop [PROOFSTEP] exact cond.map CD [GOAL] case inr J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : Nonempty (Quotient S.toSetoid) ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] let f' : LocallyConstant C.pt S := ⟨S.proj, S.proj_isLocallyConstant⟩ [GOAL] case inr J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : Nonempty (Quotient S.toSetoid) f' : LocallyConstant (↑C.pt.toCompHaus.toTop) (Quotient S.toSetoid) := { toFun := DiscreteQuotient.proj S, isLocallyConstant := (_ : IsLocallyConstant (DiscreteQuotient.proj S)) } ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] obtain ⟨j, g', hj⟩ := exists_locallyConstant_finite_nonempty _ hC f' [GOAL] case inr.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : Nonempty (Quotient S.toSetoid) f' : LocallyConstant (↑C.pt.toCompHaus.toTop) (Quotient S.toSetoid) := { toFun := DiscreteQuotient.proj S, isLocallyConstant := (_ : IsLocallyConstant (DiscreteQuotient.proj S)) } j : J g' : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (Quotient S.toSetoid) hj : f' = LocallyConstant.comap (↑(NatTrans.app C.π j)) g' ⊢ ∃ j g, f = LocallyConstant.comap (↑(NatTrans.app C.π j)) g [PROOFSTEP] refine' ⟨j, ⟨ff ∘ g', g'.isLocallyConstant.comp _⟩, _⟩ [GOAL] case inr.intro.intro J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : Nonempty (Quotient S.toSetoid) f' : LocallyConstant (↑C.pt.toCompHaus.toTop) (Quotient S.toSetoid) := { toFun := DiscreteQuotient.proj S, isLocallyConstant := (_ : IsLocallyConstant (DiscreteQuotient.proj S)) } j : J g' : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (Quotient S.toSetoid) hj : f' = LocallyConstant.comap (↑(NatTrans.app C.π j)) g' ⊢ f = LocallyConstant.comap ↑(NatTrans.app C.π j) { toFun := ff ∘ ↑g', isLocallyConstant := (_ : IsLocallyConstant (ff ∘ g'.toFun)) } [PROOFSTEP] ext1 t [GOAL] case inr.intro.intro.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : Nonempty (Quotient S.toSetoid) f' : LocallyConstant (↑C.pt.toCompHaus.toTop) (Quotient S.toSetoid) := { toFun := DiscreteQuotient.proj S, isLocallyConstant := (_ : IsLocallyConstant (DiscreteQuotient.proj S)) } j : J g' : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (Quotient S.toSetoid) hj : f' = LocallyConstant.comap (↑(NatTrans.app C.π j)) g' t : ↑C.pt.toCompHaus.toTop ⊢ ↑f t = ↑(LocallyConstant.comap ↑(NatTrans.app C.π j) { toFun := ff ∘ ↑g', isLocallyConstant := (_ : IsLocallyConstant (ff ∘ g'.toFun)) }) t [PROOFSTEP] apply_fun fun e => e t at hj [GOAL] case inr.intro.intro.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : Nonempty (Quotient S.toSetoid) f' : LocallyConstant (↑C.pt.toCompHaus.toTop) (Quotient S.toSetoid) := { toFun := DiscreteQuotient.proj S, isLocallyConstant := (_ : IsLocallyConstant (DiscreteQuotient.proj S)) } j : J g' : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (Quotient S.toSetoid) t : ↑C.pt.toCompHaus.toTop hj : ↑f' t = ↑(LocallyConstant.comap (↑(NatTrans.app C.π j)) g') t ⊢ ↑f t = ↑(LocallyConstant.comap ↑(NatTrans.app C.π j) { toFun := ff ∘ ↑g', isLocallyConstant := (_ : IsLocallyConstant (ff ∘ g'.toFun)) }) t [PROOFSTEP] rw [LocallyConstant.coe_comap _ _ (C.π.app j).continuous] at hj ⊢ [GOAL] case inr.intro.intro.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : Nonempty (Quotient S.toSetoid) f' : LocallyConstant (↑C.pt.toCompHaus.toTop) (Quotient S.toSetoid) := { toFun := DiscreteQuotient.proj S, isLocallyConstant := (_ : IsLocallyConstant (DiscreteQuotient.proj S)) } j : J g' : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (Quotient S.toSetoid) t : ↑C.pt.toCompHaus.toTop hj : ↑f' t = (↑g' ∘ ↑(NatTrans.app C.π j)) t ⊢ ↑f t = (↑{ toFun := ff ∘ ↑g', isLocallyConstant := (_ : IsLocallyConstant (ff ∘ g'.toFun)) } ∘ ↑(NatTrans.app C.π j)) t [PROOFSTEP] dsimp at hj ⊢ [GOAL] case inr.intro.intro.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : Nonempty (Quotient S.toSetoid) f' : LocallyConstant (↑C.pt.toCompHaus.toTop) (Quotient S.toSetoid) := { toFun := DiscreteQuotient.proj S, isLocallyConstant := (_ : IsLocallyConstant (DiscreteQuotient.proj S)) } j : J g' : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (Quotient S.toSetoid) t : ↑C.pt.toCompHaus.toTop hj : DiscreteQuotient.proj (LocallyConstant.discreteQuotient f) t = ↑g' (↑(NatTrans.app C.π j) t) ⊢ ↑f t = ↑(LocallyConstant.lift f) (↑g' (↑(NatTrans.app C.π j) t)) [PROOFSTEP] rw [← hj] [GOAL] case inr.intro.intro.h J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toCompHaus.toTop) α S : DiscreteQuotient ↑C.pt.toCompHaus.toTop := LocallyConstant.discreteQuotient f ff : Quotient S.toSetoid → α := ↑(LocallyConstant.lift f) h✝ : Nonempty (Quotient S.toSetoid) f' : LocallyConstant (↑C.pt.toCompHaus.toTop) (Quotient S.toSetoid) := { toFun := DiscreteQuotient.proj S, isLocallyConstant := (_ : IsLocallyConstant (DiscreteQuotient.proj S)) } j : J g' : LocallyConstant (↑(F.obj j).toCompHaus.toTop) (Quotient S.toSetoid) t : ↑C.pt.toCompHaus.toTop hj : DiscreteQuotient.proj (LocallyConstant.discreteQuotient f) t = ↑g' (↑(NatTrans.app C.π j) t) ⊢ ↑f t = ↑(LocallyConstant.lift f) (DiscreteQuotient.proj (LocallyConstant.discreteQuotient f) t) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Topology.Category.Profinite.CofilteredLimit", "llama_tokens": 78402}
{"mathlib_filename": "Mathlib.Algebra.Star.BigOperators", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝³ : Group α inst✝² : LinearOrder α inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : DenselyOrdered α a b c : α h : ∀ (ε : α), 1 < ε → a / ε ≤ b ε : α ε1 : ε < 1 ⊢ a * ε ≤ b [PROOFSTEP] simpa only [div_eq_mul_inv, inv_inv] using h ε⁻¹ (Left.one_lt_inv_iff.2 ε1)
{"mathlib_filename": "Mathlib.Algebra.Order.Group.DenselyOrdered", "llama_tokens": 178}
[GOAL] ⊢ ConcreteCategory SemiRingCat [PROOFSTEP] dsimp [SemiRingCat] [GOAL] ⊢ ConcreteCategory (Bundled Semiring) [PROOFSTEP] infer_instance [GOAL] X Y : SemiRingCat f : X ⟶ Y x✝ : IsIso ((forget SemiRingCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget SemiRingCat).map f) [GOAL] X Y : SemiRingCat f : X ⟶ Y x✝ : IsIso ((forget SemiRingCat).map f) i : (forget SemiRingCat).obj X ≅ (forget SemiRingCat).obj Y := asIso ((forget SemiRingCat).map f) ⊢ IsIso f [PROOFSTEP] let ff : X →+* Y := f [GOAL] X Y : SemiRingCat f : X ⟶ Y x✝ : IsIso ((forget SemiRingCat).map f) i : (forget SemiRingCat).obj X ≅ (forget SemiRingCat).obj Y := asIso ((forget SemiRingCat).map f) ff : ↑X →+* ↑Y := f ⊢ IsIso f [PROOFSTEP] let e : X ≃+* Y := { ff, i.toEquiv with } [GOAL] X Y : SemiRingCat f : X ⟶ Y x✝ : IsIso ((forget SemiRingCat).map f) i : (forget SemiRingCat).obj X ≅ (forget SemiRingCat).obj Y := asIso ((forget SemiRingCat).map f) ff : ↑X →+* ↑Y := f e : ↑X ≃+* ↑Y := let src := i.toEquiv; { toEquiv := { toFun := ff.toFun, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun), right_inv := (_ : Function.RightInverse src.invFun src.toFun) }, map_mul' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑ff) (x * y) = OneHom.toFun (↑↑ff) x * OneHom.toFun (↑↑ff) y), map_add' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑ff) (x + y) = OneHom.toFun (↑↑ff) x + OneHom.toFun (↑↑ff) y) } ⊢ IsIso f [PROOFSTEP] exact ⟨(IsIso.of_iso e.toSemiRingCatIso).1⟩ [GOAL] ⊢ ConcreteCategory RingCat [PROOFSTEP] dsimp [RingCat] [GOAL] ⊢ ConcreteCategory (Bundled Ring) [PROOFSTEP] infer_instance [GOAL] ⊢ ConcreteCategory CommSemiRingCat [PROOFSTEP] dsimp [CommSemiRingCat] [GOAL] ⊢ ConcreteCategory (Bundled CommSemiring) [PROOFSTEP] infer_instance [GOAL] ⊢ ∀ {X Y : CommSemiRingCat} {f : X ⟶ Y}, HEq ((forget CommMonCat).map ((fun {R₁ R₂} f => ↑f) f)) ((forget CommSemiRingCat).map f) [PROOFSTEP] rfl [GOAL] X Y : CommSemiRingCat f : X ⟶ Y x✝ : IsIso ((forget CommSemiRingCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget CommSemiRingCat).map f) [GOAL] X Y : CommSemiRingCat f : X ⟶ Y x✝ : IsIso ((forget CommSemiRingCat).map f) i : (forget CommSemiRingCat).obj X ≅ (forget CommSemiRingCat).obj Y := asIso ((forget CommSemiRingCat).map f) ⊢ IsIso f [PROOFSTEP] let ff : X →+* Y := f [GOAL] X Y : CommSemiRingCat f : X ⟶ Y x✝ : IsIso ((forget CommSemiRingCat).map f) i : (forget CommSemiRingCat).obj X ≅ (forget CommSemiRingCat).obj Y := asIso ((forget CommSemiRingCat).map f) ff : ↑X →+* ↑Y := f ⊢ IsIso f [PROOFSTEP] let e : X ≃+* Y := { ff, i.toEquiv with } [GOAL] X Y : CommSemiRingCat f : X ⟶ Y x✝ : IsIso ((forget CommSemiRingCat).map f) i : (forget CommSemiRingCat).obj X ≅ (forget CommSemiRingCat).obj Y := asIso ((forget CommSemiRingCat).map f) ff : ↑X →+* ↑Y := f e : ↑X ≃+* ↑Y := let src := i.toEquiv; { toEquiv := { toFun := ff.toFun, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun), right_inv := (_ : Function.RightInverse src.invFun src.toFun) }, map_mul' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑ff) (x * y) = OneHom.toFun (↑↑ff) x * OneHom.toFun (↑↑ff) y), map_add' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑ff) (x + y) = OneHom.toFun (↑↑ff) x + OneHom.toFun (↑↑ff) y) } ⊢ IsIso f [PROOFSTEP] exact ⟨(IsIso.of_iso e.toSemiRingCatIso).1⟩ [GOAL] ⊢ ConcreteCategory CommRingCat [PROOFSTEP] dsimp [CommRingCat] [GOAL] ⊢ ConcreteCategory (Bundled CommRing) [PROOFSTEP] infer_instance [GOAL] ⊢ ∀ {X Y : CommRingCat} {f : X ⟶ Y}, HEq ((forget CommSemiRingCat).map ((fun {R₁ R₂} f => f) f)) ((forget CommRingCat).map f) [PROOFSTEP] rfl [GOAL] R S : CommRingCat i : R ⟶ S r : ↑R h : r = 0 ⊢ ↑i r = 0 [PROOFSTEP] simp [h] [GOAL] X Y : RingCat i : X ≅ Y x : ↑X ⊢ ↑(i.hom ≫ i.inv) x = x [PROOFSTEP] rw [i.hom_inv_id] [GOAL] X Y : RingCat i : X ≅ Y x : ↑X ⊢ ↑(𝟙 X) x = x [PROOFSTEP] rfl [GOAL] X Y : RingCat i : X ≅ Y x : ↑Y ⊢ ↑(i.inv ≫ i.hom) x = x [PROOFSTEP] rw [i.inv_hom_id] [GOAL] X Y : RingCat i : X ≅ Y x : ↑Y ⊢ ↑(𝟙 Y) x = x [PROOFSTEP] rfl [GOAL] X Y : CommRingCat i : X ≅ Y x : ↑X ⊢ ↑(i.hom ≫ i.inv) x = x [PROOFSTEP] rw [i.hom_inv_id] [GOAL] X Y : CommRingCat i : X ≅ Y x : ↑X ⊢ ↑(𝟙 X) x = x [PROOFSTEP] rfl [GOAL] X Y : CommRingCat i : X ≅ Y x : ↑Y ⊢ ↑(i.inv ≫ i.hom) x = x [PROOFSTEP] rw [i.inv_hom_id] [GOAL] X Y : CommRingCat i : X ≅ Y x : ↑Y ⊢ ↑(𝟙 Y) x = x [PROOFSTEP] rfl [GOAL] X Y : CommRingCat i : X ≅ Y ⊢ RingEquiv.toRingHom (commRingCatIsoToRingEquiv i) = i.hom [PROOFSTEP] ext [GOAL] case a X Y : CommRingCat i : X ≅ Y x✝ : ↑X ⊢ ↑(RingEquiv.toRingHom (commRingCatIsoToRingEquiv i)) x✝ = ↑i.hom x✝ [PROOFSTEP] rfl [GOAL] X Y : CommRingCat i : X ≅ Y ⊢ RingEquiv.toRingHom (RingEquiv.symm (commRingCatIsoToRingEquiv i)) = i.inv [PROOFSTEP] ext [GOAL] case a X Y : CommRingCat i : X ≅ Y x✝ : ↑Y ⊢ ↑(RingEquiv.toRingHom (RingEquiv.symm (commRingCatIsoToRingEquiv i))) x✝ = ↑i.inv x✝ [PROOFSTEP] rfl [GOAL] X Y : RingCat f : X ⟶ Y x✝ : IsIso ((forget RingCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget RingCat).map f) [GOAL] X Y : RingCat f : X ⟶ Y x✝ : IsIso ((forget RingCat).map f) i : (forget RingCat).obj X ≅ (forget RingCat).obj Y := asIso ((forget RingCat).map f) ⊢ IsIso f [PROOFSTEP] let ff : X →+* Y := f [GOAL] X Y : RingCat f : X ⟶ Y x✝ : IsIso ((forget RingCat).map f) i : (forget RingCat).obj X ≅ (forget RingCat).obj Y := asIso ((forget RingCat).map f) ff : ↑X →+* ↑Y := f ⊢ IsIso f [PROOFSTEP] let e : X ≃+* Y := { ff, i.toEquiv with } [GOAL] X Y : RingCat f : X ⟶ Y x✝ : IsIso ((forget RingCat).map f) i : (forget RingCat).obj X ≅ (forget RingCat).obj Y := asIso ((forget RingCat).map f) ff : ↑X →+* ↑Y := f e : ↑X ≃+* ↑Y := let src := i.toEquiv; { toEquiv := { toFun := ff.toFun, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun), right_inv := (_ : Function.RightInverse src.invFun src.toFun) }, map_mul' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑ff) (x * y) = OneHom.toFun (↑↑ff) x * OneHom.toFun (↑↑ff) y), map_add' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑ff) (x + y) = OneHom.toFun (↑↑ff) x + OneHom.toFun (↑↑ff) y) } ⊢ IsIso f [PROOFSTEP] exact ⟨(IsIso.of_iso e.toRingCatIso).1⟩ [GOAL] X Y : CommRingCat f : X ⟶ Y x✝ : IsIso ((forget CommRingCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget CommRingCat).map f) [GOAL] X Y : CommRingCat f : X ⟶ Y x✝ : IsIso ((forget CommRingCat).map f) i : (forget CommRingCat).obj X ≅ (forget CommRingCat).obj Y := asIso ((forget CommRingCat).map f) ⊢ IsIso f [PROOFSTEP] let ff : X →+* Y := f [GOAL] X Y : CommRingCat f : X ⟶ Y x✝ : IsIso ((forget CommRingCat).map f) i : (forget CommRingCat).obj X ≅ (forget CommRingCat).obj Y := asIso ((forget CommRingCat).map f) ff : ↑X →+* ↑Y := f ⊢ IsIso f [PROOFSTEP] let e : X ≃+* Y := { ff, i.toEquiv with } [GOAL] X Y : CommRingCat f : X ⟶ Y x✝ : IsIso ((forget CommRingCat).map f) i : (forget CommRingCat).obj X ≅ (forget CommRingCat).obj Y := asIso ((forget CommRingCat).map f) ff : ↑X →+* ↑Y := f e : ↑X ≃+* ↑Y := let src := i.toEquiv; { toEquiv := { toFun := ff.toFun, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun), right_inv := (_ : Function.RightInverse src.invFun src.toFun) }, map_mul' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑ff) (x * y) = OneHom.toFun (↑↑ff) x * OneHom.toFun (↑↑ff) y), map_add' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑ff) (x + y) = OneHom.toFun (↑↑ff) x + OneHom.toFun (↑↑ff) y) } ⊢ IsIso f [PROOFSTEP] exact ⟨(IsIso.of_iso e.toCommRingCatIso).1⟩ [GOAL] ⊢ ReflectsIsomorphisms (forget₂ RingCat AddCommGroupCat) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Algebra.Category.Ring.Basic", "llama_tokens": 3886}
[GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ SemiRingCatMax j : J ⊢ Semiring ↑(F.obj j) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x y z : ↑(R F) ⊢ x * (y + z) = x * y + x * z [PROOFSTEP] refine Quot.induction_on₃ x y z ?_ [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x y z : ↑(R F) ⊢ ∀ (a b c : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j), Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a * (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) b + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) c) = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) b + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) c [PROOFSTEP] clear x y z [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) ⊢ ∀ (a b c : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j), Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a * (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) b + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) c) = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) b + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) c [PROOFSTEP] intro x y z [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x y z : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) x * (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) y + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z) = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) x * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) y + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) x * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z [PROOFSTEP] cases' x with j₁ x [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) y z : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) y + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z) = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) y + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z [PROOFSTEP] cases' y with j₂ y [GOAL] case mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) z : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z) = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z [PROOFSTEP] cases' z with j₃ z [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z }) = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } [PROOFSTEP] let k := IsFiltered.max₃ j₁ j₂ j₃ [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z }) = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } [PROOFSTEP] let f := IsFiltered.firstToMax₃ j₁ j₂ j₃ [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z }) = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } [PROOFSTEP] let g := IsFiltered.secondToMax₃ j₁ j₂ j₃ [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ g : j₂ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.secondToMax₃ j₁ j₂ j₃ ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z }) = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } [PROOFSTEP] let h := IsFiltered.thirdToMax₃ j₁ j₂ j₃ [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ g : j₂ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.secondToMax₃ j₁ j₂ j₃ h : j₃ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.thirdToMax₃ j₁ j₂ j₃ ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z }) = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } [PROOFSTEP] erw [colimit_add_mk_eq _ ⟨j₂, _⟩ ⟨j₃, _⟩ k g h, colimit_mul_mk_eq _ ⟨j₁, _⟩ ⟨k, _⟩ k f (𝟙 k), colimit_mul_mk_eq _ ⟨j₁, _⟩ ⟨j₂, _⟩ k f g, colimit_mul_mk_eq _ ⟨j₁, _⟩ ⟨j₃, _⟩ k f h, colimit_add_mk_eq _ ⟨k, _⟩ ⟨k, _⟩ k (𝟙 k) (𝟙 k)] [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ g : j₂ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.secondToMax₃ j₁ j₂ j₃ h : j₃ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.thirdToMax₃ j₁ j₂ j₃ ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := k, snd := ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map f) { fst := j₁, snd := x }.snd * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (𝟙 k)) { fst := k, snd := ↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map g) { fst := j₂, snd := y }.snd + ↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map h) { fst := j₃, snd := z }.snd }.snd } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := k, snd := ↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map (𝟙 k)) { fst := k, snd := ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map f) { fst := j₁, snd := x }.snd * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map g) { fst := j₂, snd := y }.snd }.snd + ↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map (𝟙 k)) { fst := k, snd := ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map f) { fst := j₁, snd := x }.snd * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map h) { fst := j₃, snd := z }.snd }.snd } [PROOFSTEP] simp only [CategoryTheory.Functor.map_id, id_apply] [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ g : j₂ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.secondToMax₃ j₁ j₂ j₃ h : j₃ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.thirdToMax₃ j₁ j₂ j₃ ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := IsFiltered.max₃ j₁ j₂ j₃, snd := ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.firstToMax₃ j₁ j₂ j₃)) x * ↑(𝟙 ((F ⋙ forget₂ SemiRingCatMax MonCat).obj (IsFiltered.max₃ j₁ j₂ j₃))) (↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map (IsFiltered.secondToMax₃ j₁ j₂ j₃)) y + ↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map (IsFiltered.thirdToMax₃ j₁ j₂ j₃)) z) } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := IsFiltered.max₃ j₁ j₂ j₃, snd := ↑(𝟙 (((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).obj (IsFiltered.max₃ j₁ j₂ j₃))) (↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.firstToMax₃ j₁ j₂ j₃)) x * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.secondToMax₃ j₁ j₂ j₃)) y) + ↑(𝟙 (((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).obj (IsFiltered.max₃ j₁ j₂ j₃))) (↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.firstToMax₃ j₁ j₂ j₃)) x * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.thirdToMax₃ j₁ j₂ j₃)) z) } [PROOFSTEP] erw [left_distrib (F.map f x) (F.map g y) (F.map h z)] [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ g : j₂ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.secondToMax₃ j₁ j₂ j₃ h : j₃ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.thirdToMax₃ j₁ j₂ j₃ ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := IsFiltered.max₃ j₁ j₂ j₃, snd := ↑(F.map f) x * ↑(F.map g) y + ↑(F.map f) x * ↑(F.map h) z } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := IsFiltered.max₃ j₁ j₂ j₃, snd := ↑(𝟙 (((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).obj (IsFiltered.max₃ j₁ j₂ j₃))) (↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.firstToMax₃ j₁ j₂ j₃)) x * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.secondToMax₃ j₁ j₂ j₃)) y) + ↑(𝟙 (((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).obj (IsFiltered.max₃ j₁ j₂ j₃))) (↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.firstToMax₃ j₁ j₂ j₃)) x * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.thirdToMax₃ j₁ j₂ j₃)) z) } [PROOFSTEP] rfl [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x y z : ↑(R F) ⊢ (x + y) * z = x * z + y * z [PROOFSTEP] refine Quot.induction_on₃ x y z ?_ [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x y z : ↑(R F) ⊢ ∀ (a b c : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j), (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) b) * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) c = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) c + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) b * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) c [PROOFSTEP] clear x y z [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) ⊢ ∀ (a b c : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j), (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) b) * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) c = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) c + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) b * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) c [PROOFSTEP] intro x y z [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x y z : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) x + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) y) * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) x * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z [PROOFSTEP] cases' x with j₁ x [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) y z : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ ⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) y) * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z [PROOFSTEP] cases' y with j₂ y [GOAL] case mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) z : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ ⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y }) * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) z [PROOFSTEP] cases' z with j₃ z [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ ⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y }) * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } [PROOFSTEP] let k := IsFiltered.max₃ j₁ j₂ j₃ [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ ⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y }) * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } [PROOFSTEP] let f := IsFiltered.firstToMax₃ j₁ j₂ j₃ [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ ⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y }) * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } [PROOFSTEP] let g := IsFiltered.secondToMax₃ j₁ j₂ j₃ [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ g : j₂ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.secondToMax₃ j₁ j₂ j₃ ⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y }) * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } [PROOFSTEP] let h := IsFiltered.thirdToMax₃ j₁ j₂ j₃ [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ g : j₂ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.secondToMax₃ j₁ j₂ j₃ h : j₃ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.thirdToMax₃ j₁ j₂ j₃ ⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y }) * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } + Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₂, snd := y } * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j₃, snd := z } [PROOFSTEP] erw [colimit_add_mk_eq _ ⟨j₁, _⟩ ⟨j₂, _⟩ k f g, colimit_mul_mk_eq _ ⟨k, _⟩ ⟨j₃, _⟩ k (𝟙 k) h, colimit_mul_mk_eq _ ⟨j₁, _⟩ ⟨j₃, _⟩ k f h, colimit_mul_mk_eq _ ⟨j₂, _⟩ ⟨j₃, _⟩ k g h, colimit_add_mk_eq _ ⟨k, _⟩ ⟨k, _⟩ k (𝟙 k) (𝟙 k)] [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ g : j₂ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.secondToMax₃ j₁ j₂ j₃ h : j₃ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.thirdToMax₃ j₁ j₂ j₃ ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := k, snd := ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (𝟙 k)) { fst := k, snd := ↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map f) { fst := j₁, snd := x }.snd + ↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map g) { fst := j₂, snd := y }.snd }.snd * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map h) { fst := j₃, snd := z }.snd } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := k, snd := ↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map (𝟙 k)) { fst := k, snd := ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map f) { fst := j₁, snd := x }.snd * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map h) { fst := j₃, snd := z }.snd }.snd + ↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map (𝟙 k)) { fst := k, snd := ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map g) { fst := j₂, snd := y }.snd * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map h) { fst := j₃, snd := z }.snd }.snd } [PROOFSTEP] simp only [CategoryTheory.Functor.map_id, id_apply] [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ g : j₂ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.secondToMax₃ j₁ j₂ j₃ h : j₃ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.thirdToMax₃ j₁ j₂ j₃ ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := IsFiltered.max₃ j₁ j₂ j₃, snd := ↑(𝟙 ((F ⋙ forget₂ SemiRingCatMax MonCat).obj (IsFiltered.max₃ j₁ j₂ j₃))) (↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map (IsFiltered.firstToMax₃ j₁ j₂ j₃)) x + ↑(((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).map (IsFiltered.secondToMax₃ j₁ j₂ j₃)) y) * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.thirdToMax₃ j₁ j₂ j₃)) z } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := IsFiltered.max₃ j₁ j₂ j₃, snd := ↑(𝟙 (((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).obj (IsFiltered.max₃ j₁ j₂ j₃))) (↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.firstToMax₃ j₁ j₂ j₃)) x * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.thirdToMax₃ j₁ j₂ j₃)) z) + ↑(𝟙 (((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).obj (IsFiltered.max₃ j₁ j₂ j₃))) (↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.secondToMax₃ j₁ j₂ j₃)) y * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.thirdToMax₃ j₁ j₂ j₃)) z) } [PROOFSTEP] erw [right_distrib (F.map f x) (F.map g y) (F.map h z)] [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j₁ : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₁ j₂ : J y : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₂ j₃ : J z : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j₃ k : J := IsFiltered.max₃ j₁ j₂ j₃ f : j₁ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.firstToMax₃ j₁ j₂ j₃ g : j₂ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.secondToMax₃ j₁ j₂ j₃ h : j₃ ⟶ IsFiltered.max₃ j₁ j₂ j₃ := IsFiltered.thirdToMax₃ j₁ j₂ j₃ ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := IsFiltered.max₃ j₁ j₂ j₃, snd := ↑(F.map f) x * ↑(F.map h) z + ↑(F.map g) y * ↑(F.map h) z } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := IsFiltered.max₃ j₁ j₂ j₃, snd := ↑(𝟙 (((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).obj (IsFiltered.max₃ j₁ j₂ j₃))) (↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.firstToMax₃ j₁ j₂ j₃)) x * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.thirdToMax₃ j₁ j₂ j₃)) z) + ↑(𝟙 (((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat).obj (IsFiltered.max₃ j₁ j₂ j₃))) (↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.secondToMax₃ j₁ j₂ j₃)) y * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (IsFiltered.thirdToMax₃ j₁ j₂ j₃)) z) } [PROOFSTEP] rfl [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x : ↑(R F) ⊢ 0 * x = 0 [PROOFSTEP] refine Quot.inductionOn x ?_ [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x : ↑(R F) ⊢ ∀ (a : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j), 0 * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a = 0 [PROOFSTEP] clear x [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) ⊢ ∀ (a : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j), 0 * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a = 0 [PROOFSTEP] intro x [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ 0 * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) x = 0 [PROOFSTEP] cases' x with j x [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ 0 * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j, snd := x } = 0 [PROOFSTEP] erw [colimit_zero_eq _ j, colimit_mul_mk_eq _ ⟨j, _⟩ ⟨j, _⟩ j (𝟙 j) (𝟙 j)] [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := j, snd := ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (𝟙 j)) { fst := j, snd := 0 }.snd * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (𝟙 j)) { fst := j, snd := x }.snd } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := j, snd := 0 } [PROOFSTEP] rw [CategoryTheory.Functor.map_id] [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := j, snd := ↑(𝟙 ((F ⋙ forget₂ SemiRingCatMax MonCat).obj { fst := j, snd := 0 }.fst)) { fst := j, snd := 0 }.snd * ↑(𝟙 ((F ⋙ forget₂ SemiRingCatMax MonCat).obj { fst := j, snd := 0 }.fst)) { fst := j, snd := x }.snd } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := j, snd := 0 } [PROOFSTEP] dsimp [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := j, snd := 0 * x } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := j, snd := 0 } [PROOFSTEP] rw [zero_mul x] [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := j, snd := 0 } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := j, snd := 0 } [PROOFSTEP] rfl [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x : ↑(R F) ⊢ x * 0 = 0 [PROOFSTEP] refine Quot.inductionOn x ?_ [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x : ↑(R F) ⊢ ∀ (a : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j), Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a * 0 = 0 [PROOFSTEP] clear x [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) ⊢ ∀ (a : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j), Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) a * 0 = 0 [PROOFSTEP] intro x [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) x : (j : J) × ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) x * 0 = 0 [PROOFSTEP] cases' x with j x [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat)) { fst := j, snd := x } * 0 = 0 [PROOFSTEP] erw [colimit_zero_eq _ j, colimit_mul_mk_eq _ ⟨j, _⟩ ⟨j, _⟩ j (𝟙 j) (𝟙 j)] [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := j, snd := ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (𝟙 j)) { fst := j, snd := x }.snd * ↑((F ⋙ forget₂ SemiRingCatMax MonCat).map (𝟙 j)) { fst := j, snd := 0 }.snd } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := j, snd := 0 } [PROOFSTEP] rw [CategoryTheory.Functor.map_id] [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := j, snd := ↑(𝟙 ((F ⋙ forget₂ SemiRingCatMax MonCat).obj { fst := j, snd := x }.fst)) { fst := j, snd := x }.snd * ↑(𝟙 ((F ⋙ forget₂ SemiRingCatMax MonCat).obj { fst := j, snd := x }.fst)) { fst := j, snd := 0 }.snd } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := j, snd := 0 } [PROOFSTEP] dsimp [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := j, snd := x * 0 } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := j, snd := 0 } [PROOFSTEP] rw [mul_zero x] [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ SemiRingCatMax inst✝ : IsFiltered J src✝¹ : Monoid ↑(R F) := (R F).str src✝ : AddCommMonoid ↑(AddCommMonCat.FilteredColimits.M (F ⋙ forget₂ SemiRingCat AddCommMonCat)) := AddCommMonCat.FilteredColimits.colimitAddCommMonoid (F ⋙ forget₂ SemiRingCat AddCommMonCat) j : J x : ((F ⋙ forget₂ SemiRingCatMax MonCat) ⋙ forget MonCat).obj j ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ SemiRingCatMax MonCat) { fst := j, snd := 0 } = AddMonCat.FilteredColimits.M.mk ((F ⋙ forget₂ SemiRingCat AddCommMonCat) ⋙ forget₂ AddCommMonCat AddMonCat) { fst := j, snd := 0 } [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Category.Ring.FilteredColimits", "llama_tokens": 23889}
[GOAL] α : Type u_1 inst✝¹ : Fintype α inst✝ : Field α ⊢ IsPrimePow ‖α‖ [PROOFSTEP] cases' CharP.exists α with p _ [GOAL] case intro α : Type u_1 inst✝¹ : Fintype α inst✝ : Field α p : ℕ h✝ : CharP α p ⊢ IsPrimePow ‖α‖ [PROOFSTEP] haveI hp := Fact.mk (CharP.char_is_prime α p) [GOAL] case intro α : Type u_1 inst✝¹ : Fintype α inst✝ : Field α p : ℕ h✝ : CharP α p hp : Fact (Nat.Prime p) ⊢ IsPrimePow ‖α‖ [PROOFSTEP] letI : Algebra (ZMod p) α := ZMod.algebra _ _ [GOAL] case intro α : Type u_1 inst✝¹ : Fintype α inst✝ : Field α p : ℕ h✝ : CharP α p hp : Fact (Nat.Prime p) this : Algebra (ZMod p) α := ZMod.algebra α p ⊢ IsPrimePow ‖α‖ [PROOFSTEP] let b := IsNoetherian.finsetBasis (ZMod p) α [GOAL] case intro α : Type u_1 inst✝¹ : Fintype α inst✝ : Field α p : ℕ h✝ : CharP α p hp : Fact (Nat.Prime p) this : Algebra (ZMod p) α := ZMod.algebra α p b : Basis { x // x ∈ IsNoetherian.finsetBasisIndex (ZMod p) α } (ZMod p) α := IsNoetherian.finsetBasis (ZMod p) α ⊢ IsPrimePow ‖α‖ [PROOFSTEP] rw [Module.card_fintype b, ZMod.card, isPrimePow_pow_iff] [GOAL] case intro α : Type u_1 inst✝¹ : Fintype α inst✝ : Field α p : ℕ h✝ : CharP α p hp : Fact (Nat.Prime p) this : Algebra (ZMod p) α := ZMod.algebra α p b : Basis { x // x ∈ IsNoetherian.finsetBasisIndex (ZMod p) α } (ZMod p) α := IsNoetherian.finsetBasis (ZMod p) α ⊢ IsPrimePow p [PROOFSTEP] exact hp.1.isPrimePow [GOAL] case intro α : Type u_1 inst✝¹ : Fintype α inst✝ : Field α p : ℕ h✝ : CharP α p hp : Fact (Nat.Prime p) this : Algebra (ZMod p) α := ZMod.algebra α p b : Basis { x // x ∈ IsNoetherian.finsetBasisIndex (ZMod p) α } (ZMod p) α := IsNoetherian.finsetBasis (ZMod p) α ⊢ ‖{ x // x ∈ IsNoetherian.finsetBasisIndex (ZMod p) α }‖ ≠ 0 [PROOFSTEP] rw [← FiniteDimensional.finrank_eq_card_basis b] [GOAL] case intro α : Type u_1 inst✝¹ : Fintype α inst✝ : Field α p : ℕ h✝ : CharP α p hp : Fact (Nat.Prime p) this : Algebra (ZMod p) α := ZMod.algebra α p b : Basis { x // x ∈ IsNoetherian.finsetBasisIndex (ZMod p) α } (ZMod p) α := IsNoetherian.finsetBasis (ZMod p) α ⊢ FiniteDimensional.finrank (ZMod p) α ≠ 0 [PROOFSTEP] exact FiniteDimensional.finrank_pos.ne' [GOAL] α : Type u_1 inst✝ : Fintype α ⊢ Nonempty (Field α) ↔ IsPrimePow ‖α‖ [PROOFSTEP] refine' ⟨fun ⟨h⟩ => Fintype.isPrimePow_card_of_field, _⟩ [GOAL] α : Type u_1 inst✝ : Fintype α ⊢ IsPrimePow ‖α‖ → Nonempty (Field α) [PROOFSTEP] rintro ⟨p, n, hp, hn, hα⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝ : Fintype α p n : ℕ hp : Prime p hn : 0 < n hα : p ^ n = ‖α‖ ⊢ Nonempty (Field α) [PROOFSTEP] haveI := Fact.mk hp.nat_prime [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝ : Fintype α p n : ℕ hp : Prime p hn : 0 < n hα : p ^ n = ‖α‖ this : Fact (Nat.Prime p) ⊢ Nonempty (Field α) [PROOFSTEP] exact ⟨(Fintype.equivOfCardEq ((GaloisField.card p n hn.ne').trans hα)).symm.field⟩ [GOAL] α : Type u inst✝ : Infinite α ⊢ Nonempty (Field α) [PROOFSTEP] letI K := FractionRing (MvPolynomial α <| ULift.{u} ℚ) [GOAL] α : Type u inst✝ : Infinite α K : Type u := FractionRing (MvPolynomial α (ULift ℚ)) ⊢ Nonempty (Field α) [PROOFSTEP] suffices #α = #K by obtain ⟨e⟩ := Cardinal.eq.1 this exact ⟨e.field⟩ [GOAL] α : Type u inst✝ : Infinite α K : Type u := FractionRing (MvPolynomial α (ULift ℚ)) this : #α = #K ⊢ Nonempty (Field α) [PROOFSTEP] obtain ⟨e⟩ := Cardinal.eq.1 this [GOAL] case intro α : Type u inst✝ : Infinite α K : Type u := FractionRing (MvPolynomial α (ULift ℚ)) this : #α = #K e : α ≃ K ⊢ Nonempty (Field α) [PROOFSTEP] exact ⟨e.field⟩ [GOAL] α : Type u inst✝ : Infinite α K : Type u := FractionRing (MvPolynomial α (ULift ℚ)) ⊢ #α = #K [PROOFSTEP] rw [← IsLocalization.card (MvPolynomial α <| ULift.{u} ℚ)⁰ K le_rfl] [GOAL] α : Type u inst✝ : Infinite α K : Type u := FractionRing (MvPolynomial α (ULift ℚ)) ⊢ #α = #(MvPolynomial α (ULift ℚ)) [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u inst✝ : Infinite α K : Type u := FractionRing (MvPolynomial α (ULift ℚ)) ⊢ #α ≤ #(MvPolynomial α (ULift ℚ)) [PROOFSTEP] refine' ⟨⟨fun a => MvPolynomial.monomial (Finsupp.single a 1) (1 : ULift.{u} ℚ), fun x y h => _⟩⟩ [GOAL] case a α : Type u inst✝ : Infinite α K : Type u := FractionRing (MvPolynomial α (ULift ℚ)) x y : α h : (fun a => ↑(MvPolynomial.monomial (Finsupp.single a 1)) 1) x = (fun a => ↑(MvPolynomial.monomial (Finsupp.single a 1)) 1) y ⊢ x = y [PROOFSTEP] simpa [MvPolynomial.monomial_eq_monomial_iff, Finsupp.single_eq_single_iff] using h [GOAL] case a α : Type u inst✝ : Infinite α K : Type u := FractionRing (MvPolynomial α (ULift ℚ)) ⊢ #(MvPolynomial α (ULift ℚ)) ≤ #α [PROOFSTEP] simp [GOAL] α : Type u ⊢ Nonempty (Field α) ↔ IsPrimePow #α [PROOFSTEP] rw [Cardinal.isPrimePow_iff] [GOAL] α : Type u ⊢ Nonempty (Field α) ↔ ℵ₀ ≤ #α ∨ ∃ n, #α = ↑n ∧ IsPrimePow n [PROOFSTEP] cases' fintypeOrInfinite α with h h [GOAL] case inl α : Type u h : Fintype α ⊢ Nonempty (Field α) ↔ ℵ₀ ≤ #α ∨ ∃ n, #α = ↑n ∧ IsPrimePow n [PROOFSTEP] simpa only [Cardinal.mk_fintype, Nat.cast_inj, exists_eq_left', (Cardinal.nat_lt_aleph0 _).not_le, false_or_iff] using Fintype.nonempty_field_iff [GOAL] case inr α : Type u h : Infinite α ⊢ Nonempty (Field α) ↔ ℵ₀ ≤ #α ∨ ∃ n, #α = ↑n ∧ IsPrimePow n [PROOFSTEP] simpa only [← Cardinal.infinite_iff, h, true_or_iff, iff_true_iff] using Infinite.nonempty_field
{"mathlib_filename": "Mathlib.FieldTheory.Cardinality", "llama_tokens": 2579}
[GOAL] α : Sort u x✝¹ x✝ : αᵒᵖ unop✝¹ unop✝ : α ⊢ { unop := unop✝¹ }.unop = { unop := unop✝ }.unop → { unop := unop✝¹ } = { unop := unop✝ } [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Data.Opposite", "llama_tokens": 104}
[GOAL] α : Type u_1 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s₁ s₂ : Multiset α ⊢ sup (s₁ + s₂) = fold (fun x x_1 => x ⊔ x_1) (⊥ ⊔ ⊥) (s₁ + s₂) [PROOFSTEP] simp [sup] [GOAL] α : Type u_1 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s : Multiset α a : α ⊢ sup 0 ≤ a ↔ ∀ (b : α), b ∈ 0 → b ≤ a [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s : Multiset α a : α ⊢ ∀ ⦃a_1 : α⦄ {s : Multiset α}, (sup s ≤ a ↔ ∀ (b : α), b ∈ s → b ≤ a) → (sup (a_1 ::ₘ s) ≤ a ↔ ∀ (b : α), b ∈ a_1 ::ₘ s → b ≤ a) [PROOFSTEP] simp (config := { contextual := true }) [or_imp, forall_and] [GOAL] α : Type u_1 inst✝² : SemilatticeSup α inst✝¹ : OrderBot α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ sup (ndunion s₁ s₂) = sup s₁ ⊔ sup s₂ [PROOFSTEP] rw [← sup_dedup, dedup_ext.2, sup_dedup, sup_add] [GOAL] α : Type u_1 inst✝² : SemilatticeSup α inst✝¹ : OrderBot α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ ∀ (a : α), a ∈ ndunion s₁ s₂ ↔ a ∈ s₁ + s₂ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : SemilatticeSup α inst✝¹ : OrderBot α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ sup (s₁ ∪ s₂) = sup s₁ ⊔ sup s₂ [PROOFSTEP] rw [← sup_dedup, dedup_ext.2, sup_dedup, sup_add] [GOAL] α : Type u_1 inst✝² : SemilatticeSup α inst✝¹ : OrderBot α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ ∀ (a : α), a ∈ s₁ ∪ s₂ ↔ a ∈ s₁ + s₂ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : SemilatticeSup α inst✝¹ : OrderBot α inst✝ : DecidableEq α a : α s : Multiset α ⊢ sup (ndinsert a s) = a ⊔ sup s [PROOFSTEP] rw [← sup_dedup, dedup_ext.2, sup_dedup, sup_cons] [GOAL] α : Type u_1 inst✝² : SemilatticeSup α inst✝¹ : OrderBot α inst✝ : DecidableEq α a : α s : Multiset α ⊢ ∀ (a_1 : α), a_1 ∈ ndinsert a s ↔ a_1 ∈ a ::ₘ s [PROOFSTEP] simp [GOAL] α✝ : Type u_1 inst✝³ : SemilatticeSup α✝ inst✝² : OrderBot α✝ inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α m : Multiset (Multiset α) ⊢ Nodup (sup m) ↔ ∀ (a : Multiset α), a ∈ m → Nodup a [PROOFSTEP] induction' m using Multiset.induction_on with _ _ h [GOAL] case empty α✝ : Type u_1 inst✝³ : SemilatticeSup α✝ inst✝² : OrderBot α✝ inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α ⊢ Nodup (sup 0) ↔ ∀ (a : Multiset α), a ∈ 0 → Nodup a [PROOFSTEP] simp [GOAL] case cons α✝ : Type u_1 inst✝³ : SemilatticeSup α✝ inst✝² : OrderBot α✝ inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α a✝ : Multiset α s✝ : Multiset (Multiset α) h : Nodup (sup s✝) ↔ ∀ (a : Multiset α), a ∈ s✝ → Nodup a ⊢ Nodup (sup (a✝ ::ₘ s✝)) ↔ ∀ (a : Multiset α), a ∈ a✝ ::ₘ s✝ → Nodup a [PROOFSTEP] simp [h] [GOAL] α : Type u_1 inst✝¹ : SemilatticeInf α inst✝ : OrderTop α s₁ s₂ : Multiset α ⊢ inf (s₁ + s₂) = fold (fun x x_1 => x ⊓ x_1) (⊤ ⊓ ⊤) (s₁ + s₂) [PROOFSTEP] simp [inf] [GOAL] α : Type u_1 inst✝¹ : SemilatticeInf α inst✝ : OrderTop α s : Multiset α a : α ⊢ a ≤ inf 0 ↔ ∀ (b : α), b ∈ 0 → a ≤ b [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : SemilatticeInf α inst✝ : OrderTop α s : Multiset α a : α ⊢ ∀ ⦃a_1 : α⦄ {s : Multiset α}, (a ≤ inf s ↔ ∀ (b : α), b ∈ s → a ≤ b) → (a ≤ inf (a_1 ::ₘ s) ↔ ∀ (b : α), b ∈ a_1 ::ₘ s → a ≤ b) [PROOFSTEP] simp (config := { contextual := true }) [or_imp, forall_and] [GOAL] α : Type u_1 inst✝² : SemilatticeInf α inst✝¹ : OrderTop α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ inf (ndunion s₁ s₂) = inf s₁ ⊓ inf s₂ [PROOFSTEP] rw [← inf_dedup, dedup_ext.2, inf_dedup, inf_add] [GOAL] α : Type u_1 inst✝² : SemilatticeInf α inst✝¹ : OrderTop α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ ∀ (a : α), a ∈ ndunion s₁ s₂ ↔ a ∈ s₁ + s₂ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : SemilatticeInf α inst✝¹ : OrderTop α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ inf (s₁ ∪ s₂) = inf s₁ ⊓ inf s₂ [PROOFSTEP] rw [← inf_dedup, dedup_ext.2, inf_dedup, inf_add] [GOAL] α : Type u_1 inst✝² : SemilatticeInf α inst✝¹ : OrderTop α inst✝ : DecidableEq α s₁ s₂ : Multiset α ⊢ ∀ (a : α), a ∈ s₁ ∪ s₂ ↔ a ∈ s₁ + s₂ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : SemilatticeInf α inst✝¹ : OrderTop α inst✝ : DecidableEq α a : α s : Multiset α ⊢ inf (ndinsert a s) = a ⊓ inf s [PROOFSTEP] rw [← inf_dedup, dedup_ext.2, inf_dedup, inf_cons] [GOAL] α : Type u_1 inst✝² : SemilatticeInf α inst✝¹ : OrderTop α inst✝ : DecidableEq α a : α s : Multiset α ⊢ ∀ (a_1 : α), a_1 ∈ ndinsert a s ↔ a_1 ∈ a ::ₘ s [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Data.Multiset.Lattice", "llama_tokens": 2395}
[GOAL] ⊢ #ℂ = 𝔠 [PROOFSTEP] rw [mk_congr Complex.equivRealProd, mk_prod, lift_id, mk_real, continuum_mul_self] [GOAL] ⊢ #↑Set.univ = 𝔠 [PROOFSTEP] rw [mk_univ, mk_complex] [GOAL] ⊢ ¬Set.Countable Set.univ [PROOFSTEP] rw [← le_aleph0_iff_set_countable, not_le, mk_univ_complex] [GOAL] ⊢ ℵ₀ < 𝔠 [PROOFSTEP] apply cantor
{"mathlib_filename": "Mathlib.Data.Complex.Cardinality", "llama_tokens": 174}
[GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ hcoprime : IsCoprime g₁ g₂ ⊢ ∃ q r₁ r₂, degree r₁ < degree g₁ ∧ degree r₂ < degree g₂ ∧ ↑f / (↑g₁ * ↑g₂) = ↑q + ↑r₁ / ↑g₁ + ↑r₂ / ↑g₂ [PROOFSTEP] rcases hcoprime with ⟨c, d, hcd⟩ [GOAL] case intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 ⊢ ∃ q r₁ r₂, degree r₁ < degree g₁ ∧ degree r₂ < degree g₂ ∧ ↑f / (↑g₁ * ↑g₂) = ↑q + ↑r₁ / ↑g₁ + ↑r₂ / ↑g₂ [PROOFSTEP] refine' ⟨f * d /ₘ g₁ + f * c /ₘ g₂, f * d %ₘ g₁, f * c %ₘ g₂, degree_modByMonic_lt _ hg₁, degree_modByMonic_lt _ hg₂, _⟩ [GOAL] case intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 ⊢ ↑f / (↑g₁ * ↑g₂) = ↑(f * d /ₘ g₁ + f * c /ₘ g₂) + ↑(f * d %ₘ g₁) / ↑g₁ + ↑(f * c %ₘ g₂) / ↑g₂ [PROOFSTEP] have hg₁' : (↑g₁ : K) ≠ 0 := by norm_cast exact hg₁.ne_zero_of_ne zero_ne_one [GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 ⊢ ↑g₁ ≠ 0 [PROOFSTEP] norm_cast [GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 ⊢ ¬g₁ = 0 [PROOFSTEP] exact hg₁.ne_zero_of_ne zero_ne_one [GOAL] case intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 hg₁' : ↑g₁ ≠ 0 ⊢ ↑f / (↑g₁ * ↑g₂) = ↑(f * d /ₘ g₁ + f * c /ₘ g₂) + ↑(f * d %ₘ g₁) / ↑g₁ + ↑(f * c %ₘ g₂) / ↑g₂ [PROOFSTEP] have hg₂' : (↑g₂ : K) ≠ 0 := by norm_cast exact hg₂.ne_zero_of_ne zero_ne_one [GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 hg₁' : ↑g₁ ≠ 0 ⊢ ↑g₂ ≠ 0 [PROOFSTEP] norm_cast [GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 hg₁' : ↑g₁ ≠ 0 ⊢ ¬g₂ = 0 [PROOFSTEP] exact hg₂.ne_zero_of_ne zero_ne_one [GOAL] case intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 hg₁' : ↑g₁ ≠ 0 hg₂' : ↑g₂ ≠ 0 ⊢ ↑f / (↑g₁ * ↑g₂) = ↑(f * d /ₘ g₁ + f * c /ₘ g₂) + ↑(f * d %ₘ g₁) / ↑g₁ + ↑(f * c %ₘ g₂) / ↑g₂ [PROOFSTEP] have hfc := modByMonic_add_div (f * c) hg₂ [GOAL] case intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 hg₁' : ↑g₁ ≠ 0 hg₂' : ↑g₂ ≠ 0 hfc : f * c %ₘ g₂ + g₂ * (f * c /ₘ g₂) = f * c ⊢ ↑f / (↑g₁ * ↑g₂) = ↑(f * d /ₘ g₁ + f * c /ₘ g₂) + ↑(f * d %ₘ g₁) / ↑g₁ + ↑(f * c %ₘ g₂) / ↑g₂ [PROOFSTEP] have hfd := modByMonic_add_div (f * d) hg₁ [GOAL] case intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 hg₁' : ↑g₁ ≠ 0 hg₂' : ↑g₂ ≠ 0 hfc : f * c %ₘ g₂ + g₂ * (f * c /ₘ g₂) = f * c hfd : f * d %ₘ g₁ + g₁ * (f * d /ₘ g₁) = f * d ⊢ ↑f / (↑g₁ * ↑g₂) = ↑(f * d /ₘ g₁ + f * c /ₘ g₂) + ↑(f * d %ₘ g₁) / ↑g₁ + ↑(f * c %ₘ g₂) / ↑g₂ [PROOFSTEP] field_simp [GOAL] case intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 hg₁' : ↑g₁ ≠ 0 hg₂' : ↑g₂ ≠ 0 hfc : f * c %ₘ g₂ + g₂ * (f * c /ₘ g₂) = f * c hfd : f * d %ₘ g₁ + g₁ * (f * d /ₘ g₁) = f * d ⊢ ↑f = (↑(f * d /ₘ g₁ + f * c /ₘ g₂) * ↑g₁ + ↑(f * d %ₘ g₁)) * ↑g₂ + ↑(f * c %ₘ g₂) * ↑g₁ [PROOFSTEP] norm_cast [GOAL] case intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f g₁ g₂ : R[X] hg₁ : Monic g₁ hg₂ : Monic g₂ c d : R[X] hcd : c * g₁ + d * g₂ = 1 hg₁' : ↑g₁ ≠ 0 hg₂' : ↑g₂ ≠ 0 hfc : f * c %ₘ g₂ + g₂ * (f * c /ₘ g₂) = f * c hfd : f * d %ₘ g₁ + g₁ * (f * d /ₘ g₁) = f * d ⊢ f = ((f * d /ₘ g₁ + f * c /ₘ g₂) * g₁ + f * d %ₘ g₁) * g₂ + f * c %ₘ g₂ * g₁ [PROOFSTEP] linear_combination -1 * f * hcd + -1 * g₁ * hfc + -1 * g₂ * hfd [GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg : ∀ (i : ι), i ∈ s → Monic (g i) hcop : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) ⊢ ∃ q r, (∀ (i : ι), i ∈ s → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in s, ↑(g i) = ↑q + ∑ i in s, ↑(r i) / ↑(g i) [PROOFSTEP] induction' s using Finset.induction_on with a b hab Hind f generalizing f [GOAL] case empty R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) f : R[X] hg : ∀ (i : ι), i ∈ ∅ → Monic (g i) hcop : Set.Pairwise ↑∅ fun i j => IsCoprime (g i) (g j) ⊢ ∃ q r, (∀ (i : ι), i ∈ ∅ → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in ∅, ↑(g i) = ↑q + ∑ i in ∅, ↑(r i) / ↑(g i) [PROOFSTEP] refine' ⟨f, fun _ : ι => (0 : R[X]), fun i => _, by simp⟩ [GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) f : R[X] hg : ∀ (i : ι), i ∈ ∅ → Monic (g i) hcop : Set.Pairwise ↑∅ fun i j => IsCoprime (g i) (g j) ⊢ ↑f / ∏ i in ∅, ↑(g i) = ↑f + ∑ i in ∅, ↑((fun x => 0) i) / ↑(g i) [PROOFSTEP] simp [GOAL] case empty R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) f : R[X] hg : ∀ (i : ι), i ∈ ∅ → Monic (g i) hcop : Set.Pairwise ↑∅ fun i j => IsCoprime (g i) (g j) i : ι ⊢ i ∈ ∅ → degree ((fun x => 0) i) < degree (g i) [PROOFSTEP] rintro ⟨⟩ [GOAL] case insert R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) ⊢ ∃ q r, (∀ (i : ι), i ∈ insert a b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in insert a b, ↑(g i) = ↑q + ∑ i in insert a b, ↑(r i) / ↑(g i) [PROOFSTEP] obtain ⟨q₀, r₁, r₂, hdeg₁, _, hf : (↑f : K) / _ = _⟩ := div_eq_quo_add_rem_div_add_rem_div R K f (hg a (b.mem_insert_self a) : Monic (g a)) (monic_prod_of_monic _ _ fun i hi => hg i (Finset.mem_insert_of_mem hi) : Monic (∏ i : ι in b, g i)) (IsCoprime.prod_right fun i hi => hcop (Finset.mem_coe.2 (b.mem_insert_self a)) (Finset.mem_coe.2 (Finset.mem_insert_of_mem hi)) (by rintro rfl; exact hab hi)) [GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) i : ι hi : i ∈ b ⊢ a ≠ i [PROOFSTEP] rintro rfl [GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) hi : a ∈ b ⊢ False [PROOFSTEP] exact hab hi [GOAL] case insert.intro.intro.intro.intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) ⊢ ∃ q r, (∀ (i : ι), i ∈ insert a b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in insert a b, ↑(g i) = ↑q + ∑ i in insert a b, ↑(r i) / ↑(g i) [PROOFSTEP] obtain ⟨q, r, hrdeg, IH⟩ := Hind _ (fun i hi => hg i (Finset.mem_insert_of_mem hi)) (Set.Pairwise.mono (Finset.coe_subset.2 fun i hi => Finset.mem_insert_of_mem hi) hcop) [GOAL] case insert.intro.intro.intro.intro.intro.intro.intro.intro R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) IH : ↑?m.70687 / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) ⊢ ∃ q r, (∀ (i : ι), i ∈ insert a b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in insert a b, ↑(g i) = ↑q + ∑ i in insert a b, ↑(r i) / ↑(g i) [PROOFSTEP] refine ⟨q₀ + q, fun i => if i = a then r₁ else r i, ?_, ?_⟩ [GOAL] case insert.intro.intro.intro.intro.intro.intro.intro.intro.refine_1 R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) IH : ↑?m.70687 / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) ⊢ ∀ (i : ι), i ∈ insert a b → degree ((fun i => if i = a then r₁ else r i) i) < degree (g i) [PROOFSTEP] intro i [GOAL] case insert.intro.intro.intro.intro.intro.intro.intro.intro.refine_1 R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) IH : ↑?m.70687 / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) i : ι ⊢ i ∈ insert a b → degree ((fun i => if i = a then r₁ else r i) i) < degree (g i) [PROOFSTEP] dsimp only [GOAL] case insert.intro.intro.intro.intro.intro.intro.intro.intro.refine_1 R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) IH : ↑?m.70687 / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) i : ι ⊢ i ∈ insert a b → degree (if i = a then r₁ else r i) < degree (g i) [PROOFSTEP] split_ifs with h1 [GOAL] case pos R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) IH : ↑?m.70687 / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) i : ι h1 : i = a ⊢ i ∈ insert a b → degree r₁ < degree (g i) [PROOFSTEP] cases h1 [GOAL] case pos.refl R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) IH : ↑?m.70687 / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) ⊢ a ∈ insert a b → degree r₁ < degree (g a) [PROOFSTEP] intro [GOAL] case pos.refl R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) IH : ↑?m.70687 / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) a✝ : a ∈ insert a b ⊢ degree r₁ < degree (g a) [PROOFSTEP] exact hdeg₁ [GOAL] case neg R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) IH : ↑?m.70687 / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) i : ι h1 : ¬i = a ⊢ i ∈ insert a b → degree (r i) < degree (g i) [PROOFSTEP] intro hi [GOAL] case neg R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) IH : ↑?m.70687 / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) i : ι h1 : ¬i = a hi : i ∈ insert a b ⊢ degree (r i) < degree (g i) [PROOFSTEP] exact hrdeg i (Finset.mem_of_mem_insert_of_ne hi h1) [GOAL] case insert.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) IH : ↑?m.70687 / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) ⊢ ↑f / ∏ i in insert a b, ↑(g i) = ↑(q₀ + q) + ∑ i in insert a b, ↑((fun i => if i = a then r₁ else r i) i) / ↑(g i) [PROOFSTEP] norm_cast at hf IH ⊢ [GOAL] case insert.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf✝ : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) hf : ↑f / ↑(g a * ∏ i in b, g i) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) IH : ↑?m.70687 / ↑(∏ i in b, g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) ⊢ ↑f / ↑(∏ i in insert a b, g i) = ↑(q₀ + q) + ∑ x in insert a b, ↑(if x = a then r₁ else r x) / ↑(g x) [PROOFSTEP] rw [Finset.prod_insert hab, hf, IH, Finset.sum_insert hab, if_pos rfl] [GOAL] case insert.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf✝ : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) hf : ↑f / ↑(g a * ∏ i in b, g i) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) IH : ↑r₂ / ↑(∏ i in b, g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) ⊢ ↑q₀ + ↑r₁ / ↑(g a) + (↑q + ∑ i in b, ↑(r i) / ↑(g i)) = ↑(q₀ + q) + (↑r₁ / ↑(g a) + ∑ x in b, ↑(if x = a then r₁ else r x) / ↑(g x)) [PROOFSTEP] trans (↑(q₀ + q : R[X]) : K) + (↑r₁ / ↑(g a) + ∑ i : ι in b, (r i : K) / (g i : K)) [GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf✝ : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) hf : ↑f / ↑(g a * ∏ i in b, g i) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) IH : ↑r₂ / ↑(∏ i in b, g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) ⊢ ↑q₀ + ↑r₁ / ↑(g a) + (↑q + ∑ i in b, ↑(r i) / ↑(g i)) = ↑(q₀ + q) + (↑r₁ / ↑(g a) + ∑ i in b, ↑(r i) / ↑(g i)) [PROOFSTEP] push_cast [GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf✝ : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) hf : ↑f / ↑(g a * ∏ i in b, g i) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) IH : ↑r₂ / ↑(∏ i in b, g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) ⊢ ↑q₀ + ↑r₁ / ↑(g a) + (↑q + ∑ i in b, ↑(r i) / ↑(g i)) = ↑q₀ + ↑q + (↑r₁ / ↑(g a) + ∑ i in b, ↑(r i) / ↑(g i)) [PROOFSTEP] ring [GOAL] R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf✝ : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) hf : ↑f / ↑(g a * ∏ i in b, g i) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) IH : ↑r₂ / ↑(∏ i in b, g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) ⊢ ↑(q₀ + q) + (↑r₁ / ↑(g a) + ∑ i in b, ↑(r i) / ↑(g i)) = ↑(q₀ + q) + (↑r₁ / ↑(g a) + ∑ x in b, ↑(if x = a then r₁ else r x) / ↑(g x)) [PROOFSTEP] congr 2 [GOAL] case e_a.e_a R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf✝ : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) hf : ↑f / ↑(g a * ∏ i in b, g i) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) IH : ↑r₂ / ↑(∏ i in b, g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) ⊢ ∑ i in b, ↑(r i) / ↑(g i) = ∑ x in b, ↑(if x = a then r₁ else r x) / ↑(g x) [PROOFSTEP] refine' Finset.sum_congr rfl fun x hxb => _ [GOAL] case e_a.e_a R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf✝ : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) hf : ↑f / ↑(g a * ∏ i in b, g i) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) IH : ↑r₂ / ↑(∏ i in b, g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) x : ι hxb : x ∈ b ⊢ ↑(r x) / ↑(g x) = ↑(if x = a then r₁ else r x) / ↑(g x) [PROOFSTEP] rw [if_neg] [GOAL] case e_a.e_a.hnc R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) a : ι b : Finset ι hab : ¬a ∈ b Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f : R[X] hg : ∀ (i : ι), i ∈ insert a b → Monic (g i) hcop : Set.Pairwise ↑(insert a b) fun i j => IsCoprime (g i) (g j) q₀ r₁ r₂ : R[X] hdeg₁ : degree r₁ < degree (g a) left✝ : degree r₂ < degree (∏ i in b, g i) hf✝ : ↑f / (↑(g a) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) hf : ↑f / ↑(g a * ∏ i in b, g i) = ↑q₀ + ↑r₁ / ↑(g a) + ↑r₂ / ↑(∏ i in b, g i) IH : ↑r₂ / ↑(∏ i in b, g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) x : ι hxb : x ∈ b ⊢ ¬x = a [PROOFSTEP] rintro rfl [GOAL] case e_a.e_a.hnc R : Type inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type inst✝² : Field K inst✝¹ : Algebra R[X] K inst✝ : IsFractionRing R[X] K f✝ : R[X] ι : Type u_1 g : ι → R[X] s : Finset ι hg✝ : ∀ (i : ι), i ∈ s → Monic (g i) hcop✝ : Set.Pairwise ↑s fun i j => IsCoprime (g i) (g j) b : Finset ι Hind : ∀ (f : R[X]), (∀ (i : ι), i ∈ b → Monic (g i)) → (Set.Pairwise ↑b fun i j => IsCoprime (g i) (g j)) → ∃ q r, (∀ (i : ι), i ∈ b → degree (r i) < degree (g i)) ∧ ↑f / ∏ i in b, ↑(g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) f q₀ r₁ r₂ : R[X] left✝ : degree r₂ < degree (∏ i in b, g i) q : R[X] r : ι → R[X] hrdeg : ∀ (i : ι), i ∈ b → degree (r i) < degree (g i) IH : ↑r₂ / ↑(∏ i in b, g i) = ↑q + ∑ i in b, ↑(r i) / ↑(g i) x : ι hxb : x ∈ b hab : ¬x ∈ b hg : ∀ (i : ι), i ∈ insert x b → Monic (g i) hcop : Set.Pairwise ↑(insert x b) fun i j => IsCoprime (g i) (g j) hdeg₁ : degree r₁ < degree (g x) hf✝ : ↑f / (↑(g x) * ↑(∏ i in b, g i)) = ↑q₀ + ↑r₁ / ↑(g x) + ↑r₂ / ↑(∏ i in b, g i) hf : ↑f / ↑(g x * ∏ i in b, g i) = ↑q₀ + ↑r₁ / ↑(g x) + ↑r₂ / ↑(∏ i in b, g i) ⊢ False [PROOFSTEP] exact hab hxb
{"mathlib_filename": "Mathlib.Data.Polynomial.PartialFractions", "llama_tokens": 19893}
[GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a b : α src✝ : αᵒᵈ ≃ α := ofDual ⊢ ∀ {a b : αᵒᵈ}, Adj (hasse α) (↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } a) (↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } b) ↔ Adj (hasse αᵒᵈ) a b [PROOFSTEP] simp [or_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β ⊢ hasse (α × β) = hasse α □ hasse β [PROOFSTEP] ext x y [GOAL] case Adj.h.h.a α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β x y : α × β ⊢ Adj (hasse (α × β)) x y ↔ Adj (hasse α □ hasse β) x y [PROOFSTEP] simp_rw [boxProd_adj, hasse_adj, Prod.covby_iff, or_and_right, @eq_comm _ y.1, @eq_comm _ y.2, or_or_or_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a b : α ⊢ Reachable (hasse α) a b [PROOFSTEP] rw [reachable_iff_reflTransGen] [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a b : α ⊢ ReflTransGen (hasse α).Adj a b [PROOFSTEP] exact reflTransGen_of_succ _ (fun c hc => Or.inl <| covby_succ_of_not_isMax hc.2.not_isMax) fun c hc => Or.inr <| covby_succ_of_not_isMax hc.2.not_isMax [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : IsPredArchimedean α a b : α ⊢ Reachable (hasse α) a b [PROOFSTEP] rw [reachable_iff_reflTransGen, ← reflTransGen_swap] [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : IsPredArchimedean α a b : α ⊢ ReflTransGen (Function.swap (hasse α).Adj) b a [PROOFSTEP] exact reflTransGen_of_pred _ (fun c hc => Or.inl <| pred_covby_of_not_isMin hc.1.not_isMin) fun c hc => Or.inr <| pred_covby_of_not_isMin hc.1.not_isMin
{"mathlib_filename": "Mathlib.Combinatorics.SimpleGraph.Hasse", "llama_tokens": 1039}
{"mathlib_filename": "Mathlib.MeasureTheory.Group.MeasurableEquiv", "llama_tokens": 0}
[GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C inst✝ : HasShift C ℤ X : C X✝ Y✝ : Triangle C f : X✝ ⟶ Y✝ ⊢ (Triangle.rotate X✝).mor₃ ≫ (shiftFunctor C 1).map f.hom₂ = (shiftFunctor C 1).map f.hom₁ ≫ (Triangle.rotate Y✝).mor₃ [PROOFSTEP] dsimp [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C inst✝ : HasShift C ℤ X : C X✝ Y✝ : Triangle C f : X✝ ⟶ Y✝ ⊢ (-(shiftFunctor C 1).map X✝.mor₁) ≫ (shiftFunctor C 1).map f.hom₂ = (shiftFunctor C 1).map f.hom₁ ≫ (-(shiftFunctor C 1).map Y✝.mor₁) [PROOFSTEP] simp only [comp_neg, neg_comp, ← Functor.map_comp, f.comm₁] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C inst✝ : HasShift C ℤ X : C X✝ Y✝ : Triangle C f : X✝ ⟶ Y✝ ⊢ (Triangle.invRotate X✝).mor₁ ≫ f.hom₁ = (shiftFunctor C (-1)).map f.hom₃ ≫ (Triangle.invRotate Y✝).mor₁ [PROOFSTEP] dsimp [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C inst✝ : HasShift C ℤ X : C X✝ Y✝ : Triangle C f : X✝ ⟶ Y✝ ⊢ (-(shiftFunctor C (-1)).map X✝.mor₃ ≫ NatTrans.app (shiftFunctorCompIsoId C 1 (-1) (_ : 1 + -1 = 0)).hom X✝.obj₁) ≫ f.hom₁ = (shiftFunctor C (-1)).map f.hom₃ ≫ (-(shiftFunctor C (-1)).map Y✝.mor₃ ≫ NatTrans.app (shiftFunctorCompIsoId C 1 (-1) (_ : 1 + -1 = 0)).hom Y✝.obj₁) [PROOFSTEP] simp only [neg_comp, assoc, comp_neg, neg_inj, ← Functor.map_comp_assoc, ← f.comm₃] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C inst✝ : HasShift C ℤ X : C X✝ Y✝ : Triangle C f : X✝ ⟶ Y✝ ⊢ (shiftFunctor C (-1)).map X✝.mor₃ ≫ NatTrans.app (shiftFunctorCompIsoId C 1 (-1) (_ : 1 + -1 = 0)).hom X✝.obj₁ ≫ f.hom₁ = (shiftFunctor C (-1)).map (X✝.mor₃ ≫ (shiftFunctor C 1).map f.hom₁) ≫ NatTrans.app (shiftFunctorCompIsoId C 1 (-1) (_ : 1 + -1 = 0)).hom Y✝.obj₁ [PROOFSTEP] rw [Functor.map_comp, assoc] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C inst✝ : HasShift C ℤ X : C X✝ Y✝ : Triangle C f : X✝ ⟶ Y✝ ⊢ (shiftFunctor C (-1)).map X✝.mor₃ ≫ NatTrans.app (shiftFunctorCompIsoId C 1 (-1) (_ : 1 + -1 = 0)).hom X✝.obj₁ ≫ f.hom₁ = (shiftFunctor C (-1)).map X✝.mor₃ ≫ (shiftFunctor C (-1)).map ((shiftFunctor C 1).map f.hom₁) ≫ NatTrans.app (shiftFunctorCompIsoId C 1 (-1) (_ : 1 + -1 = 0)).hom Y✝.obj₁ [PROOFSTEP] erw [← NatTrans.naturality] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C inst✝ : HasShift C ℤ X : C X✝ Y✝ : Triangle C f : X✝ ⟶ Y✝ ⊢ (shiftFunctor C (-1)).map X✝.mor₃ ≫ (shiftFunctor C 1 ⋙ shiftFunctor C (-1)).map f.1 ≫ NatTrans.app (shiftFunctorCompIsoId C 1 (-1) (_ : 1 + -1 = 0)).hom Y✝.obj₁ = (shiftFunctor C (-1)).map X✝.mor₃ ≫ (shiftFunctor C (-1)).map ((shiftFunctor C 1).map f.hom₁) ≫ NatTrans.app (shiftFunctorCompIsoId C 1 (-1) (_ : 1 + -1 = 0)).hom Y✝.obj₁ [PROOFSTEP] rfl [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C inst✝ : HasShift C ℤ X : C X✝ Y✝ : Triangle C f : X✝ ⟶ Y✝ ⊢ (Triangle.invRotate X✝).mor₃ ≫ (shiftFunctor C 1).map ((shiftFunctor C (-1)).map f.hom₃) = f.hom₂ ≫ (Triangle.invRotate Y✝).mor₃ [PROOFSTEP] erw [← reassoc_of% f.comm₂, Category.assoc, ← NatTrans.naturality] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : Preadditive C inst✝ : HasShift C ℤ X : C X✝ Y✝ : Triangle C f : X✝ ⟶ Y✝ ⊢ X✝.mor₂ ≫ (𝟭 C).map f.hom₃ ≫ NatTrans.app (shiftEquiv C 1).counitIso.inv Y✝.obj₃ = X✝.mor₂ ≫ f.hom₃ ≫ NatTrans.app (shiftEquiv C 1).counitIso.inv Y✝.3 [PROOFSTEP] rfl [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : Preadditive C inst✝¹ : HasShift C ℤ X : C inst✝ : ∀ (n : ℤ), Functor.Additive (shiftFunctor C n) ⊢ IsEquivalence (rotate C) [PROOFSTEP] change IsEquivalence (triangleRotation C).functor [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : Preadditive C inst✝¹ : HasShift C ℤ X : C inst✝ : ∀ (n : ℤ), Functor.Additive (shiftFunctor C n) ⊢ IsEquivalence (triangleRotation C).functor [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : Preadditive C inst✝¹ : HasShift C ℤ X : C inst✝ : ∀ (n : ℤ), Functor.Additive (shiftFunctor C n) ⊢ IsEquivalence (invRotate C) [PROOFSTEP] change IsEquivalence (triangleRotation C).inverse [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : Preadditive C inst✝¹ : HasShift C ℤ X : C inst✝ : ∀ (n : ℤ), Functor.Additive (shiftFunctor C n) ⊢ IsEquivalence (triangleRotation C).inverse [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.CategoryTheory.Triangulated.Rotate", "llama_tokens": 2274}
[GOAL] C : Type u inst✝¹ : Category.{v, u} C J : Type w inst✝ : SmallCategory J F : J ⥤ C c₁ : Fan F.obj c₂ : Fan fun f => F.obj f.fst.snd s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.fst } ≫ F.map f.snd ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.snd } i : Fork s t j₁ j₂ : J f : j₁ ⟶ j₂ ⊢ ((Functor.const J).obj i.pt).map f ≫ (fun j => Fork.ι i ≫ NatTrans.app c₁.π { as := j }) j₂ = (fun j => Fork.ι i ≫ NatTrans.app c₁.π { as := j }) j₁ ≫ F.map f [PROOFSTEP] dsimp [GOAL] C : Type u inst✝¹ : Category.{v, u} C J : Type w inst✝ : SmallCategory J F : J ⥤ C c₁ : Fan F.obj c₂ : Fan fun f => F.obj f.fst.snd s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.fst } ≫ F.map f.snd ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.snd } i : Fork s t j₁ j₂ : J f : j₁ ⟶ j₂ ⊢ 𝟙 i.pt ≫ Fork.ι i ≫ NatTrans.app c₁.π { as := j₂ } = (Fork.ι i ≫ NatTrans.app c₁.π { as := j₁ }) ≫ F.map f [PROOFSTEP] rw [Category.id_comp, Category.assoc, ← hs ⟨⟨_, _⟩, f⟩, i.condition_assoc, ht] [GOAL] C : Type u inst✝¹ : Category.{v, u} C J : Type w inst✝ : SmallCategory J F : J ⥤ C c₁ : Fan F.obj c₂ : Fan fun f => F.obj f.fst.snd s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.fst } ≫ F.map f.snd ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.snd } i : Fork s t t₁ : IsLimit c₁ t₂ : IsLimit c₂ hi : IsLimit i q : Cone F ⊢ q.pt ⟶ (buildLimit s t hs ht i).pt [PROOFSTEP] refine' hi.lift (Fork.ofι _ _) [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C J : Type w inst✝ : SmallCategory J F : J ⥤ C c₁ : Fan F.obj c₂ : Fan fun f => F.obj f.fst.snd s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.fst } ≫ F.map f.snd ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.snd } i : Fork s t t₁ : IsLimit c₁ t₂ : IsLimit c₂ hi : IsLimit i q : Cone F ⊢ q.1 ⟶ c₁.pt [PROOFSTEP] refine' t₁.lift (Fan.mk _ fun j => _) [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C J : Type w inst✝ : SmallCategory J F : J ⥤ C c₁ : Fan F.obj c₂ : Fan fun f => F.obj f.fst.snd s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.fst } ≫ F.map f.snd ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.snd } i : Fork s t t₁ : IsLimit c₁ t₂ : IsLimit c₂ hi : IsLimit i q : Cone F j : J ⊢ q.1 ⟶ F.obj j [PROOFSTEP] apply q.π.app j [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C J : Type w inst✝ : SmallCategory J F : J ⥤ C c₁ : Fan F.obj c₂ : Fan fun f => F.obj f.fst.snd s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.fst } ≫ F.map f.snd ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.snd } i : Fork s t t₁ : IsLimit c₁ t₂ : IsLimit c₂ hi : IsLimit i q : Cone F ⊢ IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ s = IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ t [PROOFSTEP] apply t₂.hom_ext [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C J : Type w inst✝ : SmallCategory J F : J ⥤ C c₁ : Fan F.obj c₂ : Fan fun f => F.obj f.fst.snd s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.fst } ≫ F.map f.snd ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.snd } i : Fork s t t₁ : IsLimit c₁ t₂ : IsLimit c₂ hi : IsLimit i q : Cone F ⊢ ∀ (j : Discrete ((p : J × J) × (p.fst ⟶ p.snd))), (IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ s) ≫ NatTrans.app c₂.π j = (IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ t) ≫ NatTrans.app c₂.π j [PROOFSTEP] intro ⟨j⟩ [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C J : Type w inst✝ : SmallCategory J F : J ⥤ C c₁ : Fan F.obj c₂ : Fan fun f => F.obj f.fst.snd s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.fst } ≫ F.map f.snd ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.snd } i : Fork s t t₁ : IsLimit c₁ t₂ : IsLimit c₂ hi : IsLimit i q : Cone F j : (p : J × J) × (p.fst ⟶ p.snd) ⊢ (IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ s) ≫ NatTrans.app c₂.π { as := j } = (IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ t) ≫ NatTrans.app c₂.π { as := j } [PROOFSTEP] simp [hs, ht] [GOAL] C : Type u inst✝¹ : Category.{v, u} C J : Type w inst✝ : SmallCategory J F : J ⥤ C c₁ : Fan F.obj c₂ : Fan fun f => F.obj f.fst.snd s✝ t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s✝ ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.fst } ≫ F.map f.snd ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.snd } i : Fork s✝ t t₁ : IsLimit c₁ t₂ : IsLimit c₂ hi : IsLimit i s : Cone F j : J ⊢ (fun q => IsLimit.lift hi (Fork.ofι (IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j)) (_ : IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ s✝ = IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ t))) s ≫ NatTrans.app (buildLimit s✝ t hs ht i).π j = NatTrans.app s.π j [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C J : Type w inst✝ : SmallCategory J F : J ⥤ C c₁ : Fan F.obj c₂ : Fan fun f => F.obj f.fst.snd s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.fst } ≫ F.map f.snd ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.snd } i : Fork s t t₁ : IsLimit c₁ t₂ : IsLimit c₂ hi : IsLimit i q : Cone F m : q.pt ⟶ (buildLimit s t hs ht i).pt w : ∀ (j : J), m ≫ NatTrans.app (buildLimit s t hs ht i).π j = NatTrans.app q.π j j : Discrete J ⊢ (m ≫ Fork.ι i) ≫ NatTrans.app c₁.π j = ((fun q => IsLimit.lift hi (Fork.ofι (IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j)) (_ : IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ s = IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ t))) q ≫ Fork.ι i) ≫ NatTrans.app c₁.π j [PROOFSTEP] cases' j with j [GOAL] case mk C : Type u inst✝¹ : Category.{v, u} C J : Type w inst✝ : SmallCategory J F : J ⥤ C c₁ : Fan F.obj c₂ : Fan fun f => F.obj f.fst.snd s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.fst } ≫ F.map f.snd ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app c₂.π { as := f } = NatTrans.app c₁.π { as := f.fst.snd } i : Fork s t t₁ : IsLimit c₁ t₂ : IsLimit c₂ hi : IsLimit i q : Cone F m : q.pt ⟶ (buildLimit s t hs ht i).pt w : ∀ (j : J), m ≫ NatTrans.app (buildLimit s t hs ht i).π j = NatTrans.app q.π j j : J ⊢ (m ≫ Fork.ι i) ≫ NatTrans.app c₁.π { as := j } = ((fun q => IsLimit.lift hi (Fork.ofι (IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j)) (_ : IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ s = IsLimit.lift t₁ (Fan.mk q.1 fun j => NatTrans.app q.π j) ≫ t))) q ≫ Fork.ι i) ≫ NatTrans.app c₁.π { as := j } [PROOFSTEP] simpa using w j [GOAL] C : Type u inst✝⁴ : Category.{v, u} C J : Type w inst✝³ : SmallCategory J F : J ⥤ C inst✝² : HasLimit (Discrete.functor F.obj) inst✝¹ : HasLimit (Discrete.functor fun f => F.obj f.fst.snd) inst✝ : HasEqualizers C ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), (Pi.lift fun f => limit.π (Discrete.functor F.obj) { as := f.fst.1 } ≫ F.map f.snd) ≫ NatTrans.app (limit.cone (Discrete.functor fun f => F.obj f.fst.snd)).π { as := f } = NatTrans.app (limit.cone (Discrete.functor F.obj)).π { as := f.fst.fst } ≫ F.map f.snd [PROOFSTEP] simp [GOAL] C : Type u inst✝⁴ : Category.{v, u} C J : Type w inst✝³ : SmallCategory J F : J ⥤ C inst✝² : HasLimit (Discrete.functor F.obj) inst✝¹ : HasLimit (Discrete.functor fun f => F.obj f.fst.snd) inst✝ : HasEqualizers C ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), (Pi.lift fun f => limit.π (Discrete.functor F.obj) { as := f.fst.snd }) ≫ NatTrans.app (limit.cone (Discrete.functor fun f => F.obj f.fst.snd)).π { as := f } = NatTrans.app (limit.cone (Discrete.functor F.obj)).π { as := f.fst.snd } [PROOFSTEP] simp [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C ⊢ PreservesLimit K G [PROOFSTEP] let P := ∏ K.obj [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj ⊢ PreservesLimit K G [PROOFSTEP] let Q := ∏ fun f : Σ p : J × J, p.fst ⟶ p.snd => K.obj f.1.2 [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd ⊢ PreservesLimit K G [PROOFSTEP] let s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) ⟨_⟩ ≫ K.map f.2 [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd ⊢ PreservesLimit K G [PROOFSTEP] let t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) ⟨f.1.2⟩ [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } ⊢ PreservesLimit K G [PROOFSTEP] let I := equalizer s t [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t ⊢ PreservesLimit K G [PROOFSTEP] let i : I ⟶ P := equalizer.ι s t [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ PreservesLimit K G [PROOFSTEP] apply preservesLimitOfPreservesLimitCone (buildIsLimit s t (by simp) (by simp) (limit.isLimit _) (limit.isLimit _) (limit.isLimit _)) [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), s ≫ NatTrans.app (limit.cone (Discrete.functor fun f => K.obj f.fst.snd)).π { as := f } = NatTrans.app (limit.cone (Discrete.functor K.obj)).π { as := f.fst.fst } ≫ K.map f.snd [PROOFSTEP] simp [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), t ≫ NatTrans.app (limit.cone (Discrete.functor fun f => K.obj f.fst.snd)).π { as := f } = NatTrans.app (limit.cone (Discrete.functor K.obj)).π { as := f.fst.snd } [PROOFSTEP] simp [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ IsLimit (G.mapCone (buildLimit s t (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), limit.lift (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) (Fan.mk (∏ K.obj) fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd) ≫ limit.π (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) { as := a } = limit.π (Discrete.functor K.obj) { as := a.fst.fst } ≫ K.map a.snd) (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), limit.lift (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) (Fan.mk (∏ K.obj) fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd }) ≫ limit.π (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) { as := a } = limit.π (Discrete.functor K.obj) { as := a.fst.snd }) (limit.cone (parallelPair s t)))) [PROOFSTEP] refine' IsLimit.ofIsoLimit (buildIsLimit _ _ _ _ _ _ _) _ [GOAL] case refine'_1 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ Fan (K ⋙ G).toPrefunctor.obj [PROOFSTEP] exact Fan.mk _ fun j => G.map (Pi.π _ j) [GOAL] case refine'_2 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ Fan fun f => (K ⋙ G).obj f.fst.snd [PROOFSTEP] exact Fan.mk (G.obj Q) fun f => G.map (Pi.π _ f) [GOAL] case refine'_3 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).pt ⟶ (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).pt [PROOFSTEP] apply G.map s [GOAL] case refine'_4 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).pt ⟶ (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).pt [PROOFSTEP] apply G.map t [GOAL] case refine'_5 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map s ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.fst } ≫ (K ⋙ G).map f.snd [PROOFSTEP] intro f [GOAL] case refine'_5 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ G.map s ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.fst } ≫ (K ⋙ G).map f.snd [PROOFSTEP] dsimp [Fan.mk] [GOAL] case refine'_5 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ G.map (Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd) ≫ G.map (Pi.π (fun f => K.obj f.fst.snd) f) = G.map (Pi.π (fun j => K.obj j) f.fst.fst) ≫ G.map (K.map f.snd) [PROOFSTEP] simp only [← G.map_comp, limit.lift_π] [GOAL] case refine'_5 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ G.map (NatTrans.app (Fan.mk (∏ K.obj) fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd).π { as := f }) = G.map (Pi.π (fun j => K.obj j) f.fst.fst ≫ K.map f.snd) [PROOFSTEP] congr [GOAL] case refine'_6 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map t ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.snd } [PROOFSTEP] intro f [GOAL] case refine'_6 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ G.map t ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.snd } [PROOFSTEP] dsimp [Fan.mk] [GOAL] case refine'_6 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ G.map (Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd }) ≫ G.map (Pi.π (fun f => K.obj f.fst.snd) f) = G.map (Pi.π (fun j => K.obj j) f.fst.snd) [PROOFSTEP] simp only [← G.map_comp, limit.lift_π] [GOAL] case refine'_6 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ G.map (NatTrans.app (Fan.mk (∏ K.obj) fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd }).π { as := f }) = G.map (Pi.π (fun j => K.obj j) f.fst.snd) [PROOFSTEP] apply congrArg G.map [GOAL] case refine'_6 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ NatTrans.app (Fan.mk (∏ K.obj) fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd }).π { as := f } = Pi.π (fun j => K.obj j) f.fst.snd [PROOFSTEP] dsimp [GOAL] case refine'_7 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ Fork (G.map s) (G.map t) [PROOFSTEP] apply Fork.ofι (G.map i) [GOAL] case refine'_7 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ G.map i ≫ G.map s = G.map i ≫ G.map t [PROOFSTEP] rw [← G.map_comp, ← G.map_comp] [GOAL] case refine'_7 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ G.map (i ≫ s) = G.map (i ≫ t) [PROOFSTEP] apply congrArg G.map [GOAL] case refine'_7 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ i ≫ s = i ≫ t [PROOFSTEP] exact equalizer.condition s t [GOAL] case refine'_8 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ IsLimit (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)) [PROOFSTEP] apply isLimitOfHasProductOfPreservesLimit [GOAL] case refine'_9 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ IsLimit (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)) [PROOFSTEP] apply isLimitOfHasProductOfPreservesLimit [GOAL] case refine'_10 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ IsLimit (Fork.ofι (G.map i) (_ : G.map i ≫ G.map s = G.map i ≫ G.map t)) [PROOFSTEP] apply isLimitForkMapOfIsLimit [GOAL] case refine'_10.l C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ IsLimit (Fork.ofι i ?refine'_10.w) case refine'_10.w C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ i ≫ s = i ≫ t [PROOFSTEP] apply equalizerIsEqualizer [GOAL] case refine'_11 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ buildLimit (G.map s) (G.map t) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map s ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.fst } ≫ (K ⋙ G).map f.snd) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map t ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.snd }) (Fork.ofι (G.map i) (_ : G.map i ≫ G.map s = G.map i ≫ G.map t)) ≅ G.mapCone (buildLimit s t (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), limit.lift (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) (Fan.mk (∏ K.obj) fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd) ≫ limit.π (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) { as := a } = limit.π (Discrete.functor K.obj) { as := a.fst.fst } ≫ K.map a.snd) (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), limit.lift (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) (Fan.mk (∏ K.obj) fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd }) ≫ limit.π (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) { as := a } = limit.π (Discrete.functor K.obj) { as := a.fst.snd }) (limit.cone (parallelPair s t))) [PROOFSTEP] refine Cones.ext (Iso.refl _) ?_ [GOAL] case refine'_11 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t ⊢ ∀ (j : J), NatTrans.app (buildLimit (G.map s) (G.map t) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map s ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.fst } ≫ (K ⋙ G).map f.snd) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map t ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.snd }) (Fork.ofι (G.map i) (_ : G.map i ≫ G.map s = G.map i ≫ G.map t))).π j = (Iso.refl (buildLimit (G.map s) (G.map t) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map s ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.fst } ≫ (K ⋙ G).map f.snd) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map t ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.snd }) (Fork.ofι (G.map i) (_ : G.map i ≫ G.map s = G.map i ≫ G.map t))).pt).hom ≫ NatTrans.app (G.mapCone (buildLimit s t (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), limit.lift (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) (Fan.mk (∏ K.obj) fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd) ≫ limit.π (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) { as := a } = limit.π (Discrete.functor K.obj) { as := a.fst.fst } ≫ K.map a.snd) (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), limit.lift (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) (Fan.mk (∏ K.obj) fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd }) ≫ limit.π (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) { as := a } = limit.π (Discrete.functor K.obj) { as := a.fst.snd }) (limit.cone (parallelPair s t)))).π j [PROOFSTEP] intro j [GOAL] case refine'_11 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t j : J ⊢ NatTrans.app (buildLimit (G.map s) (G.map t) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map s ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.fst } ≫ (K ⋙ G).map f.snd) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map t ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.snd }) (Fork.ofι (G.map i) (_ : G.map i ≫ G.map s = G.map i ≫ G.map t))).π j = (Iso.refl (buildLimit (G.map s) (G.map t) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map s ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.fst } ≫ (K ⋙ G).map f.snd) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), G.map t ≫ NatTrans.app (Fan.mk (G.obj Q) fun f => G.map (Pi.π (fun f => K.obj f.fst.snd) f)).π { as := f } = NatTrans.app (Fan.mk (G.obj (∏ fun j => K.obj j)) fun j => G.map (Pi.π (fun j => K.obj j) j)).π { as := f.fst.snd }) (Fork.ofι (G.map i) (_ : G.map i ≫ G.map s = G.map i ≫ G.map t))).pt).hom ≫ NatTrans.app (G.mapCone (buildLimit s t (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), limit.lift (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) (Fan.mk (∏ K.obj) fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd) ≫ limit.π (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) { as := a } = limit.π (Discrete.functor K.obj) { as := a.fst.fst } ≫ K.map a.snd) (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), limit.lift (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) (Fan.mk (∏ K.obj) fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd }) ≫ limit.π (Discrete.functor fun b => (fun f => K.obj f.fst.snd) b) { as := a } = limit.π (Discrete.functor K.obj) { as := a.fst.snd }) (limit.cone (parallelPair s t)))).π j [PROOFSTEP] dsimp [GOAL] case refine'_11 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasLimitsOfShape (Discrete J) C inst✝⁴ : HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasEqualizers C G : C ⥤ D inst✝² : PreservesLimitsOfShape WalkingParallelPair G inst✝¹ : PreservesLimitsOfShape (Discrete J) G inst✝ : PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∏ K.obj Q : C := ∏ fun f => K.obj f.fst.snd s : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd t : P ⟶ Q := Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd } I : C := equalizer s t i : I ⟶ P := equalizer.ι s t j : J ⊢ G.map (equalizer.ι (Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd) (Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd })) ≫ G.map (Pi.π (fun j => K.obj j) j) = 𝟙 (G.obj (equalizer (Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd) (Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd }))) ≫ G.map (equalizer.ι (Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.1 } ≫ K.map f.snd) (Pi.lift fun f => limit.π (Discrete.functor K.obj) { as := f.fst.snd }) ≫ limit.π (Discrete.functor K.obj) { as := j }) [PROOFSTEP] simp -- See note [dsimp, simp]. [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasEqualizers C inst✝² : HasFiniteProducts C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteProducts G ⊢ (J : Type) → [inst : SmallCategory J] → [inst_1 : FinCategory J] → PreservesLimitsOfShape J G [PROOFSTEP] intro J sJ fJ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasEqualizers C inst✝² : HasFiniteProducts C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteProducts G J : Type sJ : SmallCategory J fJ : FinCategory J ⊢ PreservesLimitsOfShape J G [PROOFSTEP] haveI : Fintype J := inferInstance [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasEqualizers C inst✝² : HasFiniteProducts C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteProducts G J : Type sJ : SmallCategory J fJ : FinCategory J this : Fintype J ⊢ PreservesLimitsOfShape J G [PROOFSTEP] haveI : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) := inferInstance [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasEqualizers C inst✝² : HasFiniteProducts C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteProducts G J : Type sJ : SmallCategory J fJ : FinCategory J this✝ : Fintype J this : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) ⊢ PreservesLimitsOfShape J G [PROOFSTEP] apply @preservesLimitOfPreservesEqualizersAndProduct _ _ _ sJ _ _ ?_ ?_ _ G _ ?_ ?_ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasEqualizers C inst✝² : HasFiniteProducts C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteProducts G J : Type sJ : SmallCategory J fJ : FinCategory J this✝ : Fintype J this : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) ⊢ HasLimitsOfShape (Discrete J) C [PROOFSTEP] apply hasLimitsOfShape_discrete _ _ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasEqualizers C inst✝² : HasFiniteProducts C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteProducts G J : Type sJ : SmallCategory J fJ : FinCategory J this✝ : Fintype J this : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) ⊢ HasLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C [PROOFSTEP] apply hasLimitsOfShape_discrete _ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasEqualizers C inst✝² : HasFiniteProducts C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteProducts G J : Type sJ : SmallCategory J fJ : FinCategory J this✝ : Fintype J this : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) ⊢ PreservesLimitsOfShape (Discrete J) G [PROOFSTEP] apply PreservesFiniteProducts.preserves _ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasEqualizers C inst✝² : HasFiniteProducts C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteProducts G J : Type sJ : SmallCategory J fJ : FinCategory J this✝ : Fintype J this : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) ⊢ PreservesLimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G [PROOFSTEP] apply PreservesFiniteProducts.preserves _ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasTerminal C inst✝² : HasPullbacks C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape (Discrete PEmpty) G inst✝ : PreservesLimitsOfShape WalkingCospan G ⊢ PreservesFiniteLimits G [PROOFSTEP] haveI : HasFiniteLimits C := hasFiniteLimits_of_hasTerminal_and_pullbacks [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasTerminal C inst✝² : HasPullbacks C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape (Discrete PEmpty) G inst✝ : PreservesLimitsOfShape WalkingCospan G this : HasFiniteLimits C ⊢ PreservesFiniteLimits G [PROOFSTEP] haveI : PreservesLimitsOfShape (Discrete WalkingPair) G := preservesBinaryProductsOfPreservesTerminalAndPullbacks G [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasTerminal C inst✝² : HasPullbacks C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape (Discrete PEmpty) G inst✝ : PreservesLimitsOfShape WalkingCospan G this✝ : HasFiniteLimits C this : PreservesLimitsOfShape (Discrete WalkingPair) G ⊢ PreservesFiniteLimits G [PROOFSTEP] haveI : PreservesLimitsOfShape WalkingParallelPair G := preservesEqualizersOfPreservesPullbacksAndBinaryProducts G [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasTerminal C inst✝² : HasPullbacks C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape (Discrete PEmpty) G inst✝ : PreservesLimitsOfShape WalkingCospan G this✝¹ : HasFiniteLimits C this✝ : PreservesLimitsOfShape (Discrete WalkingPair) G this : PreservesLimitsOfShape WalkingParallelPair G ⊢ PreservesFiniteLimits G [PROOFSTEP] apply @preservesFiniteLimitsOfPreservesEqualizersAndFiniteProducts _ _ _ _ _ _ G _ ?_ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasTerminal C inst✝² : HasPullbacks C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape (Discrete PEmpty) G inst✝ : PreservesLimitsOfShape WalkingCospan G this✝¹ : HasFiniteLimits C this✝ : PreservesLimitsOfShape (Discrete WalkingPair) G this : PreservesLimitsOfShape WalkingParallelPair G ⊢ PreservesFiniteProducts G [PROOFSTEP] apply PreservesFiniteProducts.mk [GOAL] case preserves C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasTerminal C inst✝² : HasPullbacks C G : C ⥤ D inst✝¹ : PreservesLimitsOfShape (Discrete PEmpty) G inst✝ : PreservesLimitsOfShape WalkingCospan G this✝¹ : HasFiniteLimits C this✝ : PreservesLimitsOfShape (Discrete WalkingPair) G this : PreservesLimitsOfShape WalkingParallelPair G ⊢ (J : Type) → [inst : Fintype J] → PreservesLimitsOfShape (Discrete J) G [PROOFSTEP] apply preservesFiniteProductsOfPreservesBinaryAndTerminal G [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t j₁ j₂ : J f : j₁ ⟶ j₂ ⊢ F.map f ≫ (fun j => NatTrans.app c₂.ι { as := j } ≫ Cofork.π i) j₂ = (fun j => NatTrans.app c₂.ι { as := j } ≫ Cofork.π i) j₁ ≫ ((Functor.const J).obj i.pt).map f [PROOFSTEP] dsimp [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t j₁ j₂ : J f : j₁ ⟶ j₂ ⊢ F.map f ≫ NatTrans.app c₂.ι { as := j₂ } ≫ Cofork.π i = (NatTrans.app c₂.ι { as := j₁ } ≫ Cofork.π i) ≫ 𝟙 i.pt [PROOFSTEP] have reassoced (f : (p : J × J) × (p.fst ⟶ p.snd)) {W : C} {h : _ ⟶ W} : c₁.ι.app ⟨f⟩ ≫ s ≫ h = F.map f.snd ≫ c₂.ι.app ⟨f.fst.snd⟩ ≫ h := by simp only [← Category.assoc, eq_whisker (hs f)] [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t j₁ j₂ : J f✝ : j₁ ⟶ j₂ f : (p : J × J) × (p.fst ⟶ p.snd) W : C h : c₂.pt ⟶ W ⊢ NatTrans.app c₁.ι { as := f } ≫ s ≫ h = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ≫ h [PROOFSTEP] simp only [← Category.assoc, eq_whisker (hs f)] [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t j₁ j₂ : J f : j₁ ⟶ j₂ reassoced : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)) {W : C} {h : c₂.pt ⟶ W}, NatTrans.app c₁.ι { as := f } ≫ s ≫ h = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ≫ h ⊢ F.map f ≫ NatTrans.app c₂.ι { as := j₂ } ≫ Cofork.π i = (NatTrans.app c₂.ι { as := j₁ } ≫ Cofork.π i) ≫ 𝟙 i.pt [PROOFSTEP] rw [Category.comp_id, ← reassoced ⟨⟨_, _⟩, f⟩, i.condition, ← Category.assoc, ht] [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F ⊢ (buildColimit s t hs ht i).pt ⟶ q.pt [PROOFSTEP] refine' hi.desc (Cofork.ofπ _ _) [GOAL] case refine'_1 C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F ⊢ c₂.pt ⟶ q.1 [PROOFSTEP] refine' t₂.desc (Cofan.mk _ fun j => _) [GOAL] case refine'_1 C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F j : J ⊢ F.obj j ⟶ q.1 [PROOFSTEP] apply q.ι.app j [GOAL] case refine'_2 C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F ⊢ s ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) = t ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) [PROOFSTEP] apply t₁.hom_ext [GOAL] case refine'_2 C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F ⊢ ∀ (j : Discrete ((p : J × J) × (p.fst ⟶ p.snd))), NatTrans.app c₁.ι j ≫ s ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) = NatTrans.app c₁.ι j ≫ t ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) [PROOFSTEP] intro j [GOAL] case refine'_2 C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F j : Discrete ((p : J × J) × (p.fst ⟶ p.snd)) ⊢ NatTrans.app c₁.ι j ≫ s ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) = NatTrans.app c₁.ι j ≫ t ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) [PROOFSTEP] cases' j with j [GOAL] case refine'_2.mk C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F j : (p : J × J) × (p.fst ⟶ p.snd) ⊢ NatTrans.app c₁.ι { as := j } ≫ s ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) = NatTrans.app c₁.ι { as := j } ≫ t ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) [PROOFSTEP] have reassoced_s (f : (p : J × J) × (p.fst ⟶ p.snd)) {W : C} (h : _ ⟶ W) : c₁.ι.app ⟨f⟩ ≫ s ≫ h = F.map f.snd ≫ c₂.ι.app ⟨f.fst.snd⟩ ≫ h := by simp only [← Category.assoc] apply eq_whisker (hs f) [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F j f : (p : J × J) × (p.fst ⟶ p.snd) W : C h : c₂.pt ⟶ W ⊢ NatTrans.app c₁.ι { as := f } ≫ s ≫ h = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ≫ h [PROOFSTEP] simp only [← Category.assoc] [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F j f : (p : J × J) × (p.fst ⟶ p.snd) W : C h : c₂.pt ⟶ W ⊢ (NatTrans.app c₁.ι { as := f } ≫ s) ≫ h = (F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd }) ≫ h [PROOFSTEP] apply eq_whisker (hs f) [GOAL] case refine'_2.mk C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F j : (p : J × J) × (p.fst ⟶ p.snd) reassoced_s : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)) {W : C} (h : c₂.pt ⟶ W), NatTrans.app c₁.ι { as := f } ≫ s ≫ h = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ≫ h ⊢ NatTrans.app c₁.ι { as := j } ≫ s ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) = NatTrans.app c₁.ι { as := j } ≫ t ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) [PROOFSTEP] have reassoced_t (f : (p : J × J) × (p.fst ⟶ p.snd)) {W : C} (h : _ ⟶ W) : c₁.ι.app ⟨f⟩ ≫ t ≫ h = c₂.ι.app ⟨f.fst.fst⟩ ≫ h := by simp only [← Category.assoc] apply eq_whisker (ht f) [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F j : (p : J × J) × (p.fst ⟶ p.snd) reassoced_s : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)) {W : C} (h : c₂.pt ⟶ W), NatTrans.app c₁.ι { as := f } ≫ s ≫ h = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ≫ h f : (p : J × J) × (p.fst ⟶ p.snd) W : C h : c₂.pt ⟶ W ⊢ NatTrans.app c₁.ι { as := f } ≫ t ≫ h = NatTrans.app c₂.ι { as := f.fst.fst } ≫ h [PROOFSTEP] simp only [← Category.assoc] [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F j : (p : J × J) × (p.fst ⟶ p.snd) reassoced_s : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)) {W : C} (h : c₂.pt ⟶ W), NatTrans.app c₁.ι { as := f } ≫ s ≫ h = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ≫ h f : (p : J × J) × (p.fst ⟶ p.snd) W : C h : c₂.pt ⟶ W ⊢ (NatTrans.app c₁.ι { as := f } ≫ t) ≫ h = NatTrans.app c₂.ι { as := f.fst.fst } ≫ h [PROOFSTEP] apply eq_whisker (ht f) [GOAL] case refine'_2.mk C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F j : (p : J × J) × (p.fst ⟶ p.snd) reassoced_s : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)) {W : C} (h : c₂.pt ⟶ W), NatTrans.app c₁.ι { as := f } ≫ s ≫ h = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ≫ h reassoced_t : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)) {W : C} (h : c₂.pt ⟶ W), NatTrans.app c₁.ι { as := f } ≫ t ≫ h = NatTrans.app c₂.ι { as := f.fst.fst } ≫ h ⊢ NatTrans.app c₁.ι { as := j } ≫ s ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) = NatTrans.app c₁.ι { as := j } ≫ t ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) [PROOFSTEP] simp [reassoced_s, reassoced_t] [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s✝ t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s✝ = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s✝ t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i s : Cocone F j : J ⊢ NatTrans.app (buildColimit s✝ t hs ht i).ι j ≫ (fun q => IsColimit.desc hi (Cofork.ofπ (IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j)) (_ : s✝ ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) = t ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j)))) s = NatTrans.app s.ι j [PROOFSTEP] simp [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F m : (buildColimit s t hs ht i).pt ⟶ q.pt w : ∀ (j : J), NatTrans.app (buildColimit s t hs ht i).ι j ≫ m = NatTrans.app q.ι j j : Discrete J ⊢ NatTrans.app c₂.ι j ≫ Cofork.π i ≫ m = NatTrans.app c₂.ι j ≫ Cofork.π i ≫ (fun q => IsColimit.desc hi (Cofork.ofπ (IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j)) (_ : s ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) = t ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j)))) q [PROOFSTEP] cases' j with j [GOAL] case mk C : Type u inst✝² : Category.{v, u} C J : Type w inst✝¹ : SmallCategory J D : Type u₂ inst✝ : Category.{v₂, u₂} D F : J ⥤ C c₁ : Cofan fun f => F.obj f.fst.fst c₂ : Cofan F.obj s t : c₁.pt ⟶ c₂.pt hs : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ s = F.map f.snd ≫ NatTrans.app c₂.ι { as := f.fst.snd } ht : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app c₁.ι { as := f } ≫ t = NatTrans.app c₂.ι { as := f.fst.fst } i : Cofork s t t₁ : IsColimit c₁ t₂ : IsColimit c₂ hi : IsColimit i q : Cocone F m : (buildColimit s t hs ht i).pt ⟶ q.pt w : ∀ (j : J), NatTrans.app (buildColimit s t hs ht i).ι j ≫ m = NatTrans.app q.ι j j : J ⊢ NatTrans.app c₂.ι { as := j } ≫ Cofork.π i ≫ m = NatTrans.app c₂.ι { as := j } ≫ Cofork.π i ≫ (fun q => IsColimit.desc hi (Cofork.ofπ (IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j)) (_ : s ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j) = t ≫ IsColimit.desc t₂ (Cofan.mk q.1 fun j => NatTrans.app q.ι j)))) q [PROOFSTEP] simpa using w j [GOAL] C : Type u inst✝⁵ : Category.{v, u} C J : Type w inst✝⁴ : SmallCategory J D : Type u₂ inst✝³ : Category.{v₂, u₂} D F : J ⥤ C inst✝² : HasColimit (Discrete.functor F.obj) inst✝¹ : HasColimit (Discrete.functor fun f => F.obj f.fst.fst) inst✝ : HasCoequalizers C ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), (NatTrans.app (colimit.cocone (Discrete.functor fun f => F.obj f.fst.fst)).ι { as := f } ≫ Sigma.desc fun f => F.map f.snd ≫ colimit.ι (Discrete.functor F.obj) { as := f.fst.snd }) = F.map f.snd ≫ NatTrans.app (colimit.cocone (Discrete.functor F.obj)).ι { as := f.fst.snd } [PROOFSTEP] simp [GOAL] C : Type u inst✝⁵ : Category.{v, u} C J : Type w inst✝⁴ : SmallCategory J D : Type u₂ inst✝³ : Category.{v₂, u₂} D F : J ⥤ C inst✝² : HasColimit (Discrete.functor F.obj) inst✝¹ : HasColimit (Discrete.functor fun f => F.obj f.fst.fst) inst✝ : HasCoequalizers C ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), (NatTrans.app (colimit.cocone (Discrete.functor fun f => F.obj f.fst.fst)).ι { as := f } ≫ Sigma.desc fun f => colimit.ι (Discrete.functor F.obj) { as := f.fst.fst }) = NatTrans.app (colimit.cocone (Discrete.functor F.obj)).ι { as := f.fst.fst } [PROOFSTEP] simp [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C ⊢ PreservesColimit K G [PROOFSTEP] let P := ∐ K.obj [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj ⊢ PreservesColimit K G [PROOFSTEP] let Q := ∐ fun f : Σ p : J × J, p.fst ⟶ p.snd => K.obj f.1.1 [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst ⊢ PreservesColimit K G [PROOFSTEP] let s : Q ⟶ P := Sigma.desc fun f => K.map f.2 ≫ colimit.ι (Discrete.functor K.obj) ⟨_⟩ [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } ⊢ PreservesColimit K G [PROOFSTEP] let t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) ⟨f.1.1⟩ [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } ⊢ PreservesColimit K G [PROOFSTEP] let I := coequalizer s t [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t ⊢ PreservesColimit K G [PROOFSTEP] let i : P ⟶ I := coequalizer.π s t [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ PreservesColimit K G [PROOFSTEP] apply preservesColimitOfPreservesColimitCocone (buildIsColimit s t (by simp) (by simp) (colimit.isColimit _) (colimit.isColimit _) (colimit.isColimit _)) [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (colimit.cocone (Discrete.functor fun f => K.obj f.fst.fst)).ι { as := f } ≫ s = K.map f.snd ≫ NatTrans.app (colimit.cocone (Discrete.functor K.obj)).ι { as := f.fst.snd } [PROOFSTEP] simp [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (colimit.cocone (Discrete.functor fun f => K.obj f.fst.fst)).ι { as := f } ≫ t = NatTrans.app (colimit.cocone (Discrete.functor K.obj)).ι { as := f.fst.fst } [PROOFSTEP] simp [GOAL] C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ IsColimit (G.mapCocone (buildColimit s t (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), colimit.ι (Discrete.functor fun f => K.obj f.fst.fst) { as := a } ≫ colimit.desc (Discrete.functor fun f => K.obj f.fst.fst) (Cofan.mk (∐ K.obj) fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 }) = K.map a.snd ≫ colimit.ι (Discrete.functor K.obj) { as := a.fst.snd }) (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), colimit.ι (Discrete.functor fun f => K.obj f.fst.fst) { as := a } ≫ colimit.desc (Discrete.functor fun f => K.obj f.fst.fst) (Cofan.mk (∐ K.obj) fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst }) = colimit.ι (Discrete.functor K.obj) { as := a.fst.fst }) (colimit.cocone (parallelPair s t)))) [PROOFSTEP] refine' IsColimit.ofIsoColimit (buildIsColimit _ _ _ _ _ _ _) _ [GOAL] case refine'_1 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ Cofan fun f => (K ⋙ G).obj f.fst.fst [PROOFSTEP] refine Cofan.mk (G.obj Q) fun j => G.map ?_ [GOAL] case refine'_1 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t j : (p : J × J) × (p.fst ⟶ p.snd) ⊢ K.obj j.fst.fst ⟶ Q [PROOFSTEP] apply Sigma.ι _ j [GOAL] case refine'_2 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ Cofan (K ⋙ G).toPrefunctor.obj [PROOFSTEP] exact Cofan.mk _ fun f => G.map (Sigma.ι _ f) [GOAL] case refine'_3 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).pt ⟶ (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).pt [PROOFSTEP] apply G.map s [GOAL] case refine'_4 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).pt ⟶ (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).pt [PROOFSTEP] apply G.map t [GOAL] case refine'_5 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map s = (K ⋙ G).map f.snd ≫ NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.snd } [PROOFSTEP] intro f [GOAL] case refine'_5 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map s = (K ⋙ G).map f.snd ≫ NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.snd } [PROOFSTEP] dsimp [Cofan.mk] [GOAL] case refine'_5 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ G.map (Sigma.ι (fun j => K.obj j.fst.fst) f) ≫ G.map (Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 }) = G.map (K.map f.snd) ≫ G.map (Sigma.ι K.obj f.fst.snd) [PROOFSTEP] simp only [← G.map_comp, colimit.ι_desc] [GOAL] case refine'_5 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ G.map (NatTrans.app (Cofan.mk (∐ K.obj) fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 }).ι { as := f }) = G.map (K.map f.snd ≫ Sigma.ι K.obj f.fst.snd) [PROOFSTEP] congr [GOAL] case refine'_6 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map t = NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.fst } [PROOFSTEP] intro f [GOAL] case refine'_6 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map t = NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.fst } [PROOFSTEP] dsimp [Cofan.mk] [GOAL] case refine'_6 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ G.map (Sigma.ι (fun j => K.obj j.fst.fst) f) ≫ G.map (Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst }) = G.map (Sigma.ι K.obj f.fst.fst) [PROOFSTEP] simp only [← G.map_comp, colimit.ι_desc] [GOAL] case refine'_6 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t f : (p : J × J) × (p.fst ⟶ p.snd) ⊢ G.map (NatTrans.app (Cofan.mk (∐ K.obj) fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst }).ι { as := f }) = G.map (Sigma.ι K.obj f.fst.fst) [PROOFSTEP] dsimp [GOAL] case refine'_7 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ Cofork (G.map s) (G.map t) [PROOFSTEP] refine Cofork.ofπ (G.map i) ?_ [GOAL] case refine'_7 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ G.map s ≫ G.map i = G.map t ≫ G.map i [PROOFSTEP] rw [← G.map_comp, ← G.map_comp] [GOAL] case refine'_7 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ G.map (s ≫ i) = G.map (t ≫ i) [PROOFSTEP] apply congrArg G.map [GOAL] case refine'_7 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ s ≫ i = t ≫ i [PROOFSTEP] apply coequalizer.condition [GOAL] case refine'_8 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ IsColimit (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)) [PROOFSTEP] apply isColimitOfHasCoproductOfPreservesColimit [GOAL] case refine'_9 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ IsColimit (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)) [PROOFSTEP] apply isColimitOfHasCoproductOfPreservesColimit [GOAL] case refine'_10 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ IsColimit (Cofork.ofπ (G.map i) (_ : G.map s ≫ G.map i = G.map t ≫ G.map i)) [PROOFSTEP] apply isColimitCoforkMapOfIsColimit [GOAL] case refine'_10.l C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ IsColimit (Cofork.ofπ i ?refine'_10.w) case refine'_10.w C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ s ≫ i = t ≫ i [PROOFSTEP] apply coequalizerIsCoequalizer [GOAL] case refine'_11 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ buildColimit (G.map s) (G.map t) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map s = (K ⋙ G).map f.snd ≫ NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.snd }) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map t = NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.fst }) (Cofork.ofπ (G.map i) (_ : G.map s ≫ G.map i = G.map t ≫ G.map i)) ≅ G.mapCocone (buildColimit s t (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), colimit.ι (Discrete.functor fun f => K.obj f.fst.fst) { as := a } ≫ colimit.desc (Discrete.functor fun f => K.obj f.fst.fst) (Cofan.mk (∐ K.obj) fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 }) = K.map a.snd ≫ colimit.ι (Discrete.functor K.obj) { as := a.fst.snd }) (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), colimit.ι (Discrete.functor fun f => K.obj f.fst.fst) { as := a } ≫ colimit.desc (Discrete.functor fun f => K.obj f.fst.fst) (Cofan.mk (∐ K.obj) fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst }) = colimit.ι (Discrete.functor K.obj) { as := a.fst.fst }) (colimit.cocone (parallelPair s t))) [PROOFSTEP] refine' Cocones.ext (Iso.refl _) _ [GOAL] case refine'_11 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t ⊢ ∀ (j : J), NatTrans.app (buildColimit (G.map s) (G.map t) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map s = (K ⋙ G).map f.snd ≫ NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.snd }) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map t = NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.fst }) (Cofork.ofπ (G.map i) (_ : G.map s ≫ G.map i = G.map t ≫ G.map i))).ι j ≫ (Iso.refl (buildColimit (G.map s) (G.map t) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map s = (K ⋙ G).map f.snd ≫ NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.snd }) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map t = NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.fst }) (Cofork.ofπ (G.map i) (_ : G.map s ≫ G.map i = G.map t ≫ G.map i))).pt).hom = NatTrans.app (G.mapCocone (buildColimit s t (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), colimit.ι (Discrete.functor fun f => K.obj f.fst.fst) { as := a } ≫ colimit.desc (Discrete.functor fun f => K.obj f.fst.fst) (Cofan.mk (∐ K.obj) fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 }) = K.map a.snd ≫ colimit.ι (Discrete.functor K.obj) { as := a.fst.snd }) (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), colimit.ι (Discrete.functor fun f => K.obj f.fst.fst) { as := a } ≫ colimit.desc (Discrete.functor fun f => K.obj f.fst.fst) (Cofan.mk (∐ K.obj) fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst }) = colimit.ι (Discrete.functor K.obj) { as := a.fst.fst }) (colimit.cocone (parallelPair s t)))).ι j [PROOFSTEP] intro j [GOAL] case refine'_11 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t j : J ⊢ NatTrans.app (buildColimit (G.map s) (G.map t) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map s = (K ⋙ G).map f.snd ≫ NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.snd }) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map t = NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.fst }) (Cofork.ofπ (G.map i) (_ : G.map s ≫ G.map i = G.map t ≫ G.map i))).ι j ≫ (Iso.refl (buildColimit (G.map s) (G.map t) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map s = (K ⋙ G).map f.snd ≫ NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.snd }) (_ : ∀ (f : (p : J × J) × (p.fst ⟶ p.snd)), NatTrans.app (Cofan.mk (G.obj Q) fun j => G.map (Sigma.ι (fun j => K.obj j.fst.fst) j)).ι { as := f } ≫ G.map t = NatTrans.app (Cofan.mk (G.obj (∐ K.obj)) fun f => G.map (Sigma.ι K.obj f)).ι { as := f.fst.fst }) (Cofork.ofπ (G.map i) (_ : G.map s ≫ G.map i = G.map t ≫ G.map i))).pt).hom = NatTrans.app (G.mapCocone (buildColimit s t (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), colimit.ι (Discrete.functor fun f => K.obj f.fst.fst) { as := a } ≫ colimit.desc (Discrete.functor fun f => K.obj f.fst.fst) (Cofan.mk (∐ K.obj) fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 }) = K.map a.snd ≫ colimit.ι (Discrete.functor K.obj) { as := a.fst.snd }) (_ : ∀ (a : (p : J × J) × (p.fst ⟶ p.snd)), colimit.ι (Discrete.functor fun f => K.obj f.fst.fst) { as := a } ≫ colimit.desc (Discrete.functor fun f => K.obj f.fst.fst) (Cofan.mk (∐ K.obj) fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst }) = colimit.ι (Discrete.functor K.obj) { as := a.fst.fst }) (colimit.cocone (parallelPair s t)))).ι j [PROOFSTEP] dsimp [GOAL] case refine'_11 C : Type u inst✝⁸ : Category.{v, u} C J : Type w inst✝⁷ : SmallCategory J D : Type u₂ inst✝⁶ : Category.{v₂, u₂} D inst✝⁵ : HasColimitsOfShape (Discrete J) C inst✝⁴ : HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C inst✝³ : HasCoequalizers C G : C ⥤ D inst✝² : PreservesColimitsOfShape WalkingParallelPair G inst✝¹ : PreservesColimitsOfShape (Discrete J) G inst✝ : PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G K : J ⥤ C P : C := ∐ K.obj Q : C := ∐ fun f => K.obj f.fst.fst s : Q ⟶ P := Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 } t : Q ⟶ P := Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst } I : C := coequalizer s t i : P ⟶ I := coequalizer.π s t j : J ⊢ (G.map (Sigma.ι K.obj j) ≫ G.map (coequalizer.π (Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 }) (Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst }))) ≫ 𝟙 (G.obj (coequalizer (Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 }) (Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst }))) = G.map (colimit.ι (Discrete.functor K.obj) { as := j } ≫ coequalizer.π (Sigma.desc fun f => K.map f.snd ≫ colimit.ι (Discrete.functor K.obj) { as := f.fst.2 }) (Sigma.desc fun f => colimit.ι (Discrete.functor K.obj) { as := f.fst.fst })) [PROOFSTEP] simp -- See note [dsimp, simp]. [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasCoequalizers C inst✝² : HasFiniteCoproducts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteCoproducts G ⊢ (J : Type) → [inst : SmallCategory J] → [inst_1 : FinCategory J] → PreservesColimitsOfShape J G [PROOFSTEP] intro J sJ fJ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasCoequalizers C inst✝² : HasFiniteCoproducts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteCoproducts G J : Type sJ : SmallCategory J fJ : FinCategory J ⊢ PreservesColimitsOfShape J G [PROOFSTEP] haveI : Fintype J := inferInstance [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasCoequalizers C inst✝² : HasFiniteCoproducts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteCoproducts G J : Type sJ : SmallCategory J fJ : FinCategory J this : Fintype J ⊢ PreservesColimitsOfShape J G [PROOFSTEP] haveI : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) := inferInstance [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasCoequalizers C inst✝² : HasFiniteCoproducts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteCoproducts G J : Type sJ : SmallCategory J fJ : FinCategory J this✝ : Fintype J this : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) ⊢ PreservesColimitsOfShape J G [PROOFSTEP] apply @preservesColimitOfPreservesCoequalizersAndCoproduct _ _ _ sJ _ _ ?_ ?_ _ G _ ?_ ?_ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasCoequalizers C inst✝² : HasFiniteCoproducts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteCoproducts G J : Type sJ : SmallCategory J fJ : FinCategory J this✝ : Fintype J this : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) ⊢ HasColimitsOfShape (Discrete J) C [PROOFSTEP] apply hasColimitsOfShape_discrete _ _ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasCoequalizers C inst✝² : HasFiniteCoproducts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteCoproducts G J : Type sJ : SmallCategory J fJ : FinCategory J this✝ : Fintype J this : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) ⊢ HasColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) C [PROOFSTEP] apply hasColimitsOfShape_discrete _ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasCoequalizers C inst✝² : HasFiniteCoproducts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteCoproducts G J : Type sJ : SmallCategory J fJ : FinCategory J this✝ : Fintype J this : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) ⊢ PreservesColimitsOfShape (Discrete J) G [PROOFSTEP] apply PreservesFiniteCoproducts.preserves _ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J✝ : Type w inst✝⁵ : SmallCategory J✝ D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasCoequalizers C inst✝² : HasFiniteCoproducts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape WalkingParallelPair G inst✝ : PreservesFiniteCoproducts G J : Type sJ : SmallCategory J fJ : FinCategory J this✝ : Fintype J this : Fintype ((p : J × J) × (p.fst ⟶ p.snd)) ⊢ PreservesColimitsOfShape (Discrete ((p : J × J) × (p.fst ⟶ p.snd))) G [PROOFSTEP] apply PreservesFiniteCoproducts.preserves _ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasInitial C inst✝² : HasPushouts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape (Discrete PEmpty) G inst✝ : PreservesColimitsOfShape WalkingSpan G ⊢ PreservesFiniteColimits G [PROOFSTEP] haveI : HasFiniteColimits C := hasFiniteColimits_of_hasInitial_and_pushouts [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasInitial C inst✝² : HasPushouts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape (Discrete PEmpty) G inst✝ : PreservesColimitsOfShape WalkingSpan G this : HasFiniteColimits C ⊢ PreservesFiniteColimits G [PROOFSTEP] haveI : PreservesColimitsOfShape (Discrete WalkingPair) G := preservesBinaryCoproductsOfPreservesInitialAndPushouts G [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasInitial C inst✝² : HasPushouts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape (Discrete PEmpty) G inst✝ : PreservesColimitsOfShape WalkingSpan G this✝ : HasFiniteColimits C this : PreservesColimitsOfShape (Discrete WalkingPair) G ⊢ PreservesFiniteColimits G [PROOFSTEP] haveI : PreservesColimitsOfShape (WalkingParallelPair) G := (preservesCoequalizersOfPreservesPushoutsAndBinaryCoproducts G) [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasInitial C inst✝² : HasPushouts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape (Discrete PEmpty) G inst✝ : PreservesColimitsOfShape WalkingSpan G this✝¹ : HasFiniteColimits C this✝ : PreservesColimitsOfShape (Discrete WalkingPair) G this : PreservesColimitsOfShape WalkingParallelPair G ⊢ PreservesFiniteColimits G [PROOFSTEP] refine @preservesFiniteColimitsOfPreservesCoequalizersAndFiniteCoproducts _ _ _ _ _ _ G _ ?_ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasInitial C inst✝² : HasPushouts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape (Discrete PEmpty) G inst✝ : PreservesColimitsOfShape WalkingSpan G this✝¹ : HasFiniteColimits C this✝ : PreservesColimitsOfShape (Discrete WalkingPair) G this : PreservesColimitsOfShape WalkingParallelPair G ⊢ PreservesFiniteCoproducts G [PROOFSTEP] apply PreservesFiniteCoproducts.mk [GOAL] case preserves C : Type u inst✝⁶ : Category.{v, u} C J : Type w inst✝⁵ : SmallCategory J D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasInitial C inst✝² : HasPushouts C G : C ⥤ D inst✝¹ : PreservesColimitsOfShape (Discrete PEmpty) G inst✝ : PreservesColimitsOfShape WalkingSpan G this✝¹ : HasFiniteColimits C this✝ : PreservesColimitsOfShape (Discrete WalkingPair) G this : PreservesColimitsOfShape WalkingParallelPair G ⊢ (J : Type) → [inst : Fintype J] → PreservesColimitsOfShape (Discrete J) G [PROOFSTEP] apply preservesFiniteCoproductsOfPreservesBinaryAndInitial G
{"mathlib_filename": "Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers", "llama_tokens": 59057}
[GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C ⊢ IsIdempotentComplete (J ⥤ C) [PROOFSTEP] refine' ⟨fun F p hp => _⟩ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p ⊢ ∃ Y i e, i ≫ e = 𝟙 Y ∧ e ≫ i = p [PROOFSTEP] have hC := (isIdempotentComplete_iff_hasEqualizer_of_id_and_idempotent C).mp inferInstance [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p ⊢ ∃ Y i e, i ≫ e = 𝟙 Y ∧ e ≫ i = p [PROOFSTEP] haveI : ∀ j : J, HasEqualizer (𝟙 _) (p.app j) := fun j => hC _ _ (congr_app hp j) /- We construct the direct factor `Y` associated to `p : F ⟶ F` by computing the equalizer of the identity and `p.app j` on each object `(j : J)`. -/ [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) ⊢ ∃ Y i e, i ≫ e = 𝟙 Y ∧ e ≫ i = p [PROOFSTEP] let Y : J ⥤ C := { obj := fun j => Limits.equalizer (𝟙 _) (p.app j) map := fun {j j'} φ => equalizer.lift (Limits.equalizer.ι (𝟙 _) (p.app j) ≫ F.map φ) (by rw [comp_id, assoc, p.naturality φ, ← assoc, ← Limits.equalizer.condition, comp_id]) } [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) j j' : J φ : j ⟶ j' ⊢ (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j' [PROOFSTEP] rw [comp_id, assoc, p.naturality φ, ← assoc, ← Limits.equalizer.condition, comp_id] [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } ⊢ ∃ Y i e, i ≫ e = 𝟙 Y ∧ e ≫ i = p [PROOFSTEP] let i : Y ⟶ F := { app := fun j => equalizer.ι _ _ naturality := fun _ _ _ => by rw [equalizer.lift_ι] } [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } x✝² x✝¹ : J x✝ : x✝² ⟶ x✝¹ ⊢ Y.map x✝ ≫ (fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j)) x✝¹ = (fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j)) x✝² ≫ F.map x✝ [PROOFSTEP] rw [equalizer.lift_ι] [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } i : Y ⟶ F := NatTrans.mk fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ⊢ ∃ Y i e, i ≫ e = 𝟙 Y ∧ e ≫ i = p [PROOFSTEP] let e : F ⟶ Y := { app := fun j => equalizer.lift (p.app j) (by simpa only [comp_id] using (congr_app hp j).symm) naturality := fun j j' φ => equalizer.hom_ext (by simp) } [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } i : Y ⟶ F := NatTrans.mk fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) j : J ⊢ NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j [PROOFSTEP] simpa only [comp_id] using (congr_app hp j).symm [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } i : Y ⟶ F := NatTrans.mk fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) j j' : J φ : j ⟶ j' ⊢ (F.map φ ≫ (fun j => equalizer.lift (NatTrans.app p j) (_ : NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j)) j') ≫ equalizer.ι (𝟙 (F.obj j')) (NatTrans.app p j') = ((fun j => equalizer.lift (NatTrans.app p j) (_ : NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j)) j ≫ Y.map φ) ≫ equalizer.ι (𝟙 (F.obj j')) (NatTrans.app p j') [PROOFSTEP] simp [GOAL] J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } i : Y ⟶ F := NatTrans.mk fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) e : F ⟶ Y := NatTrans.mk fun j => equalizer.lift (NatTrans.app p j) (_ : NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j) ⊢ ∃ Y i e, i ≫ e = 𝟙 Y ∧ e ≫ i = p [PROOFSTEP] use Y, i, e [GOAL] case h J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } i : Y ⟶ F := NatTrans.mk fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) e : F ⟶ Y := NatTrans.mk fun j => equalizer.lift (NatTrans.app p j) (_ : NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j) ⊢ i ≫ e = 𝟙 Y ∧ e ≫ i = p [PROOFSTEP] constructor [GOAL] case h.left J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } i : Y ⟶ F := NatTrans.mk fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) e : F ⟶ Y := NatTrans.mk fun j => equalizer.lift (NatTrans.app p j) (_ : NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j) ⊢ i ≫ e = 𝟙 Y [PROOFSTEP] ext j [GOAL] case h.left.w.h J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } i : Y ⟶ F := NatTrans.mk fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) e : F ⟶ Y := NatTrans.mk fun j => equalizer.lift (NatTrans.app p j) (_ : NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j) j : J ⊢ NatTrans.app (i ≫ e) j = NatTrans.app (𝟙 Y) j [PROOFSTEP] apply equalizer.hom_ext [GOAL] case h.left.w.h.h J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } i : Y ⟶ F := NatTrans.mk fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) e : F ⟶ Y := NatTrans.mk fun j => equalizer.lift (NatTrans.app p j) (_ : NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j) j : J ⊢ NatTrans.app (i ≫ e) j ≫ equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) = NatTrans.app (𝟙 Y) j ≫ equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) [PROOFSTEP] dsimp [GOAL] case h.left.w.h.h J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } i : Y ⟶ F := NatTrans.mk fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) e : F ⟶ Y := NatTrans.mk fun j => equalizer.lift (NatTrans.app p j) (_ : NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j) j : J ⊢ (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ equalizer.lift (NatTrans.app p j) (_ : NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j)) ≫ equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) = 𝟙 (equalizer (𝟙 (F.obj j)) (NatTrans.app p j)) ≫ equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) [PROOFSTEP] rw [assoc, equalizer.lift_ι, ← equalizer.condition, id_comp, comp_id] [GOAL] case h.right J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } i : Y ⟶ F := NatTrans.mk fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) e : F ⟶ Y := NatTrans.mk fun j => equalizer.lift (NatTrans.app p j) (_ : NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j) ⊢ e ≫ i = p [PROOFSTEP] ext j [GOAL] case h.right.w.h J : Type u_1 C : Type u_2 inst✝² : Category.{?u.4050, u_1} J inst✝¹ : Category.{?u.4054, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J inst✝ : IsIdempotentComplete C F : J ⥤ C p : F ⟶ F hp : p ≫ p = p hC : ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p this : ∀ (j : J), HasEqualizer (𝟙 (F.obj j)) (NatTrans.app p j) Y : J ⥤ C := Functor.mk { obj := fun j => equalizer (𝟙 (F.obj j)) (NatTrans.app p j), map := fun {j j'} φ => equalizer.lift (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) (_ : (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ 𝟙 (F.obj j') = (equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) ≫ F.map φ) ≫ NatTrans.app p j') } i : Y ⟶ F := NatTrans.mk fun j => equalizer.ι (𝟙 (F.obj j)) (NatTrans.app p j) e : F ⟶ Y := NatTrans.mk fun j => equalizer.lift (NatTrans.app p j) (_ : NatTrans.app p j ≫ 𝟙 (F.obj j) = NatTrans.app p j ≫ NatTrans.app p j) j : J ⊢ NatTrans.app (e ≫ i) j = NatTrans.app p j [PROOFSTEP] simp [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.51695, u_1} J inst✝ : Category.{?u.51699, u_2} C P✝ Q : Karoubi (J ⥤ C) f : P✝ ⟶ Q X : J P : Karoubi (J ⥤ C) j j' : J φ : j ⟶ j' ⊢ NatTrans.app P.p j ≫ P.X.map φ = ((fun j => Karoubi.mk (P.X.obj j) (NatTrans.app P.p j)) j).p ≫ (NatTrans.app P.p j ≫ P.X.map φ) ≫ ((fun j => Karoubi.mk (P.X.obj j) (NatTrans.app P.p j)) j').p [PROOFSTEP] simp only [NatTrans.naturality, assoc] [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.51695, u_1} J inst✝ : Category.{?u.51699, u_2} C P✝ Q : Karoubi (J ⥤ C) f : P✝ ⟶ Q X : J P : Karoubi (J ⥤ C) j j' : J φ : j ⟶ j' ⊢ NatTrans.app P.p j ≫ P.X.map φ = NatTrans.app P.p j ≫ NatTrans.app P.p j ≫ NatTrans.app P.p j ≫ P.X.map φ [PROOFSTEP] have h := congr_app P.idem j [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.51695, u_1} J inst✝ : Category.{?u.51699, u_2} C P✝ Q : Karoubi (J ⥤ C) f : P✝ ⟶ Q X : J P : Karoubi (J ⥤ C) j j' : J φ : j ⟶ j' h : NatTrans.app (P.p ≫ P.p) j = NatTrans.app P.p j ⊢ NatTrans.app P.p j ≫ P.X.map φ = NatTrans.app P.p j ≫ NatTrans.app P.p j ≫ NatTrans.app P.p j ≫ P.X.map φ [PROOFSTEP] rw [NatTrans.comp_app] at h [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.51695, u_1} J inst✝ : Category.{?u.51699, u_2} C P✝ Q : Karoubi (J ⥤ C) f : P✝ ⟶ Q X : J P : Karoubi (J ⥤ C) j j' : J φ : j ⟶ j' h : NatTrans.app P.p j ≫ NatTrans.app P.p j = NatTrans.app P.p j ⊢ NatTrans.app P.p j ≫ P.X.map φ = NatTrans.app P.p j ≫ NatTrans.app P.p j ≫ NatTrans.app P.p j ≫ P.X.map φ [PROOFSTEP] erw [reassoc_of% h, reassoc_of% h] [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.62947, u_1} J inst✝ : Category.{?u.62951, u_2} C P✝ Q✝ : Karoubi (J ⥤ C) f✝ : P✝ ⟶ Q✝ X : J P Q : Karoubi (J ⥤ C) f : (karoubiFunctorCategoryEmbedding J C).obj P ⟶ (karoubiFunctorCategoryEmbedding J C).obj Q j j' : J φ : j ⟶ j' ⊢ P.X.map φ ≫ (fun j => (NatTrans.app f j).f) j' = (fun j => (NatTrans.app f j).f) j ≫ Q.X.map φ [PROOFSTEP] rw [← Karoubi.comp_p_assoc] [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.62947, u_1} J inst✝ : Category.{?u.62951, u_2} C P✝ Q✝ : Karoubi (J ⥤ C) f✝ : P✝ ⟶ Q✝ X : J P Q : Karoubi (J ⥤ C) f : (karoubiFunctorCategoryEmbedding J C).obj P ⟶ (karoubiFunctorCategoryEmbedding J C).obj Q j j' : J φ : j ⟶ j' ⊢ P.X.map φ ≫ (fun j => (NatTrans.app f j).f) j' = (NatTrans.app f j).f ≫ (((karoubiFunctorCategoryEmbedding J C).obj Q).obj j).p ≫ Q.X.map φ [PROOFSTEP] have h := hom_ext_iff.mp (f.naturality φ) [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.62947, u_1} J inst✝ : Category.{?u.62951, u_2} C P✝ Q✝ : Karoubi (J ⥤ C) f✝ : P✝ ⟶ Q✝ X : J P Q : Karoubi (J ⥤ C) f : (karoubiFunctorCategoryEmbedding J C).obj P ⟶ (karoubiFunctorCategoryEmbedding J C).obj Q j j' : J φ : j ⟶ j' h : (((karoubiFunctorCategoryEmbedding J C).obj P).map φ ≫ NatTrans.app f j').f = (NatTrans.app f j ≫ ((karoubiFunctorCategoryEmbedding J C).obj Q).map φ).f ⊢ P.X.map φ ≫ (fun j => (NatTrans.app f j).f) j' = (NatTrans.app f j).f ≫ (((karoubiFunctorCategoryEmbedding J C).obj Q).obj j).p ≫ Q.X.map φ [PROOFSTEP] simp only [comp_f] at h [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.62947, u_1} J inst✝ : Category.{?u.62951, u_2} C P✝ Q✝ : Karoubi (J ⥤ C) f✝ : P✝ ⟶ Q✝ X : J P Q : Karoubi (J ⥤ C) f : (karoubiFunctorCategoryEmbedding J C).obj P ⟶ (karoubiFunctorCategoryEmbedding J C).obj Q j j' : J φ : j ⟶ j' h : (((karoubiFunctorCategoryEmbedding J C).obj P).map φ).f ≫ (NatTrans.app f j').f = (NatTrans.app f j).f ≫ (((karoubiFunctorCategoryEmbedding J C).obj Q).map φ).f ⊢ P.X.map φ ≫ (fun j => (NatTrans.app f j).f) j' = (NatTrans.app f j).f ≫ (((karoubiFunctorCategoryEmbedding J C).obj Q).obj j).p ≫ Q.X.map φ [PROOFSTEP] dsimp [karoubiFunctorCategoryEmbedding] at h [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.62947, u_1} J inst✝ : Category.{?u.62951, u_2} C P✝ Q✝ : Karoubi (J ⥤ C) f✝ : P✝ ⟶ Q✝ X : J P Q : Karoubi (J ⥤ C) f : (karoubiFunctorCategoryEmbedding J C).obj P ⟶ (karoubiFunctorCategoryEmbedding J C).obj Q j j' : J φ : j ⟶ j' h : (NatTrans.app P.p j ≫ P.X.map φ) ≫ (NatTrans.app f j').f = (NatTrans.app f j).f ≫ NatTrans.app Q.p j ≫ Q.X.map φ ⊢ P.X.map φ ≫ (fun j => (NatTrans.app f j).f) j' = (NatTrans.app f j).f ≫ (((karoubiFunctorCategoryEmbedding J C).obj Q).obj j).p ≫ Q.X.map φ [PROOFSTEP] erw [← h, assoc, ← P.p.naturality_assoc φ, p_comp (f.app j')] [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.62947, u_1} J inst✝ : Category.{?u.62951, u_2} C P✝ Q✝ : Karoubi (J ⥤ C) f✝ : P✝ ⟶ Q✝ X : J P Q : Karoubi (J ⥤ C) f : (karoubiFunctorCategoryEmbedding J C).obj P ⟶ (karoubiFunctorCategoryEmbedding J C).obj Q ⊢ (NatTrans.mk fun j => (NatTrans.app f j).f) = P.p ≫ (NatTrans.mk fun j => (NatTrans.app f j).f) ≫ Q.p [PROOFSTEP] ext j [GOAL] case w.h J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.62947, u_1} J inst✝ : Category.{?u.62951, u_2} C P✝ Q✝ : Karoubi (J ⥤ C) f✝ : P✝ ⟶ Q✝ X : J P Q : Karoubi (J ⥤ C) f : (karoubiFunctorCategoryEmbedding J C).obj P ⟶ (karoubiFunctorCategoryEmbedding J C).obj Q j : J ⊢ NatTrans.app (NatTrans.mk fun j => (NatTrans.app f j).f) j = NatTrans.app (P.p ≫ (NatTrans.mk fun j => (NatTrans.app f j).f) ≫ Q.p) j [PROOFSTEP] exact (f.app j).comm [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.66385, u_1} J inst✝ : Category.{?u.66389, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J X✝ Y✝ : Karoubi (J ⥤ C) a₁✝ a₂✝ : X✝ ⟶ Y✝ h : (karoubiFunctorCategoryEmbedding J C).map a₁✝ = (karoubiFunctorCategoryEmbedding J C).map a₂✝ ⊢ a₁✝ = a₂✝ [PROOFSTEP] ext j [GOAL] case h.w.h J : Type u_1 C : Type u_2 inst✝¹ : Category.{?u.66385, u_1} J inst✝ : Category.{?u.66389, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J X✝ Y✝ : Karoubi (J ⥤ C) a₁✝ a₂✝ : X✝ ⟶ Y✝ h : (karoubiFunctorCategoryEmbedding J C).map a₁✝ = (karoubiFunctorCategoryEmbedding J C).map a₂✝ j : J ⊢ NatTrans.app a₁✝.f j = NatTrans.app a₂✝.f j [PROOFSTEP] exact hom_ext_iff.mp (congr_app h j) [GOAL] J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J ⊢ toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C = (whiskeringRight J C (Karoubi C)).obj (toKaroubi C) [PROOFSTEP] apply Functor.ext [GOAL] case h_map J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J ⊢ autoParam (∀ (X Y : J ⥤ C) (f : X ⟶ Y), (toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).map f = eqToHom (_ : ?F.obj X = ?G.obj X) ≫ ((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).map f ≫ eqToHom (_ : ((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj Y = (toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj Y)) _auto✝ [PROOFSTEP] intro X Y f [GOAL] case h_map J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f✝ : P ⟶ Q X✝ : J X Y : J ⥤ C f : X ⟶ Y ⊢ (toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).map f = eqToHom (_ : ?F.obj X = ?G.obj X) ≫ ((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).map f ≫ eqToHom (_ : ((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj Y = (toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj Y) [PROOFSTEP] ext j [GOAL] case h_map.w.h.h J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f✝ : P ⟶ Q X✝ : J X Y : J ⥤ C f : X ⟶ Y j : J ⊢ (NatTrans.app ((toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).map f) j).f = (NatTrans.app (eqToHom (_ : ?F.obj X = ?G.obj X) ≫ ((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).map f ≫ eqToHom (_ : ((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj Y = (toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj Y)) j).f [PROOFSTEP] dsimp [toKaroubi] [GOAL] case h_map.w.h.h J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f✝ : P ⟶ Q X✝ : J X Y : J ⥤ C f : X ⟶ Y j : J ⊢ NatTrans.app f j = (NatTrans.app (eqToHom (_ : ?F.obj X = ?G.obj X)) j).f ≫ NatTrans.app f j ≫ (NatTrans.app (eqToHom (_ : Y ⋙ Functor.mk { obj := fun X => Karoubi.mk X (𝟙 X), map := fun {X Y} f => Hom.mk f } = KaroubiFunctorCategoryEmbedding.obj (Karoubi.mk Y (𝟙 Y)))) j).f [PROOFSTEP] simp only [eqToHom_app, eqToHom_refl] [GOAL] case h_map.w.h.h J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f✝ : P ⟶ Q X✝ : J X Y : J ⥤ C f : X ⟶ Y j : J ⊢ NatTrans.app f j = (𝟙 ((KaroubiFunctorCategoryEmbedding.obj (Karoubi.mk X (𝟙 X))).obj j)).f ≫ NatTrans.app f j ≫ (𝟙 ((Y ⋙ Functor.mk { obj := fun X => Karoubi.mk X (𝟙 X), map := fun {X Y} f => Hom.mk f }).obj j)).f [PROOFSTEP] erw [comp_id, id_comp] [GOAL] case h_obj J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X : J ⊢ ∀ (X : J ⥤ C), (toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj X = ((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj X [PROOFSTEP] intro X [GOAL] case h_obj J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X✝ : J X : J ⥤ C ⊢ (toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj X = ((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj X [PROOFSTEP] apply Functor.ext [GOAL] case h_obj.h_map J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X✝ : J X : J ⥤ C ⊢ autoParam (∀ (X_1 Y : J) (f : X_1 ⟶ Y), ((toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj X).map f = eqToHom (_ : ?F.obj X_1 = ?G.obj X_1) ≫ (((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj X).map f ≫ eqToHom (_ : (((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj X).obj Y = ((toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj X).obj Y)) _auto✝ [PROOFSTEP] intro j j' φ [GOAL] case h_obj.h_map J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X✝ : J X : J ⥤ C j j' : J φ : j ⟶ j' ⊢ ((toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj X).map φ = eqToHom (_ : ?F.obj j = ?G.obj j) ≫ (((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj X).map φ ≫ eqToHom (_ : (((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj X).obj j' = ((toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj X).obj j') [PROOFSTEP] ext [GOAL] case h_obj.h_map.h J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X✝ : J X : J ⥤ C j j' : J φ : j ⟶ j' ⊢ (((toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj X).map φ).f = (eqToHom (_ : ?F.obj j = ?G.obj j) ≫ (((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj X).map φ ≫ eqToHom (_ : (((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj X).obj j' = ((toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj X).obj j')).f [PROOFSTEP] dsimp [GOAL] case h_obj.h_map.h J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X✝ : J X : J ⥤ C j j' : J φ : j ⟶ j' ⊢ 𝟙 (X.obj j) ≫ X.map φ = 𝟙 (X.obj j) ≫ X.map φ ≫ 𝟙 (X.obj j') [PROOFSTEP] simp [GOAL] case h_obj.h_obj J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X✝ : J X : J ⥤ C ⊢ ∀ (X_1 : J), ((toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj X).obj X_1 = (((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj X).obj X_1 [PROOFSTEP] intro j [GOAL] case h_obj.h_obj J : Type u_1 C : Type u_2 inst✝¹ : Category.{u_3, u_1} J inst✝ : Category.{u_4, u_2} C P Q : Karoubi (J ⥤ C) f : P ⟶ Q X✝ : J X : J ⥤ C j : J ⊢ ((toKaroubi (J ⥤ C) ⋙ karoubiFunctorCategoryEmbedding J C).obj X).obj j = (((whiskeringRight J C (Karoubi C)).obj (toKaroubi C)).obj X).obj j [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.CategoryTheory.Idempotents.FunctorCategories", "llama_tokens": 15165}
[GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N r : R f g : M →ₗ[R] N ⊢ baseChange A (f + g) = baseChange A f + baseChange A g [PROOFSTEP] ext -- porting note: added `-baseChange_tmul` [GOAL] case a.h.h R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N r : R f g : M →ₗ[R] N x✝ : M ⊢ ↑(↑(AlgebraTensorModule.curry (baseChange A (f + g))) 1) x✝ = ↑(↑(AlgebraTensorModule.curry (baseChange A f + baseChange A g)) 1) x✝ [PROOFSTEP] simp [baseChange_eq_ltensor, -baseChange_tmul] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N r : R f g : M →ₗ[R] N ⊢ baseChange A 0 = 0 [PROOFSTEP] ext [GOAL] case a.h.h R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N r : R f g : M →ₗ[R] N x✝ : M ⊢ ↑(↑(AlgebraTensorModule.curry (baseChange A 0)) 1) x✝ = ↑(↑(AlgebraTensorModule.curry 0) 1) x✝ [PROOFSTEP] simp [baseChange_eq_ltensor] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N r : R f g : M →ₗ[R] N ⊢ baseChange A (r • f) = r • baseChange A f [PROOFSTEP] ext [GOAL] case a.h.h R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N r : R f g : M →ₗ[R] N x✝ : M ⊢ ↑(↑(AlgebraTensorModule.curry (baseChange A (r • f))) 1) x✝ = ↑(↑(AlgebraTensorModule.curry (r • baseChange A f)) 1) x✝ [PROOFSTEP] simp [baseChange_tmul] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : CommRing R inst✝⁷ : Ring A inst✝⁶ : Algebra R A inst✝⁵ : Ring B inst✝⁴ : Algebra R B inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f g : M →ₗ[R] N ⊢ baseChange A (f - g) = baseChange A f - baseChange A g [PROOFSTEP] ext -- porting note: `tmul_sub` wasn't needed in mathlib3 [GOAL] case a.h.h R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : CommRing R inst✝⁷ : Ring A inst✝⁶ : Algebra R A inst✝⁵ : Ring B inst✝⁴ : Algebra R B inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f g : M →ₗ[R] N x✝ : M ⊢ ↑(↑(AlgebraTensorModule.curry (baseChange A (f - g))) 1) x✝ = ↑(↑(AlgebraTensorModule.curry (baseChange A f - baseChange A g)) 1) x✝ [PROOFSTEP] simp [baseChange_eq_ltensor, tmul_sub] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : CommRing R inst✝⁷ : Ring A inst✝⁶ : Algebra R A inst✝⁵ : Ring B inst✝⁴ : Algebra R B inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f g : M →ₗ[R] N ⊢ baseChange A (-f) = -baseChange A f [PROOFSTEP] ext -- porting note: `tmul_neg` wasn't needed in mathlib3 [GOAL] case a.h.h R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 N : Type u_5 inst✝⁸ : CommRing R inst✝⁷ : Ring A inst✝⁶ : Algebra R A inst✝⁵ : Ring B inst✝⁴ : Algebra R B inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f g : M →ₗ[R] N x✝ : M ⊢ ↑(↑(AlgebraTensorModule.curry (baseChange A (-f))) 1) x✝ = ↑(↑(AlgebraTensorModule.curry (-baseChange A f)) 1) x✝ [PROOFSTEP] simp [baseChange_eq_ltensor, tmul_neg] [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x₁ x₂ : A y : B x' : A y' : B ⊢ ↑(mulAux (x₁ + x₂) y) (x' ⊗ₜ[R] y') = ↑(mulAux x₁ y + mulAux x₂ y) (x' ⊗ₜ[R] y') [PROOFSTEP] simp only [mulAux_apply, LinearMap.add_apply, add_mul, add_tmul] [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B c : R x : A y : B x' : A y' : B ⊢ ↑(mulAux (c • x) y) (x' ⊗ₜ[R] y') = ↑(c • mulAux x y) (x' ⊗ₜ[R] y') [PROOFSTEP] simp only [mulAux_apply, LinearMap.smul_apply, smul_tmul', smul_mul_assoc] [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x : A y₁ y₂ : B x' : A y' : B ⊢ ↑(mulAux x (y₁ + y₂)) (x' ⊗ₜ[R] y') = ↑(mulAux x y₁ + mulAux x y₂) (x' ⊗ₜ[R] y') [PROOFSTEP] simp only [mulAux_apply, LinearMap.add_apply, add_mul, tmul_add] [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B c : R x : A y : B x' : A y' : B ⊢ ↑(mulAux x (c • y)) (x' ⊗ₜ[R] y') = ↑(c • mulAux x y) (x' ⊗ₜ[R] y') [PROOFSTEP] simp only [mulAux_apply, LinearMap.smul_apply, smul_tmul, smul_tmul', smul_mul_assoc] [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x y z : A ⊗[R] B ⊢ ↑(↑mul (↑(↑mul x) y)) z = ↑(↑mul x) (↑(↑mul y) z) [PROOFSTEP] suffices LinearMap.llcomp R _ _ _ mul ∘ₗ mul = (LinearMap.llcomp R _ _ _ LinearMap.lflip <| LinearMap.llcomp R _ _ _ mul.flip ∘ₗ mul).flip by exact FunLike.congr_fun (FunLike.congr_fun (FunLike.congr_fun this x) y) z [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x y z : A ⊗[R] B this : LinearMap.comp (↑(LinearMap.llcomp R (?m.168282 ⊗[R] ?m.168285) (?m.168282 ⊗[R] ?m.168285) (?m.168282 ⊗[R] ?m.168285 →ₗ[R] ?m.168282 ⊗[R] ?m.168285)) mul) mul = LinearMap.flip (↑(↑(LinearMap.llcomp R (?m.168282 ⊗[R] ?m.168285) (?m.168282 ⊗[R] ?m.168285 →ₗ[R] ?m.168282 ⊗[R] ?m.168285 →ₗ[R] ?m.168282 ⊗[R] ?m.168285) (?m.168282 ⊗[R] ?m.168285 →ₗ[R] ?m.168282 ⊗[R] ?m.168285 →ₗ[R] ?m.168282 ⊗[R] ?m.168285)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R (?m.168282 ⊗[R] ?m.168285) (?m.168282 ⊗[R] ?m.168285) (?m.168282 ⊗[R] ?m.168285 →ₗ[R] ?m.168282 ⊗[R] ?m.168285)) (LinearMap.flip mul)) mul)) ⊢ ↑(↑mul (↑(↑mul x) y)) z = ↑(↑mul x) (↑(↑mul y) z) [PROOFSTEP] exact FunLike.congr_fun (FunLike.congr_fun (FunLike.congr_fun this x) y) z [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x y z : A ⊗[R] B ⊢ LinearMap.comp (↑(LinearMap.llcomp R (A ⊗[R] B) (A ⊗[R] B) (A ⊗[R] B →ₗ[R] A ⊗[R] B)) mul) mul = LinearMap.flip (↑(↑(LinearMap.llcomp R (A ⊗[R] B) (A ⊗[R] B →ₗ[R] A ⊗[R] B →ₗ[R] A ⊗[R] B) (A ⊗[R] B →ₗ[R] A ⊗[R] B →ₗ[R] A ⊗[R] B)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R (A ⊗[R] B) (A ⊗[R] B) (A ⊗[R] B →ₗ[R] A ⊗[R] B)) (LinearMap.flip mul)) mul)) [PROOFSTEP] ext xa xb ya yb za zb [GOAL] case a.h.h.a.h.h.a.h.h R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x y z : A ⊗[R] B xa : A xb : B ya : A yb : B za : A zb : B ⊢ ↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (LinearMap.comp (↑(LinearMap.llcomp R (A ⊗[R] B) (A ⊗[R] B) (A ⊗[R] B →ₗ[R] A ⊗[R] B)) mul) mul)) xa) xb)) ya) yb)) za) zb = ↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (LinearMap.flip (↑(↑(LinearMap.llcomp R (A ⊗[R] B) (A ⊗[R] B →ₗ[R] A ⊗[R] B →ₗ[R] A ⊗[R] B) (A ⊗[R] B →ₗ[R] A ⊗[R] B →ₗ[R] A ⊗[R] B)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R (A ⊗[R] B) (A ⊗[R] B) (A ⊗[R] B →ₗ[R] A ⊗[R] B)) (LinearMap.flip mul)) mul)))) xa) xb)) ya) yb)) za) zb [PROOFSTEP] exact congr_arg₂ (· ⊗ₜ ·) (mul_assoc xa ya za) (mul_assoc xb yb zb) [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x : A ⊗[R] B ⊢ ↑(↑mul (1 ⊗ₜ[R] 1)) x = x [PROOFSTEP] refine TensorProduct.induction_on x ?_ ?_ ?_ [GOAL] case refine_1 R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x : A ⊗[R] B ⊢ ↑(↑mul (1 ⊗ₜ[R] 1)) 0 = 0 [PROOFSTEP] simp (config := { contextual := true }) [GOAL] case refine_2 R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x : A ⊗[R] B ⊢ ∀ (x : A) (y : B), ↑(↑mul (1 ⊗ₜ[R] 1)) (x ⊗ₜ[R] y) = x ⊗ₜ[R] y [PROOFSTEP] simp (config := { contextual := true }) [GOAL] case refine_3 R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x : A ⊗[R] B ⊢ ∀ (x y : A ⊗[R] B), ↑(↑mul (1 ⊗ₜ[R] 1)) x = x → ↑(↑mul (1 ⊗ₜ[R] 1)) y = y → ↑(↑mul (1 ⊗ₜ[R] 1)) (x + y) = x + y [PROOFSTEP] simp (config := { contextual := true }) [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x : A ⊗[R] B ⊢ ↑(↑mul x) (1 ⊗ₜ[R] 1) = x [PROOFSTEP] refine TensorProduct.induction_on x ?_ ?_ ?_ [GOAL] case refine_1 R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x : A ⊗[R] B ⊢ ↑(↑mul 0) (1 ⊗ₜ[R] 1) = 0 [PROOFSTEP] simp (config := { contextual := true }) [GOAL] case refine_2 R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x : A ⊗[R] B ⊢ ∀ (x : A) (y : B), ↑(↑mul (x ⊗ₜ[R] y)) (1 ⊗ₜ[R] 1) = x ⊗ₜ[R] y [PROOFSTEP] simp (config := { contextual := true }) [GOAL] case refine_3 R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B x : A ⊗[R] B ⊢ ∀ (x y : A ⊗[R] B), ↑(↑mul x) (1 ⊗ₜ[R] 1) = x → ↑(↑mul y) (1 ⊗ₜ[R] 1) = y → ↑(↑mul (x + y)) (1 ⊗ₜ[R] 1) = x + y [PROOFSTEP] simp (config := { contextual := true }) [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B ⊢ NatCast.natCast 0 = 0 [PROOFSTEP] simp [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B n : ℕ ⊢ NatCast.natCast (n + 1) = NatCast.natCast n + 1 [PROOFSTEP] simp [add_tmul, one_def] [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B ⊢ AddCommMonoid (A ⊗[R] B) [PROOFSTEP] infer_instance -- providing this instance separately makes some downstream code substantially faster [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B a b c : A ⊗[R] B ⊢ a * (b + c) = a * b + a * c [PROOFSTEP] simp [HMul.hMul, Mul.mul] [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B a b c : A ⊗[R] B ⊢ (a + b) * c = a * c + b * c [PROOFSTEP] simp [HMul.hMul, Mul.mul] [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B a : A ⊗[R] B ⊢ 0 * a = 0 [PROOFSTEP] simp [HMul.hMul, Mul.mul] [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B a : A ⊗[R] B ⊢ a * 0 = 0 [PROOFSTEP] simp [HMul.hMul, Mul.mul] [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B a : A b : B k : ℕ ⊢ a ⊗ₜ[R] b ^ k = (a ^ k) ⊗ₜ[R] (b ^ k) [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B a : A b : B ⊢ a ⊗ₜ[R] b ^ Nat.zero = (a ^ Nat.zero) ⊗ₜ[R] (b ^ Nat.zero) [PROOFSTEP] simp [one_def] [GOAL] case succ R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B a : A b : B k : ℕ ih : a ⊗ₜ[R] b ^ k = (a ^ k) ⊗ₜ[R] (b ^ k) ⊢ a ⊗ₜ[R] b ^ Nat.succ k = (a ^ Nat.succ k) ⊗ₜ[R] (b ^ Nat.succ k) [PROOFSTEP] simp [pow_succ, ih] [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B ⊢ ∀ (x y : A), OneHom.toFun { toFun := fun a => a ⊗ₜ[R] 1, map_one' := (_ : (fun a => a ⊗ₜ[R] 1) 1 = (fun a => a ⊗ₜ[R] 1) 1) } (x * y) = OneHom.toFun { toFun := fun a => a ⊗ₜ[R] 1, map_one' := (_ : (fun a => a ⊗ₜ[R] 1) 1 = (fun a => a ⊗ₜ[R] 1) 1) } x * OneHom.toFun { toFun := fun a => a ⊗ₜ[R] 1, map_one' := (_ : (fun a => a ⊗ₜ[R] 1) 1 = (fun a => a ⊗ₜ[R] 1) 1) } y [PROOFSTEP] simp [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun a => a ⊗ₜ[R] 1, map_one' := (_ : (fun a => a ⊗ₜ[R] 1) 1 = (fun a => a ⊗ₜ[R] 1) 1) }, map_mul' := (_ : ∀ (a a_1 : A), (a * a_1) ⊗ₜ[R] 1 = (a * a_1) ⊗ₜ[R] (1 * 1)) }) 0 = 0 [PROOFSTEP] simp [GOAL] R : Type u inst✝⁴ : CommSemiring R A : Type v₁ inst✝³ : Semiring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Semiring B inst✝ : Algebra R B ⊢ ∀ (x y : A), OneHom.toFun (↑{ toOneHom := { toFun := fun a => a ⊗ₜ[R] 1, map_one' := (_ : (fun a => a ⊗ₜ[R] 1) 1 = (fun a => a ⊗ₜ[R] 1) 1) }, map_mul' := (_ : ∀ (a a_1 : A), (a * a_1) ⊗ₜ[R] 1 = (a * a_1) ⊗ₜ[R] (1 * 1)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => a ⊗ₜ[R] 1, map_one' := (_ : (fun a => a ⊗ₜ[R] 1) 1 = (fun a => a ⊗ₜ[R] 1) 1) }, map_mul' := (_ : ∀ (a a_1 : A), (a * a_1) ⊗ₜ[R] 1 = (a * a_1) ⊗ₜ[R] (1 * 1)) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun a => a ⊗ₜ[R] 1, map_one' := (_ : (fun a => a ⊗ₜ[R] 1) 1 = (fun a => a ⊗ₜ[R] 1) 1) }, map_mul' := (_ : ∀ (a a_1 : A), (a * a_1) ⊗ₜ[R] 1 = (a * a_1) ⊗ₜ[R] (1 * 1)) }) y [PROOFSTEP] simp [add_tmul] [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S x y : A ⊗[R] B ⊢ (r • x) • y = r • x • y [PROOFSTEP] change r • x * y = r • (x * y) [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S x y : A ⊗[R] B ⊢ r • x * y = r • (x * y) [PROOFSTEP] induction y using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a b => induction x using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, smul_mul_assoc] | add x y hx hy => simp [smul_add, add_mul _, *] | add x y hx hy => simp [smul_add, mul_add _, *] [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S x y : A ⊗[R] B ⊢ r • x * y = r • (x * y) [PROOFSTEP] induction y using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a b => induction x using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, smul_mul_assoc] | add x y hx hy => simp [smul_add, add_mul _, *] | add x y hx hy => simp [smul_add, mul_add _, *] [GOAL] case zero R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S x : A ⊗[R] B ⊢ r • x * 0 = r • (x * 0) [PROOFSTEP] | zero => simp [smul_zero] [GOAL] case zero R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S x : A ⊗[R] B ⊢ r • x * 0 = r • (x * 0) [PROOFSTEP] simp [smul_zero] [GOAL] case tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S x : A ⊗[R] B a : A b : B ⊢ r • x * a ⊗ₜ[R] b = r • (x * a ⊗ₜ[R] b) [PROOFSTEP] | tmul a b => induction x using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, smul_mul_assoc] | add x y hx hy => simp [smul_add, add_mul _, *] [GOAL] case tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S x : A ⊗[R] B a : A b : B ⊢ r • x * a ⊗ₜ[R] b = r • (x * a ⊗ₜ[R] b) [PROOFSTEP] induction x using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, smul_mul_assoc] | add x y hx hy => simp [smul_add, add_mul _, *] [GOAL] case tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S x : A ⊗[R] B a : A b : B ⊢ r • x * a ⊗ₜ[R] b = r • (x * a ⊗ₜ[R] b) [PROOFSTEP] induction x using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, smul_mul_assoc] | add x y hx hy => simp [smul_add, add_mul _, *] [GOAL] case tmul.zero R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S a : A b : B ⊢ r • 0 * a ⊗ₜ[R] b = r • (0 * a ⊗ₜ[R] b) [PROOFSTEP] | zero => simp [smul_zero] [GOAL] case tmul.zero R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S a : A b : B ⊢ r • 0 * a ⊗ₜ[R] b = r • (0 * a ⊗ₜ[R] b) [PROOFSTEP] simp [smul_zero] [GOAL] case tmul.tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S a : A b : B a' : A b' : B ⊢ r • a' ⊗ₜ[R] b' * a ⊗ₜ[R] b = r • (a' ⊗ₜ[R] b' * a ⊗ₜ[R] b) [PROOFSTEP] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, smul_mul_assoc] [GOAL] case tmul.tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S a : A b : B a' : A b' : B ⊢ r • a' ⊗ₜ[R] b' * a ⊗ₜ[R] b = r • (a' ⊗ₜ[R] b' * a ⊗ₜ[R] b) [PROOFSTEP] dsimp [GOAL] case tmul.tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S a : A b : B a' : A b' : B ⊢ r • a' ⊗ₜ[R] b' * a ⊗ₜ[R] b = r • (a' * a) ⊗ₜ[R] (b' * b) [PROOFSTEP] rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, smul_mul_assoc] [GOAL] case tmul.add R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S a : A b : B x y : A ⊗[R] B hx : r • x * a ⊗ₜ[R] b = r • (x * a ⊗ₜ[R] b) hy : r • y * a ⊗ₜ[R] b = r • (y * a ⊗ₜ[R] b) ⊢ r • (x + y) * a ⊗ₜ[R] b = r • ((x + y) * a ⊗ₜ[R] b) [PROOFSTEP] | add x y hx hy => simp [smul_add, add_mul _, *] [GOAL] case tmul.add R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S a : A b : B x y : A ⊗[R] B hx : r • x * a ⊗ₜ[R] b = r • (x * a ⊗ₜ[R] b) hy : r • y * a ⊗ₜ[R] b = r • (y * a ⊗ₜ[R] b) ⊢ r • (x + y) * a ⊗ₜ[R] b = r • ((x + y) * a ⊗ₜ[R] b) [PROOFSTEP] simp [smul_add, add_mul _, *] [GOAL] case add R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S x✝ x y : A ⊗[R] B hx : r • x✝ * x = r • (x✝ * x) hy : r • x✝ * y = r • (x✝ * y) ⊢ r • x✝ * (x + y) = r • (x✝ * (x + y)) [PROOFSTEP] | add x y hx hy => simp [smul_add, mul_add _, *] [GOAL] case add R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : IsScalarTower S A A inst✝ : SMulCommClass R S A r : S x✝ x y : A ⊗[R] B hx : r • x✝ * x = r • (x✝ * x) hy : r • x✝ * y = r • (x✝ * y) ⊢ r • x✝ * (x + y) = r • (x✝ * (x + y)) [PROOFSTEP] simp [smul_add, mul_add _, *] [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S x y : A ⊗[R] B ⊢ r • x • y = x • r • y [PROOFSTEP] change r • (x * y) = x * r • y [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S x y : A ⊗[R] B ⊢ r • (x * y) = x * r • y [PROOFSTEP] induction y using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a b => induction x using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, mul_smul_comm] | add x y hx hy => simp [smul_add, add_mul _, *] | add x y hx hy => simp [smul_add, mul_add _, *] [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S x y : A ⊗[R] B ⊢ r • (x * y) = x * r • y [PROOFSTEP] induction y using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a b => induction x using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, mul_smul_comm] | add x y hx hy => simp [smul_add, add_mul _, *] | add x y hx hy => simp [smul_add, mul_add _, *] [GOAL] case zero R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S x : A ⊗[R] B ⊢ r • (x * 0) = x * r • 0 [PROOFSTEP] | zero => simp [smul_zero] [GOAL] case zero R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S x : A ⊗[R] B ⊢ r • (x * 0) = x * r • 0 [PROOFSTEP] simp [smul_zero] [GOAL] case tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S x : A ⊗[R] B a : A b : B ⊢ r • (x * a ⊗ₜ[R] b) = x * r • a ⊗ₜ[R] b [PROOFSTEP] | tmul a b => induction x using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, mul_smul_comm] | add x y hx hy => simp [smul_add, add_mul _, *] [GOAL] case tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S x : A ⊗[R] B a : A b : B ⊢ r • (x * a ⊗ₜ[R] b) = x * r • a ⊗ₜ[R] b [PROOFSTEP] induction x using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, mul_smul_comm] | add x y hx hy => simp [smul_add, add_mul _, *] [GOAL] case tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S x : A ⊗[R] B a : A b : B ⊢ r • (x * a ⊗ₜ[R] b) = x * r • a ⊗ₜ[R] b [PROOFSTEP] induction x using TensorProduct.induction_on with | zero => simp [smul_zero] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, mul_smul_comm] | add x y hx hy => simp [smul_add, add_mul _, *] [GOAL] case tmul.zero R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S a : A b : B ⊢ r • (0 * a ⊗ₜ[R] b) = 0 * r • a ⊗ₜ[R] b [PROOFSTEP] | zero => simp [smul_zero] [GOAL] case tmul.zero R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S a : A b : B ⊢ r • (0 * a ⊗ₜ[R] b) = 0 * r • a ⊗ₜ[R] b [PROOFSTEP] simp [smul_zero] [GOAL] case tmul.tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S a : A b : B a' : A b' : B ⊢ r • (a' ⊗ₜ[R] b' * a ⊗ₜ[R] b) = a' ⊗ₜ[R] b' * r • a ⊗ₜ[R] b [PROOFSTEP] | tmul a' b' => dsimp rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, mul_smul_comm] [GOAL] case tmul.tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S a : A b : B a' : A b' : B ⊢ r • (a' ⊗ₜ[R] b' * a ⊗ₜ[R] b) = a' ⊗ₜ[R] b' * r • a ⊗ₜ[R] b [PROOFSTEP] dsimp [GOAL] case tmul.tmul R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S a : A b : B a' : A b' : B ⊢ r • (a' * a) ⊗ₜ[R] (b' * b) = a' ⊗ₜ[R] b' * r • a ⊗ₜ[R] b [PROOFSTEP] rw [TensorProduct.smul_tmul', TensorProduct.smul_tmul', tmul_mul_tmul, mul_smul_comm] [GOAL] case tmul.add R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S a : A b : B x y : A ⊗[R] B hx : r • (x * a ⊗ₜ[R] b) = x * r • a ⊗ₜ[R] b hy : r • (y * a ⊗ₜ[R] b) = y * r • a ⊗ₜ[R] b ⊢ r • ((x + y) * a ⊗ₜ[R] b) = (x + y) * r • a ⊗ₜ[R] b [PROOFSTEP] | add x y hx hy => simp [smul_add, add_mul _, *] [GOAL] case tmul.add R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S a : A b : B x y : A ⊗[R] B hx : r • (x * a ⊗ₜ[R] b) = x * r • a ⊗ₜ[R] b hy : r • (y * a ⊗ₜ[R] b) = y * r • a ⊗ₜ[R] b ⊢ r • ((x + y) * a ⊗ₜ[R] b) = (x + y) * r • a ⊗ₜ[R] b [PROOFSTEP] simp [smul_add, add_mul _, *] [GOAL] case add R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S x✝ x y : A ⊗[R] B hx : r • (x✝ * x) = x✝ * r • x hy : r • (x✝ * y) = x✝ * r • y ⊢ r • (x✝ * (x + y)) = x✝ * r • (x + y) [PROOFSTEP] | add x y hx hy => simp [smul_add, mul_add _, *] [GOAL] case add R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : Monoid S inst✝² : DistribMulAction S A inst✝¹ : SMulCommClass S A A inst✝ : SMulCommClass R S A r : S x✝ x y : A ⊗[R] B hx : r • (x✝ * x) = x✝ * r • x hy : r • (x✝ * y) = x✝ * r • y ⊢ r • (x✝ * (x + y)) = x✝ * r • (x + y) [PROOFSTEP] simp [smul_add, mul_add _, *] [GOAL] R : Type u inst✝⁷ : CommSemiring R A : Type v₁ inst✝⁶ : Semiring A inst✝⁵ : Algebra R A B : Type v₂ inst✝⁴ : Semiring B inst✝³ : Algebra R B S : Type u_1 inst✝² : CommSemiring S inst✝¹ : Algebra S A inst✝ : SMulCommClass R S A r : S x : (fun x => A ⊗[R] B) r ⊢ ↑(RingHom.comp includeLeftRingHom (algebraMap S A)) r * x = x * ↑(RingHom.comp includeLeftRingHom (algebraMap S A)) r [PROOFSTEP] dsimp only [RingHom.toFun_eq_coe, RingHom.comp_apply, includeLeftRingHom_apply] [GOAL] R : Type u inst✝⁷ : CommSemiring R A : Type v₁ inst✝⁶ : Semiring A inst✝⁵ : Algebra R A B : Type v₂ inst✝⁴ : Semiring B inst✝³ : Algebra R B S : Type u_1 inst✝² : CommSemiring S inst✝¹ : Algebra S A inst✝ : SMulCommClass R S A r : S x : (fun x => A ⊗[R] B) r ⊢ ↑(algebraMap S A) r ⊗ₜ[R] 1 * x = x * ↑(algebraMap S A) r ⊗ₜ[R] 1 [PROOFSTEP] rw [algebraMap_eq_smul_one, ← smul_tmul', ← one_def, mul_smul_comm, smul_mul_assoc, mul_one, one_mul] [GOAL] R : Type u inst✝⁷ : CommSemiring R A : Type v₁ inst✝⁶ : Semiring A inst✝⁵ : Algebra R A B : Type v₂ inst✝⁴ : Semiring B inst✝³ : Algebra R B S : Type u_1 inst✝² : CommSemiring S inst✝¹ : Algebra S A inst✝ : SMulCommClass R S A r : S x : (fun x => A ⊗[R] B) r ⊢ r • x = ↑(RingHom.comp includeLeftRingHom (algebraMap S A)) r * x [PROOFSTEP] dsimp only [RingHom.toFun_eq_coe, RingHom.comp_apply, includeLeftRingHom_apply] [GOAL] R : Type u inst✝⁷ : CommSemiring R A : Type v₁ inst✝⁶ : Semiring A inst✝⁵ : Algebra R A B : Type v₂ inst✝⁴ : Semiring B inst✝³ : Algebra R B S : Type u_1 inst✝² : CommSemiring S inst✝¹ : Algebra S A inst✝ : SMulCommClass R S A r : S x : (fun x => A ⊗[R] B) r ⊢ r • x = ↑(algebraMap S A) r ⊗ₜ[R] 1 * x [PROOFSTEP] rw [algebraMap_eq_smul_one, ← smul_tmul', smul_mul_assoc, ← one_def, one_mul] [GOAL] R : Type u inst✝⁹ : CommSemiring R A : Type v₁ inst✝⁸ : Semiring A inst✝⁷ : Algebra R A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B S : Type u_1 inst✝⁴ : CommSemiring S inst✝³ : Algebra S A C : Type v₃ inst✝² : Semiring C inst✝¹ : Algebra R C inst✝ : SMulCommClass R S A src✝ : A →+* A ⊗[R] B := includeLeftRingHom ⊢ ∀ (r : S), OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap S A) r) = ↑(algebraMap S (A ⊗[R] B)) r [PROOFSTEP] simp [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : CommSemiring S inst✝² : Algebra S A C : Type v₃ inst✝¹ : Semiring C inst✝ : Algebra R C ⊢ ∀ (x y : B), OneHom.toFun { toFun := fun b => 1 ⊗ₜ[R] b, map_one' := (_ : (fun b => 1 ⊗ₜ[R] b) 1 = (fun b => 1 ⊗ₜ[R] b) 1) } (x * y) = OneHom.toFun { toFun := fun b => 1 ⊗ₜ[R] b, map_one' := (_ : (fun b => 1 ⊗ₜ[R] b) 1 = (fun b => 1 ⊗ₜ[R] b) 1) } x * OneHom.toFun { toFun := fun b => 1 ⊗ₜ[R] b, map_one' := (_ : (fun b => 1 ⊗ₜ[R] b) 1 = (fun b => 1 ⊗ₜ[R] b) 1) } y [PROOFSTEP] simp [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : CommSemiring S inst✝² : Algebra S A C : Type v₃ inst✝¹ : Semiring C inst✝ : Algebra R C ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun b => 1 ⊗ₜ[R] b, map_one' := (_ : (fun b => 1 ⊗ₜ[R] b) 1 = (fun b => 1 ⊗ₜ[R] b) 1) }, map_mul' := (_ : ∀ (a a_1 : B), 1 ⊗ₜ[R] (a * a_1) = (1 * 1) ⊗ₜ[R] (a * a_1)) }) 0 = 0 [PROOFSTEP] simp [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : CommSemiring S inst✝² : Algebra S A C : Type v₃ inst✝¹ : Semiring C inst✝ : Algebra R C ⊢ ∀ (x y : B), OneHom.toFun (↑{ toOneHom := { toFun := fun b => 1 ⊗ₜ[R] b, map_one' := (_ : (fun b => 1 ⊗ₜ[R] b) 1 = (fun b => 1 ⊗ₜ[R] b) 1) }, map_mul' := (_ : ∀ (a a_1 : B), 1 ⊗ₜ[R] (a * a_1) = (1 * 1) ⊗ₜ[R] (a * a_1)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun b => 1 ⊗ₜ[R] b, map_one' := (_ : (fun b => 1 ⊗ₜ[R] b) 1 = (fun b => 1 ⊗ₜ[R] b) 1) }, map_mul' := (_ : ∀ (a a_1 : B), 1 ⊗ₜ[R] (a * a_1) = (1 * 1) ⊗ₜ[R] (a * a_1)) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun b => 1 ⊗ₜ[R] b, map_one' := (_ : (fun b => 1 ⊗ₜ[R] b) 1 = (fun b => 1 ⊗ₜ[R] b) 1) }, map_mul' := (_ : ∀ (a a_1 : B), 1 ⊗ₜ[R] (a * a_1) = (1 * 1) ⊗ₜ[R] (a * a_1)) }) y [PROOFSTEP] simp [tmul_add] [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : CommSemiring S inst✝² : Algebra S A C : Type v₃ inst✝¹ : Semiring C inst✝ : Algebra R C r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun b => 1 ⊗ₜ[R] b, map_one' := (_ : (fun b => 1 ⊗ₜ[R] b) 1 = (fun b => 1 ⊗ₜ[R] b) 1) }, map_mul' := (_ : ∀ (a a_1 : B), 1 ⊗ₜ[R] (a * a_1) = (1 * 1) ⊗ₜ[R] (a * a_1)) }, map_zero' := (_ : 1 ⊗ₜ[R] 0 = 0), map_add' := (_ : ∀ (a a_1 : B), 1 ⊗ₜ[R] (a + a_1) = 1 ⊗ₜ[R] a + 1 ⊗ₜ[R] a_1) }) (↑(algebraMap R B) r) = ↑(algebraMap R (A ⊗[R] B)) r [PROOFSTEP] simp only [algebraMap_apply] [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : CommSemiring S inst✝² : Algebra S A C : Type v₃ inst✝¹ : Semiring C inst✝ : Algebra R C r : R ⊢ 1 ⊗ₜ[R] ↑(algebraMap R B) r = ↑(algebraMap R A) r ⊗ₜ[R] 1 [PROOFSTEP] trans r • (1 : A) ⊗ₜ[R] (1 : B) [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : CommSemiring S inst✝² : Algebra S A C : Type v₃ inst✝¹ : Semiring C inst✝ : Algebra R C r : R ⊢ 1 ⊗ₜ[R] ↑(algebraMap R B) r = r • 1 ⊗ₜ[R] 1 [PROOFSTEP] rw [← tmul_smul, Algebra.smul_def] [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : CommSemiring S inst✝² : Algebra S A C : Type v₃ inst✝¹ : Semiring C inst✝ : Algebra R C r : R ⊢ 1 ⊗ₜ[R] ↑(algebraMap R B) r = 1 ⊗ₜ[R] (↑(algebraMap R B) r * 1) [PROOFSTEP] simp [GOAL] R : Type u inst✝⁸ : CommSemiring R A : Type v₁ inst✝⁷ : Semiring A inst✝⁶ : Algebra R A B : Type v₂ inst✝⁵ : Semiring B inst✝⁴ : Algebra R B S : Type u_1 inst✝³ : CommSemiring S inst✝² : Algebra S A C : Type v₃ inst✝¹ : Semiring C inst✝ : Algebra R C r : R ⊢ r • 1 ⊗ₜ[R] 1 = ↑(algebraMap R A) r ⊗ₜ[R] 1 [PROOFSTEP] simp [Algebra.smul_def] [GOAL] R✝ : Type u inst✝¹³ : CommSemiring R✝ A : Type v₁ inst✝¹² : Semiring A inst✝¹¹ : Algebra R✝ A B : Type v₂ inst✝¹⁰ : Semiring B inst✝⁹ : Algebra R✝ B S✝ : Type u_1 inst✝⁸ : CommSemiring S✝ inst✝⁷ : Algebra S✝ A C : Type v₃ inst✝⁶ : Semiring C inst✝⁵ : Algebra R✝ C R : Type u_2 S : Type u_3 T : Type u_4 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : Algebra R S inst✝ : Algebra R T ⊢ RingHom.comp includeLeftRingHom (algebraMap R S) = RingHom.comp (↑includeRight) (algebraMap R T) [PROOFSTEP] ext [GOAL] case a R✝ : Type u inst✝¹³ : CommSemiring R✝ A : Type v₁ inst✝¹² : Semiring A inst✝¹¹ : Algebra R✝ A B : Type v₂ inst✝¹⁰ : Semiring B inst✝⁹ : Algebra R✝ B S✝ : Type u_1 inst✝⁸ : CommSemiring S✝ inst✝⁷ : Algebra S✝ A C : Type v₃ inst✝⁶ : Semiring C inst✝⁵ : Algebra R✝ C R : Type u_2 S : Type u_3 T : Type u_4 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : Algebra R S inst✝ : Algebra R T x✝ : R ⊢ ↑(RingHom.comp includeLeftRingHom (algebraMap R S)) x✝ = ↑(RingHom.comp (↑includeRight) (algebraMap R T)) x✝ [PROOFSTEP] simp [GOAL] R : Type u inst✝¹² : CommSemiring R A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A B : Type v₂ inst✝⁹ : Semiring B inst✝⁸ : Algebra R B S : Type u_1 inst✝⁷ : CommSemiring S inst✝⁶ : Algebra S A C : Type v₃ inst✝⁵ : Semiring C inst✝⁴ : Algebra R C inst✝³ : Algebra R S inst✝² : Algebra S C inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S C f g : A ⊗[R] B →ₐ[S] C ha : AlgHom.comp f includeLeft = AlgHom.comp g includeLeft hb : AlgHom.comp (AlgHom.restrictScalars R f) includeRight = AlgHom.comp (AlgHom.restrictScalars R g) includeRight ⊢ f = g [PROOFSTEP] apply AlgHom.toLinearMap_injective [GOAL] case a R : Type u inst✝¹² : CommSemiring R A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A B : Type v₂ inst✝⁹ : Semiring B inst✝⁸ : Algebra R B S : Type u_1 inst✝⁷ : CommSemiring S inst✝⁶ : Algebra S A C : Type v₃ inst✝⁵ : Semiring C inst✝⁴ : Algebra R C inst✝³ : Algebra R S inst✝² : Algebra S C inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S C f g : A ⊗[R] B →ₐ[S] C ha : AlgHom.comp f includeLeft = AlgHom.comp g includeLeft hb : AlgHom.comp (AlgHom.restrictScalars R f) includeRight = AlgHom.comp (AlgHom.restrictScalars R g) includeRight ⊢ AlgHom.toLinearMap f = AlgHom.toLinearMap g [PROOFSTEP] ext a b [GOAL] case a.a.h.h R : Type u inst✝¹² : CommSemiring R A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A B : Type v₂ inst✝⁹ : Semiring B inst✝⁸ : Algebra R B S : Type u_1 inst✝⁷ : CommSemiring S inst✝⁶ : Algebra S A C : Type v₃ inst✝⁵ : Semiring C inst✝⁴ : Algebra R C inst✝³ : Algebra R S inst✝² : Algebra S C inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S C f g : A ⊗[R] B →ₐ[S] C ha : AlgHom.comp f includeLeft = AlgHom.comp g includeLeft hb : AlgHom.comp (AlgHom.restrictScalars R f) includeRight = AlgHom.comp (AlgHom.restrictScalars R g) includeRight a : A b : B ⊢ ↑(↑(AlgebraTensorModule.curry (AlgHom.toLinearMap f)) a) b = ↑(↑(AlgebraTensorModule.curry (AlgHom.toLinearMap g)) a) b [PROOFSTEP] have := congr_arg₂ HMul.hMul (AlgHom.congr_fun ha a) (AlgHom.congr_fun hb b) [GOAL] case a.a.h.h R : Type u inst✝¹² : CommSemiring R A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A B : Type v₂ inst✝⁹ : Semiring B inst✝⁸ : Algebra R B S : Type u_1 inst✝⁷ : CommSemiring S inst✝⁶ : Algebra S A C : Type v₃ inst✝⁵ : Semiring C inst✝⁴ : Algebra R C inst✝³ : Algebra R S inst✝² : Algebra S C inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S C f g : A ⊗[R] B →ₐ[S] C ha : AlgHom.comp f includeLeft = AlgHom.comp g includeLeft hb : AlgHom.comp (AlgHom.restrictScalars R f) includeRight = AlgHom.comp (AlgHom.restrictScalars R g) includeRight a : A b : B this : ↑(AlgHom.comp f includeLeft) a * ↑(AlgHom.comp (AlgHom.restrictScalars R f) includeRight) b = ↑(AlgHom.comp g includeLeft) a * ↑(AlgHom.comp (AlgHom.restrictScalars R g) includeRight) b ⊢ ↑(↑(AlgebraTensorModule.curry (AlgHom.toLinearMap f)) a) b = ↑(↑(AlgebraTensorModule.curry (AlgHom.toLinearMap g)) a) b [PROOFSTEP] dsimp at * [GOAL] case a.a.h.h R : Type u inst✝¹² : CommSemiring R A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A B : Type v₂ inst✝⁹ : Semiring B inst✝⁸ : Algebra R B S : Type u_1 inst✝⁷ : CommSemiring S inst✝⁶ : Algebra S A C : Type v₃ inst✝⁵ : Semiring C inst✝⁴ : Algebra R C inst✝³ : Algebra R S inst✝² : Algebra S C inst✝¹ : IsScalarTower R S A inst✝ : IsScalarTower R S C f g : A ⊗[R] B →ₐ[S] C ha : AlgHom.comp f includeLeft = AlgHom.comp g includeLeft hb : AlgHom.comp (AlgHom.restrictScalars R f) includeRight = AlgHom.comp (AlgHom.restrictScalars R g) includeRight a : A b : B this : ↑f (a ⊗ₜ[R] 1) * ↑f (1 ⊗ₜ[R] b) = ↑g (a ⊗ₜ[R] 1) * ↑g (1 ⊗ₜ[R] b) ⊢ ↑f (a ⊗ₜ[R] b) = ↑g (a ⊗ₜ[R] b) [PROOFSTEP] rwa [← f.map_mul, ← g.map_mul, tmul_mul_tmul, _root_.one_mul, _root_.mul_one] at this [GOAL] R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : Ring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Ring B inst✝ : Algebra R B n : ℕ ⊢ IntCast.intCast ↑n = ↑n [PROOFSTEP] simp [natCast_def] [GOAL] R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : Ring A inst✝² : Algebra R A B : Type v₂ inst✝¹ : Ring B inst✝ : Algebra R B n : ℕ ⊢ IntCast.intCast (Int.negSucc n) = -↑(n + 1) [PROOFSTEP] simp [natCast_def, add_tmul, neg_tmul, one_def] [GOAL] R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : CommRing A inst✝² : Algebra R A B : Type v₂ inst✝¹ : CommRing B inst✝ : Algebra R B x y : A ⊗[R] B ⊢ x * y = y * x [PROOFSTEP] refine TensorProduct.induction_on x ?_ ?_ ?_ [GOAL] case refine_1 R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : CommRing A inst✝² : Algebra R A B : Type v₂ inst✝¹ : CommRing B inst✝ : Algebra R B x y : A ⊗[R] B ⊢ 0 * y = y * 0 [PROOFSTEP] simp [GOAL] case refine_2 R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : CommRing A inst✝² : Algebra R A B : Type v₂ inst✝¹ : CommRing B inst✝ : Algebra R B x y : A ⊗[R] B ⊢ ∀ (x : A) (y_1 : B), x ⊗ₜ[R] y_1 * y = y * x ⊗ₜ[R] y_1 [PROOFSTEP] intro a₁ b₁ [GOAL] case refine_2 R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : CommRing A inst✝² : Algebra R A B : Type v₂ inst✝¹ : CommRing B inst✝ : Algebra R B x y : A ⊗[R] B a₁ : A b₁ : B ⊢ a₁ ⊗ₜ[R] b₁ * y = y * a₁ ⊗ₜ[R] b₁ [PROOFSTEP] refine TensorProduct.induction_on y ?_ ?_ ?_ [GOAL] case refine_2.refine_1 R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : CommRing A inst✝² : Algebra R A B : Type v₂ inst✝¹ : CommRing B inst✝ : Algebra R B x y : A ⊗[R] B a₁ : A b₁ : B ⊢ a₁ ⊗ₜ[R] b₁ * 0 = 0 * a₁ ⊗ₜ[R] b₁ [PROOFSTEP] simp [GOAL] case refine_2.refine_2 R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : CommRing A inst✝² : Algebra R A B : Type v₂ inst✝¹ : CommRing B inst✝ : Algebra R B x y : A ⊗[R] B a₁ : A b₁ : B ⊢ ∀ (x : A) (y : B), a₁ ⊗ₜ[R] b₁ * x ⊗ₜ[R] y = x ⊗ₜ[R] y * a₁ ⊗ₜ[R] b₁ [PROOFSTEP] intro a₂ b₂ [GOAL] case refine_2.refine_2 R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : CommRing A inst✝² : Algebra R A B : Type v₂ inst✝¹ : CommRing B inst✝ : Algebra R B x y : A ⊗[R] B a₁ : A b₁ : B a₂ : A b₂ : B ⊢ a₁ ⊗ₜ[R] b₁ * a₂ ⊗ₜ[R] b₂ = a₂ ⊗ₜ[R] b₂ * a₁ ⊗ₜ[R] b₁ [PROOFSTEP] simp [mul_comm] [GOAL] case refine_2.refine_3 R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : CommRing A inst✝² : Algebra R A B : Type v₂ inst✝¹ : CommRing B inst✝ : Algebra R B x y : A ⊗[R] B a₁ : A b₁ : B ⊢ ∀ (x y : A ⊗[R] B), a₁ ⊗ₜ[R] b₁ * x = x * a₁ ⊗ₜ[R] b₁ → a₁ ⊗ₜ[R] b₁ * y = y * a₁ ⊗ₜ[R] b₁ → a₁ ⊗ₜ[R] b₁ * (x + y) = (x + y) * a₁ ⊗ₜ[R] b₁ [PROOFSTEP] intro a₂ b₂ ha hb [GOAL] case refine_2.refine_3 R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : CommRing A inst✝² : Algebra R A B : Type v₂ inst✝¹ : CommRing B inst✝ : Algebra R B x y : A ⊗[R] B a₁ : A b₁ : B a₂ b₂ : A ⊗[R] B ha : a₁ ⊗ₜ[R] b₁ * a₂ = a₂ * a₁ ⊗ₜ[R] b₁ hb : a₁ ⊗ₜ[R] b₁ * b₂ = b₂ * a₁ ⊗ₜ[R] b₁ ⊢ a₁ ⊗ₜ[R] b₁ * (a₂ + b₂) = (a₂ + b₂) * a₁ ⊗ₜ[R] b₁ [PROOFSTEP] rw [mul_add, add_mul, ha, hb] [GOAL] case refine_3 R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : CommRing A inst✝² : Algebra R A B : Type v₂ inst✝¹ : CommRing B inst✝ : Algebra R B x y : A ⊗[R] B ⊢ ∀ (x y_1 : A ⊗[R] B), x * y = y * x → y_1 * y = y * y_1 → (x + y_1) * y = y * (x + y_1) [PROOFSTEP] intro x₁ x₂ h₁ h₂ [GOAL] case refine_3 R : Type u inst✝⁴ : CommRing R A : Type v₁ inst✝³ : CommRing A inst✝² : Algebra R A B : Type v₂ inst✝¹ : CommRing B inst✝ : Algebra R B x y x₁ x₂ : A ⊗[R] B h₁ : x₁ * y = y * x₁ h₂ : x₂ * y = y * x₂ ⊢ (x₁ + x₂) * y = y * (x₁ + x₂) [PROOFSTEP] rw [mul_add, add_mul, h₁, h₂] [GOAL] A : Type v₁ inst✝¹ : Ring A B : Type v₂ inst✝ : Ring B ⊢ Ring (A ⊗[ℤ] B) [PROOFSTEP] infer_instance [GOAL] A : Type v₁ inst✝¹ : CommRing A B : Type v₂ inst✝ : CommRing B ⊢ CommRing (A ⊗[ℤ] B) [PROOFSTEP] infer_instance [GOAL] R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r ⊢ AddHom.toFun f.toAddHom 1 = 1 [PROOFSTEP] rw [← (algebraMap S C).map_one, ← w₂, (algebraMap S A).map_one] [GOAL] R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r ⊢ AddHom.toFun f.toAddHom 1 = ↑f (1 ⊗ₜ[R] 1) [PROOFSTEP] rfl [GOAL] R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B ⊢ OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } (x * y) = OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } x * OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } y [PROOFSTEP] simp only [GOAL] R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B ⊢ AddHom.toFun f.toAddHom (x * y) = AddHom.toFun f.toAddHom x * AddHom.toFun f.toAddHom y [PROOFSTEP] rw [LinearMap.toFun_eq_coe] [GOAL] R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B ⊢ ↑f (x * y) = ↑f x * ↑f y [PROOFSTEP] refine TensorProduct.induction_on x ?_ ?_ ?_ [GOAL] case refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B ⊢ ↑f (0 * y) = ↑f 0 * ↑f y [PROOFSTEP] rw [zero_mul, map_zero, zero_mul] [GOAL] case refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B ⊢ ∀ (x : A) (y_1 : B), ↑f (x ⊗ₜ[R] y_1 * y) = ↑f (x ⊗ₜ[R] y_1) * ↑f y [PROOFSTEP] intro a₁ b₁ [GOAL] case refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B a₁ : A b₁ : B ⊢ ↑f (a₁ ⊗ₜ[R] b₁ * y) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f y [PROOFSTEP] refine TensorProduct.induction_on y ?_ ?_ ?_ [GOAL] case refine_2.refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B a₁ : A b₁ : B ⊢ ↑f (a₁ ⊗ₜ[R] b₁ * 0) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f 0 [PROOFSTEP] rw [mul_zero, map_zero, mul_zero] [GOAL] case refine_2.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B a₁ : A b₁ : B ⊢ ∀ (x : A) (y : B), ↑f (a₁ ⊗ₜ[R] b₁ * x ⊗ₜ[R] y) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (x ⊗ₜ[R] y) [PROOFSTEP] intro a₂ b₂ [GOAL] case refine_2.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B a₁ : A b₁ : B a₂ : A b₂ : B ⊢ ↑f (a₁ ⊗ₜ[R] b₁ * a₂ ⊗ₜ[R] b₂) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) [PROOFSTEP] rw [tmul_mul_tmul, w₁] [GOAL] case refine_2.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B a₁ : A b₁ : B ⊢ ∀ (x y : A ⊗[R] B), ↑f (a₁ ⊗ₜ[R] b₁ * x) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f x → ↑f (a₁ ⊗ₜ[R] b₁ * y) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f y → ↑f (a₁ ⊗ₜ[R] b₁ * (x + y)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (x + y) [PROOFSTEP] intro x₁ x₂ h₁ h₂ [GOAL] case refine_2.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B a₁ : A b₁ : B x₁ x₂ : A ⊗[R] B h₁ : ↑f (a₁ ⊗ₜ[R] b₁ * x₁) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f x₁ h₂ : ↑f (a₁ ⊗ₜ[R] b₁ * x₂) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f x₂ ⊢ ↑f (a₁ ⊗ₜ[R] b₁ * (x₁ + x₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (x₁ + x₂) [PROOFSTEP] rw [mul_add, map_add, map_add, mul_add, h₁, h₂] [GOAL] case refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y : A ⊗[R] B ⊢ ∀ (x y_1 : A ⊗[R] B), ↑f (x * y) = ↑f x * ↑f y → ↑f (y_1 * y) = ↑f y_1 * ↑f y → ↑f ((x + y_1) * y) = ↑f (x + y_1) * ↑f y [PROOFSTEP] intro x₁ x₂ h₁ h₂ [GOAL] case refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r x y x₁ x₂ : A ⊗[R] B h₁ : ↑f (x₁ * y) = ↑f x₁ * ↑f y h₂ : ↑f (x₂ * y) = ↑f x₂ * ↑f y ⊢ ↑f ((x₁ + x₂) * y) = ↑f (x₁ + x₂) * ↑f y [PROOFSTEP] rw [add_mul, map_add, map_add, add_mul, h₁, h₂] [GOAL] R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r ⊢ OneHom.toFun (↑{ toOneHom := { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) }, map_mul' := (_ : ∀ (x y : A ⊗[R] B), OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } (x * y) = OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } x * OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } y) }) 0 = 0 [PROOFSTEP] simp only [GOAL] R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r ⊢ AddHom.toFun f.toAddHom 0 = 0 [PROOFSTEP] rw [LinearMap.toFun_eq_coe, map_zero] [GOAL] R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r r : S ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) }, map_mul' := (_ : ∀ (x y : A ⊗[R] B), OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } (x * y) = OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } x * OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) }, map_mul' := (_ : ∀ (x y : A ⊗[R] B), OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } (x * y) = OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } x * OneHom.toFun { toFun := f.toFun, map_one' := (_ : AddHom.toFun f.toAddHom 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : A ⊗[R] B), AddHom.toFun f.toAddHom (x + y) = AddHom.toFun f.toAddHom x + AddHom.toFun f.toAddHom y) }) (↑(algebraMap S (A ⊗[R] B)) r) = ↑(algebraMap S C) r [PROOFSTEP] simp only [GOAL] R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ⊗[R] B →ₗ[S] C w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑f ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑f (a₁ ⊗ₜ[R] b₁) * ↑f (a₂ ⊗ₜ[R] b₂) w₂ : ∀ (r : S), ↑f (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S C) r r : S ⊢ AddHom.toFun f.toAddHom (↑(algebraMap S (A ⊗[R] B)) r) = ↑(algebraMap S C) r [PROOFSTEP] rw [LinearMap.toFun_eq_coe, algebraMap_apply, w₂] [GOAL] R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ↑f ((x₁ * x₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x₁ ⊗ₜ[R] c₁) * ↑f (x₂ ⊗ₜ[R] c₂) [PROOFSTEP] refine TensorProduct.induction_on x₁ ?_ ?_ ?_ [GOAL] case refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ↑f ((0 * x₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f (0 ⊗ₜ[R] c₁) * ↑f (x₂ ⊗ₜ[R] c₂) [PROOFSTEP] refine TensorProduct.induction_on x₂ ?_ ?_ ?_ [GOAL] case refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x : A) (y : B), ↑f ((x ⊗ₜ[R] y * x₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₁) * ↑f (x₂ ⊗ₜ[R] c₂) [PROOFSTEP] refine TensorProduct.induction_on x₂ ?_ ?_ ?_ [GOAL] case refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x y : A ⊗[R] B), ↑f ((x * x₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (x₂ ⊗ₜ[R] c₂) → ↑f ((y * x₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y ⊗ₜ[R] c₁) * ↑f (x₂ ⊗ₜ[R] c₂) → ↑f (((x + y) * x₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x + y) ⊗ₜ[R] c₁) * ↑f (x₂ ⊗ₜ[R] c₂) [PROOFSTEP] refine TensorProduct.induction_on x₂ ?_ ?_ ?_ [GOAL] case refine_1.refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ↑f ((0 * 0) ⊗ₜ[R] (c₁ * c₂)) = ↑f (0 ⊗ₜ[R] c₁) * ↑f (0 ⊗ₜ[R] c₂) [PROOFSTEP] simp only [zero_tmul, tmul_zero, tmul_mul_tmul, map_zero, zero_mul, mul_zero, mul_add, add_mul, map_add, add_tmul, tmul_add, w₁] [GOAL] case refine_1.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x : A) (y : B), ↑f ((0 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (0 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) [PROOFSTEP] simp only [zero_tmul, tmul_zero, tmul_mul_tmul, map_zero, zero_mul, mul_zero, mul_add, add_mul, map_add, add_tmul, tmul_add, w₁] [GOAL] case refine_1.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x y : A ⊗[R] B), ↑f ((0 * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (0 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) → ↑f ((0 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (0 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((0 * (x + y)) ⊗ₜ[R] (c₁ * c₂)) = ↑f (0 ⊗ₜ[R] c₁) * ↑f ((x + y) ⊗ₜ[R] c₂) [PROOFSTEP] simp only [zero_tmul, tmul_zero, tmul_mul_tmul, map_zero, zero_mul, mul_zero, mul_add, add_mul, map_add, add_tmul, tmul_add, w₁] [GOAL] case refine_2.refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x : A) (y : B), ↑f ((x ⊗ₜ[R] y * 0) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₁) * ↑f (0 ⊗ₜ[R] c₂) [PROOFSTEP] simp only [zero_tmul, tmul_zero, tmul_mul_tmul, map_zero, zero_mul, mul_zero, mul_add, add_mul, map_add, add_tmul, tmul_add, w₁] [GOAL] case refine_2.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x : A) (y : B) (x_1 : A) (y_1 : B), ↑f ((x_1 ⊗ₜ[R] y_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) [PROOFSTEP] simp only [zero_tmul, tmul_zero, tmul_mul_tmul, map_zero, zero_mul, mul_zero, mul_add, add_mul, map_add, add_tmul, tmul_add, w₁] [GOAL] case refine_2.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x y : A ⊗[R] B), (∀ (x_1 : A) (y : B), ↑f ((x_1 ⊗ₜ[R] y * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 ⊗ₜ[R] y) ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂)) → (∀ (x : A) (y_1 : B), ↑f ((x ⊗ₜ[R] y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂)) → ∀ (x_1 : A) (y_1 : B), ↑f ((x_1 ⊗ₜ[R] y_1 * (x + y)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f ((x + y) ⊗ₜ[R] c₂) [PROOFSTEP] simp only [zero_tmul, tmul_zero, tmul_mul_tmul, map_zero, zero_mul, mul_zero, mul_add, add_mul, map_add, add_tmul, tmul_add, w₁] [GOAL] case refine_3.refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x y : A ⊗[R] B), ↑f ((x * 0) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (0 ⊗ₜ[R] c₂) → ↑f ((y * 0) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y ⊗ₜ[R] c₁) * ↑f (0 ⊗ₜ[R] c₂) → ↑f (((x + y) * 0) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x + y) ⊗ₜ[R] c₁) * ↑f (0 ⊗ₜ[R] c₂) [PROOFSTEP] simp only [zero_tmul, tmul_zero, tmul_mul_tmul, map_zero, zero_mul, mul_zero, mul_add, add_mul, map_add, add_tmul, tmul_add, w₁] [GOAL] case refine_3.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x : A) (y : B) (x_1 y_1 : A ⊗[R] B), ↑f ((x_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) → ↑f ((y_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) → ↑f (((x_1 + y_1) * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 + y_1) ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) [PROOFSTEP] simp only [zero_tmul, tmul_zero, tmul_mul_tmul, map_zero, zero_mul, mul_zero, mul_add, add_mul, map_add, add_tmul, tmul_add, w₁] [GOAL] case refine_3.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x y : A ⊗[R] B), (∀ (x_1 y : A ⊗[R] B), ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) → ↑f ((y * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) → ↑f (((x_1 + y) * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 + y) ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂)) → (∀ (x y_1 : A ⊗[R] B), ↑f ((x * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f (((x + y_1) * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x + y_1) ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂)) → ∀ (x_1 y_1 : A ⊗[R] B), ↑f ((x_1 * (x + y)) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f ((x + y) ⊗ₜ[R] c₂) → ↑f ((y_1 * (x + y)) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f ((x + y) ⊗ₜ[R] c₂) → ↑f (((x_1 + y_1) * (x + y)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 + y_1) ⊗ₜ[R] c₁) * ↑f ((x + y) ⊗ₜ[R] c₂) [PROOFSTEP] simp only [zero_tmul, tmul_zero, tmul_mul_tmul, map_zero, zero_mul, mul_zero, mul_add, add_mul, map_add, add_tmul, tmul_add, w₁] [GOAL] case refine_1.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ A → B → True [PROOFSTEP] try intros trivial [GOAL] case refine_1.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ A → B → True [PROOFSTEP] intros [GOAL] case refine_1.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C x✝ : A y✝ : B ⊢ True [PROOFSTEP] trivial [GOAL] case refine_1.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ A ⊗[R] B → A ⊗[R] B → True [PROOFSTEP] try intros trivial [GOAL] case refine_1.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ A ⊗[R] B → A ⊗[R] B → True [PROOFSTEP] intros [GOAL] case refine_1.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C x✝ y✝ : A ⊗[R] B ⊢ True [PROOFSTEP] trivial [GOAL] case refine_2.refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ A → B → True [PROOFSTEP] try intros trivial [GOAL] case refine_2.refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ A → B → True [PROOFSTEP] intros [GOAL] case refine_2.refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C x✝ : A y✝ : B ⊢ True [PROOFSTEP] trivial [GOAL] case refine_2.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ A → B → A → B → True [PROOFSTEP] try intros trivial [GOAL] case refine_2.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ A → B → A → B → True [PROOFSTEP] intros [GOAL] case refine_2.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C x✝¹ : A y✝¹ : B x✝ : A y✝ : B ⊢ True [PROOFSTEP] trivial [GOAL] case refine_2.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x y : A ⊗[R] B), (∀ (x_1 : A) (y : B), ↑f ((x_1 ⊗ₜ[R] y * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 ⊗ₜ[R] y) ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂)) → (∀ (x : A) (y_1 : B), ↑f ((x ⊗ₜ[R] y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂)) → ∀ (x_1 : A) (y_1 : B), ↑f ((x_1 ⊗ₜ[R] y_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((x_1 ⊗ₜ[R] y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f ((x_1 ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) [PROOFSTEP] try intros trivial [GOAL] case refine_2.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x y : A ⊗[R] B), (∀ (x_1 : A) (y : B), ↑f ((x_1 ⊗ₜ[R] y * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 ⊗ₜ[R] y) ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂)) → (∀ (x : A) (y_1 : B), ↑f ((x ⊗ₜ[R] y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂)) → ∀ (x_1 : A) (y_1 : B), ↑f ((x_1 ⊗ₜ[R] y_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((x_1 ⊗ₜ[R] y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f ((x_1 ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) [PROOFSTEP] intros [GOAL] case refine_2.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C x✝¹ y✝¹ : A ⊗[R] B a✝¹ : ∀ (x : A) (y : B), ↑f ((x ⊗ₜ[R] y * x✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₁) * ↑f (x✝¹ ⊗ₜ[R] c₂) a✝ : ∀ (x : A) (y : B), ↑f ((x ⊗ₜ[R] y * y✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₁) * ↑f (y✝¹ ⊗ₜ[R] c₂) x✝ : A y✝ : B ⊢ ↑f ((x✝ ⊗ₜ[R] y✝ * x✝¹) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((x✝ ⊗ₜ[R] y✝ * y✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x✝ ⊗ₜ[R] y✝) ⊗ₜ[R] c₁) * ↑f (x✝¹ ⊗ₜ[R] c₂) + ↑f ((x✝ ⊗ₜ[R] y✝) ⊗ₜ[R] c₁) * ↑f (y✝¹ ⊗ₜ[R] c₂) [PROOFSTEP] trivial [GOAL] case refine_3.refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ A ⊗[R] B → A ⊗[R] B → True [PROOFSTEP] try intros trivial [GOAL] case refine_3.refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ A ⊗[R] B → A ⊗[R] B → True [PROOFSTEP] intros [GOAL] case refine_3.refine_1 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C x✝ y✝ : A ⊗[R] B ⊢ True [PROOFSTEP] trivial [GOAL] case refine_3.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x : A) (y : B) (x_1 y_1 : A ⊗[R] B), ↑f ((x_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) → ↑f ((y_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) → ↑f ((x_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) [PROOFSTEP] try intros trivial [GOAL] case refine_3.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x : A) (y : B) (x_1 y_1 : A ⊗[R] B), ↑f ((x_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) → ↑f ((y_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) → ↑f ((x_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) [PROOFSTEP] intros [GOAL] case refine_3.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C x✝¹ : A y✝¹ : B x✝ y✝ : A ⊗[R] B a✝¹ : ↑f ((x✝ * x✝¹ ⊗ₜ[R] y✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x✝ ⊗ₜ[R] c₁) * ↑f ((x✝¹ ⊗ₜ[R] y✝¹) ⊗ₜ[R] c₂) a✝ : ↑f ((y✝ * x✝¹ ⊗ₜ[R] y✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y✝ ⊗ₜ[R] c₁) * ↑f ((x✝¹ ⊗ₜ[R] y✝¹) ⊗ₜ[R] c₂) ⊢ ↑f ((x✝ * x✝¹ ⊗ₜ[R] y✝¹) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y✝ * x✝¹ ⊗ₜ[R] y✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x✝ ⊗ₜ[R] c₁) * ↑f ((x✝¹ ⊗ₜ[R] y✝¹) ⊗ₜ[R] c₂) + ↑f (y✝ ⊗ₜ[R] c₁) * ↑f ((x✝¹ ⊗ₜ[R] y✝¹) ⊗ₜ[R] c₂) [PROOFSTEP] trivial [GOAL] case refine_3.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x y : A ⊗[R] B), (∀ (x_1 y : A ⊗[R] B), ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) → ↑f ((y * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) → ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (y ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂)) → (∀ (x y_1 : A ⊗[R] B), ↑f ((x * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((x * y) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂)) → ∀ (x_1 y_1 : A ⊗[R] B), ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((x_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((y_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * x) ⊗ₜ[R] (c₁ * c₂)) + (↑f ((x_1 * y) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂))) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + (↑f (x_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂)) [PROOFSTEP] try intros trivial [GOAL] case refine_3.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x y : A ⊗[R] B), (∀ (x_1 y : A ⊗[R] B), ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) → ↑f ((y * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) → ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (y ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂)) → (∀ (x y_1 : A ⊗[R] B), ↑f ((x * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((x * y) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂)) → ∀ (x_1 y_1 : A ⊗[R] B), ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((x_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((y_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * x) ⊗ₜ[R] (c₁ * c₂)) + (↑f ((x_1 * y) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂))) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + (↑f (x_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂)) [PROOFSTEP] intros [GOAL] case refine_3.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C x✝¹ y✝¹ : A ⊗[R] B a✝³ : ∀ (x y : A ⊗[R] B), ↑f ((x * x✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (x✝¹ ⊗ₜ[R] c₂) → ↑f ((y * x✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y ⊗ₜ[R] c₁) * ↑f (x✝¹ ⊗ₜ[R] c₂) → ↑f ((x * x✝¹) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y * x✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (x✝¹ ⊗ₜ[R] c₂) + ↑f (y ⊗ₜ[R] c₁) * ↑f (x✝¹ ⊗ₜ[R] c₂) a✝² : ∀ (x y : A ⊗[R] B), ↑f ((x * y✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (y✝¹ ⊗ₜ[R] c₂) → ↑f ((y * y✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y ⊗ₜ[R] c₁) * ↑f (y✝¹ ⊗ₜ[R] c₂) → ↑f ((x * y✝¹) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y * y✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (y✝¹ ⊗ₜ[R] c₂) + ↑f (y ⊗ₜ[R] c₁) * ↑f (y✝¹ ⊗ₜ[R] c₂) x✝ y✝ : A ⊗[R] B a✝¹ : ↑f ((x✝ * x✝¹) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((x✝ * y✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x✝ ⊗ₜ[R] c₁) * ↑f (x✝¹ ⊗ₜ[R] c₂) + ↑f (x✝ ⊗ₜ[R] c₁) * ↑f (y✝¹ ⊗ₜ[R] c₂) a✝ : ↑f ((y✝ * x✝¹) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y✝ * y✝¹) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y✝ ⊗ₜ[R] c₁) * ↑f (x✝¹ ⊗ₜ[R] c₂) + ↑f (y✝ ⊗ₜ[R] c₁) * ↑f (y✝¹ ⊗ₜ[R] c₂) ⊢ ↑f ((x✝ * x✝¹) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y✝ * x✝¹) ⊗ₜ[R] (c₁ * c₂)) + (↑f ((x✝ * y✝¹) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y✝ * y✝¹) ⊗ₜ[R] (c₁ * c₂))) = ↑f (x✝ ⊗ₜ[R] c₁) * ↑f (x✝¹ ⊗ₜ[R] c₂) + ↑f (y✝ ⊗ₜ[R] c₁) * ↑f (x✝¹ ⊗ₜ[R] c₂) + (↑f (x✝ ⊗ₜ[R] c₁) * ↑f (y✝¹ ⊗ₜ[R] c₂) + ↑f (y✝ ⊗ₜ[R] c₁) * ↑f (y✝¹ ⊗ₜ[R] c₂)) [PROOFSTEP] trivial [GOAL] case refine_2.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x y : A ⊗[R] B), (∀ (x_1 : A) (y : B), ↑f ((x_1 ⊗ₜ[R] y * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 ⊗ₜ[R] y) ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂)) → (∀ (x : A) (y_1 : B), ↑f ((x ⊗ₜ[R] y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂)) → ∀ (x_1 : A) (y_1 : B), ↑f ((x_1 ⊗ₜ[R] y_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((x_1 ⊗ₜ[R] y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x_1 ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f ((x_1 ⊗ₜ[R] y_1) ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) [PROOFSTEP] intros ab₁ ab₂ h₁ h₂ a b [GOAL] case refine_2.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ab₁ ab₂ : A ⊗[R] B h₁ : ∀ (x : A) (y : B), ↑f ((x ⊗ₜ[R] y * ab₁) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₁) * ↑f (ab₁ ⊗ₜ[R] c₂) h₂ : ∀ (x : A) (y : B), ↑f ((x ⊗ₜ[R] y * ab₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₁) * ↑f (ab₂ ⊗ₜ[R] c₂) a : A b : B ⊢ ↑f ((a ⊗ₜ[R] b * ab₁) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((a ⊗ₜ[R] b * ab₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a ⊗ₜ[R] b) ⊗ₜ[R] c₁) * ↑f (ab₁ ⊗ₜ[R] c₂) + ↑f ((a ⊗ₜ[R] b) ⊗ₜ[R] c₁) * ↑f (ab₂ ⊗ₜ[R] c₂) [PROOFSTEP] rw [h₁, h₂] [GOAL] case refine_3.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x : A) (y : B) (x_1 y_1 : A ⊗[R] B), ↑f ((x_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) → ↑f ((y_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) → ↑f ((x_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * x ⊗ₜ[R] y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f ((x ⊗ₜ[R] y) ⊗ₜ[R] c₂) [PROOFSTEP] intros a b ab₁ ab₂ h₁ h₂ [GOAL] case refine_3.refine_2 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C a : A b : B ab₁ ab₂ : A ⊗[R] B h₁ : ↑f ((ab₁ * a ⊗ₜ[R] b) ⊗ₜ[R] (c₁ * c₂)) = ↑f (ab₁ ⊗ₜ[R] c₁) * ↑f ((a ⊗ₜ[R] b) ⊗ₜ[R] c₂) h₂ : ↑f ((ab₂ * a ⊗ₜ[R] b) ⊗ₜ[R] (c₁ * c₂)) = ↑f (ab₂ ⊗ₜ[R] c₁) * ↑f ((a ⊗ₜ[R] b) ⊗ₜ[R] c₂) ⊢ ↑f ((ab₁ * a ⊗ₜ[R] b) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((ab₂ * a ⊗ₜ[R] b) ⊗ₜ[R] (c₁ * c₂)) = ↑f (ab₁ ⊗ₜ[R] c₁) * ↑f ((a ⊗ₜ[R] b) ⊗ₜ[R] c₂) + ↑f (ab₂ ⊗ₜ[R] c₁) * ↑f ((a ⊗ₜ[R] b) ⊗ₜ[R] c₂) [PROOFSTEP] rw [h₁, h₂] [GOAL] case refine_3.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ⊢ ∀ (x y : A ⊗[R] B), (∀ (x_1 y : A ⊗[R] B), ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) → ↑f ((y * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) → ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y * x) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (y ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂)) → (∀ (x y_1 : A ⊗[R] B), ↑f ((x * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((x * y) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂)) → ∀ (x_1 y_1 : A ⊗[R] B), ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((x_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((y_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) → ↑f ((x_1 * x) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * x) ⊗ₜ[R] (c₁ * c₂)) + (↑f ((x_1 * y) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y_1 * y) ⊗ₜ[R] (c₁ * c₂))) = ↑f (x_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (x ⊗ₜ[R] c₂) + (↑f (x_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂) + ↑f (y_1 ⊗ₜ[R] c₁) * ↑f (y ⊗ₜ[R] c₂)) [PROOFSTEP] intros ab₁ ab₂ _ _ x y hx hy [GOAL] case refine_3.refine_3 R : Type u S : Type uS inst✝¹³ : CommSemiring R inst✝¹² : CommSemiring S inst✝¹¹ : Algebra R S A : Type v₁ inst✝¹⁰ : Semiring A inst✝⁹ : Algebra R A inst✝⁸ : Algebra S A inst✝⁷ : IsScalarTower R S A B : Type v₂ inst✝⁶ : Semiring B inst✝⁵ : Algebra R B C : Type v₃ inst✝⁴ : Semiring C inst✝³ : Algebra R C inst✝² : Algebra S C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : (A ⊗[R] B) ⊗[R] C ≃ₗ[R] D w₁ : ∀ (a₁ a₂ : A) (b₁ b₂ : B) (c₁ c₂ : C), ↑f (((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) ⊗ₜ[R] (c₁ * c₂)) = ↑f ((a₁ ⊗ₜ[R] b₁) ⊗ₜ[R] c₁) * ↑f ((a₂ ⊗ₜ[R] b₂) ⊗ₜ[R] c₂) w₂ : ∀ (r : R), ↑f ((↑(algebraMap R A) r ⊗ₜ[R] 1) ⊗ₜ[R] 1) = ↑(algebraMap R D) r x₁ x₂ : A ⊗[R] B c₁ c₂ : C ab₁ ab₂ : A ⊗[R] B a✝¹ : ∀ (x y : A ⊗[R] B), ↑f ((x * ab₁) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (ab₁ ⊗ₜ[R] c₂) → ↑f ((y * ab₁) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y ⊗ₜ[R] c₁) * ↑f (ab₁ ⊗ₜ[R] c₂) → ↑f ((x * ab₁) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y * ab₁) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (ab₁ ⊗ₜ[R] c₂) + ↑f (y ⊗ₜ[R] c₁) * ↑f (ab₁ ⊗ₜ[R] c₂) a✝ : ∀ (x y : A ⊗[R] B), ↑f ((x * ab₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (ab₂ ⊗ₜ[R] c₂) → ↑f ((y * ab₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y ⊗ₜ[R] c₁) * ↑f (ab₂ ⊗ₜ[R] c₂) → ↑f ((x * ab₂) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y * ab₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (ab₂ ⊗ₜ[R] c₂) + ↑f (y ⊗ₜ[R] c₁) * ↑f (ab₂ ⊗ₜ[R] c₂) x y : A ⊗[R] B hx : ↑f ((x * ab₁) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((x * ab₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f (x ⊗ₜ[R] c₁) * ↑f (ab₁ ⊗ₜ[R] c₂) + ↑f (x ⊗ₜ[R] c₁) * ↑f (ab₂ ⊗ₜ[R] c₂) hy : ↑f ((y * ab₁) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y * ab₂) ⊗ₜ[R] (c₁ * c₂)) = ↑f (y ⊗ₜ[R] c₁) * ↑f (ab₁ ⊗ₜ[R] c₂) + ↑f (y ⊗ₜ[R] c₁) * ↑f (ab₂ ⊗ₜ[R] c₂) ⊢ ↑f ((x * ab₁) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y * ab₁) ⊗ₜ[R] (c₁ * c₂)) + (↑f ((x * ab₂) ⊗ₜ[R] (c₁ * c₂)) + ↑f ((y * ab₂) ⊗ₜ[R] (c₁ * c₂))) = ↑f (x ⊗ₜ[R] c₁) * ↑f (ab₁ ⊗ₜ[R] c₂) + ↑f (y ⊗ₜ[R] c₁) * ↑f (ab₁ ⊗ₜ[R] c₂) + (↑f (x ⊗ₜ[R] c₁) * ↑f (ab₂ ⊗ₜ[R] c₂) + ↑f (y ⊗ₜ[R] c₁) * ↑f (ab₂ ⊗ₜ[R] c₂)) [PROOFSTEP] rw [add_add_add_comm, hx, hy, add_add_add_comm] [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D ⊢ ∀ (a₁ a₂ : R) (b₁ b₂ : A), ↑(_root_.TensorProduct.lid R A) ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑(_root_.TensorProduct.lid R A) (a₁ ⊗ₜ[R] b₁) * ↑(_root_.TensorProduct.lid R A) (a₂ ⊗ₜ[R] b₂) [PROOFSTEP] simp only [mul_smul, lid_tmul, Algebra.smul_mul_assoc, Algebra.mul_smul_comm] [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D ⊢ ∀ (a₁ a₂ : R) (b₁ b₂ : A), a₁ • a₂ • (b₁ * b₂) = a₂ • a₁ • (b₁ * b₂) [PROOFSTEP] simp_rw [← mul_smul, mul_comm] [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D ⊢ R → R → A → A → True [PROOFSTEP] simp [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D ⊢ ∀ (r : R), ↑(_root_.TensorProduct.lid R A) (↑(algebraMap R R) r ⊗ₜ[R] 1) = ↑(algebraMap R A) r [PROOFSTEP] simp [Algebra.smul_def] [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D r : R a : A ⊢ ↑(TensorProduct.lid R A) (r ⊗ₜ[R] a) = r • a [PROOFSTEP] simp [TensorProduct.lid] [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D ⊢ ∀ (a₁ a₂ : A) (b₁ b₂ : B), ↑(_root_.TensorProduct.comm R A B) ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑(_root_.TensorProduct.comm R A B) (a₁ ⊗ₜ[R] b₁) * ↑(_root_.TensorProduct.comm R A B) (a₂ ⊗ₜ[R] b₂) [PROOFSTEP] simp [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D r : R ⊢ ↑(_root_.TensorProduct.comm R A B) (↑(algebraMap R A) r ⊗ₜ[R] 1) = ↑(algebraMap R (B ⊗[R] A)) r [PROOFSTEP] trans r • (1 : B) ⊗ₜ[R] (1 : A) [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D r : R ⊢ ↑(_root_.TensorProduct.comm R A B) (↑(algebraMap R A) r ⊗ₜ[R] 1) = r • 1 ⊗ₜ[R] 1 [PROOFSTEP] rw [← tmul_smul, Algebra.smul_def] [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D r : R ⊢ ↑(_root_.TensorProduct.comm R A B) (↑(algebraMap R A) r ⊗ₜ[R] 1) = 1 ⊗ₜ[R] (↑(algebraMap R A) r * 1) [PROOFSTEP] simp [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D r : R ⊢ r • 1 ⊗ₜ[R] 1 = ↑(algebraMap R (B ⊗[R] A)) r [PROOFSTEP] simp [Algebra.smul_def] [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D a : A b : B ⊢ ↑(TensorProduct.comm R A B) (a ⊗ₜ[R] b) = b ⊗ₜ[R] a [PROOFSTEP] simp [TensorProduct.comm] [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[S] B g : C →ₐ[R] D ⊢ ∀ (a₁ a₂ : A) (b₁ b₂ : C), ↑(AlgebraTensorModule.map (AlgHom.toLinearMap f) (AlgHom.toLinearMap g)) ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑(AlgebraTensorModule.map (AlgHom.toLinearMap f) (AlgHom.toLinearMap g)) (a₁ ⊗ₜ[R] b₁) * ↑(AlgebraTensorModule.map (AlgHom.toLinearMap f) (AlgHom.toLinearMap g)) (a₂ ⊗ₜ[R] b₂) [PROOFSTEP] simp [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[S] B g : C →ₐ[R] D ⊢ ∀ (r : S), ↑(AlgebraTensorModule.map (AlgHom.toLinearMap f) (AlgHom.toLinearMap g)) (↑(algebraMap S A) r ⊗ₜ[R] 1) = ↑(algebraMap S (B ⊗[R] D)) r [PROOFSTEP] simp [AlgHom.commutes] [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[S] B g : C →ₐ[R] D ⊢ ∀ (x : A), ↑(AlgHom.comp (map f g) includeLeft) x = ↑(AlgHom.comp includeLeft f) x [PROOFSTEP] simp [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[S] B g : C →ₐ[R] D ⊢ ∀ (x : C), ↑(AlgHom.comp (AlgHom.restrictScalars R (map f g)) includeRight) x = ↑(AlgHom.comp includeRight g) x [PROOFSTEP] simp [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[R] B g : C →ₐ[R] D ⊢ AlgHom.range (map f g) = AlgHom.range (AlgHom.comp includeLeft f) ⊔ AlgHom.range (AlgHom.comp includeRight g) [PROOFSTEP] apply le_antisymm [GOAL] case a R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[R] B g : C →ₐ[R] D ⊢ AlgHom.range (map f g) ≤ AlgHom.range (AlgHom.comp includeLeft f) ⊔ AlgHom.range (AlgHom.comp includeRight g) [PROOFSTEP] rw [← map_top, ← adjoin_tmul_eq_top, ← adjoin_image, adjoin_le_iff] [GOAL] case a R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[R] B g : C →ₐ[R] D ⊢ ↑(map f g) '' {t | ∃ a b, a ⊗ₜ[R] b = t} ⊆ ↑(AlgHom.range (AlgHom.comp includeLeft f) ⊔ AlgHom.range (AlgHom.comp includeRight g)) [PROOFSTEP] rintro _ ⟨_, ⟨a, b, rfl⟩, rfl⟩ [GOAL] case a.intro.intro.intro.intro R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[R] B g : C →ₐ[R] D a : A b : C ⊢ ↑(map f g) (a ⊗ₜ[R] b) ∈ ↑(AlgHom.range (AlgHom.comp includeLeft f) ⊔ AlgHom.range (AlgHom.comp includeRight g)) [PROOFSTEP] rw [map_tmul, ← _root_.mul_one (f a), ← _root_.one_mul (g b), ← tmul_mul_tmul] [GOAL] case a.intro.intro.intro.intro R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[R] B g : C →ₐ[R] D a : A b : C ⊢ ↑f a ⊗ₜ[R] 1 * 1 ⊗ₜ[R] ↑g b ∈ ↑(AlgHom.range (AlgHom.comp includeLeft f) ⊔ AlgHom.range (AlgHom.comp includeRight g)) [PROOFSTEP] exact mul_mem_sup (AlgHom.mem_range_self _ a) (AlgHom.mem_range_self _ b) [GOAL] case a R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[R] B g : C →ₐ[R] D ⊢ AlgHom.range (AlgHom.comp includeLeft f) ⊔ AlgHom.range (AlgHom.comp includeRight g) ≤ AlgHom.range (map f g) [PROOFSTEP] rw [← map_comp_includeLeft f g, ← map_comp_includeRight f g] [GOAL] case a R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[R] B g : C →ₐ[R] D ⊢ AlgHom.range (AlgHom.comp (map f g) includeLeft) ⊔ AlgHom.range (AlgHom.comp (map f g) includeRight) ≤ AlgHom.range (map f g) [PROOFSTEP] exact sup_le (AlgHom.range_comp_le_range _ _) (AlgHom.range_comp_le_range _ _) [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ≃ₐ[S] B g : C ≃ₐ[R] D b : B d : D ⊢ ↑(AlgHom.comp (map ↑f ↑g) (map ↑(AlgEquiv.symm f) ↑(AlgEquiv.symm g))) (b ⊗ₜ[R] d) = ↑(AlgHom.id S (B ⊗[R] D)) (b ⊗ₜ[R] d) [PROOFSTEP] simp [GOAL] R : Type u S : Type uS inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring S inst✝¹² : Algebra R S A : Type v₁ inst✝¹¹ : Semiring A inst✝¹⁰ : Algebra R A inst✝⁹ : Algebra S A inst✝⁸ : IsScalarTower R S A B : Type v₂ inst✝⁷ : Semiring B inst✝⁶ : Algebra R B inst✝⁵ : Algebra S B inst✝⁴ : IsScalarTower R S B C : Type v₃ inst✝³ : Semiring C inst✝² : Algebra R C D : Type v₄ inst✝¹ : Semiring D inst✝ : Algebra R D f : A ≃ₐ[S] B g : C ≃ₐ[R] D a : A c : C ⊢ ↑(AlgHom.comp (map ↑(AlgEquiv.symm f) ↑(AlgEquiv.symm g)) (map ↑f ↑g)) (a ⊗ₜ[R] c) = ↑(AlgHom.id S (A ⊗[R] C)) (a ⊗ₜ[R] c) [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 S : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Semiring B inst✝³ : CommSemiring S inst✝² : Algebra R A inst✝¹ : Algebra R B inst✝ : Algebra R S f : A →ₐ[R] S g : B →ₐ[R] S a₁ a₂ b₁ b₂ : S ⊢ ↑(LinearMap.mul' R S) ((a₁ * a₂) ⊗ₜ[R] (b₁ * b₂)) = ↑(LinearMap.mul' R S) (a₁ ⊗ₜ[R] b₁) * ↑(LinearMap.mul' R S) (a₂ ⊗ₜ[R] b₂) [PROOFSTEP] simp only [LinearMap.mul'_apply, mul_mul_mul_comm] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 S : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Semiring B inst✝³ : CommSemiring S inst✝² : Algebra R A inst✝¹ : Algebra R B inst✝ : Algebra R S f : A →ₐ[R] S g : B →ₐ[R] S r : R ⊢ ↑(LinearMap.mul' R S) (↑(algebraMap R S) r ⊗ₜ[R] 1) = ↑(algebraMap R S) r [PROOFSTEP] simp only [LinearMap.mul'_apply, _root_.mul_one] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 S : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Semiring B inst✝³ : CommSemiring S inst✝² : Algebra R A inst✝¹ : Algebra R B inst✝ : Algebra R S f : A →ₐ[R] S g : B →ₐ[R] S a : A ⊢ ↑(productMap f g) (a ⊗ₜ[R] 1) = ↑f a [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 S : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Semiring B inst✝³ : CommSemiring S inst✝² : Algebra R A inst✝¹ : Algebra R B inst✝ : Algebra R S f : A →ₐ[R] S g : B →ₐ[R] S ⊢ ∀ (x : A), ↑(AlgHom.comp (productMap f g) includeLeft) x = ↑f x [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 S : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Semiring B inst✝³ : CommSemiring S inst✝² : Algebra R A inst✝¹ : Algebra R B inst✝ : Algebra R S f : A →ₐ[R] S g : B →ₐ[R] S b : B ⊢ ↑(productMap f g) (1 ⊗ₜ[R] b) = ↑g b [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 S : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Semiring B inst✝³ : CommSemiring S inst✝² : Algebra R A inst✝¹ : Algebra R B inst✝ : Algebra R S f : A →ₐ[R] S g : B →ₐ[R] S ⊢ ∀ (x : B), ↑(AlgHom.comp (productMap f g) includeRight) x = ↑g x [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 S : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : Semiring A inst✝⁴ : Semiring B inst✝³ : CommSemiring S inst✝² : Algebra R A inst✝¹ : Algebra R B inst✝ : Algebra R S f : A →ₐ[R] S g : B →ₐ[R] S ⊢ AlgHom.range (productMap f g) = AlgHom.range f ⊔ AlgHom.range g [PROOFSTEP] rw [productMap, AlgHom.range_comp, map_range, map_sup, ← AlgHom.range_comp, ← AlgHom.range_comp, ← AlgHom.comp_assoc, ← AlgHom.comp_assoc, lmul'_comp_includeLeft, lmul'_comp_includeRight, AlgHom.id_comp, AlgHom.id_comp] [GOAL] R : Type u_1 A : Type u_2 A' : Type u_3 B : Type u_4 S : Type u_5 inst✝¹² : CommSemiring R inst✝¹¹ : CommSemiring A inst✝¹⁰ : Semiring A' inst✝⁹ : Semiring B inst✝⁸ : CommSemiring S inst✝⁷ : Algebra R A inst✝⁶ : Algebra R A' inst✝⁵ : Algebra A A' inst✝⁴ : IsScalarTower R A A' inst✝³ : Algebra R B inst✝² : Algebra R S inst✝¹ : Algebra A S inst✝ : IsScalarTower R A S f : A' →ₐ[A] S g : B →ₐ[R] S src✝ : A' ⊗[R] B →+* S := ↑(productMap (AlgHom.restrictScalars R f) g) r : A ⊢ OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : A' ⊗[R] B), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap A (A' ⊗[R] B)) r) = ↑(algebraMap A S) r [PROOFSTEP] dsimp [GOAL] R : Type u_1 A : Type u_2 A' : Type u_3 B : Type u_4 S : Type u_5 inst✝¹² : CommSemiring R inst✝¹¹ : CommSemiring A inst✝¹⁰ : Semiring A' inst✝⁹ : Semiring B inst✝⁸ : CommSemiring S inst✝⁷ : Algebra R A inst✝⁶ : Algebra R A' inst✝⁵ : Algebra A A' inst✝⁴ : IsScalarTower R A A' inst✝³ : Algebra R B inst✝² : Algebra R S inst✝¹ : Algebra A S inst✝ : IsScalarTower R A S f : A' →ₐ[A] S g : B →ₐ[R] S src✝ : A' ⊗[R] B →+* S := ↑(productMap (AlgHom.restrictScalars R f) g) r : A ⊢ ↑f (↑(algebraMap A A') r) * ↑g 1 = ↑(algebraMap A S) r [PROOFSTEP] simp [GOAL] k : Type uk inst✝⁴ : CommRing k R : Type uR inst✝³ : Ring R inst✝² : Algebra k R M : Type uM inst✝¹ : AddCommMonoid M inst✝ : Module k M ι : Type uι b : Basis ι k M r : R m : M ⊢ ↑(basisAux R b) (r ⊗ₜ[k] m) = r • Finsupp.mapRange ↑(algebraMap k R) (_ : ↑(algebraMap k R) 0 = 0) (↑b.repr m) [PROOFSTEP] ext [GOAL] case h k : Type uk inst✝⁴ : CommRing k R : Type uR inst✝³ : Ring R inst✝² : Algebra k R M : Type uM inst✝¹ : AddCommMonoid M inst✝ : Module k M ι : Type uι b : Basis ι k M r : R m : M a✝ : ι ⊢ ↑(↑(basisAux R b) (r ⊗ₜ[k] m)) a✝ = ↑(r • Finsupp.mapRange ↑(algebraMap k R) (_ : ↑(algebraMap k R) 0 = 0) (↑b.repr m)) a✝ [PROOFSTEP] simp [basisAux, ← Algebra.commutes, Algebra.smul_def] [GOAL] k : Type uk inst✝⁴ : CommRing k R : Type uR inst✝³ : Ring R inst✝² : Algebra k R M : Type uM inst✝¹ : AddCommMonoid M inst✝ : Module k M ι : Type uι b : Basis ι k M r : R x : R ⊗[k] M ⊢ ↑(basisAux R b) (r • 0) = r • ↑(basisAux R b) 0 [PROOFSTEP] simp [GOAL] k : Type uk inst✝⁴ : CommRing k R : Type uR inst✝³ : Ring R inst✝² : Algebra k R M : Type uM inst✝¹ : AddCommMonoid M inst✝ : Module k M ι : Type uι b : Basis ι k M r : R x✝ : R ⊗[k] M x : R y : M ⊢ ↑(basisAux R b) (r • x ⊗ₜ[k] y) = r • ↑(basisAux R b) (x ⊗ₜ[k] y) [PROOFSTEP] simp only [TensorProduct.smul_tmul', basisAux_tmul, smul_assoc] [GOAL] k : Type uk inst✝⁴ : CommRing k R : Type uR inst✝³ : Ring R inst✝² : Algebra k R M : Type uM inst✝¹ : AddCommMonoid M inst✝ : Module k M ι : Type uι b : Basis ι k M r : R x✝ x y : R ⊗[k] M hx : ↑(basisAux R b) (r • x) = r • ↑(basisAux R b) x hy : ↑(basisAux R b) (r • y) = r • ↑(basisAux R b) y ⊢ ↑(basisAux R b) (r • (x + y)) = r • ↑(basisAux R b) (x + y) [PROOFSTEP] simp [hx, hy] [GOAL] k : Type uk inst✝⁴ : CommRing k R : Type uR inst✝³ : Ring R inst✝² : Algebra k R M : Type uM inst✝¹ : AddCommMonoid M inst✝ : Module k M ι : Type uι b : Basis ι k M r : R i : ι ⊢ ↑(LinearEquiv.symm (basis R b).repr) (Finsupp.single i r) = r ⊗ₜ[k] ↑(LinearEquiv.symm b.repr) (Finsupp.single i 1) [PROOFSTEP] rw [basis, LinearEquiv.coe_symm_mk] -- porting note: `coe_symm_mk` isn't firing in `simp` [GOAL] k : Type uk inst✝⁴ : CommRing k R : Type uR inst✝³ : Ring R inst✝² : Algebra k R M : Type uM inst✝¹ : AddCommMonoid M inst✝ : Module k M ι : Type uι b : Basis ι k M r : R i : ι ⊢ LinearEquiv.invFun (basisAux R b) (Finsupp.single i r) = r ⊗ₜ[k] ↑(LinearEquiv.symm b.repr) (Finsupp.single i 1) [PROOFSTEP] simp [Equiv.uniqueProd_symm_apply, basisAux] -- Porting note: simpNF linter failed on `basis_repr_symm_apply` [GOAL] k : Type uk inst✝⁴ : CommRing k R : Type uR inst✝³ : Ring R inst✝² : Algebra k R M : Type uM inst✝¹ : AddCommMonoid M inst✝ : Module k M ι : Type uι b : Basis ι k M r : R i : ι ⊢ r • ↑(basis R b) i = r ⊗ₜ[k] ↑b i [PROOFSTEP] simpa using basis_repr_symm_apply b r i [GOAL] K : Type u_1 L : Type u_2 inst✝⁴ : Field K inst✝³ : CommRing L inst✝² : Algebra K L E1 E2 : Subalgebra K L inst✝¹ : FiniteDimensional K { x // x ∈ E1 } inst✝ : FiniteDimensional K { x // x ∈ E2 } ⊢ FiniteDimensional K { x // x ∈ E1 ⊔ E2 } [PROOFSTEP] rw [← E1.range_val, ← E2.range_val, ← Algebra.TensorProduct.productMap_range] [GOAL] K : Type u_1 L : Type u_2 inst✝⁴ : Field K inst✝³ : CommRing L inst✝² : Algebra K L E1 E2 : Subalgebra K L inst✝¹ : FiniteDimensional K { x // x ∈ E1 } inst✝ : FiniteDimensional K { x // x ∈ E2 } ⊢ FiniteDimensional K { x // x ∈ AlgHom.range (Algebra.TensorProduct.productMap (val E1) (val E2)) } [PROOFSTEP] exact (Algebra.TensorProduct.productMap E1.val E2.val).toLinearMap.finiteDimensional_range [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : Semiring A inst✝⁶ : Semiring B inst✝⁵ : Module A M inst✝⁴ : Module B M inst✝³ : Algebra R A inst✝² : Algebra R B inst✝¹ : IsScalarTower R A M inst✝ : IsScalarTower R B M r t : A ⊢ (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) (r + t) = (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) r + (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) t [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : Semiring A inst✝⁶ : Semiring B inst✝⁵ : Module A M inst✝⁴ : Module B M inst✝³ : Algebra R A inst✝² : Algebra R B inst✝¹ : IsScalarTower R A M inst✝ : IsScalarTower R B M r t : A x✝¹ : B x✝ : M ⊢ ↑(↑((fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) (r + t)) x✝¹) x✝ = ↑(↑((fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) r + (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) t) x✝¹) x✝ [PROOFSTEP] simp only [add_smul, LinearMap.add_apply] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : Semiring A inst✝⁶ : Semiring B inst✝⁵ : Module A M inst✝⁴ : Module B M inst✝³ : Algebra R A inst✝² : Algebra R B inst✝¹ : IsScalarTower R A M inst✝ : IsScalarTower R B M n : R r : A ⊢ AddHom.toFun { toFun := fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M), map_add' := (_ : ∀ (r t : A), (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) (r + t) = (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) r + (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) t) } (n • r) = ↑(RingHom.id R) n • AddHom.toFun { toFun := fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M), map_add' := (_ : ∀ (r t : A), (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) (r + t) = (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) r + (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) t) } r [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M inst✝⁷ : Semiring A inst✝⁶ : Semiring B inst✝⁵ : Module A M inst✝⁴ : Module B M inst✝³ : Algebra R A inst✝² : Algebra R B inst✝¹ : IsScalarTower R A M inst✝ : IsScalarTower R B M n : R r : A x✝¹ : B x✝ : M ⊢ ↑(↑(AddHom.toFun { toFun := fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M), map_add' := (_ : ∀ (r t : A), (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) (r + t) = (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) r + (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) t) } (n • r)) x✝¹) x✝ = ↑(↑(↑(RingHom.id R) n • AddHom.toFun { toFun := fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M), map_add' := (_ : ∀ (r t : A), (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) (r + t) = (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) r + (fun a => a • AlgHom.toLinearMap (Algebra.lsmul R R M)) t) } r) x✝¹) x✝ [PROOFSTEP] simp only [RingHom.id_apply, LinearMap.smul_apply, smul_assoc] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M m : M ⊢ 1 • m = m [PROOFSTEP] simp only [(· • ·), Algebra.TensorProduct.one_def] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M m : M ⊢ ↑(↑moduleAux (1 ⊗ₜ[R] 1)) m = m [PROOFSTEP] simp only [moduleAux_apply, one_smul] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ (x * y) • m = x • y • m [PROOFSTEP] refine TensorProduct.induction_on x ?_ ?_ ?_ [GOAL] case refine_1 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ (0 * y) • m = 0 • y • m [PROOFSTEP] refine TensorProduct.induction_on y ?_ ?_ ?_ [GOAL] case refine_2 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ ∀ (x : A) (y_1 : B), (x ⊗ₜ[R] y_1 * y) • m = x ⊗ₜ[R] y_1 • y • m [PROOFSTEP] refine TensorProduct.induction_on y ?_ ?_ ?_ [GOAL] case refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ ∀ (x y_1 : A ⊗[R] B), (x * y) • m = x • y • m → (y_1 * y) • m = y_1 • y • m → ((x + y_1) * y) • m = (x + y_1) • y • m [PROOFSTEP] refine TensorProduct.induction_on y ?_ ?_ ?_ [GOAL] case refine_1.refine_1 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ (0 * 0) • m = 0 • 0 • m [PROOFSTEP] simp only [(· • ·), mul_zero, map_zero, LinearMap.zero_apply] [GOAL] case refine_1.refine_2 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ ∀ (x : A) (y : B), (0 * x ⊗ₜ[R] y) • m = 0 • x ⊗ₜ[R] y • m [PROOFSTEP] intro a b [GOAL] case refine_1.refine_2 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M a : A b : B ⊢ (0 * a ⊗ₜ[R] b) • m = 0 • a ⊗ₜ[R] b • m [PROOFSTEP] simp only [(· • ·), zero_mul, map_zero, LinearMap.zero_apply] [GOAL] case refine_1.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ ∀ (x y : A ⊗[R] B), (0 * x) • m = 0 • x • m → (0 * y) • m = 0 • y • m → (0 * (x + y)) • m = 0 • (x + y) • m [PROOFSTEP] intro z w _ _ [GOAL] case refine_1.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M z w : A ⊗[R] B a✝¹ : (0 * z) • m = 0 • z • m a✝ : (0 * w) • m = 0 • w • m ⊢ (0 * (z + w)) • m = 0 • (z + w) • m [PROOFSTEP] simp only [(· • ·), zero_mul, map_zero, LinearMap.zero_apply] [GOAL] case refine_2.refine_1 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ ∀ (x : A) (y : B), (x ⊗ₜ[R] y * 0) • m = x ⊗ₜ[R] y • 0 • m [PROOFSTEP] intro a b [GOAL] case refine_2.refine_1 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M a : A b : B ⊢ (a ⊗ₜ[R] b * 0) • m = a ⊗ₜ[R] b • 0 • m [PROOFSTEP] simp only [(· • ·), mul_zero, map_zero, LinearMap.zero_apply] [GOAL] case refine_2.refine_2 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ ∀ (x : A) (y : B) (x_1 : A) (y_1 : B), (x_1 ⊗ₜ[R] y_1 * x ⊗ₜ[R] y) • m = x_1 ⊗ₜ[R] y_1 • x ⊗ₜ[R] y • m [PROOFSTEP] intro a₁ b₁ a₂ b₂ [GOAL] case refine_2.refine_2 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M a₁ : A b₁ : B a₂ : A b₂ : B ⊢ (a₂ ⊗ₜ[R] b₂ * a₁ ⊗ₜ[R] b₁) • m = a₂ ⊗ₜ[R] b₂ • a₁ ⊗ₜ[R] b₁ • m [PROOFSTEP] simp only [(· • ·), Algebra.TensorProduct.tmul_mul_tmul] [GOAL] case refine_2.refine_2 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M a₁ : A b₁ : B a₂ : A b₂ : B ⊢ ↑(↑moduleAux ((a₂ * a₁) ⊗ₜ[R] (b₂ * b₁))) m = ↑(↑moduleAux (a₂ ⊗ₜ[R] b₂)) (↑(↑moduleAux (a₁ ⊗ₜ[R] b₁)) m) [PROOFSTEP] simp only [moduleAux_apply, mul_smul] [GOAL] case refine_2.refine_2 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M a₁ : A b₁ : B a₂ : A b₂ : B ⊢ a₂ • a₁ • b₂ • b₁ • m = a₂ • b₂ • a₁ • b₁ • m [PROOFSTEP] rw [smul_comm a₁ b₂] [GOAL] case refine_2.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ ∀ (x y : A ⊗[R] B), (∀ (x_1 : A) (y : B), (x_1 ⊗ₜ[R] y * x) • m = x_1 ⊗ₜ[R] y • x • m) → (∀ (x : A) (y_1 : B), (x ⊗ₜ[R] y_1 * y) • m = x ⊗ₜ[R] y_1 • y • m) → ∀ (x_1 : A) (y_1 : B), (x_1 ⊗ₜ[R] y_1 * (x + y)) • m = x_1 ⊗ₜ[R] y_1 • (x + y) • m [PROOFSTEP] intro z w hz hw a b [GOAL] case refine_2.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M z w : A ⊗[R] B hz : ∀ (x : A) (y : B), (x ⊗ₜ[R] y * z) • m = x ⊗ₜ[R] y • z • m hw : ∀ (x : A) (y : B), (x ⊗ₜ[R] y * w) • m = x ⊗ₜ[R] y • w • m a : A b : B ⊢ (a ⊗ₜ[R] b * (z + w)) • m = a ⊗ₜ[R] b • (z + w) • m [PROOFSTEP] simp only [(· • ·)] at hz hw ⊢ [GOAL] case refine_2.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M z w : A ⊗[R] B hz : ∀ (x : A) (y : B), ↑(↑moduleAux (x ⊗ₜ[R] y * z)) m = ↑(↑moduleAux (x ⊗ₜ[R] y)) (↑(↑moduleAux z) m) hw : ∀ (x : A) (y : B), ↑(↑moduleAux (x ⊗ₜ[R] y * w)) m = ↑(↑moduleAux (x ⊗ₜ[R] y)) (↑(↑moduleAux w) m) a : A b : B ⊢ ↑(↑moduleAux (a ⊗ₜ[R] b * (z + w))) m = ↑(↑moduleAux (a ⊗ₜ[R] b)) (↑(↑moduleAux (z + w)) m) [PROOFSTEP] simp only [moduleAux_apply] [GOAL] case refine_2.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M z w : A ⊗[R] B hz : ∀ (x : A) (y : B), ↑(↑moduleAux (x ⊗ₜ[R] y * z)) m = ↑(↑moduleAux (x ⊗ₜ[R] y)) (↑(↑moduleAux z) m) hw : ∀ (x : A) (y : B), ↑(↑moduleAux (x ⊗ₜ[R] y * w)) m = ↑(↑moduleAux (x ⊗ₜ[R] y)) (↑(↑moduleAux w) m) a : A b : B ⊢ ↑(↑moduleAux (a ⊗ₜ[R] b * (z + w))) m = a • b • ↑(↑moduleAux (z + w)) m [PROOFSTEP] rw [mul_add] -- simp only doesn't work [GOAL] case refine_2.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M z w : A ⊗[R] B hz : ∀ (x : A) (y : B), ↑(↑moduleAux (x ⊗ₜ[R] y * z)) m = ↑(↑moduleAux (x ⊗ₜ[R] y)) (↑(↑moduleAux z) m) hw : ∀ (x : A) (y : B), ↑(↑moduleAux (x ⊗ₜ[R] y * w)) m = ↑(↑moduleAux (x ⊗ₜ[R] y)) (↑(↑moduleAux w) m) a : A b : B ⊢ ↑(↑moduleAux (a ⊗ₜ[R] b * z + a ⊗ₜ[R] b * w)) m = a • b • ↑(↑moduleAux (z + w)) m [PROOFSTEP] simp only [LinearMap.map_add, LinearMap.add_apply, moduleAux_apply, hz, hw, smul_add] [GOAL] case refine_3.refine_1 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ ∀ (x y : A ⊗[R] B), (x * 0) • m = x • 0 • m → (y * 0) • m = y • 0 • m → ((x + y) * 0) • m = (x + y) • 0 • m [PROOFSTEP] intro z w _ _ [GOAL] case refine_3.refine_1 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M z w : A ⊗[R] B a✝¹ : (z * 0) • m = z • 0 • m a✝ : (w * 0) • m = w • 0 • m ⊢ ((z + w) * 0) • m = (z + w) • 0 • m [PROOFSTEP] simp only [(· • ·), mul_zero, map_zero, LinearMap.zero_apply] [GOAL] case refine_3.refine_2 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ ∀ (x : A) (y : B) (x_1 y_1 : A ⊗[R] B), (x_1 * x ⊗ₜ[R] y) • m = x_1 • x ⊗ₜ[R] y • m → (y_1 * x ⊗ₜ[R] y) • m = y_1 • x ⊗ₜ[R] y • m → ((x_1 + y_1) * x ⊗ₜ[R] y) • m = (x_1 + y_1) • x ⊗ₜ[R] y • m [PROOFSTEP] intro a b z w hz hw [GOAL] case refine_3.refine_2 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M a : A b : B z w : A ⊗[R] B hz : (z * a ⊗ₜ[R] b) • m = z • a ⊗ₜ[R] b • m hw : (w * a ⊗ₜ[R] b) • m = w • a ⊗ₜ[R] b • m ⊢ ((z + w) * a ⊗ₜ[R] b) • m = (z + w) • a ⊗ₜ[R] b • m [PROOFSTEP] simp only [(· • ·)] at hz hw [GOAL] case refine_3.refine_2 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M a : A b : B z w : A ⊗[R] B hz : ↑(↑moduleAux (z * a ⊗ₜ[R] b)) m = ↑(↑moduleAux z) (↑(↑moduleAux (a ⊗ₜ[R] b)) m) hw : ↑(↑moduleAux (w * a ⊗ₜ[R] b)) m = ↑(↑moduleAux w) (↑(↑moduleAux (a ⊗ₜ[R] b)) m) ⊢ ((z + w) * a ⊗ₜ[R] b) • m = (z + w) • a ⊗ₜ[R] b • m [PROOFSTEP] simp only [(· • ·), LinearMap.map_add, add_mul, LinearMap.add_apply, hz, hw] [GOAL] case refine_3.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ ∀ (x y : A ⊗[R] B), (∀ (x_1 y : A ⊗[R] B), (x_1 * x) • m = x_1 • x • m → (y * x) • m = y • x • m → ((x_1 + y) * x) • m = (x_1 + y) • x • m) → (∀ (x y_1 : A ⊗[R] B), (x * y) • m = x • y • m → (y_1 * y) • m = y_1 • y • m → ((x + y_1) * y) • m = (x + y_1) • y • m) → ∀ (x_1 y_1 : A ⊗[R] B), (x_1 * (x + y)) • m = x_1 • (x + y) • m → (y_1 * (x + y)) • m = y_1 • (x + y) • m → ((x_1 + y_1) * (x + y)) • m = (x_1 + y_1) • (x + y) • m [PROOFSTEP] intro u v _ _ z w hz hw [GOAL] case refine_3.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M u v : A ⊗[R] B a✝¹ : ∀ (x y : A ⊗[R] B), (x * u) • m = x • u • m → (y * u) • m = y • u • m → ((x + y) * u) • m = (x + y) • u • m a✝ : ∀ (x y : A ⊗[R] B), (x * v) • m = x • v • m → (y * v) • m = y • v • m → ((x + y) * v) • m = (x + y) • v • m z w : A ⊗[R] B hz : (z * (u + v)) • m = z • (u + v) • m hw : (w * (u + v)) • m = w • (u + v) • m ⊢ ((z + w) * (u + v)) • m = (z + w) • (u + v) • m [PROOFSTEP] simp only [(· • ·)] at hz hw [GOAL] case refine_3.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M u v : A ⊗[R] B a✝¹ : ∀ (x y : A ⊗[R] B), (x * u) • m = x • u • m → (y * u) • m = y • u • m → ((x + y) * u) • m = (x + y) • u • m a✝ : ∀ (x y : A ⊗[R] B), (x * v) • m = x • v • m → (y * v) • m = y • v • m → ((x + y) * v) • m = (x + y) • v • m z w : A ⊗[R] B hz : ↑(↑moduleAux (z * (u + v))) m = ↑(↑moduleAux z) (↑(↑moduleAux (u + v)) m) hw : ↑(↑moduleAux (w * (u + v))) m = ↑(↑moduleAux w) (↑(↑moduleAux (u + v)) m) ⊢ ((z + w) * (u + v)) • m = (z + w) • (u + v) • m [PROOFSTEP] simp only [(· • ·)] [GOAL] case refine_3.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M u v : A ⊗[R] B a✝¹ : ∀ (x y : A ⊗[R] B), (x * u) • m = x • u • m → (y * u) • m = y • u • m → ((x + y) * u) • m = (x + y) • u • m a✝ : ∀ (x y : A ⊗[R] B), (x * v) • m = x • v • m → (y * v) • m = y • v • m → ((x + y) * v) • m = (x + y) • v • m z w : A ⊗[R] B hz : ↑(↑moduleAux (z * (u + v))) m = ↑(↑moduleAux z) (↑(↑moduleAux (u + v)) m) hw : ↑(↑moduleAux (w * (u + v))) m = ↑(↑moduleAux w) (↑(↑moduleAux (u + v)) m) ⊢ ↑(↑moduleAux ((z + w) * (u + v))) m = ↑(↑moduleAux (z + w)) (↑(↑moduleAux (u + v)) m) [PROOFSTEP] rw [add_mul, LinearMap.map_add, LinearMap.add_apply, hz, hw] [GOAL] case refine_3.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M u v : A ⊗[R] B a✝¹ : ∀ (x y : A ⊗[R] B), (x * u) • m = x • u • m → (y * u) • m = y • u • m → ((x + y) * u) • m = (x + y) • u • m a✝ : ∀ (x y : A ⊗[R] B), (x * v) • m = x • v • m → (y * v) • m = y • v • m → ((x + y) * v) • m = (x + y) • v • m z w : A ⊗[R] B hz : ↑(↑moduleAux (z * (u + v))) m = ↑(↑moduleAux z) (↑(↑moduleAux (u + v)) m) hw : ↑(↑moduleAux (w * (u + v))) m = ↑(↑moduleAux w) (↑(↑moduleAux (u + v)) m) ⊢ ↑(↑moduleAux z) (↑(↑moduleAux (u + v)) m) + ↑(↑moduleAux w) (↑(↑moduleAux (u + v)) m) = ↑(↑moduleAux (z + w)) (↑(↑moduleAux (u + v)) m) [PROOFSTEP] simp only [LinearMap.map_add, LinearMap.add_apply] [GOAL] case refine_3.refine_3 R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M u v : A ⊗[R] B a✝¹ : ∀ (x y : A ⊗[R] B), (x * u) • m = x • u • m → (y * u) • m = y • u • m → ((x + y) * u) • m = (x + y) • u • m a✝ : ∀ (x y : A ⊗[R] B), (x * v) • m = x • v • m → (y * v) • m = y • v • m → ((x + y) * v) • m = (x + y) • v • m z w : A ⊗[R] B hz : ↑(↑moduleAux (z * (u + v))) m = ↑(↑moduleAux z) (↑(↑moduleAux (u + v)) m) hw : ↑(↑moduleAux (w * (u + v))) m = ↑(↑moduleAux w) (↑(↑moduleAux (u + v)) m) ⊢ ↑(↑moduleAux z) (↑(↑moduleAux u) m) + ↑(↑moduleAux z) (↑(↑moduleAux v) m) + (↑(↑moduleAux w) (↑(↑moduleAux u) m) + ↑(↑moduleAux w) (↑(↑moduleAux v) m)) = ↑(↑moduleAux z) (↑(↑moduleAux u) m) + ↑(↑moduleAux w) (↑(↑moduleAux u) m) + (↑(↑moduleAux z) (↑(↑moduleAux v) m) + ↑(↑moduleAux w) (↑(↑moduleAux v) m)) [PROOFSTEP] rw [add_add_add_comm] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x : A ⊗[R] B ⊢ x • 0 = 0 [PROOFSTEP] simp only [(· • ·), map_zero] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x : A ⊗[R] B m₁ m₂ : M ⊢ x • (m₁ + m₂) = x • m₁ + x • m₂ [PROOFSTEP] simp only [(· • ·), map_add] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M x y : A ⊗[R] B m : M ⊢ (x + y) • m = x • m + y • m [PROOFSTEP] simp only [(· • ·), map_add, LinearMap.add_apply] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 M : Type u_4 inst✝¹¹ : CommSemiring R inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M inst✝⁸ : Semiring A inst✝⁷ : Semiring B inst✝⁶ : Module A M inst✝⁵ : Module B M inst✝⁴ : Algebra R A inst✝³ : Algebra R B inst✝² : IsScalarTower R A M inst✝¹ : IsScalarTower R B M inst✝ : SMulCommClass A B M m : M ⊢ 0 • m = 0 [PROOFSTEP] simp only [(· • ·), map_zero, LinearMap.zero_apply]
{"mathlib_filename": "Mathlib.RingTheory.TensorProduct", "llama_tokens": 91965}
{"mathlib_filename": "Mathlib.Tactic.WLOG", "llama_tokens": 0}