|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""NLU Evaluation Data.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import csv |
|
import re |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{XLiu.etal:IWSDS2019, |
|
author = {Xingkun Liu, Arash Eshghi, Pawel Swietojanski and Verena Rieser}, |
|
title = {Benchmarking Natural Language Understanding Services for building Conversational Agents}, |
|
booktitle = {Proceedings of the Tenth International Workshop on Spoken Dialogue Systems Technology (IWSDS)}, |
|
month = {April}, |
|
year = {2019}, |
|
address = {Ortigia, Siracusa (SR), Italy}, |
|
publisher = {Springer}, |
|
pages = {xxx--xxx}, |
|
url = {http://www.xx.xx/xx/} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Raw part of NLU Evaluation Data. It contains 25 715 non-empty examples (original dataset has 25716 examples) from 68 unique intents belonging to 18 scenarios. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/xliuhw/NLU-Evaluation-Data" |
|
|
|
_LICENSE = "Creative Commons Attribution 4.0 International License (CC BY 4.0)" |
|
|
|
_URL = "https://raw.githubusercontent.com/xliuhw/NLU-Evaluation-Data/master/AnnotatedData/NLU-Data-Home-Domain-Annotated-All.csv" |
|
|
|
ANNOTATION_PATTERN = re.compile(r"\[(.+?)\s+\:+\s(.+?)\]") |
|
|
|
|
|
def remove_annotations(text): |
|
"""Remove named entity annotations from text example. |
|
|
|
Examples are defined based on `answer_annotation` column since it has the least number |
|
of Nans. However, this column contains patterns of annotation of the form: |
|
|
|
[named_entity : part_of_text] |
|
|
|
e.g. [time : five am], [date : this week] |
|
|
|
We identity them with regex rule and replace all occurrences with just part_of_text. |
|
""" |
|
return ANNOTATION_PATTERN.sub(r"\2", text) |
|
|
|
|
|
def define_intent_name(scenario, intent): |
|
"""Intent name is defined as concatenation of `scenario` and `intent` |
|
values. |
|
|
|
See Also: |
|
https://github.com/xliuhw/NLU-Evaluation-Data/issues/5 |
|
""" |
|
return f"{scenario}_{intent}" |
|
|
|
|
|
class NLUEvaluationData(datasets.GeneratorBasedBuilder): |
|
"""Raw part of NLU Evaluation Data.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"scenario": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel( |
|
names=[ |
|
"alarm_query", |
|
"alarm_remove", |
|
"alarm_set", |
|
"audio_volume_down", |
|
"audio_volume_mute", |
|
"audio_volume_other", |
|
"audio_volume_up", |
|
"calendar_query", |
|
"calendar_remove", |
|
"calendar_set", |
|
"cooking_query", |
|
"cooking_recipe", |
|
"datetime_convert", |
|
"datetime_query", |
|
"email_addcontact", |
|
"email_query", |
|
"email_querycontact", |
|
"email_sendemail", |
|
"general_affirm", |
|
"general_commandstop", |
|
"general_confirm", |
|
"general_dontcare", |
|
"general_explain", |
|
"general_greet", |
|
"general_joke", |
|
"general_negate", |
|
"general_praise", |
|
"general_quirky", |
|
"general_repeat", |
|
"iot_cleaning", |
|
"iot_coffee", |
|
"iot_hue_lightchange", |
|
"iot_hue_lightdim", |
|
"iot_hue_lightoff", |
|
"iot_hue_lighton", |
|
"iot_hue_lightup", |
|
"iot_wemo_off", |
|
"iot_wemo_on", |
|
"lists_createoradd", |
|
"lists_query", |
|
"lists_remove", |
|
"music_dislikeness", |
|
"music_likeness", |
|
"music_query", |
|
"music_settings", |
|
"news_query", |
|
"play_audiobook", |
|
"play_game", |
|
"play_music", |
|
"play_podcasts", |
|
"play_radio", |
|
"qa_currency", |
|
"qa_definition", |
|
"qa_factoid", |
|
"qa_maths", |
|
"qa_stock", |
|
"recommendation_events", |
|
"recommendation_locations", |
|
"recommendation_movies", |
|
"social_post", |
|
"social_query", |
|
"takeaway_order", |
|
"takeaway_query", |
|
"transport_query", |
|
"transport_taxi", |
|
"transport_ticket", |
|
"transport_traffic", |
|
"weather_query", |
|
] |
|
), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
train_path = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
csv_reader = csv.reader(f, quotechar='"', delimiter=";", quoting=csv.QUOTE_ALL, skipinitialspace=True) |
|
|
|
next(csv_reader) |
|
for id_, row in enumerate(csv_reader): |
|
( |
|
userid, |
|
answerid, |
|
scenario, |
|
intent, |
|
status, |
|
answer_annotation, |
|
notes, |
|
suggested_entities, |
|
answer_normalised, |
|
answer, |
|
question, |
|
) = row |
|
|
|
|
|
if answer_annotation == "null": |
|
continue |
|
|
|
yield id_, { |
|
"text": remove_annotations(answer_annotation), |
|
"scenario": scenario, |
|
"label": define_intent_name(scenario, intent), |
|
} |
|
|