nlu_evaluation_data / nlu_evaluation_data.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.1)
0a5561a
raw
history blame
7.67 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NLU Evaluation Data."""
from __future__ import absolute_import, division, print_function
import csv
import re
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@InProceedings{XLiu.etal:IWSDS2019,
author = {Xingkun Liu, Arash Eshghi, Pawel Swietojanski and Verena Rieser},
title = {Benchmarking Natural Language Understanding Services for building Conversational Agents},
booktitle = {Proceedings of the Tenth International Workshop on Spoken Dialogue Systems Technology (IWSDS)},
month = {April},
year = {2019},
address = {Ortigia, Siracusa (SR), Italy},
publisher = {Springer},
pages = {xxx--xxx},
url = {http://www.xx.xx/xx/}
}
"""
# You can copy an official description
_DESCRIPTION = """\
Raw part of NLU Evaluation Data. It contains 25 715 non-empty examples (original dataset has 25716 examples) from 68 unique intents belonging to 18 scenarios.
"""
_HOMEPAGE = "https://github.com/xliuhw/NLU-Evaluation-Data"
_LICENSE = "Creative Commons Attribution 4.0 International License (CC BY 4.0)"
_URL = "https://raw.githubusercontent.com/xliuhw/NLU-Evaluation-Data/master/AnnotatedData/NLU-Data-Home-Domain-Annotated-All.csv"
ANNOTATION_PATTERN = re.compile(r"\[(.+?)\s+\:+\s(.+?)\]")
def remove_annotations(text):
"""Remove named entity annotations from text example.
Examples are defined based on `answer_annotation` column since it has the least number
of Nans. However, this column contains patterns of annotation of the form:
[named_entity : part_of_text]
e.g. [time : five am], [date : this week]
We identity them with regex rule and replace all occurrences with just part_of_text.
"""
return ANNOTATION_PATTERN.sub(r"\2", text)
def define_intent_name(scenario, intent):
"""Intent name is defined as concatenation of `scenario` and `intent`
values.
See Also:
https://github.com/xliuhw/NLU-Evaluation-Data/issues/5
"""
return f"{scenario}_{intent}"
class NLUEvaluationData(datasets.GeneratorBasedBuilder):
"""Raw part of NLU Evaluation Data."""
VERSION = datasets.Version("1.1.0")
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"scenario": datasets.Value("string"),
"label": datasets.features.ClassLabel(
names=[
"alarm_query",
"alarm_remove",
"alarm_set",
"audio_volume_down",
"audio_volume_mute",
"audio_volume_other",
"audio_volume_up",
"calendar_query",
"calendar_remove",
"calendar_set",
"cooking_query",
"cooking_recipe",
"datetime_convert",
"datetime_query",
"email_addcontact",
"email_query",
"email_querycontact",
"email_sendemail",
"general_affirm",
"general_commandstop",
"general_confirm",
"general_dontcare",
"general_explain",
"general_greet",
"general_joke",
"general_negate",
"general_praise",
"general_quirky",
"general_repeat",
"iot_cleaning",
"iot_coffee",
"iot_hue_lightchange",
"iot_hue_lightdim",
"iot_hue_lightoff",
"iot_hue_lighton",
"iot_hue_lightup",
"iot_wemo_off",
"iot_wemo_on",
"lists_createoradd",
"lists_query",
"lists_remove",
"music_dislikeness",
"music_likeness",
"music_query",
"music_settings",
"news_query",
"play_audiobook",
"play_game",
"play_music",
"play_podcasts",
"play_radio",
"qa_currency",
"qa_definition",
"qa_factoid",
"qa_maths",
"qa_stock",
"recommendation_events",
"recommendation_locations",
"recommendation_movies",
"social_post",
"social_query",
"takeaway_order",
"takeaway_query",
"transport_query",
"transport_taxi",
"transport_ticket",
"transport_traffic",
"weather_query",
]
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
train_path = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
]
def _generate_examples(self, filepath):
"""Yields examples as (key, example) tuples."""
with open(filepath, encoding="utf-8") as f:
csv_reader = csv.reader(f, quotechar='"', delimiter=";", quoting=csv.QUOTE_ALL, skipinitialspace=True)
# call next to skip header
next(csv_reader)
for id_, row in enumerate(csv_reader):
(
userid,
answerid,
scenario,
intent,
status,
answer_annotation,
notes,
suggested_entities,
answer_normalised,
answer,
question,
) = row
# examples with empty answer are removed as part of the dataset
if answer_annotation == "null":
continue
yield id_, {
"text": remove_annotations(answer_annotation),
"scenario": scenario,
"label": define_intent_name(scenario, intent),
}