|
from transformers import AutoFeatureExtractor |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from PIL import Image |
|
import numpy as np |
|
|
|
def check_safety(x_image): |
|
safety_model_id = "CompVis/stable-diffusion-safety-checker" |
|
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) |
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) |
|
|
|
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") |
|
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) |
|
assert x_checked_image.shape[0] == len(has_nsfw_concept) |
|
for i in range(len(has_nsfw_concept)): |
|
if has_nsfw_concept[i]: |
|
x_checked_image[i] = load_replacement(x_checked_image[i]) |
|
return x_checked_image, has_nsfw_concept |
|
|
|
def numpy_to_pil(images): |
|
""" |
|
Convert a numpy image or a batch of images to a PIL image. |
|
""" |
|
if images.ndim == 3: |
|
images = images[None, ...] |
|
images = (images * 255).round().astype("uint8") |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
return pil_images |
|
|
|
def load_replacement(x): |
|
try: |
|
hwc = x.shape |
|
y = Image.open("html/NSFW_replace.jpg").convert("RGB").resize((hwc[1], hwc[0])) |
|
y = (np.array(y)/255.0).astype(x.dtype) |
|
assert y.shape == x.shape |
|
return y |
|
except Exception as e: |
|
return x |