DT_SegNet / script.py
xiazeyu's picture
Add conversion script
b811f30 verified
raw
history blame
5.85 kB
import json
import datasets
import pandas as pd
id_to_original = {
"1": "5-5-10-H-A1000C 100h-30k-3-crop",
"2": "5-5-A1000C 100h-30k-9 crop",
"3": "5-5-A1000C 100h-30k-9 crop2",
"4": "5-5-A1000C 100h-30k-9-crop",
"5": "5k-Cr-10-10-20Fe-H-Ageing1200C 4h-6-crop",
"6": "Cr-5-5-10Fe-A1200C 4h-6 crop1",
"7": "Cr-5-5-10Fe-A1200C 4h-6 crop2",
"8": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-9crop1",
"9": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-9crop2",
"10": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-10 crop",
"11": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-10 crop2",
"12": "Cr-5-5-10Fe-H1400-20h-A1000-20h-50k-10 crop",
"13": "Cr-5-5-10Fe-H1400-20h-A1000-240h-30k-8 crop2",
"14": "Cr-5-5-A1200C 4h-20k-5-crop1",
"15": "Cr-5-5-A1200C 4h-20k-5-crop2",
"16": "Cr-10-10-20Fe-H20h-A1200C 20h-7-crop1",
"17": "J955-H2-7-crop1",
"18": "J955-H2-7-crop2",
"19": "Cr-10-10-20Fe-A100h-1-crop1",
"20": "Cr-10-10-20Fe-A100h-4-crop1",
"21": "Cr-10Ni-10Al-20Fe-8 crop1",
"22": "Cr-10Ni-10Al-20Fe-8 crop2",
"23": "Cr-10Ni-10Al-20Fe-H1400C20h-9 crop1",
"24": "Cr-10Ni-10Al-20Fe-H1400C20h-9 crop2",
}
ids_split = {
datasets.Split.TEST: [
"1",
"5",
"9",
"14",
"20",
],
datasets.Split.VALIDATION: [
"2",
"7",
"18",
"22",
],
datasets.Split.TRAIN: [
"3",
"4",
"6",
"8",
"10",
"11",
"12",
"13",
"15",
"16",
"17",
"19",
"21",
"23",
"24",
]
}
_CITATION = """\
@article{xia2023Accurate,
author = {Zeyu Xia and Kan Ma and Sibo Cheng and Thomas Blackburn and Ziling Peng and Kewei Zhu and Weihang Zhang and Dunhui Xiao and Alexander J Knowles and Rossella Arcucci},
copyright = {CC BY-NC 3.0},
doi = {10.1039/d3cp00402c},
issn = {1463-9076},
journal = {Physical Chemistry Chemical Physics},
keywords = {},
language = {English},
month = {6},
number = {23},
pages = {15970--15987},
pmid = {37265373},
publisher = {Royal Society of Chemistry (RSC)},
title = {Accurate Identification and Measurement of the Precipitate Area by Two-Stage Deep Neural Networks in Novel Chromium-Based Alloy},
url = {https://doi.org/10.1039/d3cp00402c},
volume = {25},
year = {2023}
}
"""
_DESCRIPTION = 'A comprehensive, two-tiered deep learning approach designed for precise object detection and segmentation in electron microscopy (EM) images.'
_CATEGORIES = ["precipitate"]
_HOMEPAGE = 'https://github.com/xiazeyu/DT_SegNet'
_LICENSE = 'CC BY-NC 3.0'
def convert_image(image_path):
with open(image_path, "rb") as image_file:
return image_file.read()
# return Image.open(image_path)
def convert_json(json_path):
with open(json_path, "r") as json_file:
json_str = json.dumps(json.load(json_file))
return json_str # .encode('utf-8')
def convert_txt(txt_path):
yolo_data = {"bbox": [], "category": []}
# Open and read the text file
with open(txt_path, "r") as file:
for line in file:
# Split each line into components
parts = line.strip().split()
# The first part is the category, which is added directly to the 'category' list
yolo_data["category"].append(int(parts[0]))
# The rest of the parts are the bounding box coordinates, which need to be converted to floats
# and added as a sublist to the 'bbox' list
bbox = [float(coord) for coord in parts[1:]]
yolo_data["bbox"].append(bbox)
return yolo_data
def get_ds(pfx):
image_array = []
seg_annotation_array = []
raw_seg_annotation_array = []
det_annotation_array = []
for img_idx in ids_split[pfx]:
ydt = convert_txt(f"{pfx}/{img_idx}_label.txt")
det_annotation_array.append({
"bbox": ydt["bbox"],
"category": ydt["category"],
})
image_array.append(convert_image(f"{pfx}/{img_idx}.png"))
seg_annotation_array.append(convert_image(f"{pfx}/{img_idx}_label.png"))
raw_seg_annotation_array.append(convert_json(f"{pfx}/{img_idx}.json"))
data = {
"id": ids_split[pfx],
"original_name": [id_to_original[file] for file in ids_split[pfx]],
"image": image_array,
"det_annotation": det_annotation_array,
"seg_annotation": seg_annotation_array,
"raw_seg_annotation": raw_seg_annotation_array,
}
df = pd.DataFrame(data)
features = datasets.Features({
'id': datasets.Value('int8'),
'original_name': datasets.Value('string'),
'image': datasets.Image(),
"det_annotation": datasets.Sequence(
{
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"category": datasets.ClassLabel(num_classes=1, names=_CATEGORIES),
}
),
'seg_annotation': datasets.Image(),
'raw_seg_annotation': datasets.Value(dtype='string'),
})
data_info = datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
ds = datasets.Dataset.from_pandas(df,
features=features,
info=data_info,
split=pfx)
ds.VERSION = datasets.Version("1.0.0")
return ds
ddd = datasets.DatasetDict(
{
str(datasets.Split.TRAIN): get_ds(datasets.Split.TRAIN),
str(datasets.Split.VALIDATION): get_ds(datasets.Split.VALIDATION),
str(datasets.Split.TEST): get_ds(datasets.Split.TEST),
}
)
# ddd.save_to_disk('data/')
# ddd.push_to_hub('xiazeyu/DT_SegNet')