wza commited on
Commit
008ebe8
·
1 Parent(s): 96a7c6e

Create roc_stories.py

Browse files
Files changed (1) hide show
  1. roc_stories.py +141 -0
roc_stories.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+ import pandas as pd
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ _CITATION = """\
28
+ @InProceedings{huggingface:dataset,
29
+ title = {A great new dataset},
30
+ author={huggingface, Inc.
31
+ },
32
+ year={2020}
33
+ }
34
+ """
35
+
36
+ # TODO: Add description of the dataset here
37
+ # You can copy an official description
38
+ _DESCRIPTION = """\
39
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
40
+ """
41
+
42
+ # TODO: Add a link to an official homepage for the dataset here
43
+ _HOMEPAGE = ""
44
+
45
+ # TODO: Add the licence for the dataset here if you can find it
46
+ _LICENSE = ""
47
+
48
+ # TODO: Add link to the official dataset URLs here
49
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
50
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
51
+ _URLS = {
52
+ "2016": "ROCStories__spring2016.csv",
53
+ "2017": "ROCStories_winter2017.csv"
54
+ }
55
+
56
+
57
+ # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
58
+ class RocStories(datasets.GeneratorBasedBuilder):
59
+ """TODO: Short description of my dataset."""
60
+
61
+ VERSION = datasets.Version("2.1.0")
62
+
63
+ # This is an example of a dataset with multiple configurations.
64
+ # If you don't want/need to define several sub-sets in your dataset,
65
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
66
+
67
+ # If you need to make complex sub-parts in the datasets with configurable options
68
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
69
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
70
+
71
+ # You will be able to load one or the other configurations in the following list with
72
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
73
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
74
+ BUILDER_CONFIGS = [
75
+ datasets.BuilderConfig(name="all", version=VERSION, description="all stories for finetuning"),
76
+ ]
77
+
78
+ DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense.
79
+
80
+ def _info(self):
81
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
82
+ features = datasets.Features(
83
+ {
84
+ "storyid": datasets.Value("string"),
85
+ "storytitle": datasets.Value("string"),
86
+ "sentence1": datasets.Value("string"),
87
+ "sentence2": datasets.Value("string"),
88
+ "sentence3": datasets.Value("string"),
89
+ "sentence4": datasets.Value("string"),
90
+ "sentence5": datasets.Value("string")
91
+ # These are the features of your dataset like images, labels ...
92
+ }
93
+ )
94
+ return datasets.DatasetInfo(
95
+ # This is the description that will appear on the datasets page.
96
+ description=_DESCRIPTION,
97
+ # This defines the different columns of the dataset and their types
98
+ features=features, # Here we define them above because they are different between the two configurations
99
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
100
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
101
+ # supervised_keys=("sentence", "label"),
102
+ # Homepage of the dataset for documentation
103
+ homepage=_HOMEPAGE,
104
+ # License for the dataset if available
105
+ license=_LICENSE,
106
+ # Citation for the dataset
107
+ citation=_CITATION,
108
+ )
109
+
110
+ def _split_generators(self, dl_manager):
111
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
112
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
113
+
114
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
115
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
116
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
117
+ #urls = _URLS[self.config.name]
118
+ data_dir = dl_manager.download_and_extract(_URLS)
119
+ return [
120
+ datasets.SplitGenerator(
121
+ name=datasets.Split.TRAIN,
122
+ # These kwargs will be passed to _generate_examples
123
+ gen_kwargs={
124
+ "filepath": data_dir[self.config.name],
125
+ "split": "train",
126
+ },
127
+ ),
128
+ ]
129
+
130
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
131
+ def _generate_examples(self, filepath, split):
132
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
133
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
134
+ df = pd.read_csv(filepath)
135
+ for index, row in df.iterrows():
136
+ yield index, {
137
+ "storyid": row["storyid"],
138
+ "storytitle": row["storytitle"],
139
+ "story": row["sentence1"] + ' ' + row["sentence2"] + ' ' + row["sentence3"] + ' ' + row["sentence4"] + ' ' + row["sentence5"],
140
+ }
141
+