Datasets:
wmt
/

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
wmt20_mlqe_task3 / wmt20_mlqe_task3.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.1)
9dd51f8
raw
history blame
9.62 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""WMT MLQE Shared task 3."""
import csv
import glob
import os
import datasets
_CITATION = """
Not available.
"""
_DESCRIPTION = """\
This shared task (part of WMT20) will build on its previous editions
to further examine automatic methods for estimating the quality
of neural machine translation output at run-time, without relying
on reference translations. As in previous years, we cover estimation
at various levels. Important elements introduced this year include: a new
task where sentences are annotated with Direct Assessment (DA)
scores instead of labels based on post-editing; a new multilingual
sentence-level dataset mainly from Wikipedia articles, where the
source articles can be retrieved for document-wide context; the
availability of NMT models to explore system-internal information for the task.
The goal of this task 3 is to predict document-level quality scores as well as fine-grained annotations.
"""
_HOMEPAGE = "http://www.statmt.org/wmt20/quality-estimation-task.html"
_LICENSE = "Unknown"
_URLs = {
"train+dev": "https://github.com/deep-spin/deep-spin.github.io/raw/master/docs/data/wmt2020_qe/qe-task3-enfr-traindev.tar.gz",
"test": "https://github.com/deep-spin/deep-spin.github.io/raw/master/docs/data/wmt2020_qe/qe-enfr-blindtest.tar.gz",
}
_ANNOTATION_CATEGORIES = [
"Addition",
"Agreement",
"Ambiguous Translation",
"Capitalization",
"Character Encoding",
"Company Terminology",
"Date/Time",
"Diacritics",
"Duplication",
"False Friend",
"Grammatical Register",
"Hyphenation",
"Inconsistency",
"Lexical Register",
"Lexical Selection",
"Named Entity",
"Number",
"Omitted Auxiliary Verb",
"Omitted Conjunction",
"Omitted Determiner",
"Omitted Preposition",
"Omitted Pronoun",
"Orthography",
"Other POS Omitted",
"Over-translation",
"Overly Literal",
"POS",
"Punctuation",
"Shouldn't Have Been Translated",
"Shouldn't have been translated",
"Spelling",
"Tense/Mood/Aspect",
"Under-translation",
"Unidiomatic",
"Unintelligible",
"Unit Conversion",
"Untranslated",
"Whitespace",
"Word Order",
"Wrong Auxiliary Verb",
"Wrong Conjunction",
"Wrong Determiner",
"Wrong Language Variety",
"Wrong Preposition",
"Wrong Pronoun",
]
class Wmt20MlqeTask3(datasets.GeneratorBasedBuilder):
"""WMT MLQE Shared task 3."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="plain_text",
version=datasets.Version("1.1.0"),
description="Plain text",
)
]
def _info(self):
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"source_segments": datasets.Sequence(datasets.Value("string")),
"source_tokenized": datasets.Sequence(datasets.Value("string")),
"mt_segments": datasets.Sequence(datasets.Value("string")),
"mt_tokenized": datasets.Sequence(datasets.Value("string")),
"annotations": datasets.Sequence(
{
"segment_id": datasets.Sequence(datasets.Value("int32")),
"annotation_start": datasets.Sequence(datasets.Value("int32")),
"annotation_length": datasets.Sequence(datasets.Value("int32")),
"severity": datasets.ClassLabel(names=["minor", "major", "critical"]),
"severity_weight": datasets.Value("float32"),
"category": datasets.ClassLabel(names=_ANNOTATION_CATEGORIES),
}
),
"token_annotations": datasets.Sequence(
{
"segment_id": datasets.Sequence(datasets.Value("int32")),
"first_token": datasets.Sequence(datasets.Value("int32")),
"last_token": datasets.Sequence(datasets.Value("int32")),
"token_after_gap": datasets.Sequence(datasets.Value("int32")),
"severity": datasets.ClassLabel(names=["minor", "major", "critical"]),
"category": datasets.ClassLabel(names=_ANNOTATION_CATEGORIES),
}
),
"token_index": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("int32")))),
"total_words": datasets.Value("int32"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir["train+dev"], "task3", "train"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir["test"], "test-blind"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir["train+dev"], "task3", "dev"),
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
def open_and_read(fp):
with open(fp, encoding="utf-8") as f:
return f.read().splitlines()
for id_, folder in enumerate(sorted(glob.glob(os.path.join(filepath, "*")))):
source_segments = open_and_read(os.path.join(folder, "source.segments"))
source_tokenized = open_and_read(os.path.join(folder, "source.tokenized"))
mt_segments = open_and_read(os.path.join(folder, "mt.segments"))
mt_tokenized = open_and_read(os.path.join(folder, "mt.tokenized"))
if split in ["train", "dev"] and not os.path.exists(os.path.join(folder, "token_index")):
token_index = []
else:
token_index = [
[idx.split(" ") for idx in line.split("\t")]
for line in open_and_read(os.path.join(folder, "token_index"))
if line != ""
]
total_words = open_and_read(os.path.join(folder, "total_words"))[0]
if split in ["train", "dev"]:
with open(os.path.join(folder, "annotations.tsv"), encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t")
annotations = [
{
"segment_id": row["segment_id"].split(" "),
"annotation_start": row["annotation_start"].split(" "),
"annotation_length": row["annotation_length"].split(" "),
"severity": row["severity"],
"severity_weight": row["severity_weight"],
"category": row["category"],
}
for row in reader
]
with open(os.path.join(folder, "token_annotations.tsv"), encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t")
token_annotations = [
{
"segment_id": row["segment_id"].split(" "),
"first_token": row["first_token"].replace("-", "-1").split(" "),
"last_token": row["last_token"].replace("-", "-1").split(" "),
"token_after_gap": row["token_after_gap"].replace("-", "-1").split(" "),
"severity": row["severity"],
"category": row["category"],
}
for row in reader
]
else:
annotations = []
token_annotations = []
yield id_, {
"document_id": os.path.basename(folder),
"source_segments": source_segments,
"source_tokenized": source_tokenized,
"mt_segments": mt_segments,
"mt_tokenized": mt_tokenized,
"annotations": annotations,
"token_annotations": token_annotations,
"token_index": token_index,
"total_words": total_words,
}