Datasets:

Modalities:
Text
Libraries:
Datasets
License:
namu / namu.py
eddie14's picture
Update namu.py
55b0a59
import os
from collections import defaultdict
import datasets
from .process import process_text, get_structured_data
from typing import List
from math import ceil
from .configs import SUB_DATASETS
from datasets import load_dataset
def processing(data, name):
if name == "processed":
data['text'] = process_text(data['text'])
elif name == "structured":
data['text'] = process_text(data['text'])
data['structured_text'] = get_structured_data(data['text'], default_value={"item": [], "content": []})
return data
def sliding(texts: List[str], window_size: int=5, stride:int=3) -> List[str]:
n_iter = ceil((len(texts)-window_size)/stride)+1
return [texts[i*stride:i*stride+window_size] for i in range(n_iter)]
class NamuWiki(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = SUB_DATASETS
def _info(self):
return datasets.DatasetInfo(
description="",
features=self.config.features,
homepage=self.config.url,
citation=self.config.citation + "\n" + "",
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
if self.config.name == "processed":
data_file = dl_manager.download(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": data_file,
"split": "train"
}
),
]
elif self.config.name.startswith(("char", "word")):
_, length = self.config.name.split("-")
length = int(length)
data_file = dl_manager.download(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": data_file,
"split": "train",
"length": length
}
),
]
elif self.config.name == "raw":
data_files = dl_manager.download_and_extract(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": data_files,
"split": "train"
}
),
]
def _generate_examples(self, data_file, split, length=None):
n = 0
_dataset = load_dataset("parquet", data_files={"train": data_file}, split="train", use_auth_token=self.use_auth_token)
for data in _dataset:
yield n, processing(data, self.config.name)
n += 1