Datasets:
Tasks:
Question Answering
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
multihop-tabular-text-qa
License:
Commit
•
b6e6f2a
1
Parent(s):
ed80520
Fix NonMatchingSplitsSizesError (#8)
Browse files- Delete legacy dataset_infos.json (bf435574d7a3e15d89a3e07cb310ba266c67bbd1)
- Update metadata in dataset card (4716d0b06c6ba1905cb5d5f6944f1167dd066f35)
- README.md +9 -9
- dataset_infos.json +0 -1
README.md
CHANGED
@@ -21,6 +21,7 @@ pretty_name: HybridQA
|
|
21 |
tags:
|
22 |
- multihop-tabular-text-qa
|
23 |
dataset_info:
|
|
|
24 |
features:
|
25 |
- name: question_id
|
26 |
dtype: string
|
@@ -58,19 +59,18 @@ dataset_info:
|
|
58 |
dtype: string
|
59 |
- name: intro
|
60 |
dtype: string
|
61 |
-
config_name: hybrid_qa
|
62 |
splits:
|
63 |
- name: train
|
64 |
-
num_bytes:
|
65 |
-
num_examples:
|
66 |
- name: validation
|
67 |
-
num_bytes:
|
68 |
-
num_examples:
|
69 |
- name: test
|
70 |
-
num_bytes:
|
71 |
-
num_examples:
|
72 |
-
download_size:
|
73 |
-
dataset_size:
|
74 |
---
|
75 |
|
76 |
# Dataset Card for HybridQA
|
|
|
21 |
tags:
|
22 |
- multihop-tabular-text-qa
|
23 |
dataset_info:
|
24 |
+
config_name: hybrid_qa
|
25 |
features:
|
26 |
- name: question_id
|
27 |
dtype: string
|
|
|
59 |
dtype: string
|
60 |
- name: intro
|
61 |
dtype: string
|
|
|
62 |
splits:
|
63 |
- name: train
|
64 |
+
num_bytes: 2717098352
|
65 |
+
num_examples: 62104
|
66 |
- name: validation
|
67 |
+
num_bytes: 151476865
|
68 |
+
num_examples: 3432
|
69 |
- name: test
|
70 |
+
num_bytes: 147058022
|
71 |
+
num_examples: 3428
|
72 |
+
download_size: 214370025
|
73 |
+
dataset_size: 3015633239
|
74 |
---
|
75 |
|
76 |
# Dataset Card for HybridQA
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"hybrid_qa": {"description": "Existing question answering datasets focus on dealing with homogeneous information, based either only on text or KB/Table information alone. However, as human knowledge is distributed over heterogeneous forms, using homogeneous information alone might lead to severe coverage problems. To fill in the gap, we present HybridQA, a new large-scale question-answering dataset that requires reasoning on heterogeneous information. Each question is aligned with a Wikipedia table and multiple free-form corpora linked with the entities in the table. The questions are designed to aggregate both tabular information and text information, i.e., lack of either form would render the question unanswerable.\n", "citation": "@article{chen2020hybridqa,\n title={HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data},\n author={Chen, Wenhu and Zha, Hanwen and Chen, Zhiyu and Xiong, Wenhan and Wang, Hong and Wang, William},\n journal={Findings of EMNLP 2020},\n year={2020}\n}\n", "homepage": "https://github.com/wenhuchen/HybridQA", "license": "", "features": {"question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "table_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_text": {"dtype": "string", "id": null, "_type": "Value"}, "question_postag": {"dtype": "string", "id": null, "_type": "Value"}, "table": {"url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "header": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "data": [{"value": {"dtype": "string", "id": null, "_type": "Value"}, "urls": [{"url": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}}]}], "section_title": {"dtype": "string", "id": null, "_type": "Value"}, "section_text": {"dtype": "string", "id": null, "_type": "Value"}, "uid": {"dtype": "string", "id": null, "_type": "Value"}, "intro": {"dtype": "string", "id": null, "_type": "Value"}}}, "post_processed": null, "supervised_keys": null, "builder_name": "hybrid_qa", "config_name": "hybrid_qa", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2745712769, "num_examples": 62682, "dataset_name": "hybrid_qa"}, "validation": {"name": "validation", "num_bytes": 153512016, "num_examples": 3466, "dataset_name": "hybrid_qa"}, "test": {"name": "test", "num_bytes": 148795919, "num_examples": 3463, "dataset_name": "hybrid_qa"}}, "download_checksums": {"https://github.com/wenhuchen/WikiTables-WithLinks/archive/f4ed68e54e25c495f63d309de0b89c0f97b3c508.zip": {"num_bytes": 193533209, "checksum": "8f8f708f485e38a6114cf7d246e6ac00eb6f7705a9e5b740ab2ef499b864da43"}, "https://raw.githubusercontent.com/wenhuchen/HybridQA/master/released_data/train.json": {"num_bytes": 21638585, "checksum": "b33aa73638959a2383e1e1638fd6abe87818b7379c7a42eac1621475d2d959e2"}, "https://raw.githubusercontent.com/wenhuchen/HybridQA/master/released_data/dev.json": {"num_bytes": 1193503, "checksum": "424272b233735a70ed8ef5af4a615373d114f472168c686c4370d54c92d58ac1"}, "https://raw.githubusercontent.com/wenhuchen/HybridQA/master/released_data/test.json": {"num_bytes": 1071558, "checksum": "41845fec9cba21979e663a96626c2880adbf2d26b5667ea7d0bf61fab0cdc356"}}, "download_size": 217436855, "post_processing_size": null, "dataset_size": 3048020704, "size_in_bytes": 3265457559}}
|
|
|
|