Datasets:
Commit
•
346e637
1
Parent(s):
121d543
Host data file (#7)
Browse files- Add data file (3d013b77f2e94fd1ffb86d299d35d5f29edadad9)
- Update loading script (527607cfae5370e30bae203e392da937568b3591)
- Update metadata in legacy JSON file (93704c91fc1edb38d85b3e080d21ffe9c890d63a)
- data/corpus-webis-tldr-17.zip +3 -0
- dataset_infos.json +1 -1
- reddit.py +1 -1
data/corpus-webis-tldr-17.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1a0f8c4374c7314d3c9ec50dd505303c536062d87037d4dca7035b89b36938a
|
3 |
+
size 3141854161
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "\nThis corpus contains preprocessed posts from the Reddit dataset.\nThe dataset consists of 3,848,330 posts with an average length of 270 words for content,\nand 28 words for the summary.\n\nFeatures includes strings: author, body, normalizedBody, content, summary, subreddit, subreddit_id.\nContent is used as document and summary is used as summary.\n", "citation": "\n@inproceedings{volske-etal-2017-tl,\n title = \"{TL};{DR}: Mining {R}eddit to Learn Automatic Summarization\",\n author = {V{\"o}lske, Michael and\n Potthast, Martin and\n Syed, Shahbaz and\n Stein, Benno},\n booktitle = \"Proceedings of the Workshop on New Frontiers in Summarization\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W17-4508\",\n doi = \"10.18653/v1/W17-4508\",\n pages = \"59--63\",\n abstract = \"Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.\",\n}\n", "homepage": "https://github.com/webis-de/webis-tldr-17-corpus", "license": "", "features": {"author": {"dtype": "string", "id": null, "_type": "Value"}, "body": {"dtype": "string", "id": null, "_type": "Value"}, "normalizedBody": {"dtype": "string", "id": null, "_type": "Value"}, "subreddit": {"dtype": "string", "id": null, "_type": "Value"}, "subreddit_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "content": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "reddit", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 18940542951, "num_examples": 3848330, "dataset_name": "reddit"}}, "download_checksums": {"
|
|
|
1 |
+
{"default": {"description": "\nThis corpus contains preprocessed posts from the Reddit dataset.\nThe dataset consists of 3,848,330 posts with an average length of 270 words for content,\nand 28 words for the summary.\n\nFeatures includes strings: author, body, normalizedBody, content, summary, subreddit, subreddit_id.\nContent is used as document and summary is used as summary.\n", "citation": "\n@inproceedings{volske-etal-2017-tl,\n title = \"{TL};{DR}: Mining {R}eddit to Learn Automatic Summarization\",\n author = {V{\"o}lske, Michael and\n Potthast, Martin and\n Syed, Shahbaz and\n Stein, Benno},\n booktitle = \"Proceedings of the Workshop on New Frontiers in Summarization\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W17-4508\",\n doi = \"10.18653/v1/W17-4508\",\n pages = \"59--63\",\n abstract = \"Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.\",\n}\n", "homepage": "https://github.com/webis-de/webis-tldr-17-corpus", "license": "", "features": {"author": {"dtype": "string", "id": null, "_type": "Value"}, "body": {"dtype": "string", "id": null, "_type": "Value"}, "normalizedBody": {"dtype": "string", "id": null, "_type": "Value"}, "subreddit": {"dtype": "string", "id": null, "_type": "Value"}, "subreddit_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "content": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "reddit", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 18940542951, "num_examples": 3848330, "dataset_name": "reddit"}}, "download_checksums": {"data/corpus-webis-tldr-17.zip": {"num_bytes": 3141854161, "checksum": "c1a0f8c4374c7314d3c9ec50dd505303c536062d87037d4dca7035b89b36938a"}}, "download_size": 3141854161, "dataset_size": 18940542951, "size_in_bytes": 22082397112}}
|
reddit.py
CHANGED
@@ -47,7 +47,7 @@ Features includes strings: author, body, normalizedBody, content, summary, subre
|
|
47 |
Content is used as document and summary is used as summary.
|
48 |
"""
|
49 |
|
50 |
-
_URL = "
|
51 |
|
52 |
_DOCUMENT = "content"
|
53 |
_SUMMARY = "summary"
|
|
|
47 |
Content is used as document and summary is used as summary.
|
48 |
"""
|
49 |
|
50 |
+
_URL = "data/corpus-webis-tldr-17.zip"
|
51 |
|
52 |
_DOCUMENT = "content"
|
53 |
_SUMMARY = "summary"
|