|
import lmdb |
|
import os |
|
import torch |
|
import numpy as np |
|
from torch.utils.data import Dataset, DataLoader |
|
import csv |
|
|
|
|
|
class SSL4EO_S_lmdb(Dataset): |
|
def __init__(self, lmdb_path, key_path, slurm_job=False, mode=['s1_grd','s2_toa','s3_olci','s5p_co','s5p_no2','s5p_so2','s5p_o3','dem'], s1_transform=None, s2_transform=None, s3_transform=None, s5p_transform=None, dem_transform=None): |
|
self.lmdb_path = lmdb_path |
|
self.key_path = key_path |
|
self.slurm_job = slurm_job |
|
self.mode = mode |
|
self.s1_transform = s1_transform |
|
self.s2_transform = s2_transform |
|
self.s3_transform = s3_transform |
|
self.s5p_transform = s5p_transform |
|
self.dem_transform = dem_transform |
|
|
|
if not self.slurm_job: |
|
self.env = lmdb.open(lmdb_path, readonly=True, lock=False, readahead=False, meminit=False) |
|
|
|
self.keys = {} |
|
with open(key_path, 'r') as f: |
|
reader = csv.reader(f) |
|
for row in reader: |
|
modality, meta_info = row[0], row[1] |
|
if modality=='s1_grd' or modality=='s2_toa': |
|
_, grid_id, local_grid_id, date = meta_info.split('/') |
|
if grid_id not in self.keys: |
|
self.keys[grid_id] = {} |
|
if modality not in self.keys[grid_id]: |
|
self.keys[grid_id][modality] = {} |
|
if local_grid_id not in self.keys[grid_id][modality]: |
|
self.keys[grid_id][modality][local_grid_id] = [] |
|
self.keys[grid_id][modality][local_grid_id].append(meta_info) |
|
elif modality=='s3_olci' or modality=='s5p_co' or modality=='s5p_no2' or modality=='s5p_so2' or modality=='s5p_o3': |
|
_, grid_id, date = meta_info.split('/') |
|
if grid_id not in self.keys: |
|
self.keys[grid_id] = {} |
|
if modality not in self.keys[grid_id]: |
|
self.keys[grid_id][modality] = [] |
|
self.keys[grid_id][modality].append(meta_info) |
|
elif modality=='dem': |
|
_, grid_id = meta_info.split('/') |
|
if grid_id not in self.keys: |
|
self.keys[grid_id] = {} |
|
if modality not in self.keys[grid_id]: |
|
self.keys[grid_id][modality] = [] |
|
self.keys[grid_id][modality].append(meta_info) |
|
self.indices = list(self.keys.keys()) |
|
|
|
def __len__(self): |
|
return len(self.indices) |
|
|
|
def _init_db(self): |
|
self.env = lmdb.open(self.lmdb_path, max_readers=1, readonly=True, lock=False, readahead=False, meminit=False) |
|
|
|
def __getitem__(self, idx): |
|
if self.slurm_job: |
|
|
|
if self.env is None: |
|
self._init_db() |
|
|
|
grid_id = self.indices[idx] |
|
grid_keys = self.keys[grid_id] |
|
sample = {} |
|
meta_info = {} |
|
|
|
with self.env.begin(write=False) as txn: |
|
|
|
if 's1_grd' in self.mode: |
|
sample['s1_grd'] = [] |
|
meta_info['s1_grd'] = [] |
|
if 's1_grd' in grid_keys: |
|
local_grids = list(grid_keys['s1_grd'].keys()) |
|
for local_grid_id in local_grids: |
|
local_keys = grid_keys['s1_grd'][local_grid_id] |
|
local_meta_info = [] |
|
local_imgs = [] |
|
for key in local_keys: |
|
|
|
img_bytes = txn.get(key.encode('utf-8')) |
|
img = np.frombuffer(img_bytes, dtype=np.float32).reshape(264, 264, 2) |
|
if self.s1_transform: |
|
img = self.s1_transform(img) |
|
local_meta_info.append(key) |
|
local_imgs.append(img) |
|
|
|
|
|
|
|
|
|
sample['s1_grd'].append(local_imgs) |
|
meta_info['s1_grd'].append(local_meta_info) |
|
|
|
|
|
if 's2_toa' in self.mode: |
|
sample['s2_toa'] = [] |
|
meta_info['s2_toa'] = [] |
|
if 's2_toa' in grid_keys: |
|
local_grids = list(grid_keys['s2_toa'].keys()) |
|
for local_grid_id in local_grids: |
|
local_keys = grid_keys['s2_toa'][local_grid_id] |
|
local_meta_info = [] |
|
local_imgs = [] |
|
for key in local_keys: |
|
img_bytes = txn.get(key.encode('utf-8')) |
|
img = np.frombuffer(img_bytes, dtype=np.int16).reshape(264, 264, 13) |
|
if self.s2_transform: |
|
img = self.s2_transform(img) |
|
local_meta_info.append(key) |
|
local_imgs.append(img) |
|
sample['s2_toa'].append(local_imgs) |
|
meta_info['s2_toa'].append(local_meta_info) |
|
|
|
|
|
if 's3_olci' in self.mode: |
|
sample['s3_olci'] = [] |
|
meta_info['s3_olci'] = [] |
|
if 's3_olci' in grid_keys: |
|
local_keys = grid_keys['s3_olci'] |
|
for key in local_keys: |
|
img_bytes = txn.get(key.encode('utf-8')) |
|
img = np.frombuffer(img_bytes, dtype=np.float32).reshape(96, 96, 21) |
|
if self.s3_transform: |
|
img = self.s3_transform(img) |
|
meta_info['s3_olci'].append(key) |
|
sample['s3_olci'].append(img) |
|
|
|
|
|
if 's5p_co' in self.mode: |
|
sample['s5p_co'] = [] |
|
meta_info['s5p_co'] = [] |
|
if 's5p_co' in grid_keys: |
|
local_keys = grid_keys['s5p_co'] |
|
for key in local_keys: |
|
img_bytes = txn.get(key.encode('utf-8')) |
|
img = np.frombuffer(img_bytes, dtype=np.float32).reshape(28, 28, 1) |
|
if self.s5p_transform: |
|
img = self.s5p_transform(img) |
|
meta_info['s5p_co'].append(key) |
|
sample['s5p_co'].append(img) |
|
|
|
if 's5p_no2' in self.mode: |
|
sample['s5p_no2'] = [] |
|
meta_info['s5p_no2'] = [] |
|
if 's5p_no2' in grid_keys: |
|
local_keys = grid_keys['s5p_no2'] |
|
for key in local_keys: |
|
img_bytes = txn.get(key.encode('utf-8')) |
|
img = np.frombuffer(img_bytes, dtype=np.float32).reshape(28, 28, 1) |
|
if self.s5p_transform: |
|
img = self.s5p_transform(img) |
|
meta_info['s5p_no2'].append(key) |
|
sample['s5p_no2'].append(img) |
|
|
|
if 's5p_so2' in self.mode: |
|
sample['s5p_so2'] = [] |
|
meta_info['s5p_so2'] = [] |
|
if 's5p_so2' in grid_keys: |
|
local_keys = grid_keys['s5p_so2'] |
|
for key in local_keys: |
|
img_bytes = txn.get(key.encode('utf-8')) |
|
img = np.frombuffer(img_bytes, dtype=np.float32).reshape(28, 28, 1) |
|
if self.s5p_transform: |
|
img = self.s5p_transform(img) |
|
meta_info['s5p_so2'].append(key) |
|
sample['s5p_so2'].append(img) |
|
|
|
if 's5p_o3' in self.mode: |
|
sample['s5p_o3'] = [] |
|
meta_info['s5p_o3'] = [] |
|
if 's5p_o3' in grid_keys: |
|
local_keys = grid_keys['s5p_o3'] |
|
for key in local_keys: |
|
img_bytes = txn.get(key.encode('utf-8')) |
|
img = np.frombuffer(img_bytes, dtype=np.float32).reshape(28, 28, 1) |
|
if self.s5p_transform: |
|
img = self.s5p_transform(img) |
|
meta_info['s5p_o3'].append(key) |
|
sample['s5p_o3'].append(img) |
|
|
|
|
|
if 'dem' in self.mode: |
|
sample['dem'] = [] |
|
meta_info['dem'] = [] |
|
if 'dem' in grid_keys: |
|
local_keys = grid_keys['dem'] |
|
for key in local_keys: |
|
img_bytes = txn.get(key.encode('utf-8')) |
|
img = np.frombuffer(img_bytes, dtype=np.float32).reshape(960,960,1) |
|
if self.dem_transform: |
|
img = self.dem_transform(img) |
|
meta_info['dem'].append(key) |
|
sample['dem'].append(img) |
|
|
|
|
|
|
|
return sample, meta_info |