|
import functools as ft |
|
import itertools as it |
|
import collections as cl |
|
from pathlib import Path |
|
from dataclasses import dataclass, asdict |
|
from urllib.parse import ParseResult, urlparse, urlunparse |
|
|
|
import pandas as pd |
|
from datasets import ( |
|
Split, |
|
Image, |
|
Value, |
|
Features, |
|
Sequence, |
|
ClassLabel, |
|
DatasetInfo, |
|
SplitGenerator, |
|
GeneratorBasedBuilder, |
|
) |
|
from shapely.wkt import loads |
|
|
|
__version__ = '20230327-1214' |
|
__citation__ = ''' |
|
@inproceedings{iclr-2023, |
|
author = {White, Jerome and Agrawal, Chandan and Ojha, Anmol and |
|
Agnihotri, Apoorv and Sharma, Makkunda and Doshi, |
|
Jigar}, |
|
title = {{BOLLWM}: A real-world dataset for bollworm pest monitoring |
|
from cotton fields in {India}}, |
|
booktitle = {International Conference on Learning Representations}, |
|
year = {2023}, |
|
series = {ICLR}, |
|
publisher = {Workshop on Practical Machine Learning for Developing |
|
Countries}, |
|
doi = {10.48550/arXiv.2304.00763}, |
|
} |
|
''' |
|
|
|
SplitInfo = cl.namedtuple('SplitInfo', 'dtype, basename, split') |
|
Payload = cl.namedtuple('Payload', 'source, target, df') |
|
|
|
|
|
|
|
|
|
def readsp(path, split): |
|
return (pd |
|
.read_csv(path, compression='gzip') |
|
.query(f'split == "{split}"')) |
|
|
|
|
|
|
|
|
|
@ft.singledispatch |
|
def bucket2virtual(url): |
|
raise TypeError(type(url)) |
|
|
|
@bucket2virtual.register |
|
def _(url: ParseResult): |
|
netloc = '.'.join(( |
|
url.netloc, |
|
url.scheme, |
|
'ap-south-1', |
|
'amazonaws', |
|
'com', |
|
)) |
|
|
|
return urlunparse(url._replace(scheme='https', netloc=netloc)) |
|
|
|
@bucket2virtual.register |
|
def _(url: str): |
|
return bucket2virtual(urlparse(url)) |
|
|
|
|
|
|
|
|
|
@dataclass |
|
class SplitPayload: |
|
split: str |
|
metadata: Path |
|
images: dict |
|
|
|
def __iter__(self): |
|
df = readsp(self.metadata, self.split) |
|
for (i, g) in df.groupby('url', sort=False): |
|
source = urlparse(i) |
|
target = Path(self.images[i]) |
|
|
|
yield Payload(source, target, g) |
|
|
|
|
|
|
|
|
|
class SplitManager: |
|
_splits = tuple(it.starmap(SplitInfo, ( |
|
(Split.TRAIN, 'dev', 'train'), |
|
(Split.VALIDATION, 'dev', 'val'), |
|
(Split.TEST, 'test', 'test'), |
|
))) |
|
|
|
@property |
|
def labels(self): |
|
path = bucket2virtual(self.metaname('dev')) |
|
df = pd.read_csv(path, compression='gzip') |
|
yield from df['label'].dropna().unique() |
|
|
|
def __init__(self, bucket): |
|
self.bucket = bucket |
|
self.path = Path('metadata', __version__) |
|
|
|
def __call__(self, dl_manager): |
|
for i in self._splits: |
|
name = self.metaname(i.basename) |
|
info = Path(dl_manager.download(bucket2virtual(name))) |
|
|
|
images = self.images(i.split, info) |
|
ipaths = dl_manager.download(dict(images)) |
|
|
|
payload = SplitPayload(i.split, info, ipaths) |
|
yield SplitGenerator(name=i.dtype, gen_kwargs=asdict(payload)) |
|
|
|
@staticmethod |
|
def images(split, info): |
|
df = readsp(info, split) |
|
for i in df['url'].unique(): |
|
yield (i, bucket2virtual(i)) |
|
|
|
def metaname(self, split): |
|
path = self.path.joinpath(split).with_suffix('.csv.gz') |
|
return self.bucket._replace(path=str(path)) |
|
|
|
|
|
|
|
|
|
class ExampleManager: |
|
|
|
|
|
|
|
@staticmethod |
|
def features(labels): |
|
return Features({ |
|
'image': Image(), |
|
'pests': Sequence({ |
|
'label': ClassLabel(names=labels), |
|
'geometry': Value('binary'), |
|
}), |
|
}) |
|
|
|
@staticmethod |
|
def pests(df): |
|
if 'geometry' in df.columns: |
|
for i in df.dropna().itertuples(index=False): |
|
geometry = loads(i.geometry) |
|
yield { |
|
'label': i.label, |
|
'geometry': geometry.wkb, |
|
} |
|
|
|
def __init__(self, payload): |
|
self.payload = payload |
|
|
|
def __iter__(self): |
|
for i in self.payload: |
|
key = urlunparse(i.source) |
|
with i.target.open('rb') as fp: |
|
raw = fp.read() |
|
value = { |
|
'image': { |
|
'path': i.target, |
|
'bytes': raw, |
|
}, |
|
'pests': list(self.pests(i.df)), |
|
} |
|
|
|
yield (key, value) |
|
|
|
|
|
|
|
|
|
class PestManagementOpendata(GeneratorBasedBuilder): |
|
_bucket = urlparse('s3://wadhwaniai-agri-opendata') |
|
|
|
def _info(self): |
|
data = SplitManager(self._bucket) |
|
labels = sorted(data.labels) |
|
features = ExampleManager.features(labels) |
|
|
|
return DatasetInfo( |
|
homepage='https://github.com/WadhwaniAI/pest-management-opendata', |
|
citation=__citation__, |
|
|
|
license='CC-BY 4.0', |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
splits = SplitManager(self._bucket) |
|
return list(splits(dl_manager)) |
|
|
|
def _generate_examples(self, **kwargs): |
|
payload = SplitPayload(**kwargs) |
|
examples = ExampleManager(payload) |
|
yield from examples |
|
|