|
import itertools as it |
|
import collections as cl |
|
from pathlib import Path |
|
from dataclasses import dataclass, asdict |
|
from urllib.parse import urlparse, urlunparse |
|
|
|
import cv2 |
|
import boto3 |
|
import numpy as np |
|
import pandas as pd |
|
import awswrangler as wr |
|
from datasets import ( |
|
Split, |
|
Image, |
|
Value, |
|
Features, |
|
Sequence, |
|
ClassLabel, |
|
DatasetInfo, |
|
SplitGenerator, |
|
GeneratorBasedBuilder, |
|
) |
|
from shapely.wkt import loads |
|
|
|
__version__ = '20220912-2056' |
|
|
|
SplitInfo = cl.namedtuple('SplitInfo', 'dtype, basename, split') |
|
|
|
@dataclass |
|
class SplitPayload: |
|
split: str |
|
path: Path |
|
|
|
def __post_init__(self): |
|
self.path = Path(self.path) |
|
|
|
def to_frame(self): |
|
return (pd |
|
.read_csv(self.path, compression='gzip') |
|
.query(f'split == "{self.split}"')) |
|
|
|
|
|
|
|
|
|
class SplitManager: |
|
_splits = tuple(it.starmap(SplitInfo, ( |
|
(Split.TRAIN, 'dev', 'train'), |
|
(Split.VALIDATION, 'dev', 'val'), |
|
(Split.TEST, 'test', 'test'), |
|
))) |
|
|
|
@staticmethod |
|
def custom_download(url, path): |
|
remote = urlparse(url) |
|
name = Path(remote.path) |
|
if name.is_absolute(): |
|
name = name.relative_to(name.parents[-1]) |
|
|
|
s3 = boto3.client(remote.scheme) |
|
s3.download_file(remote.netloc, str(name), path) |
|
|
|
@property |
|
def labels(self): |
|
path = self.url('dev') |
|
df = wr.s3.read_csv(path, compression='gzip') |
|
yield from df['label'].dropna().unique() |
|
|
|
def __init__(self, bucket): |
|
self.bucket = bucket |
|
self.path = Path('metadata', __version__) |
|
|
|
def __call__(self, dl_manager): |
|
for i in self._splits: |
|
url = self.url(i.basename) |
|
path = dl_manager.download_custom(url, self.custom_download) |
|
payload = SplitPayload(i.split, path) |
|
|
|
yield SplitGenerator(name=i.dtype, gen_kwargs=asdict(payload)) |
|
|
|
def url(self, split): |
|
path = self.path.joinpath(split).with_suffix('.csv.gz') |
|
source = self.bucket._replace(path=str(path)) |
|
return urlunparse(source) |
|
|
|
|
|
|
|
|
|
class ExampleManager: |
|
_decode_flags = cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION |
|
|
|
|
|
|
|
@staticmethod |
|
def features(labels): |
|
return Features({ |
|
'image': Image(), |
|
'pests': Sequence({ |
|
'label': ClassLabel(names=labels), |
|
'geometry': Value('binary'), |
|
}), |
|
}) |
|
|
|
@staticmethod |
|
def pests(df): |
|
if 'geometry' in df.columns: |
|
for i in df.dropna().itertuples(index=False): |
|
geometry = loads(i.geometry) |
|
yield { |
|
'label': i.label, |
|
'geometry': geometry.wkb, |
|
} |
|
|
|
def __init__(self, payload): |
|
self.payload = payload |
|
|
|
def __iter__(self): |
|
df = self.payload.to_frame() |
|
for (i, g) in df.groupby('url', sort=False): |
|
value = { |
|
'image': self.load(urlparse(i)), |
|
'pests': list(self.pests(g)), |
|
} |
|
|
|
yield (i, value) |
|
|
|
def load(self, url): |
|
path = Path(url.path) |
|
if path.is_absolute(): |
|
(*_, root) = path.parents |
|
path = path.relative_to(root) |
|
|
|
data = (boto3 |
|
.resource(url.scheme) |
|
.Bucket(url.netloc) |
|
.Object(str(path)) |
|
.get() |
|
.get('Body') |
|
.read()) |
|
image = np.asarray(bytearray(data)) |
|
|
|
return cv2.imdecode(image, self._decode_flags) |
|
|
|
|
|
|
|
|
|
class PestManagementOpendata(GeneratorBasedBuilder): |
|
_bucket = urlparse('s3://wadhwaniai-agri-opendata') |
|
|
|
def _info(self): |
|
data = SplitManager(self._bucket) |
|
labels = sorted(data.labels) |
|
features = ExampleManager.features(labels) |
|
|
|
return DatasetInfo( |
|
homepage='https://github.com/WadhwaniAI/pest-management-opendata', |
|
|
|
|
|
license='CC-BY 4.0', |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
splits = SplitManager(self._bucket) |
|
return list(splits(dl_manager)) |
|
|
|
def _generate_examples(self, **kwargs): |
|
payload = SplitPayload(**kwargs) |
|
examples = ExampleManager(payload) |
|
yield from examples |
|
|