|
import ipdb |
|
import pdb |
|
import os |
|
import numpy as np |
|
import json |
|
import re |
|
from PIL import Image |
|
from pathlib import Path |
|
from datasets import load_dataset |
|
import decord |
|
from tqdm import tqdm |
|
import logging |
|
import hashlib |
|
|
|
|
|
def load_viddiff_dataset(splits=["easy"], subset_mode="0"): |
|
""" |
|
splits in ['ballsports', 'demo', 'easy', 'fitness', 'music', 'surgery'] |
|
""" |
|
dataset = load_dataset("viddiff/VidDiffBench", cache_dir=None) |
|
dataset = dataset['test'] |
|
|
|
def _filter_splits(example): |
|
return example["split"] in splits |
|
|
|
dataset = dataset.filter(_filter_splits) |
|
|
|
def _map_elements_to_json(example): |
|
example["videos"] = json.loads(example["videos"]) |
|
example["differences_annotated"] = json.loads( |
|
example["differences_annotated"]) |
|
example["differences_gt"] = json.loads(example["differences_gt"]) |
|
return example |
|
|
|
dataset = dataset.map(_map_elements_to_json) |
|
|
|
dataset = apply_subset_mode(dataset, subset_mode) |
|
|
|
dataset = _get_difficulty_splits(dataset) |
|
|
|
return dataset |
|
|
|
def _get_difficulty_splits(dataset): |
|
with open("data/lookup_action_to_split.json", "r") as fp: |
|
lookup_action_to_split = json.load(fp) |
|
def add_split_difficulty(example): |
|
example['split_difficulty'] = lookup_action_to_split[example['action']] |
|
return example |
|
|
|
dataset = dataset.map(add_split_difficulty) |
|
return dataset |
|
|
|
|
|
def load_all_videos(dataset, cache=True, do_tqdm=True): |
|
""" |
|
Return a 2-element tuple. Each element is a list of length len(datset). |
|
First list is video A for each datapoint as a dict with elements |
|
path: original path to video |
|
fps: frames per second |
|
video: numpy array of the video shape (nframes,H,W,3) |
|
Second list is the same but for video B. |
|
""" |
|
|
|
all_videos = ([], []) |
|
|
|
if do_tqdm: |
|
it = tqdm(dataset) |
|
else: |
|
it = dataset |
|
|
|
|
|
for row in it: |
|
videos = get_video_data(row['videos'], cache=cache) |
|
|
|
all_videos[0].append(videos[0]) |
|
all_videos[1].append(videos[1]) |
|
|
|
return all_videos |
|
|
|
|
|
def _clean_annotations(example): |
|
|
|
|
|
differences_gt_labeled = { |
|
k: v |
|
for k, v in example['differences_gt'].items() if v is not None |
|
} |
|
differences_annotated = { |
|
k: v |
|
for k, v in example['differences_annotated'].items() |
|
if k in differences_gt_labeled.keys() |
|
} |
|
|
|
|
|
example['differences_gt'] = differences_gt_labeled |
|
example['differences_annotated'] = differences_annotated |
|
|
|
return example |
|
|
|
|
|
def get_video_data(videos: dict, cache=True): |
|
""" |
|
Pass in the videos dictionary from the dataset, like dataset[idx]['videos']. |
|
Load the 2 videos represented as numpy arrays. |
|
By default, cache the arrays ... so the second time through, the dataset |
|
loading will be faster. |
|
|
|
returns: video0, video1 |
|
""" |
|
video_dicts = [] |
|
|
|
for i in [0, 1]: |
|
path = videos[i]['path'] |
|
assert Path(path).exists( |
|
), f"Video not downloaded [{path}]\ncheck dataset README about downloading videos" |
|
frames_trim = slice(*videos[i]['frames_trim']) |
|
|
|
video_dict = videos[i].copy() |
|
|
|
if cache: |
|
dir_cache = Path("cache/cache_data") |
|
dir_cache.mkdir(exist_ok=True, parents=True) |
|
hash_key = get_hash_key(path + str(frames_trim)) |
|
memmap_filename = dir_cache / f"memmap_{hash_key}.npy" |
|
|
|
if os.path.exists(memmap_filename): |
|
video_info = np.load(f"{memmap_filename}.info.npy", |
|
allow_pickle=True).item() |
|
video = np.memmap(memmap_filename, |
|
dtype=video_info['dtype'], |
|
mode='r', |
|
shape=video_info['shape']) |
|
video_dict['video'] = video |
|
video_dicts.append(video_dict) |
|
continue |
|
|
|
is_dir = Path(path).is_dir() |
|
if is_dir: |
|
video = _load_video_from_directory_of_images( |
|
path, frames_trim=frames_trim) |
|
|
|
else: |
|
assert Path(path).suffix in (".mp4", ".mov") |
|
video, fps = _load_video(path, frames_trim=frames_trim) |
|
assert fps == videos[i]['fps'] |
|
|
|
if cache: |
|
np.save(f"{memmap_filename}.info.npy", { |
|
'shape': video.shape, |
|
'dtype': video.dtype |
|
}) |
|
memmap = np.memmap(memmap_filename, |
|
dtype=video.dtype, |
|
mode='w+', |
|
shape=video.shape) |
|
memmap[:] = video[:] |
|
memmap.flush() |
|
video = memmap |
|
|
|
video_dict['video'] = video |
|
video_dicts.append(video_dict) |
|
|
|
return video_dicts |
|
|
|
|
|
def _load_video(f, return_fps=True, frames_trim: slice = None) -> np.ndarray: |
|
""" |
|
mp4 video to frames numpy array shape (N,H,W,3). |
|
Do not use for long videos |
|
frames_trim: (s,e) is start and end int frames to include (warning, the range |
|
is inclusive, unlike in list indexing.) |
|
""" |
|
vid = decord.VideoReader(str(f)) |
|
fps = vid.get_avg_fps() |
|
|
|
if len(vid) > 50000: |
|
raise ValueError( |
|
"Video probably has too many frames to convert to a numpy") |
|
|
|
if frames_trim is None: |
|
frames_trim = slice(0, None, None) |
|
video_np = vid[frames_trim].asnumpy() |
|
|
|
if not return_fps: |
|
return video_np |
|
else: |
|
assert fps > 0 |
|
return video_np, fps |
|
|
|
|
|
def _load_video_from_directory_of_images( |
|
path_dir: str, |
|
frames_trim: slice = None, |
|
downsample_time: int = None, |
|
) -> np.ndarray: |
|
""" |
|
|
|
`path_dir` is a directory path with images that, when arranged in alphabetical |
|
order, make a video. |
|
This function returns the a numpy array shape (N,H,W,3) where N is the |
|
number of frames. |
|
""" |
|
files = sorted(os.listdir(path_dir)) |
|
|
|
if frames_trim is not None: |
|
files = files[frames_trim] |
|
|
|
if downsample_time is not None: |
|
files = files[::downsample_time] |
|
|
|
files = [f"{path_dir}/{f}" for f in files] |
|
images = [Image.open(f) for f in files] |
|
|
|
video_array = np.stack(images) |
|
|
|
return video_array |
|
|
|
|
|
def _subsample_video(video: np.ndarray, |
|
fps_original: int, |
|
fps_target: int, |
|
fps_warning: bool = True): |
|
""" |
|
video: video as numby array (nframes, h, w, 3) |
|
fps_original: original fps of the video |
|
fps_target: target fps to downscale to |
|
fps_warning: if True, then log warnings to logger if the target fps is |
|
higher than original fps, or if the target fps isn't possible because |
|
it isn't divisible by the original fps. |
|
""" |
|
subsample_time = fps_original / fps_target |
|
|
|
if subsample_time < 1 and fps_warning: |
|
logging.warning(f"Trying to subsample frames to fps {fps_target}, which "\ |
|
"is higher than the fps of the original video which is "\ |
|
"{video['fps']}. The video fps won't be changed for {video['path']}. "\ |
|
f"\nSupress this warning by setting config fps_warning=False") |
|
return video, fps_original, 1 |
|
|
|
subsample_time_int = int(subsample_time) |
|
fps_new = int(fps_original / subsample_time_int) |
|
if fps_new != fps_target and fps_warning: |
|
logging.warning(f"Config lmm.fps='{fps_target}' but the original fps is {fps_original} " \ |
|
f"so we downscale to fps {fps_new} instead. " \ |
|
f"\nSupress this warning by setting config fps_warning=False") |
|
|
|
video = video[::subsample_time_int] |
|
|
|
return video, fps_new, subsample_time_int |
|
|
|
|
|
def apply_subset_mode(dataset, subset_mode): |
|
""" |
|
For example if subset_mode is "3_per_action" then just get the first 3 rows |
|
for each unique action. |
|
Useful for working with subsets. |
|
""" |
|
match = re.match(r"(\d+)_per_action", subset_mode) |
|
if match: |
|
instances_per_action = int(match.group(1)) |
|
action_counts = {} |
|
subset_indices = [] |
|
|
|
for idx, example in enumerate(dataset): |
|
action = example['action'] |
|
if action not in action_counts: |
|
action_counts[action] = 0 |
|
|
|
if action_counts[action] < instances_per_action: |
|
subset_indices.append(idx) |
|
action_counts[action] += 1 |
|
|
|
return dataset.select(subset_indices) |
|
else: |
|
return dataset |
|
|
|
|
|
def get_hash_key(key: str) -> str: |
|
return hashlib.sha256(key.encode()).hexdigest() |
|
|
|
|
|
def get_n_differences(dataset, config_n_differences: int | str | Path): |
|
""" |
|
The maximum number of differences the model is allowed to make. |
|
Either it's a single int, or its a path to a json `ndiff`, where n_differences |
|
is indexed by the data split and sample action, e.g.: |
|
ndiff['fitness']['fitness_4'] = 8 |
|
For split 'fitness' and action 'fitness_4' |
|
|
|
Returns: a list with length len(dataset), with an int for each sample. |
|
""" |
|
if type(config_n_differences) is int: |
|
n_differences = [config_n_differences] * len(dataset) |
|
else: |
|
path = Path(config_n_differences) |
|
if not path.exists(): |
|
raise ValueError( |
|
f"Config value n_differences: [{n_differences}] must be an int " \ |
|
"or a path to a json with per-action level stuff n_differences ") |
|
with open(path, 'r') as fp: |
|
lookup_ndiff = json.load(fp) |
|
n_differences = [] |
|
for row in dataset: |
|
split = row['split'] |
|
action = row['action'] |
|
if split not in lookup_ndiff.keys( |
|
) or action not in lookup_ndiff[split].keys(): |
|
raise ValueError( |
|
f"n_differences json at {path} has no entry for {(action, split)}" |
|
) |
|
n_differences.append(lookup_ndiff[split][action]) |
|
|
|
return n_differences |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
dataset = load_viddiff_dataset(splits=['ballsports']) |
|
videos = load_all_videos(dataset) |
|
n_differences = lvd.get_n_differences(dataset, "data/n_differences.json") |
|
|