seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
x = tf.cast(x, tf.float32) / 255.0
x = tf.nn.dropout(x, rate=dropout)
| tensorflow.nn.dropout | 1,400 |
import tensorflow as tf
tf.zeros([1, num_units])), [batch_size, 1])
mask_fw = dropout(tf.ones([batch_size, 1, input_size_], dtype=tf.float32),
keep_prob=keep_prob, is_train=is_train, mode=None)
mask_bw = dropout(tf.ones([batch_size, 1, input_size_], dtype=tf.float32),
keep_prob=keep_prob, is_train=is_train, mode=None)
self.grus.append((gru_fw, gru_bw, ))
self.inits.append((init_fw, init_bw, ))
self.dropout_mask.append((mask_fw, mask_bw, ))
def __call__(self, inputs, seq_len, keep_prob=1.0, is_train=None, concat_layers=True):
outputs = [inputs]
with tf.variable_scope(self.scope):
for layer in range(self.num_layers):
gru_fw, gru_bw = self.grus[layer]
init_fw, init_bw = self.inits[layer]
mask_fw, mask_bw = self.dropout_mask[layer]
with tf.variable_scope("fw_{}".format(layer)):
out_fw, _ = tf.nn.dynamic_rnn(
gru_fw, outputs[-1] * mask_fw, seq_len, initial_state=init_fw, dtype=tf.float32)
with tf.variable_scope("bw_{}".format(layer)):
inputs_bw = tf.reverse_sequence(
outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=1, batch_dim=0)
| tensorflow.variable_scope | 1,401 |
import tensorflow as tf
# for highway and projection layers
n_highway = cnn_options.get('n_highway')
use_highway = n_highway is not None and n_highway > 0
use_proj = n_filters != projection_dim
if use_highway or use_proj:
# reshape from (batch_size, n_tokens, dim) to (-1, dim)
batch_size_n_tokens = tf.shape(embedding)[0:2]
embedding = tf.reshape(embedding, [-1, n_filters])
# set up weights for projection
if use_proj:
assert n_filters > projection_dim
with tf.variable_scope('CNN_proj') as scope:
W_proj_cnn = tf.get_variable(
"W_proj", [n_filters, projection_dim],
initializer=tf.random_normal_initializer(
mean=0.0, stddev=np.sqrt(1.0 / n_filters)),
dtype=DTYPE)
b_proj_cnn = tf.get_variable(
"b_proj", [projection_dim],
initializer=tf.constant_initializer(0.0),
dtype=DTYPE)
# apply highways layers
def high(x, ww_carry, bb_carry, ww_tr, bb_tr):
| tensorflow.variable_scope | 1,402 |
import tensorflow as tf
try:
summary_writer = tf.summary.FileWriter(tensorboard_dir, sess.graph)
sess.run(tf.global_variables_initializer())
# saved model restoring
if args.restore:
# Restore saved model if the user requested it, default = True
try:
checkpoint_state = tf.train.get_checkpoint_state(save_dir)
if checkpoint_state and checkpoint_state.model_checkpoint_path:
log("Loading checkpoint {}".format(checkpoint_state.model_checkpoint_path),
slack=True)
saver.restore(sess, checkpoint_state.model_checkpoint_path)
else:
log("No model to load at {}".format(save_dir), slack=True)
| tensorflow.train.get_checkpoint_state | 1,403 |
from tensorflow.python.ops import array_ops
b = ((min(-2, -1 - self._event_ndims_static),)
if self._batch_ndims_is_0 else ())
e = (-1,) if self._event_ndims_is_0 else ()
x = array_ops.squeeze(x, squeeze_dims=b + e)
_, batch_shape, event_shape = self.get_shape(x)
else:
| tensorflow.python.ops.array_ops.squeeze | 1,404 |
import tensorflow as tf
scope.reuse_variables()
truthoutput_z_ = lrelu(linear(tgtimg_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin'))
truthoutput_h0 = tf.reshape(truthoutput_z_, [-1, s_h16, s_w16, self.gf_dim * 8])
truthoutput_h1 = lrelu(deconv2d(tf.concat([truthoutput_h0, tgtctx_h3], 3),
[self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1'))
truthoutput_h2 = lrelu(deconv2d(tf.concat([truthoutput_h1, tgtctx_h2], 3),
[self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2'))
| tensorflow.concat | 1,405 |
import tensorflow as tf
if params.initializer == "xavier":
return tf.contrib.layers.xavier_initializer()
elif params.initializer == "uniform":
max_val = params.initializer_gain
return tf.random_uniform_initializer(-max_val, max_val)
elif params.initializer == "normal":
return tf.random_normal_initializer(0.0, params.initializer_gain)
elif params.initializer == "normal_unit_scaling":
return tf.variance_scaling_initializer(params.initializer_gain,
mode="fan_avg",
distribution="normal")
elif params.initializer == "uniform_unit_scaling":
return tf.variance_scaling_initializer(params.initializer_gain,
mode="fan_avg",
distribution="uniform")
else:
| tensorflow.variance_scaling_initializer | 1,406 |
import tensorflow as tf
def res_block_3_layers(self, bottom, channel_list, name, change_dimension = False):
if (change_dimension):
block_conv_input = self.conv_layer(bottom = bottom, kernal_size = 1, in_channels = bottom.get_shape().as_list()[-1],
out_channels = channel_list[2], stride = 1, name = name + "_branch1")
else:
block_conv_input = bottom
input_filter = bottom.get_shape().as_list()[-1]
block_conv_1 = self.conv_layer(bottom, 1, input_filter, channel_list[0], 1, name + "_branch2a")
block_norm_1 = tf.layers.batch_normalization(inputs=block_conv_1, axis = 3, momentum=configs['_BATCH_NORM_DECAY'], epsilon=configs['_BATCH_NORM_EPSILON'], center=True, scale=True, training=self.is_training, fused=True)
block_relu_1 = tf.nn.relu(block_norm_1)
block_conv_2 = self.conv_layer(block_relu_1, 3, channel_list[0], channel_list[1], 1, name + "_branch2b")
block_norm_2 = tf.layers.batch_normalization(inputs=block_conv_2, axis = 3, momentum=configs['_BATCH_NORM_DECAY'], epsilon=configs['_BATCH_NORM_EPSILON'], center=True, scale=True, training=self.is_training, fused=True)
block_relu_2 = tf.nn.relu(block_norm_2)
block_conv_3 = self.conv_layer(block_relu_2, 1, channel_list[1], channel_list[2], 1, name + "_branch2c")
block_res = tf.add(block_conv_input, block_conv_3)
relu = tf.nn.relu(block_res)
return relu
def avg_pool(self, bottom, kernal_size = 2, stride = 2, name = "avg"):
return tf.nn.avg_pool(bottom, ksize=[1, kernal_size, kernal_size, 1], strides=[1, stride, stride, 1], padding='VALID', name=name)
def max_pool(self, bottom, kernal_size = 2, stride = 2, name = "max"):
| tensorflow.nn.relu | 1,407 |
import tensorflow as tf
if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("task_name")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()
| tensorflow.app.run | 1,408 |
import tensorflow as tf
for i in range(dim):
out = tf.reshape(out, [self.mat_ranks[i] * self.inp_modes[i], -1])
| tensorflow.reshape | 1,409 |
import tensorflow as tf
global_step_t = tf.reshape(global_step, [1])
total_loss_t = tf.reshape(total_loss, [1])
total_rpn_loss_t = tf.reshape(total_rpn_loss, [1])
rpn_score_loss_t = tf.reshape(rpn_score_loss, [1])
rpn_box_loss_t = tf.reshape(rpn_box_loss, [1])
total_fast_rcnn_loss_t = tf.reshape(total_fast_rcnn_loss, [1])
fast_rcnn_class_loss_t = tf.reshape(fast_rcnn_class_loss, [1])
fast_rcnn_box_loss_t = tf.reshape(fast_rcnn_box_loss, [1])
| tensorflow.reshape | 1,410 |
import tensorflow as tf
with tf.variable_scope('scop'):
self.w1=tf.get_variable('w1', [4096,1024],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w2=tf.get_variable('w2', [1024,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.b1 = tf.get_variable('b1', [1024],initializer=tf.constant_initializer(0.0))
self.b2 = tf.get_variable('b2', [classnum],initializer=tf.constant_initializer(0.0))
def inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
out = tf.matmul(l1, self.w2)+self.b2
return out
def test_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
out = tf.matmul(l1, self.w2)+self.b2
return out
| tensorflow.matmul | 1,411 |
import tensorflow as tf
outputs, h, c = self._cell(inputs, h, c, self._rnn_params, is_training)
outputs = tf.transpose(outputs, [1, 0, 2])
| tensorflow.transpose | 1,412 |
from tensorflow.contrib.framework import deprecated
@deprecated(
| tensorflow.contrib.framework.deprecated | 1,413 |
import tensorflow as tf
tf.estimator.ModeKeys.PREDICT,
predictions=predictions,
export_outputs={
"output": tf.estimator.export.PredictOutput(export_out)
})
def _normalize_body_output(self, body_out):
if isinstance(body_out, tuple):
output, losses = body_out
if not isinstance(losses, dict):
losses = {"extra": tf.reduce_mean(losses)}
else:
output = body_out
losses = {"extra": 0.0}
return output, losses
def _warn_changed_modality_type(new_name, old_name, feature_name):
new_type, new_name = registry.parse_modality_name(new_name)
| tensorflow.reduce_mean | 1,414 |
import tensorflow as tf
mode, loss=total_loss,
eval_metric_ops=eval_metric_ops
)
assert mode == tf.estimator.ModeKeys.TRAIN
with tf.variable_scope('learning_rate'):
global_step = tf.train.get_global_step()
learning_rate = tf.train.cosine_decay(
params['initial_learning_rate'],
global_step, decay_steps=params['num_steps']
| tensorflow.variable_scope | 1,415 |
from tensorflow.python.ops import math_ops
self._beta1_t = ops.convert_to_tensor(self._beta1, name="beta1")
self._beta2_t = ops.convert_to_tensor(self._beta2, name="beta2")
def _create_slots(self, var_list):
# Create slots for the first and second moments.
for v in var_list:
self._zeros_slot(v, "m", self._name)
self._zeros_slot(v, "v", self._name)
self._zeros_slot(v, "g", self._name)
def _apply_dense(self, grad, var):
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
if var.dtype.base_dtype == tf.float16:
eps = 1e-7 # Can't use 1e-8 due to underflow -- not sure if it makes a big difference.
else:
eps = 1e-8
v = self.get_slot(var, "v")
v_t = v.assign(beta2_t * v + (1. - beta2_t) * tf.square(grad))
m = self.get_slot(var, "m")
| tensorflow.python.ops.math_ops.cast | 1,416 |
import tensorflow as tf
# Embedding Lookup 16
with tf.device('/cpu:0'), tf.name_scope("embedding"):
if use_he_uniform:
self.embedding_W = tf.get_variable(name='lookup_W', shape=[num_quantized_chars, embedding_size],
initializer=tf.contrib.layers.variance_scaling_initializer())
else:
self.embedding_W = tf.Variable(tf.random_uniform([num_quantized_chars, embedding_size], -1.0, 1.0),name="embedding_W")
self.embedded_characters = tf.nn.embedding_lookup(self.embedding_W, self.input_x)
embedded_text_expand = tf.expand_dims(self.embedded_characters, -1)
| tensorflow.contrib.layers.variance_scaling_initializer | 1,417 |
import tensorflow as tf
print(sess.run(tf.matrix_inverse(D)))
print('\ndeterminant(D)={:.1f}'.format(sess.run(tf.matrix_determinant(D))))
print('\ncholesky(D):')
print(sess.run(tf.cholesky(identity_matrix)))
print('\nselfAdjointEig(D):')
print(sess.run(tf.self_adjoint_eig(D)))
print(sess.run(tf.div(13, 4)))
print(sess.run(tf.truediv(13, 4)))
print(sess.run(tf.floordiv(13, 4)))
print(sess.run(tf.mod(13.2, 4)))
print(sess.run(tf.cross([1, 0, 0], [0, 1, 0])))
print(sess.run(tf.square([1, 2, 3])))
def custom_polynomial(local_tf, value):
return local_tf.subtract(3 * local_tf.square(value), value) + 10
print((sess.run(custom_polynomial(tf, 11))))
alpha = 0.1
| tensorflow.mod | 1,418 |
import tensorflow as tf
if scale:
n_state = shape_list(v)[-1]
w = w*tf.rsqrt(tf.cast(n_state, tf.float32))
| tensorflow.cast | 1,419 |
import tensorflow as tf
self._new_lr = tf.get_collection_ref("new_lr")[0]
self._lr_update = tf.get_collection_ref("lr_update")[0]
| tensorflow.get_collection_ref | 1,420 |
import tensorflow as tf
with self.test_session(use_gpu=False) as sess:
sp_input = self._SparseTensorPlaceholder()
input0_val = self._SparseTensorValue_5x6(np.arange(6))
input1_val = self._SparseTensorValue_1x1x1()
handle = add_sparse_to_tensors_map(sp_input)
handle0_value = sess.run(
handle, feed_dict={sp_input: input0_val})
handle1_value = sess.run(
handle, feed_dict={sp_input: input1_val})
handle_concat = tf.convert_to_tensor(
[handle0_value, handle1_value], dtype=tf.int64)
sp_roundtrip = take_many_sparse_from_tensors_map(
sparse_map_op=handle.op, sparse_handles=handle_concat)
with self.assertRaisesOpError(
r"Inconsistent rank across SparseTensors: rank prior to "
r"SparseTensor\[1\] was: 3 but rank of SparseTensor\[1\] is: 4"):
sess.run(sp_roundtrip)
| tensorflow.convert_to_tensor | 1,421 |
import tensorflow as tf
cdf = pareto.cdf(x)
self.assertEqual(cdf.shape, (6, 3))
self.assertAllClose(
self.evaluate(cdf),
self._scipy_pareto(concentration_v, scale_v).cdf(x))
def testParetoPDFGradientZeroOutsideSupport(self):
scale = tf.constant(1.)
concentration = tf.constant(3.)
# Check the gradient on the undefined portion.
x = scale - 1
pareto = tfd.Pareto(concentration, scale)
compute_pdf = lambda x: pareto.prob(x) # pylint:disable=unnecessary-lambda
self.assertAlmostEqual(self.compute_gradients(
| tensorflow.constant | 1,422 |
import tensorflow as tf
self.n_batches_per_epoch),
tf.int64, "global_epoch")
tf.add_to_collection("global_epoch", self.global_epoch)
# this creates an operation to add to all trainable variables a white noise of param
# std = tf.sqrt(variance)/10
def create_random_update_op(self):
vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
update_opts = []
for var in vars:
_, variance = tf.nn.moments(tf.reshape(var,[-1]),axes=[0])
normal = tf.distributions.Normal(loc=0.0, scale=tf.sqrt(variance)/10)
white_noise = normal.sample(var.get_shape())
| tensorflow.get_collection | 1,423 |
import tensorflow as tf
self.loss_log = []
def initialize_NN(self, layers):
weights = []
biases = []
num_layers = len(layers)
for l in range(0,num_layers-1):
W1 = self.xavier_init(size=[layers[l], layers[l+1]])
W2 = self.xavier_init(size=[layers[l], layers[l+1]])
b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32)
weights.append((W1, W2))
biases.append(b)
return weights, biases
def xavier_init(self, size):
in_dim = size[0]
out_dim = size[1]
xavier_stddev = np.sqrt(2/(in_dim + out_dim))
| tensorflow.zeros | 1,424 |
import tensorflow as tf
def testParetoShapeBroadcast(self):
scale = tf.constant([[3., 2.]])
concentration = tf.constant([[4.], [5.], [6.]])
pareto = tfd.Pareto(concentration, scale)
self.assertAllEqual(self.evaluate(pareto.batch_shape_tensor()), (3, 2))
self.assertAllEqual(pareto.batch_shape, tf.TensorShape([3, 2]))
self.assertAllEqual(self.evaluate(pareto.event_shape_tensor()), [])
self.assertEqual(pareto.event_shape, tf.TensorShape([]))
def testInvalidScale(self):
invalid_scales = [-.01, 0., -2.]
concentration = 3.
| tensorflow.TensorShape | 1,425 |
import tensorflow as tf
'''
Evaluate the quality of the logits at predicting the label
'''
correct = tf.equal(tf.arg_max(logits,1), tf.arg_max(labels,1))
correct = tf.cast(correct, tf.int32)
n_correct = tf.reduce_sum(correct)
return n_correct
def optimize(loss, learning_rate, global_step):
| tensorflow.reduce_sum | 1,426 |
import tensorflow as tf
epoch = step // steps_per_epoch
if use_sgdr is True:
# Apply Stoachastic Gradient Descent with Warm Restarts (SGDR)
lr = tf.train.cosine_decay_restarts(lr, epoch, sgdr_decay_epochs, t_mul=sgdr_t_mul, alpha=sgdr_alpha)
return lr
| tensorflow.train.cosine_decay_restarts | 1,427 |
import tensorflow as tf
A tuple (images, labels), where:
* images is a float tensor with shape [batch_size, FLAGS.num_scales, FLAGS.crop_size, FLAGS.crop_size]
* labels is an int32 tensor with shape [batch_size] with the true label,
a number in the range [0, NUM_CLASSES()).
Note that an tf.train.QueueRunner is added to the graph, which
must be run using e.g. tf.train.start_queue_runners().
"""
if not num_epochs: num_epochs = None
filename = os.path.join(FLAGS.train_dir, 'data',
'{}_{}.tfrecords'.format(name, records.tfrecord_name()))
with tf.name_scope('input'):
filename_queue = tf.train.string_input_producer(
[filename], num_epochs=num_epochs)
# Even when reading in multiple threads, share the filename
# queue.
image, label = read_and_decode(filename_queue)
# Shuffle the examples and collect them into batch_size batches.
# (Internally uses a RandomShuffleQueue.)
# We run this in two threads to avoid being a bottleneck.
| tensorflow.name_scope | 1,428 |
import tensorflow as tf
grl = gradient_reverse(samples)
grl = tf.reshape(grl, (-1, samples.get_shape().as_list()[1]))
grl = fc(grl, 100, True, None, activation=relu, name='fc1')
logits = fc(grl, 1, True, None, activation=None, name='fc2')
domain_predictions = tf.sigmoid(logits)
domain_loss = tf.losses.log_loss(domain_selection_mask, domain_predictions, weights=weight)
domain_accuracy = util.accuracy_tf(domain_selection_mask, tf.round(domain_predictions))
assert_op = tf.Assert(tf.is_finite(domain_loss), [domain_loss])
with tf.control_dependencies([assert_op]):
tag_loss = 'losses/domain_loss'
barrier = tf.no_op(tag_loss)
return domain_loss
def difference_loss(private_samples, shared_samples, weight=1.0, name='difference_loss'):
"""Adds the difference loss between the private and shared representations.
Args:
| tensorflow.is_finite | 1,429 |
import tensorflow as tf
batch_size = tf.shape(attention_weights)[0]
src_len = tf.shape(attention_weights)[2]
trg_len = tf.shape(attention_weights)[1]
src_indices = tf.tile(tf.reshape(tf.range(src_len), shape=[1, 1, src_len]), [batch_size, trg_len, 1])
trg_indices = tf.tile(tf.reshape(tf.range(trg_len), shape=[1, trg_len, 1]), [batch_size, 1, src_len])
source_length = encoder_input_length[0]
| tensorflow.range | 1,430 |
import tensorflow as tf
Q = tf.tile(tf.expand_dims(self.q_embed_encoding, 1), [1, self.max_p_len, 1, 1])
S = trilinear([C, Q, C * Q], input_keep_prob=1.0 - self.dropout)
mask_q = tf.expand_dims(self.q_mask, 1)
S_ = tf.nn.softmax(mask_logits(S, mask=mask_q))
| tensorflow.expand_dims | 1,431 |
import tensorflow as tf
reg_user=self.regs[0], reg_item=self.regs[1], seed=self.seed)
logits = tf.layers.dense(self.interaction, units=1, name='logits',
kernel_initializer=tf.initializers.lecun_uniform(self.seed))
self.prediction = tf.nn.sigmoid(logits)
self.loss = loss_fn(labels=self.labels, logits=logits)
train_op = train_fn(self.loss, learning_rate=self.learning_rate, learner=self.learner)
initializer = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.sess = tf.Session(graph=graph, config=config)
self.sess.run(initializer)
loop = trange(self.num_epochs, disable=not self.verbose)
for _ in loop:
| tensorflow.global_variables_initializer | 1,432 |
import tensorflow as tf
if not isinstance(action_space, gym.spaces.box.Box):
raise ValueError("Expecting continuous action space.")
mean_weights_initializer = tf.initializers.variance_scaling(
scale=config.init_mean_factor)
logstd_initializer = tf.random_normal_initializer(config.init_logstd, 1e-10)
flat_observations = tf.reshape(observations, [
tf.shape(observations)[0], tf.shape(observations)[1],
functools.reduce(operator.mul, observations.shape.as_list()[2:], 1)])
with tf.variable_scope("network_parameters"):
with tf.variable_scope("policy"):
x = flat_observations
for size in config.policy_layers:
x = tf.layers.dense(x, size, activation=tf.nn.relu)
mean = tf.layers.dense(
x, action_space.shape[0], activation=tf.tanh,
kernel_initializer=mean_weights_initializer)
logstd = tf.get_variable(
"logstd", mean.shape[2:], tf.float32, logstd_initializer)
logstd = tf.tile(
logstd[None, None],
[tf.shape(mean)[0], tf.shape(mean)[1]] + [1] * (mean.shape.ndims - 2))
with tf.variable_scope("value"):
x = flat_observations
for size in config.value_layers:
x = tf.layers.dense(x, size, activation=tf.nn.relu)
value = tf.layers.dense(x, 1)[..., 0]
mean = tf.check_numerics(mean, "mean")
| tensorflow.layers.dense | 1,433 |
import tensorflow as tf
soft_placement = True
util.auto_parallel(metagraph, m)
with tf.Graph().as_default():
tf.train.import_meta_graph(metagraph)
for model in models.values():
model.import_ops()
sv = tf.train.Supervisor(logdir=FLAGS.save_path)
config_proto = tf.ConfigProto(allow_soft_placement=soft_placement)
with sv.managed_session(config=config_proto) as session:
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session, m, eval_op=m.train_op,
| tensorflow.ConfigProto | 1,434 |
import tensorflow as tf
mask_ = tf.ones([FLAGS.batch_size,64,64,3])
mask = tf.pad(mask_, [[0,0],[32,32],[32,32],[0,0]])
mask2__ = tf.ones([FLAGS.batch_size,78,78,3])
mask2_ = tf.pad(mask2__, [[0,0],[25,25],[25,25],[0,0]])
mask2 = mask2_ - mask
pred_annotation, logits = inference((1-mask)*image + mask*255, keep_probability,z)
| tensorflow.pad | 1,435 |
import tensorflow as tf
self.assertEqual(x_duplicate.name, "x_1/")
self.assertTrue(x_duplicate_sample.name.startswith(
"x_1/custom_sample"))
self.assertTrue(x_sample_duplicate.name.startswith("x/custom_sample_1"))
def testStrWorksCorrectlyScalar(self):
# Usually we'd write np.float(X) here, but a recent Eager bug would
# erroneously coerce the value to float32 anyway. We therefore use constants
# here, until the bug is resolved in TensorFlow 1.12.
normal = tfd.Normal(loc=tf.constant(0, tf.float16),
scale=tf.constant(1, tf.float16))
self.assertEqual(
str(normal),
"tfp.distributions.Normal("
"\"Normal/\", "
"batch_shape=(), "
"event_shape=(), "
"dtype=float16)")
chi2 = tfd.Chi2(df=np.float32([1., 2.]), name="silly")
| tensorflow.constant | 1,436 |
import tensorflow as tf
def __init__(self,name,input_dim,output_dim,k_h=4,k_w=4,d_h=2,d_w=2,
stddev=0.02, data_format='NHWC',padding='SAME',epsilon=1e-9) :
with tf.variable_scope(name) :
assert data_format == 'NHWC'
| tensorflow.variable_scope | 1,437 |
import tensorflow as tf
def init_eta_omega(self, beta, epsilon, init_eta, init_omega):
# Here we define the symbolic function for the dual and the gradient
self.beta = beta
self.epsilon = epsilon
# Init dual param values
self.param_eta = init_eta
self.param_omega = init_omega
self.param_eta_non_lin = init_eta
self.param_omega_non_lin = init_omega
param_eta = tf.placeholder(dtype=tf.float32, shape=[], name="param_eta")
param_omega = tf.placeholder(dtype=tf.float32, shape=[], name="param_omega")
old_entropy = tf.placeholder(dtype=tf.float32, shape=[], name="old_entropy")
varphis = tf.placeholder(dtype=tf.float32, shape=[None, None], name="varphis")
Kt = tf.placeholder(dtype=tf.float32, shape=[None, None], name="Kt")
prec = tf.placeholder(dtype=tf.float32, shape=[None, None], name="prec")
Waa = tf.placeholder(dtype=tf.float32, shape=[None, None], name="Waa")
Wsa = tf.placeholder(dtype=tf.float32, shape=[None, None], name="Wsa")
wa = tf.placeholder(dtype=tf.float32, shape=[None, None], name="wa")
# varphis = ext.new_tensor(
# 'varphis',
# ndim=2,
# dtype=theano.config.floatX
# )
| tensorflow.placeholder | 1,438 |
import tensorflow as tf
o_d4 = self.general_deconv2d(o_me3, self.base_number_of_features, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_4')
o_me4 = tf.concat([o_d4, o_c1], 3) # Skip connection
logits = tf.layers.conv2d(o_me4, self.args.num_classes, 1, 1, 'SAME', activation = None)
prediction = tf.nn.softmax(logits, name = name + '_softmax')
return logits, prediction
| tensorflow.nn.softmax | 1,439 |
from tensorflow.python.ops import math_ops
"""
with ops.name_scope(None, 'false_positives', (predictions_idx, labels)):
labels, predictions_idx = _maybe_select_class_id(labels,
predictions_idx,
class_id)
fp = set_ops.set_size(set_ops.set_difference(
predictions_idx, labels, aminusb=True))
fp = math_ops.to_double(fp)
if weights is not None:
weights = math_ops.to_double(weights)
fp = math_ops.mul(fp, weights)
return fp
| tensorflow.python.ops.math_ops.to_double | 1,440 |
import tensorflow as tf
INPUT_DIM = 5
OUTPUT_DIM = 3
def generator_fn(generator_inputs):
outputs = tf.layers.dense(generator_inputs, OUTPUT_DIM)
return outputs
def discriminator_fn(data, generator_inputs):
outputs = tf.layers.dense(data, 1)
return outputs
def model_fn(features, labels, mode, params):
# build model
global_step = tf.train.get_global_step()
generator_inputs = features
real_data = labels
| tensorflow.layers.dense | 1,441 |
import tensorflow as tf
tf.app.flags.DEFINE_float('ws_lrn_rate_rg', 3e-2, 'WS: learning rate for layerwise regression')
tf.app.flags.DEFINE_integer('ws_nb_iters_rg', 20, 'WS: # of iterations for layerwise regression')
tf.app.flags.DEFINE_float('ws_lrn_rate_ft', 3e-4, 'WS: learning rate for global fine-tuning')
tf.app.flags.DEFINE_integer('ws_nb_iters_ft', 400, 'WS: # of iterations for global fine-tuning')
| tensorflow.app.flags.DEFINE_float | 1,442 |
import tensorflow as tf
if __name__ == "__main__":
tf.test.main()
| tensorflow.test.main | 1,443 |
import tensorflow as tf
w = x_shape[2]
pad_h1 = tf.mod(-h + bsize[1], bstrides[1])
pad_w1 = tf.mod(-w + bsize[2], bstrides[2])
return tf.cond(
tf.logical_or(tf.greater(pad_h1, 0), tf.greater(pad_w1, 0)),
lambda: tf.pad(x, [[0, 0], [0, pad_h1], [0, pad_w1], [0, 0]]), lambda: x)
else:
return x
| tensorflow.greater | 1,444 |
import tensorflow as tf
sequence_shape = get_shape_list(sequence_tensor, expected_rank=3)
batch_size = sequence_shape[0]
seq_length = sequence_shape[1]
width = sequence_shape[2]
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
# add sequence mask for:
# 1. random shuffle lm modeling---xlnet with random shuffled input
# 2. left2right and right2left language modeling
# 3. conditional generation
def generate_seq2seq_mask(attention_mask, mask_sequence, seq_type, **kargs):
if seq_type == 'seq2seq':
if mask_sequence is not None:
| tensorflow.gather | 1,445 |
import tensorflow as tf
name=name+'/gamma', trainable=True, dtype=x.dtype)
batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = control_flow_ops.cond(phase_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
return normed
def inception(inp, inSize, ks, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2, o4s3, poolType, name,
phase_train=True, use_batch_norm=True, weight_decay=0.0):
print('name = ', name)
print('inputSize = ', inSize)
print('kernelSize = {3,5}')
print('kernelStride = {%d,%d}' % (ks,ks))
print('outputSize = {%d,%d}' % (o2s2,o3s2))
| tensorflow.nn.batch_normalization | 1,446 |
import tensorflow as tf
class_prediction = tf.contrib.layers.fully_connected(
flattened_inputs, self._num_classes)
box_prediction = tf.contrib.layers.fully_connected(flattened_inputs, 4)
return {
'class_predictions_with_background': tf.reshape(
class_prediction, [-1, 1, self._num_classes]),
'box_encodings': tf.reshape(box_prediction, [-1, 1, 4])
}
| tensorflow.reshape | 1,447 |
import tensorflow as tf
# Number of disparity interpolated.
out_depth = out_size[0]
out_height = out_size[1]
out_width = out_size[2]
zero = tf.zeros([], dtype='int32')
# 0 <= z < depth, 0 <= y < height & 0 <= x < width.
max_z = tf.to_int32(tf.shape(im)[1] - 1)
max_y = tf.to_int32(tf.shape(im)[2] - 1)
max_x = tf.to_int32(tf.shape(im)[3] - 1)
# Converts scale indices from [-1, 1] to [0, width/height/depth].
x = (x + 1.0) * (width_f) / 2.0
y = (y + 1.0) * (height_f) / 2.0
z = (z + 1.0) * (depth_f) / 2.0
| tensorflow.shape | 1,448 |
import tensorflow as tf
conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"]))
fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2")
shape = tf.shape(image)
deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], NUM_OF_CLASSESS])
W_t3 = utils.weight_variable([16, 16, NUM_OF_CLASSESS, deconv_shape2[3].value], name="W_t3")
b_t3 = utils.bias_variable([NUM_OF_CLASSESS], name="b_t3")
conv_t3 = utils.conv2d_transpose_strided(fuse_2, W_t3, b_t3, output_shape=deconv_shape3, stride=8)
annotation_pred = tf.argmax(conv_t3, dimension=3, name="prediction")
return tf.expand_dims(annotation_pred, dim=3), conv_t3
def train(loss_val, var_list):
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
grads = optimizer.compute_gradients(loss_val, var_list=var_list)
if FLAGS.debug:
# print(len(var_list))
for grad, var in grads:
utils.add_gradient_summary(grad, var)
return optimizer.apply_gradients(grads)
def main(argv=None):
keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image")
#debug
annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation")
| tensorflow.train.AdamOptimizer | 1,449 |
import tensorflow as tf
Args:
ckpt: Path to existing checkpoint. If present, returns only the subset of
variables that exist in given checkpoint.
Returns:
List of all variables that need to be saved/restored.
"""
model_vars = tf.trainable_variables()
# Add batchnorm variables.
bn_vars = [v for v in tf.global_variables()
if 'moving_mean' in v.op.name or 'moving_variance' in v.op.name or
'mu' in v.op.name or 'sigma' in v.op.name or
'global_scale_var' in v.op.name]
model_vars.extend(bn_vars)
model_vars = sorted(model_vars, key=lambda x: x.op.name)
mapping = {}
if ckpt is not None:
ckpt_var = tf.contrib.framework.list_variables(ckpt)
ckpt_var_names = [name for (name, unused_shape) in ckpt_var]
| tensorflow.global_variables | 1,450 |
import tensorflow as tf
inputs=x, filter_depth=filter_depth3, kernel_size=1,
padding="same", stride=1
)
x = self.__batch_norm("{}2c".format(bn_name_base), x)
x = tf.add(x, shortcut)
return tf.nn.relu(x)
def __identity_block(self, stage, block, inputs,
filter_depths, kernel_size):
filter_depth1, filter_depth2, filter_depth3 = filter_depths
conv_name_base = "conv_stage{}_block{}_branch".format(stage, block)
bn_name_base = "bn_stage{}_block{}_branch".format(stage, block)
| tensorflow.nn.relu | 1,451 |
import tensorflow as tf
h = o*tf.tanh(c)
xs[idx] = h
s = tf.concat(axis=1, values=[c, h])
return xs, s
def _ln(x, g, b, e=1e-5, axes=[1]):
u, s = tf.nn.moments(x, axes=axes, keep_dims=True)
x = (x-u)/tf.sqrt(s+e)
x = x*g+b
return x
def lnlstm(xs, ms, s, scope, nh, init_scale=1.0):
nbatch, nin = [v.value for v in xs[0].get_shape()]
with tf.variable_scope(scope):
| tensorflow.sqrt | 1,452 |
import tensorflow as tf
initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.01),
)
lookup_table = tf.concat((tf.zeros(shape=[1, size_layers]), lookup_table[1:, :]), 0)
forward = tf.nn.embedding_lookup(lookup_table, self.X)
self.Y = tf.placeholder(tf.float32, (None, None, n_mels * resampled))
self.decoder_inputs = tf.concat((tf.zeros_like(self.Y[:, :1, :]), self.Y[:, :-1, :]), 1)
self.decoder_inputs = self.decoder_inputs[:, :, -n_mels:]
self.Z = tf.placeholder(tf.float32, (None, None, fourier_window_size // 2 + 1))
batch_size = tf.shape(self.X)[0]
| tensorflow.zeros_like | 1,453 |
import tensorflow as tf
(images, labels) = random_batch(batch_size, config)
model = revnet.RevNet(config=config)
optimizer = tf.train.GradientDescentOptimizer(0.1)
if defun:
model.call = tfe.function(model.call)
num_burn = 3
num_iters = 10
with tf.device(device):
iterator = make_iterator((images, labels))
for _ in range(num_burn):
(images, labels) = iterator.next()
train_one_iter(model, images, labels, optimizer)
if execution_mode:
tfe.async_wait()
self._force_device_sync()
| tensorflow.device | 1,454 |
from tensorflow.python.training import ftrl
metrics = classifier.fit(input_fn=_input_fn, steps=_ITERS).evaluate(
input_fn=_input_fn, steps=100)
self._assertSingleClassMetrics(metrics)
def benchmarkCustomOptimizer(self):
iris = test_data.prepare_iris_data_for_logistic_regression()
cont_feature = feature_column.real_valued_column('feature', dimension=4)
bucketized_feature = feature_column.bucketized_column(
cont_feature, test_data.get_quantile_based_buckets(iris.data, 10))
classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
model_dir=tempfile.mkdtemp(),
linear_feature_columns=(bucketized_feature,),
linear_optimizer=ftrl.FtrlOptimizer(learning_rate=0.1),
dnn_feature_columns=(cont_feature,),
dnn_hidden_units=(3, 3),
dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1))
input_fn = test_data.iris_input_logistic_fn
metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate(
input_fn=input_fn, steps=100)
self._assertSingleClassMetrics(metrics)
def benchmarkMultiClass(self):
iris = base.load_iris()
cont_feature = feature_column.real_valued_column('feature', dimension=4)
bucketized_feature = feature_column.bucketized_column(
| tensorflow.python.training.ftrl.FtrlOptimizer | 1,455 |
import tensorflow as tf
final_dim]
else:
l2_shape = tf.identity(x_shape)
# Initialize hidden layer activities
if self.hidden_init == 'identity':
l1_h2 = tf.identity(x)
l2_h2 = tf.zeros(l2_shape, dtype=self.dtype)
l3_h2 = tf.zeros(l3_shape, dtype=self.dtype)
elif self.hidden_init == 'random':
l1_h2 = tf.random_normal(x_shape, dtype=self.dtype)
l2_h2 = tf.random_normal(l2_shape, dtype=self.dtype)
l3_h2 = tf.random_normal(l3_shape, dtype=self.dtype)
elif self.hidden_init == 'zeros':
l1_h2 = tf.zeros(x_shape, dtype=self.dtype)
l2_h2 = tf.zeros(l2_shape, dtype=self.dtype)
| tensorflow.zeros | 1,456 |
import tensorflow as tf
self.loss_d_rot = self.loss_d + self.weight_rotation_loss_d * self.real_pc_rot_loss
self.loss_g_rot = self.loss_g + self.weight_rotation_loss_g * self.gen_out_rot_loss
# Compute gradient penalty at interpolated points
ndims = self.real_pc.get_shape().ndims #(1024, 3)
alpha = tf.random_uniform(shape=[self.batch_size] + [1] * (ndims - 1), minval=0., maxval=1.)
differences = self.generator_out - self.real_pc
interpolates = self.real_pc + (alpha * differences)
with tf.variable_scope('discriminator') as scope:
| tensorflow.random_uniform | 1,457 |
import tensorflow as tf
def test_minimum_batch_size(self):
with self.test_session() as session:
@dynamic_batching.batch_fn_with_options(
minimum_batch_size=2, timeout_ms=1000)
def f(a, b):
batch_size = tf.shape(a)[0]
return a + b, tf.tile([batch_size], [batch_size])
output = f(tf.constant([[1, 3]]), tf.constant([2]))
tf.train.start_queue_runners()
| tensorflow.tile | 1,458 |
import tensorflow as tf
cand_features = np.concatenate(cand_features, axis=0).astype(np.float32, copy=False)
cand_choices = np.asarray(cand_choices).astype(np.int32, copy=False)
cand_scoress = np.concatenate(cand_scoress, axis=0).astype(np.float32, copy=False)
n_cands_per_sample = np.asarray(n_cands_per_sample).astype(np.int32, copy=False)
return cand_features, n_cands_per_sample, cand_choices, cand_scoress
def padding(output, n_vars_per_sample, fill=-1e8):
n_vars_max = tf.reduce_max(n_vars_per_sample)
output = tf.split(
value=output,
num_or_size_splits=n_vars_per_sample,
axis=1,
)
output = tf.concat([
tf.pad(
x,
paddings=[[0, 0], [0, n_vars_max - tf.shape(x)[1]]],
mode='CONSTANT',
constant_values=fill)
for x in output
| tensorflow.split | 1,459 |
import tensorflow as tf
else:
tf.logging.info('Mode not found.')
| tensorflow.logging.info | 1,460 |
import tensorflow as tf
tf.placeholder(tf.float32, [None, 4]),
fields.InputDataFields.groundtruth_classes:
tf.placeholder(tf.int32, [None, 3]),
fields.InputDataFields.num_groundtruth_boxes:
tf.placeholder(tf.int32, [])
}
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
| tensorflow.placeholder | 1,461 |
import tensorflow as tf
if direction == 'forward':
self.lstm_outputs[direction].append(layer_output)
else:
self.lstm_outputs[direction].append(
tf.reverse_sequence(
layer_output,
sequence_lengths,
seq_axis=1,
| tensorflow.reverse_sequence | 1,462 |
import tensorflow as tf
valid_pre = tf.reshape(valid_inf, [validnum, classnum])
valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1))
valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32))
valid_pre = tf.argmax(valid_pre, 1)
| tensorflow.cast | 1,463 |
import tensorflow as tf
save_path = os.path.join(self.get_temp_dir(), "variables")
with tf.Session("", graph=tf.Graph()) as sess:
one = tf.Variable(1.0)
twos = tf.Variable([2.0, 2.0, 2.0])
init = tf.initialize_all_variables()
save = tf.train.Saver(tf.all_variables())
| tensorflow.Variable | 1,464 |
import tensorflow as tf
def test_tensor_rearrange():
tensor_rearrange = TensorRearrange(seed=713)
in_node_a = tensor_rearrange.get_placeholder("input_0")
in_node_b = tensor_rearrange.get_placeholder("input_1")
in_node_c = tensor_rearrange.get_placeholder("input_2")
stitched = tf.dynamic_stitch([[1, 10], [[0, 7, 9], [5, 8, 3]], [[6], [4], [2]]],
[in_node_a, in_node_b, in_node_c]) # should be 11,5,4
list_of_parts = tf.dynamic_partition(tf.transpose(stitched, perm=[1, 2, 0]),
[[0, 1, 2, 3], [1, 0, 2, 3], [2, 3, 1, 0], [2, 1, 0, 3], [0, 1, 2, 3]],
num_partitions=4) # after permute becomes 5,4,11, return all partitions 5,11
node_a = tf.div(list_of_parts[0], list_of_parts[1])
node_b = tf.divide(list_of_parts[2], list_of_parts[3])
trace_node = tf.trace(node_a) + node_b # there is a broadcast here
out_node = tf.cast(tf.count_nonzero(trace_node), dtype=tf.float32) + tf.Variable(tf.random_normal(shape=(2, 3)))
placeholders = [in_node_a, in_node_b, in_node_c]
predictions = [out_node]
# Run and persist
tfp = TensorFlowPersistor(save_dir="partition_stitch_misc")
tfp.set_placeholders(placeholders) \
.set_output_tensors(predictions) \
.set_test_data(tensor_rearrange.get_test_data()) \
.build_save_frozen_graph()
| tensorflow.trace | 1,465 |
import tensorflow as tf
output_ta = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True,
element_shape=(facts[:, 0, :].get_shape()))
_, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0])
self_attention = output_op.stack()
self_attention = tf.transpose(self_attention, perm = [1, 0, 2])
return self_attention
def self_all_attention(facts, ATTENTION_SIZE, mask, stag='null'):
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
| tensorflow.transpose | 1,466 |
import tensorflow as tf
# First convolutional layer - maps one image to 32 feature maps.
with tf.variable_scope('Conv_1'):
conv1 = tf.layers.conv2d(
inputs=x_image,
filters=32,
kernel_size=[5,5],
padding='same',
use_bias=False,
name='conv1'
)
conv1_bn = tf.nn.relu(tf.layers.batch_normalization(conv1, training=train))
pool1 = tf.layers.max_pooling2d(
inputs=conv1_bn,
pool_size=[2, 2],
strides=2,
name='pool1'
)
conv2 = tf.layers.conv2d(
inputs=pool1,
| tensorflow.layers.batch_normalization | 1,467 |
import tensorflow as tf
d.attention_mask: tf.io.VarLenFeature(tf.int64),
d.labels: tf.io.VarLenFeature(tf.int64),
}
dataset = dataset.map(
lambda x: tf.io.parse_example(x, features),
num_parallel_calls=utils.AUTOTUNE,
).prefetch(utils.AUTOTUNE)
dataset = dataset.map(
lambda x: (
tf.cast(tf.sparse.to_dense(x[d.input_ids]), tf.int32),
tf.cast(tf.sparse.to_dense(x[d.token_type_ids]), tf.int32),
tf.cast(tf.sparse.to_dense(x[d.attention_mask]), tf.int32),
tf.cast(tf.sparse.to_dense(x[d.labels]), tf.int32),
),
num_parallel_calls=utils.AUTOTUNE,
).prefetch(utils.AUTOTUNE)
# do transformation
return d(dataset, **kwargs)
def parse_examples_to_dataset(self):
if not self.examples:
logging.info("self.examples is empty or None, skipped.")
| tensorflow.sparse.to_dense | 1,468 |
from tensorflow.python.ops import array_ops
batch_size = config["batch_size"]
seq_length = config["seq_length"]
with ops.Graph().as_default(), ops.device("/device:GPU:0"):
model = cudnn_rnn_ops.CudnnLSTM(num_layers, num_units, num_units)
params_size_t = model.params_size()
input_data = variables.Variable(
array_ops.ones([seq_length, batch_size, num_units]))
input_h = variables.Variable(
array_ops.ones([num_layers, batch_size, num_units]))
input_c = variables.Variable(
array_ops.ones([num_layers, batch_size, num_units]))
params = variables.Variable(
array_ops.ones([params_size_t]), validate_shape=False)
output, output_h, output_c = model(
is_training=True,
input_data=input_data,
input_h=input_h,
input_c=input_c,
params=params)
all_grads = gradients_impl.gradients(
[output, output_h, output_c],
| tensorflow.python.ops.array_ops.ones | 1,469 |
import tensorflow as tf
from scipy import interpolate
import time
def main(args):
with tf.Graph().as_default():
config = tf.ConfigProto(inter_op_parallelism_threads=args.num_inter_threads,
intra_op_parallelism_threads=args.num_intra_threads)
with tf.Session(config = config) as sess:
# Read the file containing the pairs used for testing
pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
| tensorflow.ConfigProto | 1,470 |
from tensorflow.python.framework import ops
recall = compute_recall(true_positives, false_negatives, 'value')
with ops.control_dependencies([true_positives_update_op,
false_negatives_update_op]):
update_op = compute_recall(true_positives, false_negatives, 'update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, recall)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
return recall, update_op
def _tp_fn_tn_fp(predictions, labels, thresholds, weights=None):
"""Computes true_positives, false_negatives, true_negatives, false_positives.
The `_tp_fn_tn_fp` function creates four local variables, `true_positives`,
| tensorflow.python.framework.ops.add_to_collections | 1,471 |
import tensorflow as tf
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
# sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
| tensorflow.layers.dense | 1,472 |
import tensorflow as tf
return final_loss, cstr_pct
def contra_traj_lossV7(pred, tgt, horizon=12, temp=100):
horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon)
# horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1])
tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1])
tgt_dif = tgt_flat1 - tgt_flat2
pred_dif = pred_flat1 - pred_flat2
geq = tf.cast(tgt_dif > 0, tf.bool)
tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif)
| tensorflow.reshape | 1,473 |
import tensorflow as tf
else:
out = tf.pow(subsamp_sum, 1/pnorm)
return out
def mpool(inpOp, kH, kW, dH, dW, padding, name):
with tf.variable_scope(name):
maxpool = tf.nn.max_pool(inpOp,
ksize=[1, kH, kW, 1],
strides=[1, dH, dW, 1],
padding=padding)
return maxpool
def apool(inpOp, kH, kW, dH, dW, padding, name):
with tf.variable_scope(name):
avgpool = tf.nn.avg_pool(inpOp,
ksize=[1, kH, kW, 1],
strides=[1, dH, dW, 1],
padding=padding)
return avgpool
# def mfmpool(input1, input2, name):
# with tf.variable_scope(name):
# res = tf.maximum(input1, input2)
# return res
def batch_norm(x, phase_train):
"""
| tensorflow.variable_scope | 1,474 |
import tensorflow as tf
return (summary_op, monitored_values)
def _make_var(self, name, shape, dtype=None, no_reg=False, initializer=None, init_constant=None, trainable=True):
if initializer is None:
if init_constant is not None:
initializer = tf.constant_initializer(init_constant, dtype=tf.float32)
else:
initializer = tf.contrib.keras.initializers.he_normal()
# Ensure that name is unique by shape too
name += '-shape-{}'.format('x'.join([str(x) for x in shape]))
var = tf.get_variable(name, shape=shape, dtype=dtype, initializer=initializer, trainable=trainable)
# Add L2 regularization node for trainable var
if trainable and not no_reg:
l2_loss = tf.nn.l2_loss(var)
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, l2_loss)
return var
class TimedRepeatCondition():
def __init__(self, every_secs=60):
self._every_secs = every_secs
| tensorflow.get_variable | 1,475 |
import tensorflow as tf
if last == 'sigmoid' or last == 'softmax': #use cross entropy loss function
logits= tf.transpose(betan*zn[1])
cost = tf.reduce_mean(tf.losses.sigmoid_cross_entropy(logits = logits, multi_class_labels=labels))
elif last == 'esp' or last == 'relu': #use minimum squared error (L2 loss)
out = tf.transpose(zn[0])
cost = tf.reduce_mean(tf.squared_difference(out, labels))/2
return cost
#------------Hessian-------------------
| tensorflow.squared_difference | 1,476 |
import tensorflow as tf
self.embedding_W = tf.Variable(tf.random_uniform([num_quantized_chars, embedding_size], -1.0, 1.0),name="embedding_W")
self.embedded_characters = tf.nn.embedding_lookup(self.embedding_W, self.input_x)
embedded_text_expand = tf.expand_dims(self.embedded_characters, -1)
with tf.device('/cpu:0'), tf.name_scope("embedding_tags"):
W_tags = tf.get_variable("embed_W_tags", [tags_vocab_size, embedding_size], initializer=initializer)
embedded_tags = tf.nn.embedding_lookup(W_tags, self.input_tags)
embedded_tags_expanded = tf.expand_dims(embedded_tags, -1)
with tf.device('/cpu:0'), tf.name_scope("embedding_deps"):
W_deps = tf.get_variable("embed_W_deps", [deps_vocab_size, embedding_size], initializer=initializer)
embedded_deps = tf.nn.embedding_lookup(W_deps, self.input_deps)
embedded_deps_expanded = tf.expand_dims(embedded_deps, -1)
with tf.device('/cpu:0'), tf.name_scope("embedding_head"):
W_head = tf.get_variable("embed_W_head", [num_quantized_chars, embedding_size], initializer=initializer)
embedded_head = tf.nn.embedding_lookup(W_head, self.input_head)
embedded_head_expanded = tf.expand_dims(embedded_head, -1)
| tensorflow.device | 1,477 |
import tensorflow as tf
np.random.seed(1234)
tf.set_random_seed(1234)
| tensorflow.set_random_seed | 1,478 |
import tensorflow as tf
def get_symbolic_attribution(self):
return [g * x for g, x in zip(
tf.gradients(ys=self.T, xs=self.X),
self.X if self.has_multiple_inputs else [self.X])]
@classmethod
def nonlinearity_grad_override(cls, op, grad):
output = op.outputs[0]
input = op.inputs[0]
return grad * output / (input + eps *
tf.compat.v1.where(input >= 0, tf.ones_like(input), -1 * tf.ones_like(input)))
"""
Integrated Gradients
https://arxiv.org/pdf/1703.01365.pdf
"""
class IntegratedGradients(GradientBasedMethod):
def __init__(self, T, X, session, keras_learning_phase, steps=100, baseline=None, Y_shape=None):
self.steps = steps
| tensorflow.ones_like | 1,479 |
import tensorflow as tf
:param expected_extra_dims: Expected extra dimensions.
:returns: Tensor of same shape as expanded_tensor, but with `value_if_masked` filled
in masked dimensions.
"""
mask_shape = list(map(int, self.mask.shape))
graph_typecheck.assert_shape(expanded_tensor, mask_shape + expected_extra_dims)
value_if_masked = expanded_tensor.dtype.as_numpy_dtype(value_if_masked)
if_masked_tensor = tf.fill(expanded_tensor.shape, value_if_masked)
mask = self.mask
for i in range(2, 2 + len(expected_extra_dims)):
mask = tf.expand_dims(mask, axis=i)
mask = tf.tile(mask, [1, 1] + expected_extra_dims)
return tf.where(mask, expanded_tensor, if_masked_tensor)
def initial_layer(
window_feature: WindowFeatures, *, clip_magnitude=10.0, include_flux_and_time=False
) -> tf.Tensor:
features = tf.expand_dims(window_feature.dflux_dt(clip_magnitude=clip_magnitude), 2)
if include_flux_and_time:
dflux = tf.expand_dims(window_feature.dflux, 2)
dtime = tf.expand_dims(window_feature.dtime, 2)
features = tf.concat([features, dflux, dtime],
axis=2,
name="initial_layer_concat")
| tensorflow.where | 1,480 |
import tensorflow as tf
features["label_ids"] = create_int_feature(feature.label_ids)
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
| tensorflow.train.Features | 1,481 |
import tensorflow as tf
def res_block_bottleneck(x,
ksize_list,
strides,
is_training,
data_format='NHWC',
w_project=None,
no_activation=False):
"""
Computes y = x + F(x), where F(x) is the residual block function. At downsample layers, applies
a downsample function on x as well.
"""
if w_project is not None:
x_ = tf.conv2d(x, w_project, strides, padding='SAME', data_format=data_format)
else:
x_ = x
return x_ + _bottleneck_residual(
x,
ksize_list,
strides,
'SAME',
is_training,
data_format=data_format,
no_activation=no_activation)
| tensorflow.conv2d | 1,482 |
import tensorflow as tf
feat = tf.nn.l2_normalize(inputs, 1, 1e-10, name='feat')
inputs = tf.layers.dense(inputs=inputs, units=class_num)
# inputs = tf.layers.dense(inputs=feat, units=class_num)
inputs = tf.identity(inputs, 'final_dense')
return inputs, feat
# image_size = 32, img_channels = 3, class_num = 10 in cifar10
x = tf.placeholder(tf.float32, shape=[None, image_size, image_size, img_channels])
label = tf.placeholder(tf.float32, shape=[None,])
one_hot_labels = tf.one_hot(indices=tf.cast(label, tf.int32), depth=class_num)
training_flag = tf.placeholder(tf.bool)
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
logits, feat = resnet_model_fn(x, training=training_flag)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_labels, logits=logits))
Focal_loss = tf.reduce_mean(focal_loss(one_hot_labels, logits, alpha=0.5))
l2_loss = weight_decay * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables()])
Center_loss, Centers = center_loss(feat, tf.cast(label, dtype=tf.int32), 0.95, class_num)
Total_loss = cost + l2_loss
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=momentum, use_nesterov=True)
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
| tensorflow.placeholder | 1,483 |
import tensorflow as tf
scale = tf.stack([1, h_scale, w_scale])
indices *= scale
# Since we always use VALID to perform pooling, shift is needed here.
shift = tf.stack([0, (ksize[1] - 1) // 2, (ksize[2] - 1) // 2])
indices += shift
indices_ = tf.expand_dims(tf.expand_dims(indices, 1), 2)
# indices_ = tf.tile(indices_, [1, ksize[1], ksize[2], 1])
offset = _get_offset_array(ksize[0:3])
indices_ += offset
return indices_
| tensorflow.expand_dims | 1,484 |
from tensorflow.contrib import tpu as contrib_tpu
run_config = contrib_tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=int(FLAGS.save_checkpoints_steps),
keep_checkpoint_max=0,
tpu_config=contrib_tpu.TPUConfig(
iterations_per_loop=iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
train_examples = None
| tensorflow.contrib.tpu.TPUConfig | 1,485 |
import tensorflow as tf
query = tf.concat(values = [
query,
query,
], axis=1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
# Mask
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
# scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
| tensorflow.layers.dense | 1,486 |
import tensorflow as tf
def test_tensor_rearrange():
tensor_rearrange = TensorRearrange(seed=713)
in_node_a = tensor_rearrange.get_placeholder("input_0")
in_node_b = tensor_rearrange.get_placeholder("input_1")
in_node_c = tensor_rearrange.get_placeholder("input_2")
stitched = tf.dynamic_stitch([[1, 10], [[0, 7, 9], [5, 8, 3]], [[6], [4], [2]]],
[in_node_a, in_node_b, in_node_c]) # should be 11,5,4
list_of_parts = tf.dynamic_partition(tf.transpose(stitched, perm=[1, 2, 0]),
[[0, 1, 2, 3], [1, 0, 2, 3], [2, 3, 1, 0], [2, 1, 0, 3], [0, 1, 2, 3]],
num_partitions=4) # after permute becomes 5,4,11, return all partitions 5,11
node_a = tf.div(list_of_parts[0], list_of_parts[1])
node_b = tf.divide(list_of_parts[2], list_of_parts[3])
trace_node = tf.trace(node_a) + node_b # there is a broadcast here
out_node = tf.cast(tf.count_nonzero(trace_node), dtype=tf.float32) + tf.Variable(tf.random_normal(shape=(2, 3)))
placeholders = [in_node_a, in_node_b, in_node_c]
| tensorflow.transpose | 1,487 |
import tensorflow as tf
use_skip_connections = self.options['lstm']['use_skip_connections']
if use_skip_connections:
print("USING SKIP CONNECTIONS")
else:
print("NOT USING SKIP CONNECTIONS")
# the sequence lengths from input mask
if self.use_character_inputs:
mask = tf.reduce_any(self.ids_placeholder > 0, axis=2)
else:
mask = self.ids_placeholder > 0
sequence_lengths = tf.reduce_sum(tf.cast(mask, tf.int32), axis=1)
batch_size = tf.shape(sequence_lengths)[0]
# for each direction, we'll store tensors for each layer
self.lstm_outputs = {'forward': [], 'backward': []}
| tensorflow.reduce_any | 1,488 |
import tensorflow as tf
new_mean = tf.assign_sub(
mean,
tf.check_numerics(
decay * (mean - cur_mean), "NaN in moving mean."))
with tf.name_scope(name, "AssignMovingAvg", [var, cur_var, decay]):
with ops.colocate_with(var):
new_var = tf.assign_sub(
var,
| tensorflow.name_scope | 1,489 |
import tensorflow as tf
current_image_id_ph = tf.placeholder(tf.int32, [])
progress = networks.compute_progress(
current_image_id_ph,
stable_stage_num_images,
transition_stage_num_images,
num_blocks=3)
z = tf.random_normal([2, 10], dtype=tf.float32)
x, _ = networks.generator(
z, progress, _num_filters_stub,
networks.ResolutionSchedule(
start_resolutions=(4, 4), scale_base=2, num_resolutions=3))
fake_loss = tf.reduce_sum(tf.square(x))
| tensorflow.random_normal | 1,490 |
import tensorflow.contrib.layers as layers
from tensorflow.contrib.layers.python.layers import initializers
def atari_model(img_in, num_actions, scope, reuse=False):
# as described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return out
| tensorflow.contrib.layers.convolution2d | 1,491 |
import tensorflow as tf
tf.summary.scalar("Learning Rate", m.lr)
with tf.name_scope("Valid"):
valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
tf.summary.scalar("Validation Loss", mvalid.cost)
| tensorflow.variable_scope | 1,492 |
import tensorflow as tf
| tensorflow.enable_eager_execution | 1,493 |
from tensorflow.python.platform import gfile
# Adding s2 again (old s2 is removed first, then new s2 appended)
s2 = save2.save(sess, os.path.join(save_dir, "s2"))
self.assertEqual([s3, s2], save2.last_checkpoints)
# Created by the first helper.
self.assertTrue(gfile.Exists(s1))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1)))
# Deleted by the first helper.
self.assertFalse(gfile.Exists(s3))
self.assertFalse(gfile.Exists(save._MetaGraphFilename(s3)))
self.assertTrue(gfile.Exists(s2))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2)))
# Adding s1 (s3 should now be deleted as oldest in list)
s1 = save2.save(sess, os.path.join(save_dir, "s1"))
| tensorflow.python.platform.gfile.Exists | 1,494 |
import tensorflow as tf
self.cell = tf.contrib.rnn.LSTMCell(
options.gen_hidden_size,
initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113),
state_is_tuple=True)
self.placeholders = placeholders
with tf.variable_scope("embedding"), tf.device('/cpu:0'):
self.embedding = tf.get_variable('word_embedding', trainable=(options.fix_word_vec==False),
initializer=tf.constant(self.vocab.word_vecs), dtype=tf.float32)
if options.with_phrase_projection:
self.max_phrase_size = placeholders.max_phrase_size
| tensorflow.device | 1,495 |
import tensorflow as tf
try:
from tensorflow_transform import annotations_pb2
except ImportError:
return
# pylint: enable=g-import-not-at-top
with tf.compat.v1.Graph().as_default() as graph:
inputs = {
'foo': tf.convert_to_tensor([0, 1, 2, 3]),
'bar': tf.convert_to_tensor([0, 2, 0, 2]),
}
boundaries_foo = tf.expand_dims(tf.convert_to_tensor([.5, 1.5]), axis=0)
boundaries_bar = tf.expand_dims(tf.convert_to_tensor([.1, .2]), axis=0)
outputs = {}
# tft.apply_buckets will annotate the feature in the output schema to
# indicate the bucket boundaries that were applied.
| tensorflow.convert_to_tensor | 1,496 |
import tensorflow as tf
u = tf.string_join(x_t[i:i + self._p], '')
vx_keys, r = tf.cond(
tf.greater(vx.lookup(u), -1),
true_fn=lambda: (vx_keys, tf.add(vx.lookup(u), 1)),
false_fn=lambda: (tf.concat([vx_keys, tf.reshape(u, (-1, 1))], axis=0),
tf.constant(1, dtype=tf.int64, name='constant'))
)
vx.insert(u, r)
for i in tf.range(start=0, limit=z_t_len - self._p + 1, delta=1, dtype=None, name='range'):
u = tf.string_join(z_t[i:i + self._p], '')
vz_keys, r = tf.cond(
tf.greater(vz.lookup(u), -1),
true_fn=lambda: (vz_keys, tf.add(vz.lookup(u), 1)),
false_fn=lambda: (
tf.concat([vz_keys, tf.reshape(u, (-1, 1))], axis=0), tf.constant(1, dtype=tf.int64))
)
vz.insert(u, r)
kk = tf.Variable(0, dtype=tf.int64)
for i in tf.range(start=0, limit=tf.size(vx_keys), delta=1, dtype=None, name='range'):
for j in tf.range(start=0, limit=tf.size(vz_keys), delta=1, dtype=None, name='range'):
to_add = tf.cond(
tf.greater(vz.lookup(vx_keys[i]), -1),
true_fn=lambda: tf.math.multiply(vx.lookup(vx_keys[i]), vz.lookup(vz_keys[j])),
false_fn=lambda: tf.constant(0, dtype=tf.int64)
)
kk = tf.math.add(kk, to_add)
kernel[l][m] = kk
| tensorflow.reshape | 1,497 |
import tensorflow as tf
# Combine to constant channels
with tf.variable_scope('combine'):
W = self._make_var('W', (ni, block_ch * block_ch))
| tensorflow.variable_scope | 1,498 |
from tensorflow.contrib.learn.python.learn.datasets import base
local_file = base.maybe_download(TRAIN_IMAGES, train_dir,
SOURCE_URL + TRAIN_IMAGES)
train_images = extract_images(local_file)
local_file = base.maybe_download(TRAIN_LABELS, train_dir,
SOURCE_URL + TRAIN_LABELS)
train_labels = extract_labels(local_file, one_hot=one_hot)
| tensorflow.contrib.learn.python.learn.datasets.base.maybe_download | 1,499 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.