seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
# Careful with GPU memory allocation, TF never releases it. TF starts with almost
# all of the GPU memory allocated. We can slowly grow to that limit with an
# option setting:
config.gpu_options.allow_growth = True
sess_grow = tf.Session(config=config)
# Also, we can limit the size of GPU memory used, with the following option
config.gpu_options.per_process_gpu_memory_fraction = 0.4
sess_limited = tf.Session(config=config)
| tensorflow.Session | 1,300 |
import tensorflow as tf
else:
activation = non_linear_fn(output)
return activation
def batch_norm(x, b_train, scope, reuse=False):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
n_out = x.get_shape().as_list()[-1]
beta = tf.get_variable('beta', initializer=tf.constant(0.0, shape=[n_out]))
gamma = tf.get_variable('gamma', initializer=tf.constant(1.0, shape=[n_out]))
batch_mean, batch_var = tf.nn.moments(x, [0], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(b_train,
| tensorflow.constant | 1,301 |
import tensorflow as tf
if norm == 'I':
X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse, epsilon=0.001)
elif norm == 'B':
X = tf.layers.batch_normalization(X, reuse=reuse, training=True)
elif norm == 'G':
X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse)
if nonlin:
X = tf.nn.leaky_relu(X, 0.2)
return X
with tf.variable_scope('discriminator') as scope:
if reuse:
scope.reuse_variables()
print('D in:', X.get_shape().as_list())
X = self.conv('DZ1', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('DZ2', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
| tensorflow.variable_scope | 1,302 |
from tensorflow.python.ops import control_flow_ops
# Create gradient updates.
grad_updates = opt.apply_gradients(
gradients,
global_step=global_step if increment_global_step else None,
name="train")
# Ensure the train_tensor computes grad_updates.
train_tensor = control_flow_ops.with_dependencies([grad_updates], loss)
return train_tensor
def _clip_gradients_by_norm(grads_and_vars, clip_gradients):
"""Clips gradients by global norm."""
| tensorflow.python.ops.control_flow_ops.with_dependencies | 1,303 |
from tensorflow.contrib.framework import deprecated
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
@deprecated(
"2016-11-12", "This file will be removed after the deprecation date."
"Please switch to "
"third_party/tensorflow/contrib/learn/python/learn/estimators/head.py")
def regression_target(label_name=None,
| tensorflow.contrib.framework.deprecated | 1,304 |
from tensorflow.python.framework import ops
if i not in reduction_indices:
returned_dims.append(dim)
return [tensor_shape.TensorShape(returned_dims)]
@ops.RegisterShape("SegmentMax")
@ops.RegisterShape("SegmentMean")
@ops.RegisterShape("SegmentMin")
@ops.RegisterShape("SegmentProd")
@ops.RegisterShape("SegmentSum")
def _SegmentReductionShape(op):
"""Common shape function for segment reduction ops."""
data_shape = op.inputs[0].get_shape()
segment_ids_shape = op.inputs[1].get_shape()
segment_ids_shape.assert_has_rank(1)
return [tensor_shape.TensorShape([None]).concatenate(data_shape[1:])]
| tensorflow.python.framework.ops.RegisterShape | 1,305 |
import tensorflow as tf
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
| tensorflow.FixedLenFeature | 1,306 |
import tensorflow as tf
hess = [] #list
for i in range (dim):
dg_i = tf.gradients(flat_grads[i], par) #for each element of grads evaluate the gradients
dg_i_flat = flatten(dg_i) #flatten the resulting hessian onto a 1 d array
hess.append(dg_i_flat) #store row by row
return tf.reshape(hess,[dim, dim]) #returns the reshaped matrix
#=======================
# Main
#=======================
def Run_DNN(X_train, Y_train, X_test, Y_test, layers, activation, epoch_sample, stdbeta, starter_learning, num_iterations, with_hessian, save_model, Plot):
| tensorflow.reshape | 1,307 |
from tensorflow.python.framework import constant_op
from tensorflow.python.ops.losses import losses
from tensorflow.python.platform import gfile
from tensorflow.python.platform import googletest
def _train_input_fn():
features = {"x": constant_op.constant([[2.], [1.], [1.]])}
label = constant_op.constant([[1], [0], [0]], dtype=dtypes.int32)
return features, label
def _ranking_train_input_fn():
features = {
"a.f1": constant_op.constant([[3.], [0.3], [1.]]),
"a.f2": constant_op.constant([[0.1], [3.], [1.]]),
"b.f1": constant_op.constant([[13.], [0.4], [5.]]),
"b.f2": constant_op.constant([[1.], [3.], [0.01]]),
}
label = constant_op.constant([[0], [0], [1]], dtype=dtypes.int32)
return features, label
def _eval_input_fn():
features = {"x": constant_op.constant([[1.], [2.], [2.]])}
label = constant_op.constant([[0], [1], [1]], dtype=dtypes.int32)
return features, label
| tensorflow.python.framework.constant_op.constant | 1,308 |
import tensorflow as tf
}
logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=FLAGS.log_every_n_steps)
print('Starting a training cycle.')
xdetector.train(input_fn=input_pipeline(), hooks=[logging_hook])
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()
| tensorflow.app.run | 1,309 |
import tensorflow as tf
if add_flipped_images:
scales_to_logits_reversed = (
outputs_to_scales_to_logits_reversed[output])
logits_reversed = tf.image.resize_bilinear(
tf.reverse_v2(scales_to_logits_reversed[_MERGED_LOGITS_SCOPE], [2]),
tf.shape(images)[1:3],
align_corners=True)
outputs_to_predictions[output].append(
tf.expand_dims(tf.nn.softmax(logits_reversed), 4))
| tensorflow.reverse_v2 | 1,310 |
import tensorflow as tf
sequence_lengths: Tensor of shape `[B]` containing sequence lengths to be
(reversed and then) summed, same as in `scan_discounted_sum`.
name: Sets the name_scope for this op.
Returns:
Tensor of shape `[T, B]` containing multistep returns.
"""
with tf.name_scope(name, values=[rewards, pcontinues, state_values]):
# Regroup:
# result[t] = (rewards[t] + pcontinues[t]*(1-lambda_)*state_values[t]) +
# pcontinues[t]*lambda_*result[t + 1]
# Define:
# sequence[t] = rewards[t] + pcontinues[t]*(1-lambda_)*state_values[t]
# discount[t] = pcontinues[t]*lambda_
| tensorflow.name_scope | 1,311 |
import tensorflow as tf
)
def attention(encoder_out, seq_len, reuse=False):
attention_mechanism = tf.contrib.seq2seq.LuongAttention(
num_units=size_layers, memory=encoder_out, memory_sequence_length=seq_len
)
return tf.contrib.seq2seq.AttentionWrapper(
cell=tf.nn.rnn_cell.MultiRNNCell([cells(reuse) for _ in range(num_layers)]),
attention_mechanism=attention_mechanism,
attention_layer_size=size_layers,
alignment_history=True,
)
encoder_cells = tf.nn.rnn_cell.MultiRNNCell([cells() for _ in range(num_layers)])
encoder_out, encoder_state = tf.nn.dynamic_rnn(
cell=encoder_cells, inputs=forward, sequence_length=seq_lens, dtype=tf.float32
)
encoder_state = tuple(encoder_state[-1] for _ in range(num_layers))
decoder_cell = attention(encoder_out, seq_lens)
dense_layer = tf.layers.Dense(n_mels * resampled)
training_helper = tf.contrib.seq2seq.TrainingHelper(
inputs=self.decoder_inputs, sequence_length=seq_lens, time_major=False
)
training_decoder = tf.contrib.seq2seq.BasicDecoder(
cell=decoder_cell,
helper=training_helper,
| tensorflow.nn.dynamic_rnn | 1,312 |
import tensorflow as tf
# Build fromRGB 1x1 `Conv2D` layers internals through call.
from_rgb_conv_tensors = self.build_discriminator_from_rgb_layers(
params=params
)
print_obj(
"\nbuild_discriminator_layers",
"from_rgb_conv_tensors",
from_rgb_conv_tensors
)
with tf.control_dependencies(control_inputs=from_rgb_conv_tensors):
# Create base convolutional block's layer internals using call.
conv_block_tensors = [
self.build_discriminator_base_conv_layer_block(
params=params
)
]
# Build growth `Conv2D` layer block internals through call.
conv_block_tensors.extend(
| tensorflow.control_dependencies | 1,313 |
import tensorflow as tf
Args:
inputs: tensor
is_training: boolean tf.Variable
scope: string
keep_prob: float in [0,1]
noise_shape: list of ints
Returns:
tensor variable
"""
with tf.variable_scope(scope) as sc:
outputs = tf.cond(is_training,
lambda: tf.nn.dropout(inputs, keep_prob, noise_shape),
lambda: inputs)
return outputs
| tensorflow.variable_scope | 1,314 |
import tensorflow as tf
self.pi = tf.nn.softmax(logits)
self.log_pi = tf.nn.log_softmax(logits)
self.sample = policy_utils.categorical_sample(
tf.reshape(logits, [-1, num_acts]), num_acts)[0, :]
def build_value(self, _input):
with tf.variable_scope('VF'):
hidden = tf.layers.dense(inputs=_input,
units=self.vf_hidden_size,
activation=tf.nn.elu)
w = tf.get_variable("weights", (self.vf_hidden_size, 1))
return tf.matmul(hidden, w)
def build_loss(self):
cutoff_vf_manager = tf.reshape(tf.stop_gradient(self.manager_vf), [-1])
dot = tf.reduce_sum(tf.multiply(self.s_diff, self.g), axis=1)
gcut = tf.stop_gradient(self.g)
mag = tf.norm(self.s_diff, axis=1) * tf.norm(gcut, axis=1) + .0001
dcos = dot / mag
manager_loss = -tf.reduce_sum((self.r - cutoff_vf_manager) * dcos)
| tensorflow.get_variable | 1,315 |
import tensorflow as tf
x = (x - u) * tf.rsqrt(s + e)
if g is not None and b is not None:
x = x*g + b
return x
def norm(x, scope, axis=[-1]):
with tf.variable_scope(scope):
n_state = shape_list(x)[-1]
g = tf.get_variable("g", [n_state], initializer=tf.constant_initializer(1))
b = tf.get_variable("b", [n_state], initializer=tf.constant_initializer(0))
return _norm(x, g, b, axis=axis)
def dropout(x, pdrop, train):
if train and pdrop > 0:
x = tf.nn.dropout(x, 1-pdrop)
return x
| tensorflow.constant_initializer | 1,316 |
from tensorflow.python.ops import math_ops
if metrics is None and self._n_classes > 1:
metrics = {"accuracy": metrics_lib.streaming_accuracy}
if self._n_classes == 2:
predictions = math_ops.sigmoid(logits)
result["eval_auc"] = metrics_lib.streaming_auc(predictions, targets)
if metrics:
| tensorflow.python.ops.math_ops.sigmoid | 1,317 |
from tensorflow.python.ops import array_ops
array_ops.expand_dims(array_ops.constant(thresholds), [1]),
array_ops.pack([1, num_predictions]))
# Tile the predictions after thresholding them across different thresholds.
pred_is_pos = math_ops.greater(
array_ops.tile(array_ops.transpose(predictions_2d), [num_thresholds, 1]),
thresh_tiled)
pred_is_neg = math_ops.logical_not(pred_is_pos)
# Tile labels by number of thresholds
label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1])
label_is_neg = math_ops.logical_not(label_is_pos)
true_positives = _create_local('true_positives', shape=[num_thresholds])
false_negatives = _create_local('false_negatives', shape=[num_thresholds])
true_negatives = _create_local('true_negatives', shape=[num_thresholds])
false_positives = _create_local('false_positives', shape=[num_thresholds])
is_true_positive = math_ops.to_float(
math_ops.logical_and(label_is_pos, pred_is_pos))
| tensorflow.python.ops.array_ops.tile | 1,318 |
import tensorflow as tf
STATE_DIM = env.observation_space.shape[0] # 24
ACTION_DIM = env.action_space.shape[0] # 4
ACTION_BOUND = env.action_space.high # [1, 1, 1, 1]
# all placeholder for tf
with tf.name_scope('S'):
S = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s')
with tf.name_scope('R'):
R = tf.placeholder(tf.float32, [None, 1], name='r')
with tf.name_scope('S_'):
S_ = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s_')
############################### Actor ####################################
class Actor(object):
def __init__(self, sess, action_dim, action_bound, learning_rate, t_replace_iter):
self.sess = sess
self.a_dim = action_dim
self.action_bound = action_bound
| tensorflow.name_scope | 1,319 |
import tensorflow as tf
pooling_mask = tf.logical_and(direct_mask_un, rep_mask_tile_un) # [bs, sluh, sld]
# data for pooling
pooling_data = tf.tile(tf.expand_dims(rep_dep_tensor, 1), [1, sl_unhead, 1, 1]) # bs,sluh,sld,hn
# execute mean pooling based on pooling_mask[bs, sluh, sld] and pooling_data[bs,sluh,sld,hn]
pooling_data = mask_for_high_rank(pooling_data, pooling_mask) # [bs,sluh,sld,hn]
pooling_data_sum = tf.reduce_sum(pooling_data, -2) # [bs,sluh,hn]
pooling_den = tf.reduce_sum(tf.cast(pooling_mask, tf.int32), -1, keep_dims=True) # [bs,sluh]
pooling_den = tf.where(tf.equal(pooling_den, 0), tf.ones_like(pooling_den), pooling_den)
pooling_result = pooling_data_sum / tf.cast(pooling_den, tf.float32)
return pooling_result
| tensorflow.reduce_sum | 1,320 |
import tensorflow as tf
inverted_rgb2lms = tf.linalg.inv(self.rgb2lms)
product1 = tf.matmul(inverted_rgb2lms, self.color_matrix)
product2 = tf.matmul(product1, self.rgb2lms)
original_image_shape = image.shape
| tensorflow.matmul | 1,321 |
import tensorflow as tf
if scale < 0.:
raise ValueError('Setting a scale less than 0 on a regularizer: %g' % scale)
if scale == 0.:
return lambda _: None
def l1(weights, name='l1_regularizer'):
"""Applies L1 regularization to weights."""
with tf.name_scope(name):
my_scale = tf.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale')
return tf.multiply(my_scale, tf.reduce_sum(tf.abs(weights)), name=name)
return l1
| tensorflow.name_scope | 1,322 |
import tensorflow as tf
# Residual connection:
highway_input = proj2_output + inputs
half_depth = depth // 2
assert half_depth * 2 == depth, 'encoder and postnet depths must be even.'
# Handle dimensionality mismatch:
if highway_input.shape[2] != half_depth:
highway_input = tf.layers.dense(highway_input, half_depth)
# 4-layer HighwayNet:
for i in range(4):
highway_input = highwaynet(highway_input, 'highway_%d' % (i + 1), half_depth)
rnn_input = highway_input
# Bidirectional RNN
| tensorflow.layers.dense | 1,323 |
from tensorflow.python.ops import array_ops
return None
feature_column_ops.check_feature_columns(self._dnn_feature_columns)
return sorted(set(self._dnn_feature_columns), key=lambda x: x.key)
def _dnn_logits(self, features, is_training):
return self._dnn_model.build_model(
features, self._dnn_feature_columns, is_training)
def _linear_logits(self, features, is_training):
return self._linear_model.build_model(
features, self._linear_feature_columns, is_training)
def _centered_bias(self):
centered_bias = variables.Variable(
array_ops.zeros([self._target_column.num_label_columns]),
collections=[self._centered_bias_weight_collection,
ops.GraphKeys.VARIABLES],
name="centered_bias_weight")
logging_ops.scalar_summary(
["centered_bias_%d" % cb for cb in range(
self._target_column.num_label_columns)],
array_ops.reshape(centered_bias, [-1]))
return centered_bias
def _centered_bias_step(self, targets, features):
centered_bias = ops.get_collection(self._centered_bias_weight_collection)
batch_size = array_ops.shape(targets)[0]
logits = array_ops.reshape(
| tensorflow.python.ops.array_ops.zeros | 1,324 |
from tensorflow.python.ops import math_ops
mean_average_precision: Scalar `float64` `Tensor` with the mean average
precision values.
update: `Operation` that increments variables appropriately, and whose
value matches `metric`.
"""
default_name = _at_k_name('average_precision', k)
with ops.name_scope(name, default_name, (predictions, labels)) as scope:
# Calculate per-example average precision, and apply weights.
average_precision = sparse_average_precision_at_k(
predictions=predictions, labels=labels, k=k)
if weights is not None:
weights = math_ops.to_double(weights)
average_precision = math_ops.mul(average_precision, weights)
# Create accumulation variables and update ops for max average precision and
# total average precision.
with ops.name_scope(None, 'max', (average_precision,)) as max_scope:
# `max` is the max possible precision. Since max for any row is 1.0:
# - For the unweighted case, this is just the number of rows.
# - For the weighted case, it's the sum of the weights broadcast across
# `average_precision` rows.
max_var = contrib_variables.local_variable(
| tensorflow.python.ops.math_ops.to_double | 1,325 |
import tensorflow as tf
distances1 = isu.inputs_distances_to_centers(inputs, centers)
num_centers = tf.shape(centers)[0]
inputs_reshaped = tf.tile(tf.expand_dims(inputs, axis=1),
tf.stack([1, num_centers, 1]))
distances2 = tf.reduce_sum(tf.square(inputs_reshaped - centers), axis=2)
self.assertAllClose(distances1.numpy(), distances2.numpy(), atol=0.001)
def test_pairwise_iou_matrix(self):
mask0 = tf.constant([[1, 0],
[0, 1]], dtype=tf.float32)
mask1 = tf.constant([[1, 1],
[0, 1]], dtype=tf.float32)
mask2 = tf.constant([[1, 0],
[1, 1]], dtype=tf.float32)
mask3 = tf.constant([[1, 1],
[1, 1]], dtype=tf.float32)
mask4 = tf.constant([[0, 0],
[0, 0]], dtype=tf.float32)
mask5 = tf.constant([[1, 0],
[1, 0]], dtype=tf.float32)
| tensorflow.constant | 1,326 |
import tensorflow as tf
with tf.control_dependencies(assertions):
product = tf.multiply(predictions, labels)
internal_dot_products = tf.reduce_sum(product, [1])
logcost = tf.log(1e-4 + 1 - tf.abs(internal_dot_products))
return logcost
| tensorflow.abs | 1,327 |
import tensorflow as tf
:param sess: (TensorFlow session) The current TensorFlow session
:param param_noise_filter_func: (function (TensorFlow Tensor): bool) function that decides whether or not a
variable should be perturbed. Only applicable if param_noise is True. If set to None, default_param_noise_filter
is used by default.
:return: (function (TensorFlow Tensor, bool, float): TensorFlow Tensor, (TensorFlow Tensor, TensorFlow Tensor)
act function to select and action given observation (See the top of the file for details),
A tuple containing the observation placeholder and the processed observation placeholder respectively.
"""
if param_noise_filter_func is None:
param_noise_filter_func = default_param_noise_filter
update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
reset_ph = tf.placeholder(tf.bool, (), name="reset")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01),
trainable=False)
param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05),
trainable=False)
# Unmodified Q.
| tensorflow.placeholder | 1,328 |
from tensorflow.python.ops import math_ops
(tp, fn, tn, fp, tp_update_op, fn_update_op, tn_update_op,
fp_update_op) = _tp_fn_tn_fp(predictions, labels, thresholds, weights)
assert array_ops.squeeze(fp).get_shape().as_list()[0] == num_thresholds
def compute_sensitivity_at_specificity(name):
specificities = math_ops.div(tn, tn + fp + kepsilon)
tf_index = math_ops.argmin(math_ops.abs(specificities - specificity), 0)
tf_index = math_ops.cast(tf_index, dtypes.int32)
# Now, we have the implicit threshold, so compute the sensitivity:
return math_ops.div(tp[tf_index],
tp[tf_index] + fn[tf_index] + kepsilon,
| tensorflow.python.ops.math_ops.abs | 1,329 |
import tensorflow as tf
def body(self, features):
observations = features["inputs"]
x = tf.transpose(observations, [0, 2, 3, 1, 4])
x_shape = common_layers.shape_list(x)
| tensorflow.transpose | 1,330 |
import tensorflow as tf
for embedding_name, path_to_meta in zip(embedding_names, paths_to_meta):
# Initialize config
embedding = config.embeddings.add()
# Specifiy the embedding variable and the metadata
embedding.tensor_name = embedding_name
embedding.metadata_path = path_to_meta
# Project the embeddings to space dimensions for visualization
tf.contrib.tensorboard.plugins.projector.visualize_embeddings(summary_writer, config)
def add_train_stats(model, hparams):
with tf.variable_scope("stats") as scope:
for i in range(hparams.tacotron_num_gpus):
tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i])
tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i])
tf.summary.scalar("before_loss", model.before_loss)
| tensorflow.contrib.tensorboard.plugins.projector.visualize_embeddings | 1,331 |
import tensorflow as tf
with tf.name_scope("loss"):
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.fc2, labels=self.y))
# Optimizer
with tf.name_scope("training_op"):
self.training_op = tf.compat.v1.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
# Perf metrics
with tf.name_scope("accuracy"):
prediction = tf.equal(tf.argmax(self.fc2, 1), tf.argmax(self.y, 1))
self.accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))
| tensorflow.cast | 1,332 |
import tensorflow as tf
keep_prob = args.keep_prob
cross_stitch_enabled = args.cross_stitch_enabled
with tf.variable_scope("placeholder"):
X = tf.placeholder(tf.float32, (None, 128), "X")
y_1 = tf.placeholder(tf.float32, (None, n_output_1), "y_1")
y_2 = tf.placeholder(tf.float32, (None, n_output_2), "y_2")
is_training = tf.placeholder(tf.bool, (), "is_training")
with tf.variable_scope("network"):
with contrib.framework.arg_scope(
[contrib.layers.fully_connected],
| tensorflow.placeholder | 1,333 |
import tensorflow as tf
a[i] = 1
return a
render = False # display the game environment
running_reward = None
tf.reset_default_graph()
## Define Q-network q(a,s) that ouput the rewards of 4 actions by given state, i.e. Action-Value Function.
# 4x4 grid can be represented by one-hot vector with 16 integers.
inputs = tf.placeholder(shape=[1, 16], dtype=tf.float32)
net = InputLayer(inputs, name='observation')
net = DenseLayer(net, n_units=4, act=tf.identity,
| tensorflow.reset_default_graph | 1,334 |
import tensorflow as tf
self.train_data['X'], self.train_data['E'], \
self.train_data['T'], self.train_data['failures'], \
self.train_data['atrisk'], self.train_data['ties'] = utils.parse_data(X, label)
# New Graph
G = tf.Graph()
with G.as_default():
# Data input
X = tf.placeholder(tf.float32, [None, input_node], name = 'x-Input')
y_ = tf.placeholder(tf.float32, [None, output_node], name = 'label-Input')
# hidden layers
self.nnweights = [] # collect weights of network
prev_node = input_node
prev_x = X
for i in range(len(hidden_layers_node)):
layer_name = 'layer' + str(i+1)
with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
| tensorflow.placeholder | 1,335 |
import tensorflow as tf
self.vf_new_params = [oldp.assign(p) for p, oldp in zip(vf_params, vf_old_params)]
self.sess.run(tf.global_variables_initializer())
# Tensorboard
if summary_dir is not None:
self.writer = tf.summary.FileWriter(summary_dir)
tf.summary.scalar('Loss/Policy', loss_pg)
tf.summary.scalar('Loss/Value', loss_vf)
tf.summary.scalar('Loss/Entropy', loss_entropy)
tf.summary.scalar('Loss/Total', loss)
tf.summary.scalar('Var/Epsilon', epsilon_decay)
tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode()))
tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev()))
tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf))
self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
# AC net
def build_anet(self, state_in, name, reuse=False, batch_size=64):
reg = None
with tf.variable_scope(name, reuse=reuse):
| tensorflow.summary.scalar | 1,336 |
import tensorflow as tf
logits_ = tf.reshape(logits, tf.stack([time_steps * batch_size, logits.get_shape()[2].value]))
targets_ = tf.reshape(targets, tf.stack([time_steps * batch_size]))
| tensorflow.stack | 1,337 |
import tensorflow as tf
if isinstance(bias, float):
bias = tf.get_variable("biases", [output_dim], tf.float32, tf.constant_initializer(bias))
variable_summaries(bias)
output = tf.nn.bias_add(tf.matmul(x, w), bias)
return output
def _bn(self, name, x):
with tf.variable_scope(name):
moving_average_decay = 0.9
decay = moving_average_decay
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2])
mu = tf.get_variable('mu', batch_mean.shape, dtype=tf.float32,
initializer=tf.zeros_initializer(), trainable=False)
tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, mu)
tf.add_to_collection('mu_sigma_bn', mu)
sigma = tf.get_variable('sigma', batch_var.shape, dtype=tf.float32,
initializer=tf.ones_initializer(), trainable=False)
tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, sigma)
tf.add_to_collection('mu_sigma_bn', sigma)
beta = tf.get_variable('beta', batch_mean.shape, dtype=tf.float32,
initializer=tf.zeros_initializer())
gamma = tf.get_variable('gamma', batch_var.shape, dtype=tf.float32,
initializer=tf.ones_initializer())
| tensorflow.nn.moments | 1,338 |
import tensorflow as tf
with tf.name_scope('weight_decay'):
add_weight_decay(params['weight_decay'])
regularization_loss = tf.losses.get_regularization_loss()
| tensorflow.losses.get_regularization_loss | 1,339 |
import tensorflow as tf
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
loss = tf.reshape(per_example_loss, [-1, tf.shape(positions)[1]])
# TODO: dynamic gather from per_example_loss
return loss
| tensorflow.reduce_sum | 1,340 |
import tensorflow as tf
precise_logits = tf.cast(logits, tf.float32) if (
logits.dtype == tf.float16) else logits
onehot_labels = tf.cast(onehot_labels, precise_logits.dtype)
predictions = tf.nn.sigmoid(logits)
predictions_pt = tf.where(tf.equal(onehot_labels, 1), predictions, 1.-predictions)
# add small value to avoid 0
| tensorflow.nn.sigmoid | 1,341 |
import tensorflow as tf
# Target for value fn regression
# We update the vf towards the min of two Q-functions in order to
# reduce overestimation bias from function approximation error.
v_backup = tf.stop_gradient(min_qf_pi - self.ent_coef * logp_pi)
value_loss = 0.5 * tf.reduce_mean(((value_fn - v_backup) ** 2)*self.weight_ph)
#value_for_priority = tf.reduce_mean((value_fn - v_backup) ** 2,1)
regularizervf = tf.contrib.layers.l1_l2_regularizer(scale_l1=0.0, scale_l2=1e-5, scope='model/values_fn')
all_trainable_weights_vf = tf_util.get_trainable_vars('model/values_fn')
regularization_penalty_vf = tf.contrib.layers.apply_regularization(regularizervf, all_trainable_weights_vf)
if self.n_step:
values_losses = qf1_loss + qf2_loss + value_loss + regularization_penalty_vf + qf1_loss_n + qf2_loss_n
else:
values_losses = qf1_loss + qf2_loss + value_loss + regularization_penalty_vf
| tensorflow.contrib.layers.l1_l2_regularizer | 1,342 |
import tensorflow as tf
with tf.device('/cpu:0'):
OPT = tf.train.AdamOptimizer(1e-4) # 后续主要是使用该optimizer中的apply—gradients操作
# OPT_C = tf.train.RMSPropOptimizer(LR_C, name='RMSPropC') # 定义critic训练过程
GLOBAL_AC = ACnet(scope=GLOBAL_NET_SCOPE) # 创建中央大脑GLOBALE_AC,只创建结构(A和C的参数)
workers = []
for i in range(N_workers): # N—workers等于cpu数量
i_name = 'W_%i' % i # worker name
workers.append(Worker(name=i_name, globalAC=GLOBAL_AC)) # 创建独立的worker
COORD = tf.train.Coordinator() # 多线程
SESS.run(tf.global_variables_initializer()) # 初始化所有参数
worker_threads = []
for worker in workers: # 并行过程
job = lambda: worker.work() # worker的工作目标,此处调用Worker类中的work
t = threading.Thread(target=job) # 每一个线程完成一个worker的工作目标
t.start() # 启动每一个worker
worker_threads.append(t) # 每一个worker的工作都加入thread中
| tensorflow.train.Coordinator | 1,343 |
import tensorflow as tf
x = tf.constant(1+2j, tf.complex64)
y = tf.constant(3+4j, tf.complex64)
z, = tf.py_func(my_func, [x, y], [tf.complex64])
self.assertAllClose(z.eval(), my_func(1+2j, 3+4j))
# a bit excotic function (rfft)
with self.test_session():
x = tf.constant([1., 2., 3., 4.], tf.float32)
def rfft(x):
return np.fft.rfft(x).astype(np.complex64)
y, = tf.py_func(rfft, [x], [tf.complex64])
self.assertAllClose(y.eval(), np.fft.rfft([1., 2., 3., 4.]))
# returns a python literal.
with self.test_session():
def literal(x):
return 1.0 if x == 0.0 else 0.0
x = tf.constant(0.0, tf.float64)
y, = tf.py_func(literal, [x], [tf.float64])
self.assertAllClose(y.eval(), 1.0)
| tensorflow.py_func | 1,344 |
import tensorflow as tf
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
| tensorflow.parse_single_example | 1,345 |
import tensorflow as tf
}, labels
else:
dupe_mask = tf.cast(tf.random_uniform([batch_size], dtype=tf.int32,
minval=0, maxval=2), tf.bool)
| tensorflow.random_uniform | 1,346 |
import tensorflow as tf
with tf.variable_scope(scope or 'directional_attention_%s' % direction or 'diag'):
# non-linear
rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map', activation,
False, wd, keep_prob, is_train)
# ensure the seletion is right
dep_selection = tf.logical_and(rep_mask, dep_selection)
head_selection = tf.logical_and(rep_mask, head_selection)
rep_dep_tensor, rep_dep_mask, dep_org_idx = reduce_data_rep_max_len(rep_map, dep_selection)
rep_head_tensor,rep_head_mask, head_org_idx = reduce_data_rep_max_len(rep_map, head_selection)
sl_dep, sl_head = tf.shape(rep_dep_tensor)[1], tf.shape(rep_head_tensor)[1]
if keep_unselected:
unhead_selection = tf.logical_and(rep_mask, tf.logical_not(head_selection))
rep_unhead_tensor, rep_unhead_mask, unhead_org_idx = reduce_data_rep_max_len(rep_map, unhead_selection)
sl_unhead = tf.shape(rep_unhead_tensor)[1]
attn_result = tf.cond(
tf.equal(sl_head, 0),
lambda: tf.zeros([bs, 0, hn], tf.float32),
lambda: self_attention_for_selected_head(
head_selection, head_org_idx, sl_head, rep_head_mask,
dep_selection, dep_org_idx, sl_dep, rep_dep_mask,
rep_map, rep_dep_tensor, keep_prob, is_train, direction, ivec
)
)
| tensorflow.logical_not | 1,347 |
import tensorflow as tf
output0 = f(tf.constant([1]), tf.constant([2]))
| tensorflow.constant | 1,348 |
import tensorflow as tf
flat_x = tf.layers.flatten(x)
flat_x = tf.nn.dropout(flat_x, rate=dropout)
x = tf.layers.dense(flat_x, 128, activation=tf.nn.relu, name="dense1")
logits = tf.layers.dense(
x, self.hparams.problem.num_actions, name="dense2"
)
logits = tf.expand_dims(logits, axis=1)
logits = clip_logits(logits, self.hparams)
value = tf.layers.dense(x, 1, name="value")
return {"target_policy": logits, "target_value": value}
@registry.register_model
| tensorflow.expand_dims | 1,349 |
from tensorflow.python.platform import googletest
model_dir=model_dir,
config=config,
feature_columns=[core_feature_column.numeric_column("x")])
# Train for a few steps.
est.train(input_fn=_train_input_fn, steps=1000)
est.evaluate(input_fn=_eval_input_fn, steps=1)
est.predict(input_fn=_eval_input_fn)
if __name__ == "__main__":
googletest.main()
| tensorflow.python.platform.googletest.main | 1,350 |
import tensorflow as tf
bounded = tf.where(tf.greater(denom, 1e-20), tf.div(num, 1.0 * denom), tf.ones_like(num))
nelems = tf.reduce_mean(tf.where(tf.greater(denom, 1e-20), 1.0 * tf.ones_like(num), 1.0 * tf.zeros_like(num)), axis=1)
| tensorflow.ones_like | 1,351 |
import tensorflow as tf
print('Conv layer {0} -> {1}'.format(bottom.get_shape().as_list(),conv_layer.get_shape().as_list()))
return conv_layer
def batch_norm_layer(self, name, input_tensor,training):
with tf.variable_scope(name) as scope:
return tf.contrib.layers.batch_norm(input_tensor,scope=scope,is_training=training,decay=0.99)
def deconv_bn_relu(self, bottom, name, kernel_size, output_channels, initializer, stride = 1, bn=False, training=False, relu=True):
input_shape = bottom.get_shape().as_list()
input_channels = input_shape[-1]
| tensorflow.contrib.layers.batch_norm | 1,352 |
import tensorflow as tf
tf.app.flags.DEFINE_string('dataset', 'cifar10', "{cifar10, svhn}")
tf.app.flags.DEFINE_string('log_dir', "", "log_dir")
tf.app.flags.DEFINE_integer('seed', 1, "initial random seed")
tf.app.flags.DEFINE_bool('validation', False, "")
tf.app.flags.DEFINE_integer('batch_size', 32, "the number of examples in a batch")
tf.app.flags.DEFINE_integer('ul_batch_size', 128, "the number of unlabeled examples in a batch")
tf.app.flags.DEFINE_integer('eval_batch_size', 100, "the number of eval examples in a batch")
tf.app.flags.DEFINE_integer('eval_freq', 5, "")
tf.app.flags.DEFINE_integer('num_epochs', 120, "the number of epochs for training")
tf.app.flags.DEFINE_integer('epoch_decay_start', 80, "epoch of starting learning rate decay")
tf.app.flags.DEFINE_integer('num_iter_per_epoch', 400, "the number of updates per epoch")
tf.app.flags.DEFINE_float('learning_rate', 0.001, "initial leanring rate")
| tensorflow.app.flags.DEFINE_integer | 1,353 |
import tensorflow as tf
)
bw_result = directional_attention_with_selections(
rep_tensor, rep_mask, dep_selection, head_selection,
'backward', hn, keep_unselected,
'backward_resa', keep_prob, is_train, wd, activation
)
return tf.concat([fw_result, bw_result], -1)
def directional_attention_with_selections(
rep_tensor, rep_mask, dep_selection, head_selection, direction=None, hn=None, keep_unselected=True,
scope=None, keep_prob=1., is_train=None, wd=0., activation='elu'):
bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2]
org_ivec = rep_tensor.get_shape().as_list()[2]
ivec = hn or org_ivec
with tf.variable_scope(scope or 'directional_attention_%s' % direction or 'diag'):
# non-linear
rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map', activation,
False, wd, keep_prob, is_train)
# ensure the seletion is right
dep_selection = tf.logical_and(rep_mask, dep_selection)
head_selection = tf.logical_and(rep_mask, head_selection)
rep_dep_tensor, rep_dep_mask, dep_org_idx = reduce_data_rep_max_len(rep_map, dep_selection)
rep_head_tensor,rep_head_mask, head_org_idx = reduce_data_rep_max_len(rep_map, head_selection)
| tensorflow.shape | 1,354 |
import tensorflow as tf
extended_vsize += self.max_phrase_size
extra_zeros = tf.zeros((batch_size, self.max_phrase_size))
vocab_dist = tf.concat(values=[vocab_dist, extra_zeros], axis=1) # [batch_size, extended_vsize]
if self.options.add_first_word_prob_for_phrase: # add prob of the first word to each phrase
attn_dist = add_first_word_prob_to_atten_dists(self.in_passage_words, self.phrase_starts,
vocab_dist, attn_dist)
# match attn_dist[batch_size, passage_length] to sparse one-hot representation [batch_size, passage_length, extended_vsize]
batch_nums = tf.range(0, limit=batch_size) # shape (batch_size)
batch_nums = tf.expand_dims(batch_nums, axis=1) # shape (batch_size, 1)
batch_nums = tf.tile(batch_nums, [1, passage_length]) # shape (batch_size, passage_length)
step_nums = tf.range(0, limit=passage_length) # [passage_length]
step_nums = tf.expand_dims(step_nums, axis=0) # shape (1, passage_length)
step_nums = tf.tile(step_nums, [batch_size, 1]) # shape (batch_size, passage_length)
indices = tf.stack((batch_nums, step_nums, passage_word_idx), axis=2) # shape (batch_size, passage_length, 3)
indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3]
indices = tf.cast(indices, tf.int64)
shape = [batch_size, passage_length, extended_vsize]
shape = tf.cast(shape, tf.int64)
attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length]
one_hot_spare_rep = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, extended_vsize]
| tensorflow.expand_dims | 1,355 |
import tensorflow as tf
def literal(x):
return 1.0 if x == 0.0 else 0.0
x = tf.constant(0.0, tf.float64)
y, = tf.py_func(literal, [x], [tf.float64])
| tensorflow.constant | 1,356 |
import tensorflow as tf
# call proper policy and value estimators for each envs
for i in range(n_particles):
if(ENV_NAME=="Pendulum-v0"):
policy_estimator[i] = PolicyEstimator_Pendulum(entropy_beta=ENTROPY_BETA,learning_rate=POLICY_LR,par_idx=i)
value_estimator[i] = ValueEstimator_Pendulum(learning_rate=VALUE_LR,par_idx=i)
if(ENV_NAME=="MountainCarContinuous-v0"):
policy_estimator[i] = PolicyEstimator_MountainCarContinuous(entropy_beta=ENTROPY_BETA,learning_rate=POLICY_LR,par_idx=i)
value_estimator[i] = ValueEstimator_MountainCarContinuous(learning_rate=VALUE_LR,par_idx=i)
svpg=SVPG(policy_estimator,independent_flag_svpg,learning_rate=POLICY_LR);
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Note, due to randomness in the policy the number of episodes you need varies
# TODO: Sometimes the algorithm gets stuck, I'm not sure what exactly is happening there.
stats = advantage_actor_critic(env, policy_estimator, value_estimator, svpg, NUM_EPISODES, MAX_EPI_STEP,discount_factor=DISCOUNT_FACTOR)
| tensorflow.global_variables_initializer | 1,357 |
import tensorflow as tf
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
updates = [
update_eps_expr,
| tensorflow.cond | 1,358 |
import tensorflow as tf
cell_basic = tf.contrib.rnn.BasicRNNCell(state_size,activation=tf.identity)
cell_drop=tf.contrib.rnn.DropoutWrapper(cell_basic,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif activation == 'relu':
cell_basic = tf.contrib.rnn.BasicRNNCell(state_size, activation=tf.nn.relu)
cell_drop = tf.contrib.rnn.DropoutWrapper(cell_basic, variational_recurrent=True, dtype=tf.float32,
input_size=num_input, input_keep_prob=input_prob,
state_keep_prob=state_prob)
| tensorflow.contrib.rnn.BasicRNNCell | 1,359 |
import tensorflow as tf
X = discrim_conv('d_out', X, 1, 1, norm=False, nonlin=False, init_stddev=0.02)
print('D out:', X.get_shape().as_list())
return X
def atrous_discriminator(self, X, reuse):
def atrous_convs(net, scope, rate=None, depth=256, reuse=None):
"""
ASPP layer 1×1 convolution and three 3×3 atrous convolutions
"""
with tf.variable_scope(scope, reuse=reuse):
pyram_1x1_0 = self.conv('_1x1', net, depth, size=1, stride=1, padding="SAME")
pyram_3x3_1 = self.conv('_3x3', net, depth, size=3, stride=1, padding="SAME")
pyram_3x3_2 = self.conv('_atr_3x3_1', net, depth, size=3, stride=1, padding="SAME", dilation=rate[0])
pyram_3x3_3 = self.conv('_atr_3x3_2', net, depth, size=3, stride=1, padding="SAME", dilation=rate[1])
# pyram_3x3_4 = self.z_conv('_atr_3x3_3', net, depth/2, size=3, stride=1, padding="SAME", dilation=rate[2])
net = tf.concat((pyram_1x1_0, pyram_3x3_1, pyram_3x3_2, pyram_3x3_3), axis=3, name="concat")
net = self.conv('_1x1_output', net, depth, size=1, stride=1, padding="SAME")
# pyram_1x1_0 = self.conv('_1x1', net, depth, size=1, stride=1, padding="SAME")
| tensorflow.variable_scope | 1,360 |
from tensorflow.python.ops import array_ops
# lvalue, and takes its shape from that? This would allow accumulate_n to
# work in all situations that add_n currently works.
raise ValueError("Cannot infer the shape of the accumulator for "
"accumulate_n. Pass the shape argument, or set the shape "
"of at least one of the inputs.")
with ops.op_scope(inputs, name, "AccumulateN") as name:
var = gen_state_ops._temporary_variable(shape=shape, dtype=tensor_dtype)
var_name = var.op.name
var = state_ops.assign(var, array_ops.zeros_like(inputs[0]))
update_ops = []
for input_tensor in inputs:
op = state_ops.assign_add(var, input_tensor, use_locking=True)
update_ops.append(op)
with ops.control_dependencies(update_ops):
return gen_state_ops._destroy_temporary_variable(var,
var_name=var_name,
| tensorflow.python.ops.array_ops.zeros_like | 1,361 |
import tensorflow as tf
sess.run(my_var)
row_dim = 2
col_dim = 3
zero_var = tf.Variable(tf.zeros([row_dim, col_dim]))
ones_var = tf.Variable(tf.ones([row_dim, col_dim]))
sess.run(zero_var.initializer)
sess.run(ones_var.initializer)
| tensorflow.zeros | 1,362 |
import tensorflow as tf
tf.placeholder(dtype),
tf.placeholder(tf.int64))
| tensorflow.placeholder | 1,363 |
import tensorflow as tf
self.assertEqual(tf.float32, tracker.state.c.dtype)
self.assertEqual((batch_size, tracker_size), tracker.state.c.shape)
self.assertEqual(tf.float32, tracker.state.h.dtype)
self.assertEqual((batch_size, tracker_size), tracker.state.h.shape)
def testSPINN(self):
with tf.device(self._test_device):
embedding_dims = 10
d_tracker = 8
sequence_length = 15
num_transitions = 27
config_tuple = collections.namedtuple(
| tensorflow.device | 1,364 |
import tensorflow as tf
params.learning_rate_boundaries,
params.learning_rate_values)
elif params.learning_rate_decay == "none":
return learning_rate
else:
raise ValueError("Unknown learning_rate_decay")
def session_config(params):
optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1,
do_function_inlining=True)
graph_options = tf.GraphOptions(optimizer_options=optimizer_options)
config = tf.ConfigProto(allow_soft_placement=True,
graph_options=graph_options)
if params.device_list:
device_str = ",".join([str(i) for i in params.device_list])
config.gpu_options.visible_device_list = device_str
config.gpu_options.per_process_gpu_memory_fraction = params.gpu_memory_fraction
config.gpu_options.allow_growth = True
return config
| tensorflow.GraphOptions | 1,365 |
import tensorflow as tf
self.L2_firing_rate = params.get('L2_firing_rate', 0)
self.sussillo_constant = params.get('sussillo_constant', 0)
# trainable features
self.W_in_train = params.get('W_in_train', True)
self.W_rec_train = params.get('W_rec_train', True)
self.W_out_train = params.get('W_out_train', True)
self.b_rec_train = params.get('b_rec_train', True)
self.b_out_train = params.get('b_out_train', True)
self.init_state_train = params.get('init_state_train', True)
# Tensorflow initializations
self.x = tf.placeholder("float", [N_batch, N_steps, N_in])
self.y = tf.placeholder("float", [N_batch, N_steps, N_out])
self.output_mask = tf.placeholder("float", [N_batch, N_steps, N_out])
# trainable variables
with tf.variable_scope("model"):
# ------------------------------------------------
# Random initialization Load weights from weights path
# for Initial state, Weight matrices, and bias weights
# ------------------------------------------------
if self.load_weights_path is None:
# random initializations
init_state_initializer = tf.random_normal_initializer(mean=0.1, stddev=0.01)
W_in_initializer = tf.constant_initializer(
0.1 * np.random.uniform(-1, 1, size=(self.N_rec, self.N_in)))
| tensorflow.placeholder | 1,366 |
import tensorflow as tf
def _get_avgpool_scale(kw, kh):
if kh > 255 or kw > 255:
return 1.0
elif kh == 3 and kw == 3:
return 9.0 * 7.0 / 64.0
elif kh == 5 and kw == 5:
return 25.0 * 10.0 / 256.0
elif kh == 6 and kw == 6:
return 36.0 * 7.0 / 256.0
elif kh == 7 and kw == 7:
return 49.0 * 21.0 / 1024.0
elif kh == 14 and kw == 14:
return 196.0 * 21.0 / 4096.0
else:
rec = tf.cast(kw * kh, tf.float32)
n_max = 7 + tf.math.ceil(tf.math.log(rec) / tf.math.log(2.))
ns = tf.range(0., n_max)
ns_pow = tf.pow(2., ns)
ks = tf.round(ns_pow / rec)
diffs = tf.math.abs(ks / ns_pow - 1 / rec)
n = tf.argmin(diffs)
k = ks[n]
scale = k / tf.pow(2., tf.cast(n, tf.float32))
scale *= rec
return scale
@register_keras_serializable(
package='Vitis', name='VitisGlobalAveragePooling2D')
class VitisGlobalAveragePooling2D(tf.keras.layers.GlobalAveragePooling2D):
| tensorflow.math.log | 1,367 |
import tensorflow as tf
memory_ = tf.nn.relu(
dense(d_memory, hidden, use_bias=False, scope="memory"))
outputs = tf.matmul(inputs_, tf.transpose(
memory_, [0, 2, 1])) / (hidden ** 0.5)
mask = tf.tile(tf.expand_dims(mask, axis=1), [1, JX, 1])
logits = tf.nn.softmax(softmax_mask(outputs, mask))
outputs = tf.matmul(logits, memory)
res = tf.concat([inputs, outputs], axis=2)
| tensorflow.expand_dims | 1,368 |
import tensorflow as tf
raise RuntimeError('Unexpected features in schema')
def test_global_annotation(self):
# TODO(b/132098015): Schema annotations aren't yet supported in OSS builds.
# pylint: disable=g-import-not-at-top
try:
from tensorflow_transform import annotations_pb2
except ImportError:
return
# pylint: enable=g-import-not-at-top
with tf.compat.v1.Graph().as_default() as graph:
outputs = {
'foo': tf.convert_to_tensor([0, 1, 2, 3], dtype=tf.int64),
'bar': tf.convert_to_tensor([0, 2, 0, 2], dtype=tf.int64),
}
# Annotate an arbitrary proto at the schema level (not sure what global
# schema boundaries would mean, but hey I'm just a test).
boundaries = tf.constant([[1.0]])
message_type = annotations_pb2.BucketBoundaries.DESCRIPTOR.full_name
sizes = tf.expand_dims([tf.size(boundaries)], axis=0)
message_proto = tf.raw_ops.EncodeProto(
sizes=sizes, values=[tf.cast(boundaries, tf.float32)],
field_names=['boundaries'], message_type=message_type)[0]
type_url = os.path.join('type.googleapis.com', message_type)
schema_inference.annotate(type_url, message_proto)
| tensorflow.convert_to_tensor | 1,369 |
import tensorflow as tf
# for each key I get the collection of summary nodes
# I set up a filewriter for each summary node
self.summary_nodes = {sk: tf.get_collection(sk) for sk in self.summary_keys}
for sk in self.summary_keys:
self.summary_writers[sk] = [tf.compat.v1.summary.FileWriter(self._tensorboard_dir+sn.name)
for sn in self.summary_nodes[sk]]
def create_hooks(self, config):
| tensorflow.compat.v1.summary.FileWriter | 1,370 |
import tensorflow as tf
# number of steps.
if FLAGS.use_tpu:
assert len(eval_examples) % FLAGS.eval_batch_size == 0
eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)
eval_drop_remainder = True if FLAGS.use_tpu else False
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=eval_drop_remainder)
result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if FLAGS.do_predict:
predict_examples = processor.get_test_examples(FLAGS.data_dir)
num_actual_predict_examples = len(predict_examples)
if FLAGS.use_tpu:
# TPU requires a fixed batch size for all batches, therefore the number
# of examples must be a multiple of the batch size, or else examples
# will get dropped. So we pad with fake examples which are ignored
# later on.
while len(predict_examples) % FLAGS.predict_batch_size != 0:
| tensorflow.gfile.GFile | 1,371 |
import tensorflow as tf
def testMultiSaverCollection(self):
self._testMultiSaverCollectionSave()
self._testMultiSaverCollectionRestore()
def testBinaryAndTextFormat(self):
test_dir = self._TestDir("binary_and_text")
filename = os.path.join(test_dir, "metafile")
with self.test_session(graph=tf.Graph()):
# Creates a graph.
tf.Variable(10.0, name="v0")
# Exports the graph as binary format.
tf.train.export_meta_graph(filename, as_text=False)
with self.test_session(graph=tf.Graph()):
# Imports the binary format graph.
saver = tf.train.import_meta_graph(filename)
# Exports the graph as text format.
saver.export_meta_graph(filename, as_text=True)
with self.test_session(graph=tf.Graph()):
| tensorflow.Variable | 1,372 |
import tensorflow as tf
| tensorflow.reshape | 1,373 |
import tensorflow as tf
# The output is (mean, var).
if self._compute_variance and not self._compute_weighted:
return [
analyzer_nodes.TensorInfo(
tf.as_dtype(self._output_numpy_dtype), self._output_shape, None)
] * 2
else:
return [
analyzer_nodes.TensorInfo(
tf.as_dtype(np.int64), self._output_shape, None),
analyzer_nodes.TensorInfo(
tf.as_dtype(self._output_numpy_dtype), self._output_shape, None),
analyzer_nodes.TensorInfo(
tf.as_dtype(self._output_numpy_dtype), self._output_shape, None),
analyzer_nodes.TensorInfo(
tf.as_dtype(self._output_numpy_dtype), self._output_shape, None)
]
| tensorflow.as_dtype | 1,374 |
import tensorflow as tf
_MergeOneToken(tokens, best_id - 1)],
axis=0)
left_candidates = tf.cond(tf.equal(best_id, 0), lambda: empty, _MergeLeft)
def _MergeRight():
| tensorflow.equal | 1,375 |
import tensorflow as tf
+ self.alpha * (
tf.matmul(
tf.nn.relu(state),
self.W_rec * self.rec_Connectivity,
| tensorflow.nn.relu | 1,376 |
import tensorflow as tf
do not have a Euclidean norm greater than maxnorm. Rows that exceed
it are scaled to length.
Args:
var_matrix: 2D mutable tensor (Variable) to operate on
indices: 1D tensor with the row indices to constrain
maxnorm: the maximum Euclidean norm
Returns:
An operation that will update var_matrix when run in a Session
'''
selected_rows = tf.nn.embedding_lookup(var_matrix, indices)
row_norms = tf.sqrt(tf.reduce_sum(tf.square(selected_rows), 1))
scaling = maxnorm / tf.maximum(row_norms, maxnorm)
scaled = selected_rows * tf.expand_dims(scaling, 1)
return tf.scatter_update(var_matrix, indices, scaled)
def dense_maxnorm_update(var_matrix, maxnorm=1.0):
'''Dense update operation that ensures all rows in var_matrix
do not have a Euclidean norm greater than maxnorm. Rows that exceed
it are scaled to length.
Args:
var_matrix: 2D mutable tensor (Variable) to operate on
maxnorm: the maximum Euclidean norm
| tensorflow.maximum | 1,377 |
import tensorflow as tf
slim = tf.contrib.slim
global first
first = True
classnum=12
testnum = tf.placeholder(tf.int32)
trainnum = tf.placeholder(tf.int32)
validnum = tf.placeholder(tf.int32)
learnrate = tf.placeholder(tf.float32)
def getinputs(path):
filename_queue=tf.train.string_input_producer([path])
reader=tf.TFRecordReader()
_,serialized_example=reader.read(filename_queue)
features=tf.parse_single_example(serialized_example,
| tensorflow.placeholder | 1,378 |
import tensorflow as tf
with self.test_session():
# Creates a graph.
v0 = tf.Variable(0.0)
var = tf.Variable(10.0)
tf.add(v0, var)
@function.Defun(x=tf.float32)
| tensorflow.Variable | 1,379 |
import tensorflow as tf
biases = tf.get_variable('biases', [output_node],
initializer=tf.constant_initializer(0.0))
layer_out = tf.matmul(prev_x, weights) + biases
# Output of Network
y = layer_out
# Global step
with tf.variable_scope('training_step', reuse=tf.AUTO_REUSE):
global_step = tf.get_variable("global_step", [],
dtype=tf.int32,
initializer=tf.constant_initializer(0),
trainable=False)
# Loss value
reg_item = tf.contrib.layers.l1_l2_regularizer(L1_reg,
L2_reg)
reg_term = tf.contrib.layers.apply_regularization(reg_item, self.nnweights)
loss_fun = self._negative_log_likelihood(y_, y)
loss = loss_fun + reg_term
# SGD Optimizer
if optimizer == 'sgd':
lr = tf.train.exponential_decay(
learning_rate,
global_step,
1,
learning_rate_decay
)
train_step = tf.train.GradientDescentOptimizer(lr).minimize(loss, global_step=global_step)
| tensorflow.contrib.layers.l1_l2_regularizer | 1,380 |
import tensorflow as tf
| tensorflow.Session | 1,381 |
import tensorflow as tf
ref=self.internals_memory[name],
indices=indices,
updates=internals[name]
))
for name in sorted(actions):
assignments.append(tf.scatter_update(
ref=self.actions_memory[name],
indices=indices,
updates=actions[name]
))
assignments.append(tf.scatter_update(ref=self.terminal_memory, indices=indices, updates=terminal))
assignments.append(tf.scatter_update(ref=self.reward_memory, indices=indices, updates=reward))
# Add episode indices.
with tf.control_dependencies(control_inputs=assignments):
num_episodes = tf.count_nonzero(input_tensor=terminal, axis=0, dtype=util.tf_dtype('int'))
assignment = tf.assign(
ref=self.episode_indices[self.episode_count: self.episode_count + num_episodes],
value=tf.boolean_mask(tensor=indices, mask=terminal)
)
# Increment episode count.
with tf.control_dependencies(control_inputs=(assignment,)):
assignment = tf.assign_add(ref=self.episode_count, value=num_episodes)
# Increment memory index.
with tf.control_dependencies(control_inputs=(assignment,)):
assignment = tf.assign(
| tensorflow.control_dependencies | 1,382 |
import tensorflow as tf
reuse=True if count else None,
is_training=is_training,
fine_tune_batch_norm=fine_tune_batch_norm)
# Resize the logits to have the same dimension before merging.
for output in sorted(outputs_to_logits):
outputs_to_logits[output] = tf.image.resize_bilinear(
outputs_to_logits[output], [logits_height, logits_width],
align_corners=True)
# Return when only one input scale.
if len(image_pyramid) == 1:
| tensorflow.image.resize_bilinear | 1,383 |
import tensorflow as tf
depth=depth)
def cbhg(inputs, input_lengths, is_training, scope, K, projections, depth):
with tf.variable_scope(scope):
with tf.variable_scope('conv_bank'):
# Convolution bank: concatenate on the last axis to stack channels from all convolutions
conv_outputs = tf.concat(
[conv1d(inputs, k, 128, tf.nn.relu, is_training, 'conv1d_%d' % k) for k in range(1, K + 1)],
axis=-1
| tensorflow.variable_scope | 1,384 |
import tensorflow as tf
dist = fake_distribution(batch_shape=[None, 3], event_shape=None)
# There's no notion of partially known shapes in eager mode, so exit
# early.
sample_shape = tf.convert_to_tensor([6, 7], dtype=tf.int32)
y = dist._set_sample_static_shape(x, sample_shape)
self.assertTrue(y.shape.ndims is None)
| tensorflow.convert_to_tensor | 1,385 |
import tensorflow as tf
facts = tf.concat(facts, 2)
print ("query_size mismatch")
query = tf.concat(values = [
query,
query,
], axis=1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
if mask is not None:
mask = tf.equal(mask, tf.ones_like(mask))
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Activation
| tensorflow.concat | 1,386 |
import tensorflow as tf
mask2 = tf.constant([[1, 0],
[1, 1]], dtype=tf.float32)
mask3 = tf.constant([[1, 1],
[1, 1]], dtype=tf.float32)
mask4 = tf.constant([[0, 0],
[0, 0]], dtype=tf.float32)
mask5 = tf.constant([[1, 0],
[1, 0]], dtype=tf.float32)
masks1 = tf.stack([mask0, mask1, mask2])
masks2 = tf.stack([mask3, mask4, mask5])
ious = isu.get_pairwise_iou_matrix(masks1, masks2)
expected_ious = tf.constant([[0.5, 0.0, 1.0/3.0],
| tensorflow.constant | 1,387 |
import tensorflow as tf
dropout_keep_prob=None,
weights=None):
super(WordAvgModel, self).__init__(batch_size, max_sequence_len,
out_vocab_size, c2v)
super(WordAvgModel, self)._DoPredictions(c2v.embedding_dims,
self._inputs)
self.cost = tf.reduce_mean(self.example_weights * self._xent)
class WordSeqModel(BaseModel):
"""A bag of word embeddings."""
def __init__(self, out_vocab_size=None,
batch_size=10,
model_params=None,
| tensorflow.reduce_mean | 1,388 |
from tensorflow.python.framework import tensor_shape
name=name)
@ops.RegisterShape("BatchMatMul")
def _BatchMatMulShape(op):
"""Shape function for BatchMatMul op."""
a_shape = op.inputs[0].get_shape()
adj_a = op.get_attr("adj_x")
b_shape = op.inputs[1].get_shape()
adj_b = op.get_attr("adj_y")
if not a_shape.is_fully_defined() or not b_shape.is_fully_defined():
return [tensor_shape.unknown_shape()]
batch_dims = a_shape[:-2].merge_with(b_shape[:-2])
output_rows = a_shape[-1] if adj_a else a_shape[-2]
output_cols = b_shape[-2] if adj_b else b_shape[-1]
inner_a = a_shape[-2] if adj_a else a_shape[-1]
inner_b = b_shape[-1] if adj_b else b_shape[-2]
inner_a.assert_is_compatible_with(inner_b)
return [batch_dims.concatenate([output_rows, output_cols])]
def sigmoid(x, name=None):
| tensorflow.python.framework.tensor_shape.unknown_shape | 1,389 |
import tensorflow as tf
predict_batch_size=eval_batch_size,
train_batch_size=hparams.train_batch_size,
eval_batch_size=eval_batch_size,
export_to_tpu=FLAGS.export_to_tpu,
experimental_exported_model_uses_all_cores=FLAGS
.inference_with_all_cores)
else:
save_checkpoints_steps = (FLAGS.save_checkpoints_steps or
FLAGS.iterations_per_loop)
run_config = tf.estimator.RunConfig(
model_dir=FLAGS.model_dir,
save_checkpoints_steps=save_checkpoints_steps)
image_classifier = tf.estimator.Estimator(
model_fn=model.model_fn,
config=run_config,
params=estimator_parmas)
# Input pipelines are slightly different (with regards to shuffling and
| tensorflow.estimator.RunConfig | 1,390 |
from tensorflow.python.framework import ops
eval_dir = os.path.join(self._model_dir, 'eval')
with ops.Graph().as_default() as g:
| tensorflow.python.framework.ops.Graph | 1,391 |
import tensorflow as tf
for var in tf.trainable_variables():
self._train_summaries.append(var)
if mode == 'TEST':
# FLAGS2["bbox_normalize_means"] = (0.0, 0.0, 0.0, 0.0)
# FLAGS2["bbox_normalize_stds"] = (0.1, 0.1, 0.1, 0.1)
stds = np.tile(np.array(cfg.FLAGS2["bbox_normalize_stds"]), (self._num_classes))
means = np.tile(np.array(cfg.FLAGS2["bbox_normalize_means"]), (self._num_classes))
self._predictions["bbox_pred"] *= stds
self._predictions["bbox_pred"] += means
else:
self._add_losses()
layers_to_output.update(self._losses)
val_summaries = [] # 保存添加tf.summary.image和添加self._losses的操作
with tf.device("/cpu:0"):
val_summaries.append(self._add_image_summary(self._image, self._gt_boxes))
for key, var in self._event_summaries.items(): #添加self._losses
val_summaries.append(tf.summary.scalar(key, var))
for key, var in self._score_summaries.items(): #self._score_summaries.update(self._anchor_targets) self._score_summaries.update(self._proposal_targets)
self._add_score_summary(key, var)
for var in self._act_summaries: # 添加head网络和rpn层
self._add_act_summary(var)
'''
for var in tf.trainable_variables():
self._train_summaries.append(var)
'''
for var in self._train_summaries: #添加tf.trainable_variables(),显示张量分布监控数据随着迭代轮数的变化趋势
self._add_train_summary(var)
| tensorflow.device | 1,392 |
import tensorflow as tf
opt = tf.train.AdamOptimizer(self.LR)
self.update_a_op = opt.apply_gradients(zip(self.a_grads, self.pi_params))
self.update_c_op = opt.apply_gradients(zip(self.c_grads, self.vf_params))
self.sess.run(tf.global_variables_initializer())
# Tensorboard
if summary_dir is not None:
self.writer = tf.summary.FileWriter(summary_dir)
tf.summary.scalar('Loss/Policy', loss_pg)
tf.summary.scalar('Loss/Value', loss_vf)
tf.summary.scalar('Loss/Entropy', - 0.01 * tf.reduce_mean(pi.entropy()))
tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode()))
tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev()))
tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf))
self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
# AC net
def build_anet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
# sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
| tensorflow.get_collection | 1,393 |
import tensorflow as tf
atten_hidden = tf.tanh(
tf.add(
tf.matmul(self.position_emb, W),
tf.matmul(output, U)))
alpha = tf.nn.softmax(
tf.reshape(tf.matmul(atten_hidden, V), [-1, shape[1], 1]), axis=1)
output = tf.reshape(output, [-1, shape[1], 2 * self.config.hidden_size])
C = tf.multiply(alpha, output)
return tf.concat([output, C], axis=-1)
def _train_epoch(self, train_batches, dropout):
| tensorflow.matmul | 1,394 |
import tensorflow as tf
d_all, d_all_logits, d_latents = self.discriminator(
x=all_images, y=all_y, is_training=is_training)
z_projs = self._latent_projections(d_latents)
d_real, d_fake, _, _ = tf.split(d_all, 4)
d_real_logits, d_fake_logits, _, _ = tf.split(d_all_logits, 4)
z_projs_real, z_projs_fake, z_aug_projs_real, z_aug_projs_fake = tf.split(z_projs, 4)
self.d_loss, _, _, self.g_loss = loss_lib.get_losses(
d_real=d_real, d_fake=d_fake, d_real_logits=d_real_logits,
d_fake_logits=d_fake_logits)
penalty_loss = penalty_lib.get_penalty_loss(
x=images, x_fake=generated, y=y, is_training=is_training,
| tensorflow.split | 1,395 |
import tensorflow as tf
dec, mem = tf.nn.seq2seq.attention_decoder(
dec_inp, enc_state,
attn_states, cell, output_size=4)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].shape)
def testDynamicAttentionDecoder2(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
cell = tf.nn.rnn_cell.GRUCell(2)
inp = tf.constant(0.5, shape=[2, 2, 2])
enc_outputs, enc_state = tf.nn.dynamic_rnn(cell, inp, dtype=tf.float32)
attn_states = enc_outputs
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
dec, mem = tf.nn.seq2seq.attention_decoder(
dec_inp, enc_state,
attn_states, cell, output_size=4,
num_heads=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
| tensorflow.constant_initializer | 1,396 |
import tensorflow as tf
max_src_len = tf.shape(reconstructed_weights)[1]
batch_size = tf.shape(reconstructed_weights)[0]
attn_loss = tf.matmul(reconstructed_weights, attention_weights) - tf.eye(max_src_len)
src_mask = tf.sequence_mask(encoder_input_length[0], maxlen=max_src_len, dtype=tf.float32)
src_mask = tf.einsum('ij,ik->ijk', src_mask, src_mask)
attn_loss *= tf.to_float(src_mask) # don't take padding words into account
attn_loss = tf.norm(attn_loss) / tf.to_float(batch_size)
| tensorflow.sequence_mask | 1,397 |
import tensorflow as tf
name = 'dropout' + str(self.counts['dropout'])
with tf.variable_scope(name):
| tensorflow.variable_scope | 1,398 |
import tensorflow as tf
pred_heatmap = tf.reshape(pred_heatmap, [-1, heatmap_size, heatmap_size])
if data_format == 'channels_first':
image_ = tf.transpose(image_, perm=(1, 2, 0))
save_image_op = tf.py_func(save_image_with_heatmap,
[image_, height, width,
heatmap_size,
tf.reshape(pred_heatmap * 255., [-1, heatmap_size, heatmap_size]),
tf.reshape(predictions, [-1, heatmap_size, heatmap_size]),
config.left_right_group_map[category][0],
config.left_right_group_map[category][1],
config.left_right_group_map[category][2]],
tf.int64, stateful=True)
with tf.control_dependencies([save_image_op]):
pred_x, pred_y = pred_x * 1., pred_y * 1.
| tensorflow.reshape | 1,399 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.