seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
x = tf.reshape(tf_utils.get_values(x), [-1])
if categorical:
x_dtype = x.dtype
x = x if x_dtype == tf.string else tf.strings.as_string(x)
elements, counts = count_per_key(x)
if x_dtype != elements.dtype:
elements = tf.strings.to_number(elements, tf.int64)
return counts, elements
if boundaries is None:
boundaries = tf.range(11, dtype=tf.float32) / 10.0
elif isinstance(boundaries, int) or (isinstance(boundaries, tf.Tensor) and
boundaries.get_shape().ndims == 0):
min_value, max_value = _min_and_max(x, True)
boundaries = tf.linspace(
tf.cast(min_value, tf.float32), tf.cast(max_value, tf.float32),
tf.cast(boundaries, tf.int64))
# Shift the boundaries slightly to account for floating point errors,
# and due to the fact that the rightmost boundary is essentially ignored.
boundaries = tf.expand_dims(tf.cast(boundaries, tf.float32), 0) - 0.0001
bucket_indices = tf_utils.assign_buckets(
tf.cast(x, tf.float32), remove_leftmost_boundary(boundaries))
bucket_vocab, counts = count_per_key(tf.strings.as_string(bucket_indices))
counts = tf_utils.reorder_histogram(bucket_vocab, counts,
tf.size(boundaries) - 1)
return counts, boundaries
| tensorflow.cast | 1,200 |
import tensorflow as tf
x_input = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Input')
x_input_l = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Labeled_Input')
y_input = tf.placeholder(dtype=tf.float32, shape=[batch_size, n_labels], name='Labels')
x_target = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Target')
| tensorflow.placeholder | 1,201 |
import tensorflow as tf
if greater than 0 then smooth the labels.
weight: scale the loss by this factor.
name: Optional scope/name for op_scope.
Returns:
A tensor with the cross entropy loss.
"""
logits.get_shape().assert_is_compatible_with(labels.get_shape())
with tf.name_scope(name):
num_classes = labels.get_shape()[-1].value
labels = tf.cast(labels, logits.dtype)
if label_smoothing > 0:
smooth_positives = 1.0 - label_smoothing
smooth_negatives = label_smoothing / num_classes
labels = labels * smooth_positives + smooth_negatives
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name='xentropy')
weight = tf.convert_to_tensor(weight, dtype=logits.dtype.base_dtype, name='loss_weight')
loss = tf.multiply(weight, tf.reduce_mean(cross_entropy), name='value')
return loss
def l1_l2_regularizer(var, weight_l1=1.0, weight_l2=1.0, name='l1_l2_regularizer'):
"""Define a L2Loss, useful for regularize, i.e. weight decay.
Args:
var: tensor to regularize.
weight_l1: an optional weight to modulate the l1 loss.
weight_l2: an optional weight to modulate the l2 loss.
name: Optional scope/name for op_scope.
| tensorflow.nn.softmax_cross_entropy_with_logits | 1,202 |
import tensorflow as tf
del training
def unicode_decode_chars(features, targets):
targets = tf.strings.unicode_decode(features['text'], 'UTF-8')
targets = tf.cast(targets, tf.int64)
features['targets'] = targets
features['inputs'] = targets
return (features, targets)
| tensorflow.cast | 1,203 |
import tensorflow as tf
"""Returns the learning phase flag.
The learning phase flag is a bool tensor (0 = test, 1 = train)
to be passed as input to any Keras function
that uses a different behavior at train time and test time.
"""
graph = tf.get_default_graph()
if graph not in _GRAPH_LEARNING_PHASES:
phase = tf.placeholder(dtype='bool', name='keras_learning_phase')
_GRAPH_LEARNING_PHASES[graph] = phase
return _GRAPH_LEARNING_PHASES[graph]
def in_train_phase(x, alt):
"""Selects `x` in train phase, and `alt` otherwise.
Note that `alt` should have the *same shape* as `x`.
| tensorflow.placeholder | 1,204 |
import tensorflow as tf
self._xent = tf.nn.softmax_cross_entropy_with_logits(logits, self.y)
self.cost = tf.reduce_mean(self.example_weights * self._xent)
| tensorflow.reduce_mean | 1,205 |
import tensorflow as tf
# If features are not used, replace feature matrix by identity matrix
if not FLAGS.features:
features = sp.identity(adj.shape[0])
# Preprocessing on node features
features = sparse_to_tuple(features)
num_features = features[2][1]
features_nonzero = features[1].shape[0]
# Define placeholders
placeholders = {
'features': tf.sparse_placeholder(tf.float32),
'adj': tf.sparse_placeholder(tf.float32),
'adj_orig': tf.sparse_placeholder(tf.float32),
'dropout': tf.placeholder_with_default(0., shape = ())
}
# Create model
model = None
if model_name == 'gcn_ae':
# Standard Graph Autoencoder
model = GCNModelAE(placeholders, num_features, features_nonzero)
elif model_name == 'gcn_vae':
# Standard Graph Variational Autoencoder
model = GCNModelVAE(placeholders, num_features, num_nodes,
features_nonzero)
elif model_name == 'linear_ae':
| tensorflow.placeholder_with_default | 1,206 |
import tensorflow as tf
assert strides[2] == strides[3], STRIDES_ERR_MSG
x = _conv(
'conv1',
x,
ksize_list[0],
_stride_arr(strides[2], data_format),
padding,
data_format=data_format)
with tf.variable_scope('sub2'):
x = _batch_norm('bn2', x, is_training, data_format)
x = _relu('relu2', x)
x = _conv(
'conv2',
x,
ksize_list[1],
_stride_arr(1, data_format),
padding,
| tensorflow.variable_scope | 1,207 |
import tensorflow as tf
per_example_loss=tf.losses.sigmoid_cross_entropy(multi_class_labels=labels, logits=logits,reduction=Reduction.NONE)
per_example_loss=tf.reduce_sum(per_example_loss,axis=-1)
loss = tf.reduce_mean(per_example_loss,name='train_loss')
| tensorflow.reduce_sum | 1,208 |
import tensorflow as tf
coverage = tf.zeros_like(attn_dists[0]) # shape (batch_size, attn_length). Initial coverage is zero.
covlosses = [] # Coverage loss per decoder timestep. Will be list length max_dec_steps containing shape (batch_size).
for a in attn_dists:
covloss = tf.reduce_sum(tf.minimum(a, coverage), [1]) # calculate the coverage loss for this step
covlosses.append(covloss)
coverage += a # update the coverage vector
| tensorflow.minimum | 1,209 |
import tensorflow as tf
self.dataset = datasets.FlowersData(FLAGS.data_dir)
else:
raise ValueError('Unknown dataset. Must be one of imagenet or flowers.')
self.local_parameter_device_flag = FLAGS.local_parameter_device
if self.job_name:
self.task_index = FLAGS.task_index
self.cluster = tf.train.ClusterSpec({'ps': self.ps_hosts,
'worker': self.worker_hosts})
self.server = None
if not self.server:
self.server = tf.train.Server(self.cluster, job_name=self.job_name,
task_index=self.task_index,
| tensorflow.train.ClusterSpec | 1,210 |
import tensorflow as tf
| tensorflow.constant_initializer | 1,211 |
import tensorflow as tf
'label':tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
})
image=tf.decode_raw(features['img_raw'],tf.uint8)
label=tf.cast(features['label'],tf.int32)
image=tf.reshape(image,[4096,1])
return image,label
def get_batch(image,label,batch_size,crop_size):
#print(image.shape)
| tensorflow.reshape | 1,212 |
import tensorflow as tf
v = variable_scope.get_variable("v", [options.attention_vec_size])
v = tf.expand_dims(tf.expand_dims(v, axis=0), axis=0)
w_c = None
if options.use_coverage:
with variable_scope.variable_scope("coverage"):
w_c = variable_scope.get_variable("w_c", [options.attention_vec_size])
w_c = tf.expand_dims(tf.expand_dims(w_c, axis=0), axis=0)
word_t_representation = self.embedding_lookup(word_t)
(state_t, context_t, coverage_t, attn_dist_t, p_gen_t, output_t) = self.one_step_decoder(
state_t_1, context_t_1, coverage_t_1, word_t_representation, encoder_states, encoder_features,
| tensorflow.expand_dims | 1,213 |
import tensorflow as tf
predict_drop_remainder = True if FLAGS.use_tpu else False
predict_input_fn = file_based_input_fn_builder(
input_file=predict_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=predict_drop_remainder)
result = estimator.predict(input_fn=predict_input_fn)
output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
with tf.gfile.GFile(output_predict_file, "w") as writer:
num_written_lines = 0
tf.logging.info("***** Predict results *****")
for (i, prediction) in enumerate(result):
probabilities = prediction["probabilities"]
if i >= num_actual_predict_examples:
break
output_line = "\t".join(
str(class_probability)
for class_probability in probabilities) + "\n"
| tensorflow.gfile.GFile | 1,214 |
import tensorflow as tf
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions, weights=is_real_example)
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
| tensorflow.metrics.mean | 1,215 |
import tensorflow as tf
return loss
def log_loss_tf(predictions, labels, eps=1e-7, weights=1.0, name='log_loss'):
"""Define a log loss.
Args:
predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network .
labels: 2D or array tensor, [batch_size, num_classes] ground truth labels or target labels.
eps: a constant to set upper or lower limit for labels, smoothening factor
name: Optional scope/name for op_scope.
Returns:
A tensor with the log loss.
"""
with tf.name_scope(name):
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
predictions = tf.to_float(predictions)
labels = tf.to_float(labels)
losses = -tf.multiply(labels, tf.log(predictions + eps)) - tf.multiply(
(1 - labels), tf.log(1 - predictions + eps))
return tf.losses.compute_weighted_loss(losses, weights)
def kappa_loss(predictions, labels, y_pow=1, eps=1e-15, num_ratings=5, batch_size=32, name='kappa'):
"""Define a kappa loss, Its a continuous differentiable approximation of
discrete kappa loss.
Args:
predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network .
| tensorflow.name_scope | 1,216 |
from tensorflow.python.ops import array_ops
batch_shape = array_ops.slice(s, (1,), (self.batch_ndims,))
# Since sample_dims=1 and is left-most, we add 1 to the number of
# batch_ndims to get the event start dim.
event_start = array_ops.where(
self._batch_ndims_is_0, 2, 1 + self.batch_ndims)
event_shape = array_ops.slice(s, (event_start,), (self.event_ndims,))
| tensorflow.python.ops.array_ops.where | 1,217 |
import tensorflow as tf
feature_spec={'x': tf.io.FixedLenFeature([], tf.string)}),
dict(
testcase_name='fixed_len_float',
make_tensors_fn=lambda:
{'x': tf.compat.v1.placeholder(tf.float32, (None,))},
feature_spec={'x': tf.io.FixedLenFeature([], tf.float32)}),
dict(
testcase_name='override',
make_tensors_fn=_make_tensors_with_override,
feature_spec={'x': tf.io.FixedLenFeature([], tf.int64)},
domains={'x': schema_pb2.IntDomain(is_categorical=True)}),
dict(
testcase_name='override_with_session',
make_tensors_fn=_make_tensors_with_override,
feature_spec={'x': tf.io.FixedLenFeature([], tf.int64)},
domains={
'x': schema_pb2.IntDomain(min=5, max=6, is_categorical=True)
},
| tensorflow.io.FixedLenFeature | 1,218 |
import tensorflow as tf
result = estimator.evaluate(
input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
| tensorflow.logging.info | 1,219 |
import tensorflow as tf
# Build another graph with 2 nodes, initialized
# differently, and a Restore node for them.
with self.test_session(graph=tf.Graph()) as sess:
v0_2 = tf.Variable(1000.0, name="v0")
v1_2 = tf.Variable(2000.0, name="v1")
save2 = tf.train.Saver([v0_2, v1_2])
tf.initialize_all_variables().run()
# Check that the parameter nodes have been initialized.
| tensorflow.Variable | 1,220 |
import tensorflow as tf
"""A demo script to show to train a segmentation model."""
from absl import app
from absl import logging
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow_examples.lite.model_maker.third_party.efficientdet import hparams_config
from tensorflow_examples.lite.model_maker.third_party.efficientdet.keras import efficientdet_keras
def create_mask(pred_mask):
pred_mask = tf.argmax(pred_mask, axis=-1)
pred_mask = pred_mask[..., tf.newaxis]
return pred_mask[0]
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)
def normalize(input_image, input_mask):
input_image = tf.cast(input_image, tf.float32) / 255.0
input_mask -= 1
| tensorflow.argmax | 1,221 |
import tensorflow as tf
def getinputs(path):
filename_queue=tf.train.string_input_producer([path])
| tensorflow.train.string_input_producer | 1,222 |
import tensorflow as tf
return tf.reverse(sequence, [0])
sequence_lengths = tf.convert_to_tensor(sequence_lengths)
with tf.control_dependencies(
[tf.assert_equal(sequence.shape[1], sequence_lengths.shape[0])]):
return tf.reverse_sequence(
sequence, sequence_lengths, seq_axis=0, batch_axis=1)
| tensorflow.assert_equal | 1,223 |
import tensorflow as tf
inputs: 4-D tensor BxHxWxC
kernel_size: a list of 2 ints
stride: a list of 2 ints
Returns:
Variable tensor
"""
with tf.variable_scope(scope) as sc:
kernel_h, kernel_w = kernel_size
stride_h, stride_w = stride
outputs = tf.nn.avg_pool(inputs,
ksize=[1, kernel_h, kernel_w, 1],
strides=[1, stride_h, stride_w, 1],
padding=padding,
| tensorflow.variable_scope | 1,224 |
from tensorflow.python.framework import ops
return gen_math_ops._tanh(x, name=name)
ops.RegisterShape("Abs")(common_shapes.unchanged_shape)
ops.RegisterShape("Ceil")(common_shapes.unchanged_shape)
ops.RegisterShape("Conj")(common_shapes.unchanged_shape)
ops.RegisterShape("Cos")(common_shapes.unchanged_shape)
ops.RegisterShape("Exp")(common_shapes.unchanged_shape)
| tensorflow.python.framework.ops.RegisterShape | 1,225 |
import tensorflow as tf
tf.flags.DEFINE_float('momentum', 0.9, """Momentum for training.""")
tf.flags.DEFINE_float('rmsprop_decay', 0.9, """Decay term for RMSProp.""")
tf.flags.DEFINE_float('rmsprop_momentum', 0.9, """Momentum in RMSProp.""")
tf.flags.DEFINE_float('rmsprop_epsilon', 1.0, """Epsilon term for RMSProp.""")
tf.flags.DEFINE_float('gradient_clip', None, """Gradient clipping magnitude.
Disabled by default.""")
tf.flags.DEFINE_float('weight_decay', 0.00004,
"""Weight decay factor for training.""")
| tensorflow.flags.DEFINE_float | 1,226 |
import tensorflow as tf
train=True,
validation=FLAGS.validation,
shuffle=True)
ul_images_eval_train = unlabeled_inputs(batch_size=FLAGS.eval_batch_size,
validation=FLAGS.validation,
shuffle=True)
images_eval_test, labels_eval_test = inputs(batch_size=FLAGS.eval_batch_size,
train=False,
validation=FLAGS.validation,
shuffle=True)
def placeholder_like(x, name=None):
return tf.placeholder(shape=x.shape, dtype=tf.float32, name=name)
def random_sphere(shape):
n = tf.random_normal(shape=shape, dtype=tf.float32)
n = tf.reshape(n, shape=(int(shape[0]), -1))
n = tf.nn.l2_normalize(n, dim=1)
n = tf.reshape(n, shape)
return n
def random_sphere_numpy(shape):
n = np.random.normal(size=shape)
proj_shape = tuple([n.shape[0]] + [1 for _ in range(len(shape) - 1)])
return n / np.linalg.norm(n.reshape((n.shape[0], -1)), axis=1).reshape(proj_shape)
| tensorflow.placeholder | 1,227 |
import tensorflow as tf
# `sloppy` mode means that the interleaving is not exact. This adds
# even more randomness to the training pipeline.
d = d.apply(
tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length,
| tensorflow.contrib.data.parallel_interleave | 1,228 |
import tensorflow as tf
return (image, mask, tf.shape(image))
class DataTransformationFnTest(test_case.TestCase):
def test_combine_additional_channels_if_present(self):
image = np.random.rand(4, 4, 3).astype(np.float32)
additional_channels = np.random.rand(4, 4, 2).astype(np.float32)
tensor_dict = {
fields.InputDataFields.image:
tf.constant(image),
fields.InputDataFields.image_additional_channels:
tf.constant(additional_channels),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([1, 1], np.int32))
}
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=1)
with self.test_session() as sess:
transformed_inputs = sess.run(
| tensorflow.constant | 1,229 |
import tensorflow as tf
:param cov_structure: "diag" or "full"
- "diag": cov holds the diagonal elements of the covariance matrix
- "full": cov holds the full covariance matrix (without jitter)
:return: sample from the MVN of shape N x D
"""
eps = tf.random_normal(tf.shape(mean), dtype=settings.float_type) # N x P
if cov_structure == "diag":
sample = mean + tf.sqrt(cov) * eps # N x P
elif cov_structure == "full":
cov = cov + (tf.eye(tf.shape(mean)[1], dtype=settings.float_type) * settings.numerics.jitter_level)[None, ...] # N x P x P
chol = tf.cholesky(cov) # N x P x P
return mean + (tf.matmul(chol, eps[..., None])[..., 0]) # N x P
else:
raise NotImplementedError # pragma: no cover
return sample # N x P
def _expand_independent_outputs(fvar, full_cov, full_output_cov):
"""
Reshapes fvar to the correct shape, specified by `full_cov` and `full_output_cov`.
| tensorflow.cholesky | 1,230 |
import tensorflow as tf
shape = tf.cast(image_shape, tf.float32)
w_greater = tf.greater(image_shape[0], image_shape[1])
shape = tf.cond(w_greater,
lambda: tf.cast([shape[0] / shape[1] * size, size], tf.int32),
lambda: tf.cast([size, shape[1] / shape[0] * size], tf.int32))
return uint8_resize_bicubic(image, shape)
| tensorflow.cast | 1,231 |
import tensorflow as tf
# Create optimizer ops
self.global_step = tf.Variable(0, trainable=False, name='global_step')
opt = tf.train.RMSPropOptimizer(self.config['learning_rate'])
with tf.control_dependencies(update_ops):
self.trainer = opt.apply_gradients(
gradvars, global_step=self.global_step)
def _eval_graph(self, data):
tower_metrics = self._gpu_tower(data, Mode.EVAL)
with tf.device('/cpu:0'):
self.metrics = {m: tf.reduce_mean(tf.stack([t[m] for t in tower_metrics]))
for m in tower_metrics[0]}
def _pred_graph(self, data):
with tf.name_scope('pred'):
with tf.device('/gpu:0'):
pred_out = self._model(data, Mode.PRED, **self.config)
self.pred_out = {n: tf.identity(p, name=n) for n, p in pred_out.items()}
def _build_graph(self):
# Training and evaluation network, if tf datasets provided
if self.datasets:
# Generate iterators for the given tf datasets
self.dataset_iterators = {}
with tf.device('/cpu:0'):
for n, d in self.datasets.items():
if n == 'training':
train_batch = self.config['batch_size']*self.n_gpus
d = d.repeat().batch(train_batch).prefetch(train_batch)
| tensorflow.name_scope | 1,232 |
import tensorflow as tf
bottom_shape = tf.shape(bottom)
height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self._feat_stride[0])
width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self._feat_stride[0])
# rois除以h,w就得到了rois在特征图上的位置
x1 = tf.slice(rois, [0, 1], [-1, 1], name="x1") / width
y1 = tf.slice(rois, [0, 2], [-1, 1], name="y1") / height
x2 = tf.slice(rois, [0, 3], [-1, 1], name="x2") / width
y2 = tf.slice(rois, [0, 4], [-1, 1], name="y2") / height
# Won't be backpropagated to rois anyway, but to save time
bboxes = tf.stop_gradient(tf.concat([y1, x1, y2, x2], axis=1))
# 'roi_pooling_size', 7
pre_pool_size = cfg.FLAGS.roi_pooling_size * 2
| tensorflow.slice | 1,233 |
import tensorflow as tf
tf.train.get_or_create_global_step()
def model_loss(labels, chars, sequence_length):
predictions = model((chars, sequence_length), training=True)
loss_value = loss(labels, predictions)
tf.contrib.summary.scalar("loss", loss_value)
return loss_value
for (batch, (labels, chars, sequence_length)) in enumerate(
tfe.Iterator(train_data)):
with tf.contrib.summary.record_summaries_every_n_global_steps(log_interval):
batch_model_loss = functools.partial(model_loss, labels, chars,
sequence_length)
optimizer.minimize(
batch_model_loss, global_step=tf.train.get_global_step())
if log_interval and batch % log_interval == 0:
print("train/batch #%d\tloss: %.6f" % (batch, batch_model_loss()))
SOURCE_TRAIN_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/archive/extras/colorbot/data/train.csv"
SOURCE_TEST_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/archive/extras/colorbot/data/test.csv"
def main(_):
data_dir = os.path.join(FLAGS.dir, "data")
train_data = load_dataset(
data_dir=data_dir, url=SOURCE_TRAIN_URL, batch_size=FLAGS.batch_size)
eval_data = load_dataset(
| tensorflow.train.get_global_step | 1,234 |
import tensorflow as tf
parser.add_argument('--symbolic', action='store_true')
args = parser.parse_args()
if not args.symbolic:
augs = fbresnet_augmentor(args.aug == 'train')
df = get_imagenet_dataflow(
args.data, 'train', args.batch, augs)
# For val augmentor, Should get >100 it/s (i.e. 3k im/s) here on a decent E5 server.
TestDataSpeed(df).start()
else:
assert args.aug == 'train'
data = get_imagenet_tfdata(args.data, 'train', args.batch)
itr = data.make_initializable_iterator()
dp = itr.get_next()
dpop = tf.group(*dp)
with tf.Session(config=get_default_sess_config()) as sess:
sess.run(itr.initializer)
for _ in tqdm.trange(200):
sess.run(dpop)
for _ in tqdm.trange(5000, smoothing=0.1):
sess.run(dpop)
| tensorflow.group | 1,235 |
import tensorflow as tf
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_real_example = None
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits, probabilities) = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
| tensorflow.shape | 1,236 |
import tensorflow as tf
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"segment_ids":
tf.constant(
all_segment_ids,
shape=[num_examples, seq_length],
dtype=tf.int32),
"label_ids":
tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
})
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
return d
| tensorflow.constant | 1,237 |
import tensorflow as tf
w_initializer, b_initializer = tf.random_normal_initializer(0., 0.1), tf.constant_initializer(0.0)
# ------------------ build evaluate_net ------------------
with tf.variable_scope('eval_net'):
a_fc1 = tf.layers.dense(self.s, 128, tf.nn.relu, kernel_initializer=w_initializer,
bias_initializer=b_initializer, name='agent_fc1_e')
# a_fc2 = tf.layers.dense(a_fc1, 128, tf.nn.relu, kernel_initializer=w_initializer,
# bias_initializer=b_initializer, name='agent_fc2_e')
# a_fc3 = tf.layers.dense(a_fc2, 64, tf.nn.relu, kernel_initializer=w_initializer,
# bias_initializer=b_initializer, name='agent_fc3_e')
self.q_eval = tf.layers.dense(a_fc1, self.num_a, kernel_initializer=w_initializer,
bias_initializer=b_initializer, name='q_e')
# ------------------ build target_net ------------------
with tf.variable_scope('target_net'):
a_fc1_ = tf.layers.dense(self.s_, 128, tf.nn.relu, kernel_initializer=w_initializer,
bias_initializer=b_initializer, name='agent_fc1_t')
# a_fc2_ = tf.layers.dense(a_fc1_, 128, tf.nn.relu, kernel_initializer=w_initializer,
# bias_initializer=b_initializer, name='agent_fc2_t')
# a_fc3_ = tf.layers.dense(a_fc2_, 64, tf.nn.relu, kernel_initializer=w_initializer,
| tensorflow.layers.dense | 1,238 |
import tensorflow as tf
initializer=tf.truncated_normal_initializer(stddev=stddev))
self.g = tf.get_variable('g',[out_dim],
initializer=tf.constant_initializer(float('nan')))
self.b = tf.get_variable('b',[out_dim],
initializer=tf.constant_initializer(float('nan')))
self.strides = [1, d_h, d_w, 1]
self.epsilon = epsilon
def __call__(self,input_var,name=None,**kwargs) :
shapes = tf.shape(input_var)
shapes = tf.stack([shapes[0],shapes[1]*self.strides[1],shapes[2]*self.strides[2],tf.shape(self.b)[0]])
def _init():
v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,3])
t = tf.nn.conv2d_transpose(input_var,v_norm,
output_shape=shapes,
strides=self.strides,
padding='SAME',
data_format='NHWC')
mu,var = tf.nn.moments(t,axes=[0,1,2])
std = tf.sqrt(var+self.epsilon)
return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]
| tensorflow.shape | 1,239 |
import tensorflow as tf
for i in range(hparams.tacotron_num_gpus):
tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i])
tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i])
tf.summary.scalar("before_loss", model.before_loss)
tf.summary.scalar("after_loss", model.after_loss)
if hparams.predict_linear:
tf.summary.scalar("linear_loss", model.linear_loss)
| tensorflow.summary.scalar | 1,240 |
import tensorflow as tf
"""
Standardize log normal random variable x using mus and log_sigmas.
"""
if inverse:
scales = tf.math.exp(log_sigmas)
log_x = tf.math.log(x)
ldj = log_x
log_y = log_x*scales + mus
ldj += log_sigmas
z = tf.math.exp(log_y)
return z, ldj
else:
scales = tf.math.exp(-log_sigmas)
log_x = tf.math.log(x)
ldj = -log_x
log_y = (log_x - mus)*scales
ldj -= log_sigmas
z = tf.math.exp(log_y)
| tensorflow.math.exp | 1,241 |
from tensorflow.python.framework import ops
y: A `Tensor` of type `float`, `double`, `int32`, `complex64`, or `int64`.
name: A name for the operation (optional).
Returns:
A `Tensor`.
"""
with ops.op_scope([x], name, "Pow") as name:
return gen_math_ops._pow(x, y, name=name)
def complex(real, imag, name=None):
"""Converts two real numbers to a complex number.
| tensorflow.python.framework.ops.op_scope | 1,242 |
import tensorflow as tf
"""
Returns a sample from a D-dimensional Multivariate Normal distribution
:param mean: N x D
:param cov: N x D or N x D x D
:param cov_structure: "diag" or "full"
- "diag": cov holds the diagonal elements of the covariance matrix
- "full": cov holds the full covariance matrix (without jitter)
:return: sample from the MVN of shape N x D
"""
eps = tf.random_normal(tf.shape(mean), dtype=settings.float_type) # N x P
if cov_structure == "diag":
sample = mean + tf.sqrt(cov) * eps # N x P
elif cov_structure == "full":
cov = cov + (tf.eye(tf.shape(mean)[1], dtype=settings.float_type) * settings.numerics.jitter_level)[None, ...] # N x P x P
chol = tf.cholesky(cov) # N x P x P
return mean + (tf.matmul(chol, eps[..., None])[..., 0]) # N x P
else:
raise NotImplementedError # pragma: no cover
| tensorflow.shape | 1,243 |
import tensorflow as tf
Returns:
tuple (final output, loss)
'''
y = output
if add_bias:
bias = tf.Variable([0.0])
y = output + bias
sig_y = tf.clip_by_value(tf.sigmoid(y), 0.001, 0.999) # avoid NaNs
loss = -tf.reduce_sum(target*tf.log(sig_y) + (1-target)*tf.log(1-sig_y))
return sig_y, loss
def ranking_margin_objective(output, margin=1.0):
''' Create final model output and loss for pairwise ranking margin objective
Loss for single pair (f(p), f(n)) = [margin - f(p) + f(n)]+
| tensorflow.log | 1,244 |
import tensorflow as tf
def sigmoid_ce_with_logits(logits, labels):
return tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits)
def sigmoid_kl_with_logits(logits, targets):
assert isinstance(targets, float)
if targets in [0., 1.]:
entropy = 0.
else:
entropy = - targets*tf.log(targets) - (1. - targets)*tf.log(1. - targets)
return sigmoid_ce_with_logits(logits, tf.ones_like(logits)*targets) - entropy
def gradient_difference_loss(x, y):
x_h_diff = x[:, 1:] - x[:, :-1]
x_w_diff = x[:, :, 1:] - x[:, :, :-1]
y_h_diff = y[:, 1:] - y[:, :-1]
y_w_diff = y[:, :, 1:] - y[:, :, :-1]
h_diff = tf.abs(tf.abs(x_h_diff) - tf.abs(y_h_diff))
| tensorflow.log | 1,245 |
from tensorflow.python.framework import tensor_shape
"range (0, 1], got %g" % keep_prob)
keep_prob = ops.convert_to_tensor(
keep_prob, dtype=x.dtype, name="keep_prob")
keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())
noise_shape = noise_shape or array_ops.shape(x)
| tensorflow.python.framework.tensor_shape.scalar | 1,246 |
import tensorflow as tf
self._moving_variance = tf.sub(self._moving_second_moment,
tf.square(self._moving_mean),
| tensorflow.square | 1,247 |
import tensorflow as tf
padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
mask = tf.pad(
tf.zeros(cutout_shape, dtype=images.dtype),
padding_dims, constant_values=1)
patch = tf.ones_like(images, dtype=images.dtype) * replace,
mask = tf.expand_dims(mask, -1)
mask = tf.tile(mask, [1, 1, num_channels])
images = tf.where(
tf.equal(mask, 0),
patch,
images)
images = tf.squeeze(images, axis=0)
| tensorflow.tile | 1,248 |
import tensorflow as tf
device_setter = tf.train.replica_device_setter(
worker_device=worker, ps_device='/cpu:0', ps_tasks=1)
with tf.name_scope('{}_{}'.format(mode, i)) as scope:
with tf.device(device_setter):
net_outputs = self._model(shards[i], mode, **self.config)
if mode == Mode.TRAIN:
loss = self._loss(net_outputs, shards[i], **self.config)
loss += tf.reduce_sum(
tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES,
scope))
model_params = tf.trainable_variables()
grad = tf.gradients(loss, model_params)
tower_losses.append(loss)
tower_gradvars.append(zip(grad, model_params))
if i == 0:
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
| tensorflow.get_collection | 1,249 |
from tensorflow.python.framework import constant_op
def _ranking_train_input_fn():
features = {
"a.f1": constant_op.constant([[3.], [0.3], [1.]]),
"a.f2": constant_op.constant([[0.1], [3.], [1.]]),
"b.f1": constant_op.constant([[13.], [0.4], [5.]]),
"b.f2": constant_op.constant([[1.], [3.], [0.01]]),
}
label = constant_op.constant([[0], [0], [1]], dtype=dtypes.int32)
return features, label
def _eval_input_fn():
features = {"x": constant_op.constant([[1.], [2.], [2.]])}
label = constant_op.constant([[0], [1], [1]], dtype=dtypes.int32)
return features, label
def _infer_ranking_train_input_fn():
features = {
"f1": constant_op.constant([[3.], [2], [1.]]),
"f2": constant_op.constant([[0.1], [3.], [1.]])
}
return features, None
| tensorflow.python.framework.constant_op.constant | 1,250 |
from tensorflow.python.ops import array_ops
# batch_ndims to get the event start dim.
event_start = array_ops.where(
self._batch_ndims_is_0, 2, 1 + self.batch_ndims)
event_shape = array_ops.slice(s, (event_start,), (self.event_ndims,))
new_shape = array_ops.concat(0, (sample_shape, batch_shape, event_shape))
x = array_ops.reshape(x, shape=new_shape)
| tensorflow.python.ops.array_ops.slice | 1,251 |
import tensorflow as tf
tf.constant(config.local_norm_lvalues, dtype=tf.int64)), 0)
rnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.local_norm_key, dtype=tf.int64),
| tensorflow.constant | 1,252 |
import tensorflow as tf
masked_lm_log_probs, axis=-1, output_type=tf.int32)
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
| tensorflow.reshape | 1,253 |
import tensorflow as tf
try:
if not tf.io.gfile.exists(a.crop_dir):
tf.io.gfile.makedirs(a.crop_dir)
except Exception as e:
| tensorflow.io.gfile.makedirs | 1,254 |
import tensorflow.contrib.layers as layers
return out
def simple_model(img_in, num_actions, scope, reuse=False, num_filters=64):
with tf.variable_scope(scope, reuse=reuse):
out = img_in
gauss_initializer = initializers.xavier_initializer(uniform=False) # stddev = 1/n
with tf.variable_scope("convnet"):
out = layers.convolution2d(
out, num_outputs=num_filters, kernel_size=8, stride=4,
activation_fn=tf.nn.relu, weights_initializer=gauss_initializer,
trainable=False)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return out
def simple_model_w_feat_eng(img_in, num_actions, scope, reuse=False):
with tf.variable_scope(scope, reuse=reuse):
out = img_in
out = layers.flatten(out)
# stddev = 1/n, where n = number of inputs
gauss_initializer = initializers.xavier_initializer(uniform=False)
| tensorflow.contrib.layers.flatten | 1,255 |
import tensorflow as tf
# Create mask that can be used to gather elements from L_flat and put them
# into a diagonal matrix.
diag_mask = np.zeros((self.nb_actions, self.nb_actions), dtype='int32')
diag_mask[np.diag_indices(self.nb_actions)] = range(1, self.nb_actions + 1)
# Add leading zero element to each element in the L_flat. We use this zero
# element when gathering L_flat into a lower triangular matrix L.
nb_rows = tf.shape(L_flat)[0]
zeros = tf.expand_dims(tf.tile(K.zeros((1,)), [nb_rows]), 1)
try:
# Old TF behavior.
L_flat = tf.concat(1, [zeros, L_flat])
except TypeError:
# New TF behavior
L_flat = tf.concat([zeros, L_flat], 1)
# Finally, process each element of the batch.
def fn(a, x):
x_ = tf.gather(x, diag_mask)
return x_
P = tf.scan(fn, L_flat, initializer=K.zeros((self.nb_actions, self.nb_actions)))
else:
| tensorflow.concat | 1,256 |
import tensorflow as tf
pass
else:
for support in self._supports:
x1 = tf.sparse_tensor_dense_matmul(support, x0)
x = self._concat(x, x1)
for _ in range(2, self._max_diffusion_step + 1):
x2 = 2 * tf.sparse_tensor_dense_matmul(support, x1) - x0
x = self._concat(x, x2)
x1, x0 = x2, x1
num_matrices = len(self._supports) * self._max_diffusion_step + 1 # Adds for x itself.
x = tf.reshape(x, shape=[num_matrices, self._num_nodes, input_size, batch_size])
x = tf.transpose(x, perm=[3, 1, 2, 0]) # (batch_size, num_nodes, input_size, order)
x = tf.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices])
weights = tf.get_variable(
'weights', [input_size * num_matrices, output_size],
dtype=dtype,
initializer=tf.contrib.layers.xavier_initializer())
x = tf.matmul(
x, weights) # (batch_size * self._num_nodes, output_size)
biases = tf.get_variable("biases", [output_size],
dtype=dtype,
initializer=tf.constant_initializer(
bias_start, dtype=dtype))
x = tf.nn.bias_add(x, biases)
# Reshape res back to: (batch_size, num_node, state_dim)
| tensorflow.reshape | 1,257 |
import tensorflow as tf
with tf.variable_scope(name):
filt, conv_biases = self.get_conv_var(kernal_size, in_channels, out_channels, name)
conv = tf.nn.conv2d(bottom, filt, [1,stride,stride,1], padding='SAME')
bias = tf.nn.bias_add(conv, conv_biases)
| tensorflow.nn.conv2d | 1,258 |
import tensorflow as tf
def is_generate_per_split(self):
return True
def example_reading_spec(self):
data_fields = {"dist_targets": tf.VarLenFeature(tf.int64)}
if self.has_inputs:
data_fields["inputs"] = tf.VarLenFeature(tf.int64)
# hack: ignoring true targets and putting dist_targets in targets
data_items_to_decoders = {
"inputs": tf.contrib.slim.tfexample_decoder.Tensor("inputs"),
"targets": tf.contrib.slim.tfexample_decoder.Tensor("dist_targets"),
}
return (data_fields, data_items_to_decoders)
def get_or_create_vocab(self, data_dir, tmp_dir, force_get=False):
"""Get vocab for distill problems."""
# We assume that vocab file is present in data_dir directory where the
# data generated will be stored.
vocab_filepath = os.path.join(data_dir, self.vocab_filename)
encoder = text_encoder.SubwordTextEncoder(vocab_filepath)
| tensorflow.contrib.slim.tfexample_decoder.Tensor | 1,259 |
import tensorflow as tf
if w > 1:
right = (w - 1) // 2
left = (w - 1) - right
pad_right = tf.tile(pad, [1, right, 1])
pad_left = tf.tile(pad, [1, left, 1])
inputs_ = tf.concat([pad_left, encoder_inputs_, pad_right], axis=1)
else:
inputs_ = encoder_inputs_
inputs_ = tf.nn.convolution(inputs_, filter=filter_, padding='VALID')
| tensorflow.concat | 1,260 |
import tensorflow as tf
std = tf.sqrt(var+self.epsilon)
return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]
| tensorflow.assign | 1,261 |
import tensorflow as tf
if __name__ == '__main__':
tf.test.main()
| tensorflow.test.main | 1,262 |
import tensorflow as tf
# instead.
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
| tensorflow.variable_scope | 1,263 |
import tensorflow as tf
def decode_csv(line):
# all_data is a list of scalar tensors
all_data = tf.decode_csv(line, record_defaults = DEFAULTS)
inputs = all_data[:len(all_data) - N_OUTPUTS] # first N_INPUTS values
labels = all_data[len(all_data) - N_OUTPUTS:] # last N_OUTPUTS values
# Convert each list of rank R tensors to one rank R+1 tensor
inputs = tf.stack(inputs, axis = 0)
labels = tf.stack(labels, axis = 0)
# Convert input R+1 tensor into a feature dictionary of one R+1 tensor
features = {TIMESERIES_COL: inputs}
return features, labels
| tensorflow.stack | 1,264 |
import tensorflow as tf
# vanishing gradient regularization, Omega, as in Pascanu
# NOTE: this is RELU specific
def dOmega_dWrec(self):
# states in shape timesteps, batch, n_rec
states = self.states
dxt_list = tf.gradients(self.error, states)
#dxt_list[0] = tf.Print(dxt_list[0], [dxt_list[0]], "dxt 0: ")
test = tf.gradients(states[0], states[-1])
dxt = tf.stack(dxt_list)
xt = tf.stack(states)
num = (1 - self.alpha) * dxt + tf.tensordot(self.alpha * dxt ,
tf.transpose(
tf.matmul(tf.abs(self.W_rec) * self.rec_Connectivity,self.Dale_rec)),
axes=1) * \
tf.where(tf.greater(xt, 0), tf.ones_like(xt), tf.zeros_like(xt))
denom = dxt
# sum over hidden units
num = tf.reduce_sum(tf.square(num), axis=2)
denom = tf.reduce_sum(tf.square(denom), axis=2)
| tensorflow.stack | 1,265 |
import tensorflow as tf
return a + b
output0 = f(tf.constant([1]), tf.constant([2]))
output1 = f(tf.constant([[2]]), tf.constant([3]))
tp = pool.ThreadPool(2)
| tensorflow.constant | 1,266 |
import tensorflow as tf
self.model = model
self.encoding = tf.placeholder(self.encode.dtype, self.encode.get_shape(), name='encoding')
eval_decode = interpreter.build_decoder(self.encoding, model.config, reuse=True)
print(target, eval_decode)
self.eval_loss = interpreter.l2_loss(target, eval_decode, name='predictive_reconstruction')
self.eval_decode = self._tensor_to_image(eval_decode)
self.loss_ae = interpreter.l2_loss(target, model.decode, name='reconstruction')
self.decode = self._tensor_to_image(model.decode)
self.losses = [self.loss_ae]
def build_predictive_model(self):
self.build_ae_model() # builds on top of AE model. Due to auxilary operations init
self.inputs = tf.placeholder(tf.uint8, [3] + self.batch_shape, name='inputs')
self.targets = tf.placeholder(tf.uint8, [3] + self.batch_shape, name='targets')
# transform inputs
self.raw_inputs = [self._image_to_tensor(self.inputs[i]) for i in range(3)]
self.raw_targets = [self._image_to_tensor(self.targets[i]) for i in range(3)]
# build AE objective for triplet
config = self.model.config
models = [interpreter.build_autoencoder(x, config) for x in self.raw_inputs]
reco_losses = [1./3 * interpreter.l2_loss(models[i].decode, self.raw_targets[i]) for i in range(3)] # business as usual
self.models = models
# build predictive objective
| tensorflow.placeholder | 1,267 |
import tensorflow as tf
dtype = gen_dtype(env, 'state action next_state reward done timeout')
train_set = Dataset(dtype, FLAGS.rollout.max_buf_size)
dev_set = Dataset(dtype, FLAGS.rollout.max_buf_size)
task_train_sets = [Dataset(dtype, FLAGS.rollout.max_buf_size) for i in range(100)]
task_dev_sets = [Dataset(dtype, FLAGS.rollout.max_buf_size) for i in range(100)]
print ("state and action dim:", dim_state, dim_action)
policy = GaussianMLPPolicy(dim_state, dim_action, normalizer=normalizers.state, **FLAGS.policy.as_dict())
warmup_policy = GaussianMLPPolicy(dim_state, dim_action, normalizer=normalizers.state, **FLAGS.policy.as_dict())
print (policy.parameters())
print (warmup_policy.parameters())
sync_warmup_policy = tf.group(*[tf.assign(w_v, p_v) for w_v, p_v in zip(warmup_policy.parameters(), policy.parameters())])
# batched noises
noise = OUNoise(env.action_space, theta=FLAGS.OUNoise.theta, sigma=FLAGS.OUNoise.sigma, shape=(1, dim_action))
vfn = MLPVFunction(dim_state, [64, 64], normalizers.state)
warmup_vfn = MLPVFunction(dim_state, [64, 64], normalizers.state)
sync_warmup_vfn = tf.group(*[tf.assign(w_v, p_v) for w_v, p_v in zip(warmup_vfn.parameters(), vfn.parameters())])
model = DynamicsModel(dim_state, dim_action, normalizers, FLAGS.model.hidden_sizes)
lazy_model = DynamicsModel(dim_state, dim_action, normalizers, FLAGS.model.hidden_sizes)
warmup_model = DynamicsModel(dim_state, dim_action, normalizers, FLAGS.model.hidden_sizes)
sync_warmup_model = tf.group(*[tf.assign(w_v, p_v) for w_v, p_v in zip(warmup_model.parameters(), model.parameters())])
| tensorflow.assign | 1,268 |
import tensorflow as tf
tf.estimator.ModeKeys.TRAIN, loss=tf_loss, train_op=train_op,
training_chief_hooks=[restore_hook, saver_hook])
def estimator_spec_eval(
self, features, logits, labels, loss, restore_hook, use_tpu):
"""Construct EstimatorSpec for EVAL mode."""
hparams = self.hparams
problem = hparams.problem
if logits.get_shape().ndims == 3:
logits = tf.expand_dims(tf.expand_dims(logits, 2), 3)
eval_metrics_fns = metrics.create_evaluation_metrics([problem], hparams)
if use_tpu:
def metric_fn(tf_logits, labels):
with tf.device("cpu:0"), mtf.utils.outside_all_rewrites():
eval_metrics = {}
for metric_name, metric_fn in six.iteritems(eval_metrics_fns):
if metric_name.split("/")[-1] not in t2t_model.TPU_METRIC_BLACKLIST:
| tensorflow.expand_dims | 1,269 |
import tensorflow as tf
raise RuntimeError('type error {}'.format(self._var_list))
assert len(restore_key2vars) > 0
restore_key2vars = sorted([(k, v) for k, v in restore_key2vars.items() if k in saved_shapes])
msg = []
var_list = dict()
with tf.variable_scope('', reuse=True):
for key, var in restore_key2vars:
var_shape = var.get_shape().as_list()
if var_shape == saved_shapes[key]:
var_list[key] = var
| tensorflow.variable_scope | 1,270 |
from tensorflow.python.framework import ops
@ops.RegisterShape("TopK")
@ops.RegisterShape("TopKV2")
| tensorflow.python.framework.ops.RegisterShape | 1,271 |
import tensorflow as tf
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
if not FLAGS.do_train and not FLAGS.do_eval:
| tensorflow.logging.set_verbosity | 1,272 |
import tensorflow as tf
@dynamic_batching.batch_fn
def f(a):
return a
output = f(tf.constant([1, 2]))
coord = tf.train.Coordinator()
tf.train.start_queue_runners(coord=coord)
with self.assertRaises(tf.errors.CancelledError):
session.run(output)
with self.assertRaises(tf.errors.CancelledError):
| tensorflow.train.Coordinator | 1,273 |
import tensorflow as tf
output = facts * tf.expand_dims(scores, -1)
output = tf.reshape(output, tf.shape(facts))
| tensorflow.shape | 1,274 |
from tensorflow.contrib.eager.python.examples.spinn import data
self.assertEqual((3,), logits.shape)
def testInferSpinnThrowsErrorIfOnlyOneSentenceIsSpecified(self):
snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0")
self._create_test_data(snli_1_0_dir)
vocab = data.load_vocabulary(self._temp_data_dir)
word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab)
config = _test_spinn_config(
data.WORD_VECTOR_LEN, 4,
logdir=os.path.join(self._temp_data_dir, "logdir"),
| tensorflow.contrib.eager.python.examples.spinn.data.load_vocabulary | 1,275 |
import tensorflow as tf
with tf.name_scope('losses'):
with tf.name_scope('LossA'):
# reconstruction loss
recon_loss_A = tf.reduce_mean(tf.abs(A - ABA), name='recon_loss')
# gan loss
G_loss_A, D_loss_A = LSGAN_losses(A_dis_real, A_dis_fake)
| tensorflow.abs | 1,276 |
import tensorflow as tf
lr = args.lr
n_epoch = args.n_epoch
n_batch_size = args.n_batch_size
reg_lambda = args.reg_lambda
keep_prob = args.keep_prob
cross_stitch_enabled = args.cross_stitch_enabled
with tf.variable_scope("placeholder"):
X = tf.placeholder(tf.float32, (None, 128), "X")
y_1 = tf.placeholder(tf.float32, (None, n_output_1), "y_1")
y_2 = tf.placeholder(tf.float32, (None, n_output_2), "y_2")
is_training = tf.placeholder(tf.bool, (), "is_training")
with tf.variable_scope("network"):
with contrib.framework.arg_scope(
[contrib.layers.fully_connected],
# he initialization
weights_initializer=contrib.layers.variance_scaling_initializer(),
# l2 regularization
weights_regularizer=contrib.layers.l2_regularizer(reg_lambda),
# BN
normalizer_fn=contrib.layers.batch_norm,
| tensorflow.placeholder | 1,277 |
from tensorflow.python.ops import variable_scope as vs
2 * self._num_units,
True,
bias_initializer=bias_ones,
kernel_initializer=self._kernel_initializer)
value = math_ops.sigmoid(self._gate_linear([inputs, state]))
r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
r_state = r * state
if self._candidate_linear is None:
with vs.variable_scope("candidate"):
self._candidate_linear = _Linear(
[inputs, r_state],
self._num_units,
True,
bias_initializer=self._bias_initializer,
kernel_initializer=self._kernel_initializer)
c = self._activation(self._candidate_linear([inputs, r_state]))
u = (1.0 - att_score) * u
new_h = u * state + (1 - u) * c
| tensorflow.python.ops.variable_scope.variable_scope | 1,278 |
import tensorflow as tf
# Build the graph for the deep net
y_conv, img_summary = deepnn(x, train)
# Define your loss function - softmax_cross_entropy
with tf.variable_scope('x_entropy'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
# Define your AdamOptimiser, using FLAGS.learning_rate to minimixe the loss function
| tensorflow.variable_scope | 1,279 |
import tensorflow as tf
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
return output_spec
return model_fn
def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
label_ids, label_weights):
"""Get loss and log probs for the masked LM."""
input_tensor = gather_indexes(input_tensor, positions)
with tf.variable_scope("cls/predictions"):
# We apply one more non-linear transformation before the output layer.
# This matrix is not used after pre-training.
with tf.variable_scope("transform"):
input_tensor = tf.layers.dense(
input_tensor,
units=bert_config.hidden_size,
activation=modeling.get_activation(bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer())
| tensorflow.variable_scope | 1,280 |
import tensorflow as tf
test = ContextAEPushReal()
elif args.experiment_type == "sweep":
test = ContextAESweep()
test.build(tfinput, args.ablation_type)
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
learning_rate = tf.placeholder(tf.float32, shape=[])
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(test.loss)
sess.run(tf.global_variables_initializer())
allloss = []
| tensorflow.ConfigProto | 1,281 |
import tensorflow as tf
net = DenseLayer(net, n_units=4, act=tf.identity,
W_init=tf.random_uniform_initializer(0, 0.01), b_init=None, name='q_a_s')
y = net.outputs # action-value / rewards of 4 actions
predict = tf.argmax(y, 1) # chose action greedily with reward. in Q-Learning, policy is greedy, so we use "max" to select the next action.
## Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values.
nextQ = tf.placeholder(shape=[1, 4], dtype=tf.float32)
loss = tl.cost.mean_squared_error(nextQ, y, is_mean=False) # tf.reduce_sum(tf.square(nextQ - y))
train_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss)
## Set learning parameters
lambd = .99 # decay factor
e = 0.1 # e-Greedy Exploration, the larger the more random
num_episodes = 10000
with tf.Session() as sess:
tl.layers.initialize_global_variables(sess)
for i in range(num_episodes):
## Reset environment and get first new observation
episode_time = time.time()
s = env.reset() # observation is state, integer 0 ~ 15
rAll = 0
for j in range(99): # step index, maximum step is 99
if render: env.render()
## Choose an action by greedily (with e chance of random action) from the Q-network
a, allQ = sess.run([predict, y], feed_dict={inputs : [to_one_hot(s, 16)]})
## e-Greedy Exploration !!! sample random action
if np.random.rand(1) < e:
a[0] = env.action_space.sample()
| tensorflow.Session | 1,282 |
from tensorflow.contrib.learn.python.learn.summary_writer_cache import SummaryWriterCache
save_secs: `int`, save every N secs.
save_steps: `int`, save every N steps.
saver: `Saver` object, used for saving.
checkpoint_basename: `str`, base name for the checkpoint files.
scaffold: `Scaffold`, use to get saver object.
Raises:
ValueError: If both `save_steps` and `save_secs` are not `None`.
ValueError: If both `save_steps` and `save_secs` are `None`.
"""
logging.info("Create CheckpointSaver.")
super(CheckpointSaver, self).__init__()
self._saver = saver
self._summary_writer = SummaryWriterCache.get(checkpoint_dir)
self._save_path = os.path.join(checkpoint_dir, checkpoint_basename)
self._scaffold = scaffold
self._save_secs = save_secs
self._save_steps = save_steps
self._last_saved_time = None
self._last_begin_step = None
self._last_saved_step = None
if save_steps is None and save_secs is None:
raise ValueError("Either save_steps or save_secs should be provided")
if (save_steps is not None) and (save_secs is not None):
raise ValueError("Can not provide both save_steps and save_secs.")
| tensorflow.contrib.learn.python.learn.summary_writer_cache.SummaryWriterCache.get | 1,283 |
import tensorflow as tf
assert(data_format == 'NCHW' or data_format == 'NHWC')
self.w = tf.get_variable('w', [k_h, k_w, input_dim, channel_multiplier],
initializer=tf.truncated_normal_initializer(stddev=stddev))
self.b = tf.get_variable('b',[input_dim*channel_multiplier], initializer=tf.constant_initializer(0.0))
if( data_format == 'NCHW' ) :
self.strides = [1, 1, d_h, d_w]
else :
self.strides = [1, d_h, d_w, 1]
self.data_format = data_format
self.padding = padding
def __call__(self,input_var,name=None,**xargs) :
return tf.nn.bias_add(
tf.nn.depthwise_conv2d(input_var, self.w,
data_format=self.data_format,
strides=self.strides, padding=self.padding),
self.b,data_format=self.data_format,name=name)
class Conv3d(object) :
def __init__(self,name,input_dim,output_dim,k_t=2,k_h=4,k_w=4,d_t=1,d_h=1,d_w=1,
stddev=0.02, data_format='NDHWC') :
with tf.variable_scope(name) :
assert(data_format == 'NDHWC')
self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
| tensorflow.nn.depthwise_conv2d | 1,284 |
import tensorflow as tf
self.sample_action = tf.squeeze(pi_eval.sample(1), axis=0)
self.eval_action = pi_eval.mode()
self.global_step = tf.train.get_or_create_global_step()
self.saver = tf.train.Saver()
# Loss functions and training
| tensorflow.train.get_or_create_global_step | 1,285 |
from tensorflow.python.framework import constant_op
def _ranking_train_input_fn():
features = {
"a.f1": constant_op.constant([[3.], [0.3], [1.]]),
"a.f2": constant_op.constant([[0.1], [3.], [1.]]),
"b.f1": constant_op.constant([[13.], [0.4], [5.]]),
"b.f2": constant_op.constant([[1.], [3.], [0.01]]),
}
label = constant_op.constant([[0], [0], [1]], dtype=dtypes.int32)
return features, label
| tensorflow.python.framework.constant_op.constant | 1,286 |
import tensorflow as tf
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params, state_init_a, state_final_a
def build_cnet(self, state_in, name, reuse=False, batch_size=64):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg)
lstm_c = tf.nn.rnn_cell.LSTMCell(num_units=256)
| tensorflow.contrib.layers.l2_regularizer | 1,287 |
import tensorflow as tf
trainable=is_pretrain,
shape=[out_channels],
initializer=tf.constant_initializer(0.0))
x = tf.nn.conv2d(x,w,strides,padding='SAME',name='conv')
x = tf.nn.bias_add(x,b,name='bias_add')
x = tf.nn.relu(x,name='relu')
return x
def pool(layer_name, x, kernel_size=[1,2,2,1], strides=[1,2,2,1], is_max_pool=True):
| tensorflow.nn.relu | 1,288 |
import tensorflow as tf
num_boxes = sample['num_boxes'].numpy()
labeled_boxes_init = tf.gather(
sample['groundtruth_boxes'], axis=1, indices=[1, 0, 3, 2]) * 256.0
for _, metric in self.metrics.items():
if isinstance(metric, ShapeAccuracyMetric):
labels = sample['shapes']
weights = tf.math.sign(labels + 1) # -1 is mapped to zero, else 1
metric.update(labels, detections['shapes_logits'], weights)
elif isinstance(metric, BoxIoUMetric):
scene_id = str(sample['scene_filename'].numpy(), 'utf-8')
# Get ground truth boxes
labeled_boxes = labeled_boxes_init
| tensorflow.math.sign | 1,289 |
import tensorflow as tf
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})
if FLAGS.contrast_norm == 'areafactor':
image = tf.decode_raw(features['image_raw'], tf.float32)
else:
image = tf.decode_raw(features['image_raw'], tf.uint8)
image = tf.cast(image, tf.float32) * (1. / 255)
| tensorflow.FixedLenFeature | 1,290 |
from tensorflow.python.framework import ops
return [op.inputs[0].get_shape().merge_with(op.inputs[1].get_shape())]
return [op.inputs[1].get_shape()]
@ops.RegisterShape("AssignAdd")
@ops.RegisterShape("AssignSub")
def _AssignUpdateShape(op):
"""Shape function for the AssignAdd and AssignSub dense update ops."""
| tensorflow.python.framework.ops.RegisterShape | 1,291 |
import tensorflow as tf
X = tf.reshape(X, (-1, ch))
W = self._make_var('W', (ch, out_ch), no_reg=no_reg)
X = tf.matmul(X, W)
X = tf.reshape(X, (-1, out_ch)) # Sanity shape check
return X
def _add_factorized_reduction(self, X, in_w, in_h, in_ch, out_ch, is_train=False):
'''
Output is of shape (in_w // 2, in_h // 2, out_ch)
'''
assert in_w % 2 == 0 and in_h % 2 == 0, 'Width & height ({} & {}) must both be even!'.format(in_w, in_h)
with tf.variable_scope('fac_reduc'):
# Split area into 2 halves
half_1 = tf.nn.avg_pool(X, ksize=(1, 1, 1, 1), strides=(1, 2, 2, 1), padding='VALID')
shifted_X = tf.pad(X, ((0, 0), (0, 1), (0, 1), (0, 0)))[:, 1:, 1:, :]
half_2 = tf.nn.avg_pool(shifted_X, ksize=(1, 1, 1, 1), strides=(1, 2, 2, 1), padding='VALID')
# Apply 1 x 1 convolution to each half separately
W_half_1 = self._make_var('W_half_1', (1, 1, in_ch, out_ch >> 1))
X_half_1 = tf.nn.conv2d(half_1, W_half_1, (1, 1, 1, 1), padding='VALID')
W_half_2 = self._make_var('W_half_2', (1, 1, in_ch, out_ch >> 1))
X_half_2 = tf.nn.conv2d(half_2, W_half_2, (1, 1, 1, 1), padding='VALID')
# Concat both halves across channels
X = tf.concat([X_half_1, X_half_2], axis=3)
# Apply batch normalization
X = self._add_batch_norm(X, out_ch, is_train=is_train)
| tensorflow.pad | 1,292 |
import tensorflow as tf
'image/object/bbox/ymin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymax':
tf.io.VarLenFeature(tf.float32),
'image/object/class/label':
tf.io.VarLenFeature(tf.int64),
'image/object/area':
tf.io.VarLenFeature(tf.float32),
'image/object/is_crowd':
tf.io.VarLenFeature(tf.int64),
}
if include_mask:
self._keys_to_features.update({
'image/object/mask':
tf.io.VarLenFeature(tf.string),
})
def _decode_image(self, parsed_tensors):
"""Decodes the image and set its static shape."""
image = tf.io.decode_image(parsed_tensors['image/encoded'], channels=3)
image.set_shape([None, None, 3])
return image
def _decode_boxes(self, parsed_tensors):
"""Concat box coordinates in the format of [ymin, xmin, ymax, xmax]."""
xmin = parsed_tensors['image/object/bbox/xmin']
xmax = parsed_tensors['image/object/bbox/xmax']
ymin = parsed_tensors['image/object/bbox/ymin']
| tensorflow.io.VarLenFeature | 1,293 |
import tensorflow as tf
# patch_size = int(sizes[idx[0][0]])
patch_size = self.get_random_patch_size()
print('Patch size:',patch_size)
window = [1,patch_size,patch_size,1]
print('Window:',window)
n_row,n_col,n_channel = x.shape
n_patch = n_row*n_col // (patch_size**2)
patches = tf.image.extract_patches(tf.expand_dims(x,0),sizes=window,strides=window,rates=[1, 1, 1, 1],padding='VALID')
patches = tf.reshape(patches,[n_patch,patch_size,patch_size,n_channel])
patches = tf.random.shuffle(patches)
rows = tf.split(patches,n_col//patch_size,axis=0)
rows = [tf.concat(tf.unstack(x),axis=1) for x in rows]
x_aug = tf.concat(rows,axis=0)
x_aug = tf.convert_to_tensor(x_aug)
return tf.concat([x, x_aug],axis=2)
| tensorflow.reshape | 1,294 |
import tensorflow as tf
def mlp_dropout(x, hidden_sizes=(32,), activation=tf.tanh, output_activation=None, dropout_rate=0):
for h in hidden_sizes[:-1]:
x = tf.layers.dense(x, units=h, activation=activation)
x = tf.layers.dropout(x, rate=dropout_rate, training=True)
x = tf.layers.dropout(x, rate=dropout_rate, training=True)
return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation)
def mlp(x, hidden_sizes=(32,), activation=tf.tanh, output_activation=None):
for h in hidden_sizes[:-1]:
x = tf.layers.dense(x, units=h, activation=activation)
return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation)
| tensorflow.layers.dense | 1,295 |
import tensorflow as tf
}
inputs = tf.placeholder(tf.int32, shape=[batch_size, 6])
regressor = XLNetRegressor(hparams=hparams)
logits = regressor(inputs)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
logits_ = sess.run(
logits,
feed_dict={inputs: np.random.randint(30521,
size=(batch_size, 6))})
self.assertEqual(logits_.shape, (batch_size,))
| tensorflow.global_variables_initializer | 1,296 |
import tensorflow as tf
out = out + beta
return out
def max_pool(img, k):
return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')
# Consider stride size when using xavier for fp network
| tensorflow.nn.max_pool | 1,297 |
import tensorflow as tf
for i, ((ntime, nband, nfilt), (ptime, pband)) in enumerate(zip(cnn_filter_shapes, cnn_pool)):
layer_name = 'cnn_{}'.format(i)
with tf.variable_scope(layer_name):
filters = tf.get_variable('filters', [ntime, nband, nfilt_last, nfilt], initializer=cnn_init, dtype=dtype)
| tensorflow.variable_scope | 1,298 |
import tensorflow as tf
def test_maximum_batch_size(self):
with self.test_session() as session:
@dynamic_batching.batch_fn_with_options(maximum_batch_size=2)
def f(a, b):
batch_size = tf.shape(a)[0]
return a + b, tf.tile([batch_size], [batch_size])
outputs = [
f(tf.constant([1]), tf.constant([2])),
| tensorflow.shape | 1,299 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.