Olas-predict-dataset / scripts /global_tool_accuracy.py
cyberosa
updating data for the KPIs
76b12b4
import os
import pandas as pd
from typing import Tuple, List, Dict
import ipfshttpclient
from utils import INC_TOOLS
from typing import List
from utils import TMP_DIR, ROOT_DIR
from cloud_storage import (
initialize_client,
download_tools_historical_files,
FILES_IN_TWO_MONTHS,
FILES_IN_FOUR_MONTHS,
FILES_IN_SIX_MONTHS,
FILES_IN_EIGHT_MONTHS,
FILES_IN_TEN_MONTHS,
)
ACCURACY_FILENAME = "tools_accuracy.csv"
IPFS_SERVER = "/dns/registry.autonolas.tech/tcp/443/https"
NR_ANSWERED_MARKETS = 1000 # In two months the max we can reach is 1000 for top tools
MAX_ATTEMPTS = 5
historical_files_count_map = {
1: FILES_IN_TWO_MONTHS,
2: FILES_IN_FOUR_MONTHS,
3: FILES_IN_SIX_MONTHS,
4: FILES_IN_EIGHT_MONTHS,
5: FILES_IN_TEN_MONTHS,
}
DEFAULT_ACCURACY = 0.50
DEFAULT_BAD_ACCURACY = 0.00
def keep_last_answer_per_question_per_tool(
clean_tools_df: pd.DataFrame,
) -> pd.DataFrame:
"""
For each tool, keep only the last answer for each question (title) based on request_time.
Returns a filtered DataFrame.
"""
# Sort by tool, title, and request_time
sorted_df = clean_tools_df.sort_values(by=["tool", "title", "request_time"])
# Keep the last answer for each tool and question
last_answers = sorted_df.groupby(["tool", "title"], as_index=False).tail(1)
# Reset index for cleanliness
last_answers = last_answers.reset_index(drop=True)
return last_answers
def push_csv_file_to_ipfs(filename: str = ACCURACY_FILENAME) -> str:
"""Push the tools accuracy CSV file to IPFS."""
client = ipfshttpclient.connect(IPFS_SERVER)
result = client.add(ROOT_DIR / filename)
print(f"HASH of the tools accuracy file: {result['Hash']}")
return result["Hash"]
def clean_tools_dataset(tools_df: pd.DataFrame) -> pd.DataFrame:
# Remove tool_name and TEMP_TOOL
tools_non_error = tools_df[
tools_df["tool"].isin(["tool_name", "TEMP_TOOL"]) == False
].copy()
# Remove errors
tools_non_error = tools_non_error[tools_non_error["error"] == 0]
tools_non_error.loc[:, "currentAnswer"] = tools_non_error["currentAnswer"].replace(
{"no": "No", "yes": "Yes"}
)
tools_non_error = tools_non_error[
tools_non_error["currentAnswer"].isin(["Yes", "No"])
]
tools_non_error = tools_non_error[tools_non_error["vote"].isin(["Yes", "No"])]
tools_non_error["win"] = (
tools_non_error["currentAnswer"] == tools_non_error["vote"]
).astype(int)
tools_non_error.columns = tools_non_error.columns.astype(str)
return tools_non_error
def take_toptool_name(tools_df: pd.DataFrame) -> str:
volumes = tools_df.tool.value_counts().reset_index()
return volumes.iloc[0].tool
def compute_nr_questions_per_tool(clean_tools_df: pd.DataFrame) -> dict:
answered_questions = {}
for tool in INC_TOOLS:
print(f"processing tool {tool}")
tool_data = clean_tools_df[clean_tools_df["tool"] == tool].copy()
# sort tool_data by request date in ascending order
tool_data = tool_data.sort_values(by="request_time", ascending=True)
# count unique prediction markets
unique_questions = tool_data.title.unique()
answered_questions[tool] = {}
answered_questions[tool]["total_answered_questions"] = len(unique_questions)
markets_different_answer = {}
for question in unique_questions:
market_data = tool_data[tool_data["title"] == question]
different_responses = market_data.currentAnswer.value_counts()
# Extract yes and no counts, defaulting to 0 if not present
yes_count = different_responses.get("Yes", 0)
no_count = different_responses.get("No", 0)
if yes_count > 0 and no_count > 0:
# print(f"found a market {question} with different answers")
# found a market with different responses from the same tool
markets_different_answer[question] = {
"yes_responses": yes_count,
"no_responses": no_count,
}
answered_questions[tool]["markets_different_answers"] = markets_different_answer
return answered_questions
def classify_tools_by_responses(
answered_questions: dict, ref_nr_questions: int
) -> Tuple:
more_questions_tools = []
total_tools = answered_questions.keys()
for tool in total_tools:
if answered_questions[tool]["total_answered_questions"] < ref_nr_questions:
more_questions_tools.append(tool)
return more_questions_tools
def add_historical_data(
tools_historical_file: str,
tools_df: pd.DataFrame,
more_questions_tools: list,
recent_nr_questions: int,
completed_tools: List[str],
) -> pd.DataFrame:
"""
It searches into the historical cloud files to get more samples for the tools.
"""
if not tools_historical_file:
raise ValueError(
"No historical tools file found, skipping adding historical data."
)
# get the historical tools data
print(f"Downloaded historical file into the tmp folder: {tools_historical_file}")
# Load the historical tools data
historical_tools_df = pd.read_parquet(TMP_DIR / tools_historical_file)
# check if the historical tools data has samples from the tools that need more samples
# historical_tools_df = historical_tools_df[
# historical_tools_df["tool"].isin(more_questions_tools)
# ]
historical_tools_df = historical_tools_df[
historical_tools_df["tool"].isin(INC_TOOLS) == True
]
historical_tools_df = clean_tools_dataset(historical_tools_df)
historical_tools_df = get_unique_recent_samples(tools_df=historical_tools_df)
# check the volume of questions for the tools in the historical data
# adding all responses for all tools
tools_df = pd.concat([tools_df, historical_tools_df], ignore_index=True)
# remove duplicates
tools_df.drop_duplicates(
subset=["request_id", "request_block"], keep="first", inplace=True
)
# check the new total of answered questions per tool
answered_questions = compute_nr_questions_per_tool(clean_tools_df=tools_df)
for tool in more_questions_tools:
new_count = answered_questions[tool]["total_answered_questions"]
if new_count >= recent_nr_questions:
completed_tools.append(tool)
# remove the tools in completed_tools list from more_questions_tools
for tool in completed_tools:
print(f"Tool {tool} with enough questions now, removing from list")
if tool in more_questions_tools:
more_questions_tools.remove(tool)
return tools_df
def check_historical_samples(
client,
tools_df: pd.DataFrame,
more_questions_tools: list,
ref_nr_questions: int,
attempt_nr: int,
) -> Tuple:
"""
Function to download historical data from tools and to update the list
of tools that need more questions. It returns the updated dataframe and a list of the tools that we
managed to complete the requirement
"""
print(f"Tools with not enough samples: {more_questions_tools}")
completed_tools = []
files_count = historical_files_count_map[attempt_nr]
tools_historical_file = download_tools_historical_files(
client, skip_files_count=files_count
)
tools_df = add_historical_data(
tools_historical_file,
tools_df,
more_questions_tools,
ref_nr_questions,
completed_tools,
)
# for each tool in tools_df, take the last answer only for each question ("title" column) based on request_time column
# tools_df = keep_last_answer_per_question_per_tool(tools_df)
# keep the unique responses for all tools
tools_df = get_unique_recent_samples(tools_df=tools_df)
print("Current count of answered questions per tool after adding historical data:")
print(tools_df.groupby("tool")["title"].nunique())
return tools_df, completed_tools
def get_unique_recent_samples(
tools_df: pd.DataFrame, recent_samples_size: int = None
) -> pd.DataFrame:
"""
For each tool, keep the most recent answer for each question (title),
and limit to the most recent N questions per tool if needed.
"""
# Sort by tool, title, and request_time descending
tools_df = tools_df.sort_values(
by=["tool", "title", "request_time"], ascending=[True, True, False]
)
# Keep the most recent answer for each (tool, title)
tools_df = tools_df.groupby(["tool", "title"], as_index=False).head(1)
# For each tool, keep up to recent_samples_size most recent questions
tools_df = tools_df.sort_values(
by=["tool", "request_time"], ascending=[True, False]
)
if recent_samples_size is not None:
tools_df = tools_df.groupby("tool").head(recent_samples_size)
return tools_df.reset_index(drop=True)
def sampled_accuracy(
tools_data: pd.DataFrame, n: int = None, sampling_percentage: float = 0.30
) -> float:
"""Function to estimate the accuracy of the tools based on a sampling percentage."""
if n is not None:
sampled_data = tools_data.sample(n=n, random_state=42)
elif sampling_percentage <= 0 or sampling_percentage > 1:
raise ValueError("Sampling percentage must be between 0 and 1.")
else:
# Sample a percentage of the tools data without replacement
sampled_data = tools_data.sample(frac=sampling_percentage, random_state=42)
# win column ==1 is a correct answer
correct_answers = int(sampled_data.win.sum())
return round(correct_answers / len(sampled_data), 5)
def evenly_distributed_sampling(
tools_data: pd.DataFrame, group_size: int, sampling_percentage: float = 0.30
) -> pd.DataFrame:
"""
Function to sample the tools data of length N, after sorting it by time,
by taking groups of sequential samples of size group_size evenly distributed along the time axis.
We take as many distributed groups of size S til reaching the desired sampling percentage
"""
if group_size > len(tools_data):
raise ValueError(
"Group size cannot be larger than the number of rows in the DataFrame."
)
if sampling_percentage <= 0 or sampling_percentage > 1:
raise ValueError("Sampling percentage must be between 0 and 1.")
# Sort the data by request_time
sorted_data = tools_data.sort_values(by="request_time")
# Calculate the number of samples that we need to take
total_samples = int(len(sorted_data) * sampling_percentage)
# Calculate the number of groups we need to reach the desired sample size
num_groups = total_samples // group_size
print(f"Number of groups we need to reach the total samples: {num_groups}")
# Divide the sorted data into evenly distributed num_groups of size group_size
if num_groups == 0:
raise ValueError(
"Not enough data to sample with the given group size and sampling percentage."
)
if len(sorted_data) < num_groups * group_size:
raise ValueError(
"Not enough data to sample with the given group size and sampling percentage."
)
sampled_data = pd.DataFrame()
# divide the sorted data length into num_groups sections
section_length = len(sorted_data) // num_groups
# from each section take samples of size group_size
for i in range(num_groups):
# jump into the section
start_index = i * section_length
end_index = start_index + group_size
if end_index > len(sorted_data):
end_index = len(sorted_data)
# take the group of size group_size
group_sample = sorted_data.iloc[start_index:end_index]
sampled_data = pd.concat([sampled_data, group_sample], ignore_index=True)
if len(sampled_data) > total_samples:
# If we have more samples than needed, randomly sample down to total_samples
sampled_data = sampled_data.sample(n=total_samples, random_state=42)
elif len(sampled_data) < total_samples:
# If we have fewer samples than needed, we can either raise an error or return what we have
print(
f"Warning: Sampled data has fewer rows ({len(sampled_data)}) than requested ({total_samples})."
)
return sampled_data.reset_index(drop=True)
def get_accuracy_values(tools_df: pd.DataFrame, more_q_tools: list) -> list:
global_accuracies = []
tools = tools_df.tool.unique()
# print("Using evenly distributed sampling for accuracy computation")
for tool in tools:
print(f"Processing tool: {tool}")
tools_data = tools_df[tools_df["tool"] == tool]
min_timestamp = tools_data.request_time.min().strftime("%Y-%m-%d %H:%M:%S")
max_timestamp = tools_data.request_time.max().strftime("%Y-%m-%d %H:%M:%S")
if tool in more_q_tools:
global_accuracies.append(
{
"tool": tool,
"tool_accuracy": DEFAULT_ACCURACY,
"nr_responses": NR_ANSWERED_MARKETS,
"min": min_timestamp,
"max": max_timestamp,
}
)
continue
# tool_accuracy = sampled_accuracy(tools_data, sampling_percentage=0.50)
# tool_accuracy = sampled_accuracy(tools_data, n=500)
# sampled_data = evenly_distributed_sampling(
# tools_data, group_size=5, sampling_percentage=0.30
# )
# print(f"length of sampled data for tool {tool}: {len(sampled_data)}")
correct_answers = int(tools_data.win.sum())
tool_accuracy = round(correct_answers / len(tools_data), 5)
global_accuracies.append(
{
"tool": tool,
"tool_accuracy": tool_accuracy,
"nr_responses": len(tools_data),
"min": min_timestamp,
"max": max_timestamp,
}
)
return global_accuracies
def global_tool_accuracy():
# read the tools df
print("Reading tools parquet file")
tools_df = pd.read_parquet(TMP_DIR / "tools.parquet")
# clean the tools df
clean_tools_df = clean_tools_dataset(tools_df)
print("Current count of answered questions per tool after cleaning:")
print(clean_tools_df.groupby("tool")["title"].nunique())
# extract the number of questions answered from each tool
answered_questions = compute_nr_questions_per_tool(clean_tools_df=clean_tools_df)
ref_nr_questions = NR_ANSWERED_MARKETS
# classify tools between those with enough questions and those that need more data
more_q_tools = classify_tools_by_responses(answered_questions, ref_nr_questions)
clean_tools_df = get_unique_recent_samples(tools_df=clean_tools_df)
print(
"Current count of answered questions per tool after selecting the global population:"
)
print(clean_tools_df.groupby("tool")["title"].nunique())
# go for historical data if needed up to a maximum of 5 attempts
nr_attempts = 0
client = initialize_client()
while len(more_q_tools) > 0 and nr_attempts < MAX_ATTEMPTS:
nr_attempts += 1
print(f"Attempt {nr_attempts} to reach the reference number of questions")
clean_tools_df, updated_tools = check_historical_samples(
client=client,
tools_df=clean_tools_df,
more_questions_tools=more_q_tools,
ref_nr_questions=ref_nr_questions,
attempt_nr=nr_attempts,
)
print(f"Tools that were completed with historical data {updated_tools}")
print(f"More tools with not enough questions {more_q_tools}")
# save cleaned tools df into a parquet file
try:
if "request_block" in clean_tools_df.columns:
clean_tools_df["request_block"] = pd.to_numeric(
clean_tools_df["request_block"], errors="coerce"
).astype("Int64")
clean_tools_df.to_parquet(TMP_DIR / "clean_tools.parquet", index=False)
except Exception as e:
print(f"Error saving clean tools parquet file: {e}")
# read the cleaned tools df
# clean_tools_df = pd.read_parquet(TMP_DIR / "clean_tools.parquet")
print(
"Current count of answered questions per tool after reading the parquet file:"
)
print(
clean_tools_df.groupby("tool")["title"].nunique().sort_values(ascending=False)
)
# check the last tool
if len(more_q_tools) > 0:
raise ValueError(
f"Not enough data for the tools: {more_q_tools}. "
"Please check the historical data or increase the number of attempts."
)
# take the name of the last tool in the completed_tools list
if len(updated_tools) > 0:
last_tool = updated_tools[-1]
print(f"last tool with enough questions: {last_tool}")
else:
# the last tool from the one with the lowest count of titles
last_tool = (
clean_tools_df.groupby("tool")["title"]
.nunique()
.sort_values(ascending=True)
.index[0]
)
# Remove non relevant tools
clean_tools_df = clean_tools_df[clean_tools_df["tool"].isin(INC_TOOLS) == True]
# take only the last recent_samples_size for the last tool
last_tool_data = clean_tools_df[clean_tools_df["tool"] == last_tool].copy()
# sort by request_time in descending order
last_tool_data = last_tool_data.sort_values(by="request_time", ascending=False)
# take the last recent_samples_size rows
last_tool_data = last_tool_data.head(NR_ANSWERED_MARKETS)
print("Extracting the final list of market questions from the last tool")
# extract the title values in last_tool_data
last_tool_titles = last_tool_data.title.unique()
print("Current count of answered questions per tool before filtering:")
print(clean_tools_df.groupby("tool")["title"].nunique())
common_titles = []
for tool in clean_tools_df.tool.unique():
tool_data = clean_tools_df[clean_tools_df["tool"] == tool]
tool_titles_set = set(
tool_data[tool_data["title"].isin(last_tool_titles)]["title"].unique()
)
print(f"Tool: {tool}, Count of titles: {len(tool_titles_set)}")
common_titles.append(tool_titles_set)
# create a list with the titles that appear in all sets
common_titles_set = set.intersection(*common_titles)
print(f"Common titles across all tools: {len(common_titles_set)}")
# filter clean_tools_df to include only the titles from the common set
clean_tools_df = clean_tools_df[clean_tools_df["title"].isin(common_titles_set)]
print(
f"Current count of answered questions per tool after selecting common titles:"
)
print(clean_tools_df.groupby("tool")["title"].nunique())
# compute the accuracy
print("Computing the global accuracies for the tools")
global_accuracies = get_accuracy_values(
tools_df=clean_tools_df,
more_q_tools=["prediction-offline-sme", "prediction-url-cot-claude"],
)
# new tools
if len(more_q_tools) > 0:
# compute the average accuracy for the new tools
total_accuracy = sum(item["accuracy"] for item in global_accuracies)
avg_accuracy = (
round(total_accuracy / len(global_accuracies), 5)
if len(global_accuracies) > 0
else DEFAULT_ACCURACY
)
for tool in more_q_tools:
global_accuracies[tool]["accuracy"] = avg_accuracy
print(f"global accuracies {global_accuracies}")
# create a dataframe from global_accuracies
computed_accuracy_df = pd.DataFrame(global_accuracies)
# sort by accuracy descending
computed_accuracy_df = computed_accuracy_df.sort_values(
by="tool_accuracy", ascending=False, ignore_index=True
)
print(computed_accuracy_df.head())
print("Saving into a csv file")
computed_accuracy_df.to_csv(ROOT_DIR / ACCURACY_FILENAME, index=False)
# save the data into IPFS
push_csv_file_to_ipfs()
if __name__ == "__main__":
global_tool_accuracy()
# push_csv_file_to_ipfs()