Gelbooru scraper now saves JSON instead of TXT.
Browse files- compress.py +7 -13
- scrape_gel.py +49 -56
- utils/scrape_args.py +0 -1
- utils/utils.py +38 -29
compress.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import sys
|
|
|
3 |
import argparse
|
4 |
import tarfile
|
5 |
from constants import *
|
@@ -7,18 +8,15 @@ import concurrent.futures
|
|
7 |
|
8 |
def compress_chunk(chunk, chunk_index, output_dir):
|
9 |
with tarfile.open(os.path.join(output_dir, f"chunk_{chunk_index}.tar"), "w") as tar:
|
10 |
-
for image_path in chunk:
|
11 |
-
tags_path = os.path.splitext(image_path)[0] + ".txt"
|
12 |
-
if not os.path.isfile(tags_path):
|
13 |
-
continue
|
14 |
tar.add(image_path, arcname=os.path.basename(image_path))
|
15 |
-
tar.add(
|
16 |
|
17 |
def parse_args():
|
18 |
parser = argparse.ArgumentParser(description="Group images into uncompressed tar files.")
|
19 |
parser.add_argument("-i", "--input-dir", default=IMAGE_DIR, help="Input directory for the images to chunk into tars")
|
20 |
parser.add_argument("-o", "--output-dir", default=COMPRESSED_DIR, help="Output directory for chunked tars")
|
21 |
-
parser.add_argument("-n", "--num-images-per-chunk", type=int, default=
|
22 |
args = parser.parse_args()
|
23 |
if args.num_images_per_chunk < 1:
|
24 |
print("Number of images per chunk needs to be a positive integer!")
|
@@ -27,16 +25,12 @@ def parse_args():
|
|
27 |
|
28 |
def main():
|
29 |
args = parse_args()
|
30 |
-
|
31 |
-
print(f"Your input dir \"{args.input_dir}\" doesn't exist or isn't a directory!")
|
32 |
-
sys.exit(1)
|
33 |
-
image_files = [os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if not f.endswith(".txt")]
|
34 |
-
image_files.sort()
|
35 |
os.makedirs(args.output_dir, exist_ok=True)
|
36 |
with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
|
37 |
futures = []
|
38 |
-
for i in range(0, len(
|
39 |
-
chunk =
|
40 |
chunk_index = i // args.num_images_per_chunk
|
41 |
future = executor.submit(compress_chunk, chunk, chunk_index, args.output_dir)
|
42 |
futures.append(future)
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
+
import utils
|
4 |
import argparse
|
5 |
import tarfile
|
6 |
from constants import *
|
|
|
8 |
|
9 |
def compress_chunk(chunk, chunk_index, output_dir):
|
10 |
with tarfile.open(os.path.join(output_dir, f"chunk_{chunk_index}.tar"), "w") as tar:
|
11 |
+
for image_path, metadata_path in chunk:
|
|
|
|
|
|
|
12 |
tar.add(image_path, arcname=os.path.basename(image_path))
|
13 |
+
tar.add(metadata_path, arcname=os.path.basename(metadata_path))
|
14 |
|
15 |
def parse_args():
|
16 |
parser = argparse.ArgumentParser(description="Group images into uncompressed tar files.")
|
17 |
parser.add_argument("-i", "--input-dir", default=IMAGE_DIR, help="Input directory for the images to chunk into tars")
|
18 |
parser.add_argument("-o", "--output-dir", default=COMPRESSED_DIR, help="Output directory for chunked tars")
|
19 |
+
parser.add_argument("-n", "--num-images-per-chunk", type=int, default=sys.maxsize, help="Number of images per chunk, default to infinite")
|
20 |
args = parser.parse_args()
|
21 |
if args.num_images_per_chunk < 1:
|
22 |
print("Number of images per chunk needs to be a positive integer!")
|
|
|
25 |
|
26 |
def main():
|
27 |
args = parse_args()
|
28 |
+
image_metadata_path_tuple_list = [e[1] for e in sorted(utils.get_image_id_image_metadata_path_tuple_dict(args.input_dir).items(), key=lambda x: x[0])]
|
|
|
|
|
|
|
|
|
29 |
os.makedirs(args.output_dir, exist_ok=True)
|
30 |
with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
|
31 |
futures = []
|
32 |
+
for i in range(0, len(image_metadata_path_tuple_list), args.num_images_per_chunk):
|
33 |
+
chunk = image_metadata_path_tuple_list[i:i + args.num_images_per_chunk]
|
34 |
chunk_index = i // args.num_images_per_chunk
|
35 |
future = executor.submit(compress_chunk, chunk, chunk_index, args.output_dir)
|
36 |
futures.append(future)
|
scrape_gel.py
CHANGED
@@ -2,8 +2,8 @@ import os
|
|
2 |
import re
|
3 |
import sys
|
4 |
import time
|
|
|
5 |
import utils
|
6 |
-
import random
|
7 |
import urllib
|
8 |
import asyncio
|
9 |
import aiohttp
|
@@ -13,13 +13,13 @@ import concurrent
|
|
13 |
import html as libhtml
|
14 |
from constants import *
|
15 |
from bs4 import BeautifulSoup
|
16 |
-
from collections import defaultdict
|
17 |
|
18 |
-
def
|
19 |
tag_ul = soup.find("ul", id="tag-list")
|
20 |
if not tag_ul:
|
21 |
raise RuntimeError("No tag list found in this web page!")
|
22 |
-
|
|
|
23 |
for element in tag_ul.find_all("li"):
|
24 |
class_name = element.get("class")
|
25 |
if not class_name or len(class_name) != 1:
|
@@ -27,21 +27,17 @@ def get_tags(soup, preserve_meta_tags):
|
|
27 |
class_name = class_name[0]
|
28 |
if not class_name.startswith("tag-type-"):
|
29 |
continue
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
case "metadata":
|
42 |
-
continue
|
43 |
-
tags += tag_list
|
44 |
-
return tags
|
45 |
|
46 |
async def process_link(scrape_args, scrape_state):
|
47 |
image_id = re.search(r"id=(\d+)", scrape_args.target).group(1)
|
@@ -64,8 +60,11 @@ async def process_link(scrape_args, scrape_state):
|
|
64 |
query_used_time = time.time() - query_start_time
|
65 |
soup = BeautifulSoup(html, "html.parser")
|
66 |
score_span = soup.find("span", id="psc" + image_id)
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
69 |
if image_id_already_exists:
|
70 |
# print(f"Image {image_id} already exists, skipped.")
|
71 |
return
|
@@ -84,45 +83,44 @@ async def process_link(scrape_args, scrape_state):
|
|
84 |
if image_ext not in IMAGE_EXT:
|
85 |
print(f"Image {image_id} is not an image, skipped.")
|
86 |
return
|
87 |
-
|
88 |
-
tag_count = len(tags)
|
89 |
if tag_count < scrape_args.min_tags:
|
90 |
# print(f"Image {image_id} doesn't have enough tags({tag_count} < {scrape_args.min_tags}), skipped.")
|
91 |
return
|
92 |
-
rating = image_container
|
93 |
-
if rating
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
97 |
image_path = os.path.join(IMAGE_DIR, image_id + image_ext)
|
98 |
-
|
99 |
-
tags_text = ", ".join(tags)
|
100 |
download_start_time = time.time()
|
101 |
async with scrape_state.session.get(image_download_url) as img_response:
|
102 |
img_data = await img_response.read()
|
103 |
download_used_time = time.time() - download_start_time
|
104 |
async with aiofiles.open(image_path, "wb") as f:
|
105 |
await f.write(img_data)
|
106 |
-
async with aiofiles.open(
|
107 |
-
await f.write(
|
108 |
-
if not await utils.submit_validation(scrape_state.thread_pool, image_path,
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
return
|
127 |
except Exception as e:
|
128 |
error = e
|
@@ -142,7 +140,6 @@ def parse_args():
|
|
142 |
parser.add_argument("-a", "--avif", action="store_true", help="If set, will convert the image into avif, need to have pillow-avif-plugin installed")
|
143 |
parser.add_argument("-l", "--low-quality", action="store_true", help="If set, will download the sample instead of the original image")
|
144 |
parser.add_argument("-t", "--min-tags", type=int, default=0, help="Filter out images with less than the specified amount of tags, default to 0")
|
145 |
-
parser.add_argument("-p", "--preserve-meta-tags", action="store_true", help="Preserve artist, copyright, and metadata tags")
|
146 |
parser.add_argument("-m", "--max-scrape-count", type=int, help="Stop after scraping the set amount of images, may not be exact because of the asynchronous nature of this script, default to infinite")
|
147 |
parser.add_argument("-c", "--continuous-scraping", action="store_true", help="If set, will scraping continuously even when reaching the 20000 images Gelbooru search depth cap by adjusting search tags")
|
148 |
parser.add_argument("tags_to_search", nargs=argparse.REMAINDER, help="List of tags to search for, default to all")
|
@@ -170,8 +167,6 @@ def parse_args():
|
|
170 |
if isinstance(args.max_scrape_count, int) and args.max_scrape_count <= 0:
|
171 |
print("Maximum scrape count must be greater than 0!")
|
172 |
sys.exit(1)
|
173 |
-
if not args.tags_to_search:
|
174 |
-
args.tags_to_search = ["all"]
|
175 |
return args
|
176 |
|
177 |
async def main():
|
@@ -225,9 +220,7 @@ async def main():
|
|
225 |
if task.done():
|
226 |
await task
|
227 |
del tasks[i]
|
228 |
-
tasks.append(asyncio.create_task(process_link(
|
229 |
-
utils.ScrapeArgs(image_url, args.width, args.height, args.avif, args.low_quality, args.min_tags, args.preserve_meta_tags, args.max_scrape_count), scrape_state
|
230 |
-
)))
|
231 |
if utils.get_sigint_count() >= 1 or isinstance(args.max_scrape_count, int) and scrape_state.scraped_image_count >= args.max_scrape_count:
|
232 |
break
|
233 |
session_refresh_counter += 1
|
|
|
2 |
import re
|
3 |
import sys
|
4 |
import time
|
5 |
+
import json
|
6 |
import utils
|
|
|
7 |
import urllib
|
8 |
import asyncio
|
9 |
import aiohttp
|
|
|
13 |
import html as libhtml
|
14 |
from constants import *
|
15 |
from bs4 import BeautifulSoup
|
|
|
16 |
|
17 |
+
def get_type_tags_dict(soup):
|
18 |
tag_ul = soup.find("ul", id="tag-list")
|
19 |
if not tag_ul:
|
20 |
raise RuntimeError("No tag list found in this web page!")
|
21 |
+
type_tags_dict = {}
|
22 |
+
tags_in_dict = set()
|
23 |
for element in tag_ul.find_all("li"):
|
24 |
class_name = element.get("class")
|
25 |
if not class_name or len(class_name) != 1:
|
|
|
27 |
class_name = class_name[0]
|
28 |
if not class_name.startswith("tag-type-"):
|
29 |
continue
|
30 |
+
tag = element.find("a", recursive=False).contents[0].replace(" ", "_").strip(",_")
|
31 |
+
if tag in tags_in_dict:
|
32 |
+
continue
|
33 |
+
tag_type = class_name[9:]
|
34 |
+
tag_list = type_tags_dict.get(tag_type)
|
35 |
+
if tag_list is None:
|
36 |
+
type_tags_dict[tag_type] = [tag]
|
37 |
+
else:
|
38 |
+
tag_list.append(tag)
|
39 |
+
tags_in_dict.add(tag)
|
40 |
+
return type_tags_dict, len(tags_in_dict)
|
|
|
|
|
|
|
|
|
41 |
|
42 |
async def process_link(scrape_args, scrape_state):
|
43 |
image_id = re.search(r"id=(\d+)", scrape_args.target).group(1)
|
|
|
60 |
query_used_time = time.time() - query_start_time
|
61 |
soup = BeautifulSoup(html, "html.parser")
|
62 |
score_span = soup.find("span", id="psc" + image_id)
|
63 |
+
try:
|
64 |
+
image_score = int(score_span.contents[0])
|
65 |
+
except (AttributeError, IndexError, ValueError) as e:
|
66 |
+
raise RuntimeError("Error while getting the image score: " + str(e))
|
67 |
+
scrape_state.last_reached_image_score = image_score
|
68 |
if image_id_already_exists:
|
69 |
# print(f"Image {image_id} already exists, skipped.")
|
70 |
return
|
|
|
83 |
if image_ext not in IMAGE_EXT:
|
84 |
print(f"Image {image_id} is not an image, skipped.")
|
85 |
return
|
86 |
+
type_tags_dict, tag_count = get_type_tags_dict(soup)
|
|
|
87 |
if tag_count < scrape_args.min_tags:
|
88 |
# print(f"Image {image_id} doesn't have enough tags({tag_count} < {scrape_args.min_tags}), skipped.")
|
89 |
return
|
90 |
+
rating = image_container.get("data-rating")
|
91 |
+
if not rating:
|
92 |
+
raise RuntimeError("No rating found.")
|
93 |
+
if rating == "safe":
|
94 |
+
rating = "general"
|
95 |
+
metadata = json.dumps({"image_id": image_id, "score": image_score, "rating": rating, "tags": type_tags_dict}, ensure_ascii=False, separators=(",", ":"))
|
96 |
image_path = os.path.join(IMAGE_DIR, image_id + image_ext)
|
97 |
+
metadata_path = os.path.join(IMAGE_DIR, image_id + ".json")
|
|
|
98 |
download_start_time = time.time()
|
99 |
async with scrape_state.session.get(image_download_url) as img_response:
|
100 |
img_data = await img_response.read()
|
101 |
download_used_time = time.time() - download_start_time
|
102 |
async with aiofiles.open(image_path, "wb") as f:
|
103 |
await f.write(img_data)
|
104 |
+
async with aiofiles.open(metadata_path, "w", encoding="utf8") as f:
|
105 |
+
await f.write(metadata)
|
106 |
+
if not await utils.submit_validation(scrape_state.thread_pool, image_path, metadata_path, scrape_args.width, scrape_args.height, scrape_args.convert_to_avif):
|
107 |
+
return
|
108 |
+
scrape_state.scraped_image_count += 1
|
109 |
+
total_query_time = scrape_state.avg_query_time[0] * scrape_state.avg_query_time[1] + query_used_time
|
110 |
+
total_download_time = scrape_state.avg_download_time[0] * scrape_state.avg_download_time[1] + download_used_time
|
111 |
+
scrape_state.avg_query_time[1] += 1
|
112 |
+
scrape_state.avg_download_time[1] += 1
|
113 |
+
scrape_state.avg_query_time[0] = total_query_time / scrape_state.avg_query_time[1]
|
114 |
+
scrape_state.avg_download_time[0] = total_download_time / scrape_state.avg_download_time[1]
|
115 |
+
interval = 1000
|
116 |
+
if scrape_state.scraped_image_count % interval != 0:
|
117 |
+
return
|
118 |
+
print(
|
119 |
+
f"Scraped {scrape_state.scraped_image_count}/{scrape_args.max_scrape_count} images, "
|
120 |
+
f"stats for the last {interval} images: [Average query time: {scrape_state.avg_query_time[0]:.3f}s | Average download time: {scrape_state.avg_download_time[0]:.3f}s]"
|
121 |
+
)
|
122 |
+
scrape_state.avg_query_time = [0.0, 0]
|
123 |
+
scrape_state.avg_download_time = [0.0, 0]
|
124 |
return
|
125 |
except Exception as e:
|
126 |
error = e
|
|
|
140 |
parser.add_argument("-a", "--avif", action="store_true", help="If set, will convert the image into avif, need to have pillow-avif-plugin installed")
|
141 |
parser.add_argument("-l", "--low-quality", action="store_true", help="If set, will download the sample instead of the original image")
|
142 |
parser.add_argument("-t", "--min-tags", type=int, default=0, help="Filter out images with less than the specified amount of tags, default to 0")
|
|
|
143 |
parser.add_argument("-m", "--max-scrape-count", type=int, help="Stop after scraping the set amount of images, may not be exact because of the asynchronous nature of this script, default to infinite")
|
144 |
parser.add_argument("-c", "--continuous-scraping", action="store_true", help="If set, will scraping continuously even when reaching the 20000 images Gelbooru search depth cap by adjusting search tags")
|
145 |
parser.add_argument("tags_to_search", nargs=argparse.REMAINDER, help="List of tags to search for, default to all")
|
|
|
167 |
if isinstance(args.max_scrape_count, int) and args.max_scrape_count <= 0:
|
168 |
print("Maximum scrape count must be greater than 0!")
|
169 |
sys.exit(1)
|
|
|
|
|
170 |
return args
|
171 |
|
172 |
async def main():
|
|
|
220 |
if task.done():
|
221 |
await task
|
222 |
del tasks[i]
|
223 |
+
tasks.append(asyncio.create_task(process_link(utils.ScrapeArgs(image_url, args.width, args.height, args.avif, args.low_quality, args.min_tags, args.max_scrape_count), scrape_state)))
|
|
|
|
|
224 |
if utils.get_sigint_count() >= 1 or isinstance(args.max_scrape_count, int) and scrape_state.scraped_image_count >= args.max_scrape_count:
|
225 |
break
|
226 |
session_refresh_counter += 1
|
utils/scrape_args.py
CHANGED
@@ -9,5 +9,4 @@ class ScrapeArgs:
|
|
9 |
convert_to_avif: bool = False
|
10 |
use_low_quality: bool = False
|
11 |
min_tags: int = 0
|
12 |
-
preserve_meta_tags: bool = False
|
13 |
max_scrape_count: Optional[int] = None
|
|
|
9 |
convert_to_avif: bool = False
|
10 |
use_low_quality: bool = False
|
11 |
min_tags: int = 0
|
|
|
12 |
max_scrape_count: Optional[int] = None
|
utils/utils.py
CHANGED
@@ -3,7 +3,7 @@ import asyncio
|
|
3 |
import aiohttp
|
4 |
from PIL import Image
|
5 |
|
6 |
-
def validate_image(image_path,
|
7 |
new_path = None
|
8 |
try:
|
9 |
with Image.open(image_path) as img:
|
@@ -30,10 +30,10 @@ def validate_image(image_path, tags_path, width=None, height=None, convert_to_av
|
|
30 |
except Exception as e:
|
31 |
print("Error deleting image file:", e)
|
32 |
try:
|
33 |
-
os.remove(
|
34 |
-
print(f"Deleted invalid image and
|
35 |
except Exception as e:
|
36 |
-
print("Error deleting
|
37 |
try:
|
38 |
if new_path is not None and os.path.isfile(new_path):
|
39 |
os.remove(new_path)
|
@@ -42,28 +42,28 @@ def validate_image(image_path, tags_path, width=None, height=None, convert_to_av
|
|
42 |
print("Error deleting new image file:", e)
|
43 |
return False
|
44 |
|
45 |
-
async def submit_validation(thread_pool, image_path,
|
46 |
-
return await asyncio.wrap_future(thread_pool.submit(validate_image, image_path,
|
47 |
|
48 |
-
def
|
49 |
if not os.path.isdir(image_dir):
|
50 |
raise FileNotFoundError(f"\"{image_dir}\" is not a directory!")
|
51 |
-
|
52 |
for path in os.listdir(image_dir):
|
53 |
image_id, ext = os.path.splitext(path)
|
54 |
-
if ext == ".
|
55 |
continue
|
56 |
path = os.path.join(image_dir, path)
|
57 |
if not os.path.isfile(path):
|
58 |
continue
|
59 |
-
|
60 |
-
if not os.path.isfile(
|
61 |
continue
|
62 |
-
|
63 |
-
return
|
64 |
|
65 |
def get_existing_image_id_set(image_dir):
|
66 |
-
return set(
|
67 |
|
68 |
def get_session(timeout=None, cookies=None):
|
69 |
kwargs = {"connector": aiohttp.TCPConnector(limit=0, ttl_dns_cache=600), "cookies": cookies}
|
@@ -88,18 +88,27 @@ def get_model_tags(model_tags_path):
|
|
88 |
raise ValueError(f"The index specified in \"{model_tags_path}\" is not continuous!")
|
89 |
return [tag for _, tag in sorted_index_tag_tuple_list]
|
90 |
|
91 |
-
def
|
92 |
-
if not os.path.isfile(
|
93 |
-
raise FileNotFoundError(f"\"{
|
94 |
-
with open(
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import aiohttp
|
4 |
from PIL import Image
|
5 |
|
6 |
+
def validate_image(image_path, metadata_path, width=None, height=None, convert_to_avif=False):
|
7 |
new_path = None
|
8 |
try:
|
9 |
with Image.open(image_path) as img:
|
|
|
30 |
except Exception as e:
|
31 |
print("Error deleting image file:", e)
|
32 |
try:
|
33 |
+
os.remove(metadata_path)
|
34 |
+
print(f"Deleted invalid image and metadata files: {image_path}, {metadata_path}")
|
35 |
except Exception as e:
|
36 |
+
print("Error deleting metadata file:", e)
|
37 |
try:
|
38 |
if new_path is not None and os.path.isfile(new_path):
|
39 |
os.remove(new_path)
|
|
|
42 |
print("Error deleting new image file:", e)
|
43 |
return False
|
44 |
|
45 |
+
async def submit_validation(thread_pool, image_path, metadata_path, width=None, height=None, convert_to_avif=False):
|
46 |
+
return await asyncio.wrap_future(thread_pool.submit(validate_image, image_path, metadata_path, width, height, convert_to_avif))
|
47 |
|
48 |
+
def get_image_id_image_metadata_path_tuple_dict(image_dir):
|
49 |
if not os.path.isdir(image_dir):
|
50 |
raise FileNotFoundError(f"\"{image_dir}\" is not a directory!")
|
51 |
+
image_id_image_metadata_path_tuple_dict = {}
|
52 |
for path in os.listdir(image_dir):
|
53 |
image_id, ext = os.path.splitext(path)
|
54 |
+
if ext == ".json":
|
55 |
continue
|
56 |
path = os.path.join(image_dir, path)
|
57 |
if not os.path.isfile(path):
|
58 |
continue
|
59 |
+
metadata_path = os.path.splitext(path)[0] + ".json"
|
60 |
+
if not os.path.isfile(metadata_path):
|
61 |
continue
|
62 |
+
image_id_image_metadata_path_tuple_dict[image_id] = (path, metadata_path)
|
63 |
+
return image_id_image_metadata_path_tuple_dict
|
64 |
|
65 |
def get_existing_image_id_set(image_dir):
|
66 |
+
return set(get_image_id_image_metadata_path_tuple_dict(image_dir))
|
67 |
|
68 |
def get_session(timeout=None, cookies=None):
|
69 |
kwargs = {"connector": aiohttp.TCPConnector(limit=0, ttl_dns_cache=600), "cookies": cookies}
|
|
|
88 |
raise ValueError(f"The index specified in \"{model_tags_path}\" is not continuous!")
|
89 |
return [tag for _, tag in sorted_index_tag_tuple_list]
|
90 |
|
91 |
+
def get_metadata(metadata_path):
|
92 |
+
if not os.path.isfile(metadata_path):
|
93 |
+
raise FileNotFoundError(f"\"{metadata_path}\" is not a file!")
|
94 |
+
with open(metadata_path, "r", encoding="utf8") as metadata_file:
|
95 |
+
return json.load(metadata_file)
|
96 |
+
|
97 |
+
def get_tags(metadata_path, exclude=None, include=None):
|
98 |
+
if exclude is not None and include is not None:
|
99 |
+
raise ValueError("You can't set both exclude and include, please only set one.")
|
100 |
+
metadata = get_metadata(metadata_path)
|
101 |
+
tags = ["rating:" + metadata["rating"]]
|
102 |
+
type_tags_dict = metadata.get("tags")
|
103 |
+
if not type_tags_dict:
|
104 |
+
return tags
|
105 |
+
if exclude is not None:
|
106 |
+
for e in exclude:
|
107 |
+
type_tags_dict.pop(e, None)
|
108 |
+
elif include is not None:
|
109 |
+
for k in list(type_tags_dict):
|
110 |
+
if k not in include:
|
111 |
+
type_tags_dict.pop(k)
|
112 |
+
for l in type_tags_dict.values():
|
113 |
+
tags += l
|
114 |
+
return tags
|