Datasets:
Tasks:
Text2Text Generation
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
common-sense-inference
License:
Commit
·
dd11548
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/0.1.0/dummy_data.zip +3 -0
- event2Mind.py +99 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "In Event2Mind, we explore the task of understanding stereotypical intents and reactions to events. Through crowdsourcing, we create a large corpus with 25,000 events and free-form descriptions of their intents and reactions, both of the event's subject and (potentially implied) other participants.\n", "citation": "@inproceedings{event2Mind,\n title={Event2Mind: Commonsense Inference on Events, Intents, and Reactions},\n author={Hannah Rashkin and Maarten Sap and Emily Allaway and Noah A. Smith\u2020 Yejin Choi},\n year={2018}\n}\n", "homepage": "https://uwnlp.github.io/event2mind/", "license": "", "features": {"Source": {"dtype": "string", "id": null, "_type": "Value"}, "Event": {"dtype": "string", "id": null, "_type": "Value"}, "Xintent": {"dtype": "string", "id": null, "_type": "Value"}, "Xemotion": {"dtype": "string", "id": null, "_type": "Value"}, "Otheremotion": {"dtype": "string", "id": null, "_type": "Value"}, "Xsent": {"dtype": "string", "id": null, "_type": "Value"}, "Osent": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "event2mind", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 649273, "num_examples": 5221, "dataset_name": "event2mind"}, "train": {"name": "train", "num_bytes": 5916384, "num_examples": 46472, "dataset_name": "event2mind"}, "validation": {"name": "validation", "num_bytes": 672365, "num_examples": 5401, "dataset_name": "event2mind"}}, "download_checksums": {"https://uwnlp.github.io/event2mind/data/event2mind.zip": {"num_bytes": 1300770, "checksum": "07dcd0a1278b474ffbe29eff309ff8e0c512521022e2623cbecd417402802a2e"}}, "download_size": 1300770, "dataset_size": 7238022, "size_in_bytes": 8538792}}
|
dummy/0.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0183a29221ff1865199067a41c086ec093daf984bc818c1a5bb98eadcbb05a08
|
3 |
+
size 1250
|
event2Mind.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""TODO(event2Mind): Add a description here."""
|
2 |
+
|
3 |
+
from __future__ import absolute_import, division, print_function
|
4 |
+
|
5 |
+
import csv
|
6 |
+
import os
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
|
10 |
+
|
11 |
+
# TODO(event2Mind): BibTeX citation
|
12 |
+
_CITATION = """\
|
13 |
+
@inproceedings{event2Mind,
|
14 |
+
title={Event2Mind: Commonsense Inference on Events, Intents, and Reactions},
|
15 |
+
author={Hannah Rashkin and Maarten Sap and Emily Allaway and Noah A. Smith† Yejin Choi},
|
16 |
+
year={2018}
|
17 |
+
}
|
18 |
+
"""
|
19 |
+
|
20 |
+
# TODO(event2Mind):\
|
21 |
+
|
22 |
+
_DESCRIPTION = """\
|
23 |
+
In Event2Mind, we explore the task of understanding stereotypical intents and reactions to events. Through crowdsourcing, we create a large corpus with 25,000 events and free-form descriptions of their intents and reactions, both of the event's subject and (potentially implied) other participants.
|
24 |
+
"""
|
25 |
+
_URL = "https://uwnlp.github.io/event2mind/data/event2mind.zip"
|
26 |
+
|
27 |
+
|
28 |
+
class Event2mind(datasets.GeneratorBasedBuilder):
|
29 |
+
"""TODO(event2Mind): Short description of my dataset."""
|
30 |
+
|
31 |
+
# TODO(event2Mind): Set up version.
|
32 |
+
VERSION = datasets.Version("0.1.0")
|
33 |
+
|
34 |
+
def _info(self):
|
35 |
+
# TODO(event2Mind): Specifies the datasets.DatasetInfo object
|
36 |
+
return datasets.DatasetInfo(
|
37 |
+
# This is the description that will appear on the datasets page.
|
38 |
+
description=_DESCRIPTION,
|
39 |
+
# datasets.features.FeatureConnectors
|
40 |
+
features=datasets.Features(
|
41 |
+
{
|
42 |
+
# These are the features of your dataset like images, labels ...
|
43 |
+
"Source": datasets.Value("string"),
|
44 |
+
"Event": datasets.Value("string"),
|
45 |
+
"Xintent": datasets.Value("string"),
|
46 |
+
"Xemotion": datasets.Value("string"),
|
47 |
+
"Otheremotion": datasets.Value("string"),
|
48 |
+
"Xsent": datasets.Value("string"),
|
49 |
+
"Osent": datasets.Value("string"),
|
50 |
+
}
|
51 |
+
),
|
52 |
+
# If there's a common (input, target) tuple from the features,
|
53 |
+
# specify them here. They'll be used if as_supervised=True in
|
54 |
+
# builder.as_dataset.
|
55 |
+
supervised_keys=None,
|
56 |
+
# Homepage of the dataset for documentation
|
57 |
+
homepage="https://uwnlp.github.io/event2mind/",
|
58 |
+
citation=_CITATION,
|
59 |
+
)
|
60 |
+
|
61 |
+
def _split_generators(self, dl_manager):
|
62 |
+
"""Returns SplitGenerators."""
|
63 |
+
# TODO(event2Mind): Downloads the data and defines the splits
|
64 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
65 |
+
# download and extract URLs
|
66 |
+
dl_dir = dl_manager.download_and_extract(_URL)
|
67 |
+
return [
|
68 |
+
datasets.SplitGenerator(
|
69 |
+
name=datasets.Split.TRAIN,
|
70 |
+
# These kwargs will be passed to _generate_examples
|
71 |
+
gen_kwargs={"filepath": os.path.join(dl_dir, "train.csv")},
|
72 |
+
),
|
73 |
+
datasets.SplitGenerator(
|
74 |
+
name=datasets.Split.TEST,
|
75 |
+
# These kwargs will be passed to _generate_examples
|
76 |
+
gen_kwargs={"filepath": os.path.join(dl_dir, "test.csv")},
|
77 |
+
),
|
78 |
+
datasets.SplitGenerator(
|
79 |
+
name=datasets.Split.VALIDATION,
|
80 |
+
# These kwargs will be passed to _generate_examples
|
81 |
+
gen_kwargs={"filepath": os.path.join(dl_dir, "dev.csv")},
|
82 |
+
),
|
83 |
+
]
|
84 |
+
|
85 |
+
def _generate_examples(self, filepath):
|
86 |
+
"""Yields examples."""
|
87 |
+
# TODO(event2Mind): Yields (key, example) tuples from the dataset
|
88 |
+
with open(filepath, encoding="utf-8") as f:
|
89 |
+
data = csv.DictReader(f)
|
90 |
+
for id_, row in enumerate(data):
|
91 |
+
yield id_, {
|
92 |
+
"Source": row["Source"],
|
93 |
+
"Event": row["Event"],
|
94 |
+
"Xintent": row["Xintent"],
|
95 |
+
"Xemotion": row["Xemotion"],
|
96 |
+
"Otheremotion": row["Otheremotion"],
|
97 |
+
"Xsent": row["Xsent"],
|
98 |
+
"Osent": row["Osent"],
|
99 |
+
}
|