Datasets:

ArXiv:
License:
andaba commited on
Commit
7c4f0e8
·
verified ·
1 Parent(s): e5faf7c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -1
README.md CHANGED
@@ -1,3 +1,64 @@
1
  ---
2
- license: cc-by-nc-nd-4.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-nc-sa-4.0
3
+ size_categories:
4
+ - 1K<n<10K
5
  ---
6
+
7
+ # RT-Pose: A 4D Radar Tensor-based 3D Human Pose Estimation and Localization Benchmark (ECCV 2024)
8
+
9
+ RT-Pose introduces a human pose estimation (HPE) dataset and benchmark by integrating a unique combination of calibrated 4D radar tensors, RGB images, and LiDAR point clouds.
10
+ This integration marks a significant advancement in studying human pose analysis through multi-modality datasets.
11
+
12
+
13
+
14
+ ## Dataset Details
15
+
16
+ ### Dataset Description
17
+
18
+ <!-- Provide a longer summary of what this dataset is. -->
19
+ #### Sensors
20
+ The data collection hardware system comprises two RGB [cameras](https://www.flir.com/products/blackfly-s-usb3/?model=BFS-U3-16S2C-CS), a non-repetitive
21
+ horizontal scanning [LiDAR](https://www.livoxtech.com/3296f540ecf5458a8829e01cf429798e/assets/horizon/Livox%20Horizon%20user%20manual%20v1.0.pdf), and a cascade imaging [radar module](https://www.ti.com/tool/MMWCAS-RF-EVM).
22
+ ![images](./asset/device.pdf)
23
+
24
+
25
+ #### Data Statics
26
+ We collect the dataset in 40 scenes with indoor and outdoor environments.
27
+ ![images](./asset/examples.pdf)
28
+
29
+
30
+ The dataset comprises 72,000 frames distributed across 240 sequences.
31
+ The structured organization ensures a realistic distribution of human motions, which is crucial for robust analysis and model training.
32
+
33
+ ![images](./asset/data_distribution.pdf)
34
+
35
+ Please check the paper for more details.
36
+
37
+ - **Curated by:** Jen-Hao(Andy) Cheng(andyhci@uw.edu), Yuan-Hao Ho (n28081527@gs.ncku.edu.tw) from [Information Processing Lab](https://ipl-uw.github.io/) at University of Washington
38
+ - **License:** [CC BY-NC-SA](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
39
+
40
+ ### Dataset Sources
41
+
42
+ <!-- Provide the basic links for the dataset. -->
43
+
44
+ - **Repository including data processing and baseline method codes:** [RT-POSE](https://github.com/ipl-uw/RT-POSE)
45
+ - **Paper:** To be viewed on arxiv.
46
+
47
+ ## Uses
48
+
49
+ <!-- Address questions around how the dataset is intended to be used. -->
50
+ 1. Download the dataset from Hugging Face (Total data size: ~1.2 TB)
51
+ 2. Follow the [data processing tool](https://github.com/ipl-uw/RT-POSE/data_processing) to process radar ADC samples into radar tensors. (Total data size of the downloaded data and saved radar tensors: ~41 TB)
52
+ 3. Check the data loading and baseline training, testing codes in the same repo [RT-POSE](https://github.com/ipl-uw/RT-POSE)
53
+
54
+ ## Citation
55
+
56
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
57
+
58
+ **BibTeX:**
59
+
60
+ To appear on arxiv
61
+
62
+ ## Dataset Card Contact
63
+
64
+ Jen-Hao (Andy) Cheng, andyhci@uw.edu