davanstrien HF Staff commited on
Commit
da5dc77
·
verified ·
1 Parent(s): f362feb

Upload vlm-streaming-sft-unsloth-qwen.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. vlm-streaming-sft-unsloth-qwen.py +177 -54
vlm-streaming-sft-unsloth-qwen.py CHANGED
@@ -10,27 +10,36 @@
10
  # ]
11
  # ///
12
  """
13
- Fine-tune Vision Language Models using streaming datasets and Unsloth optimizations.
14
 
15
- Streams data directly from the Hub - no disk space needed for massive VLM datasets.
16
  Uses Unsloth for ~60% less VRAM and 2x faster training.
 
17
 
18
- Run locally (if you have a GPU):
19
- uv run vlm-streaming-sft-unsloth.py \
20
- --max-steps 100 \
 
 
21
  --output-repo your-username/vlm-test
22
 
23
  Run on HF Jobs:
24
- hf jobs uv run vlm-streaming-sft-unsloth.py \
25
- --flavor a100-large \
26
- --secrets HF_TOKEN \
27
- -- \
 
 
 
 
 
 
28
  --max-steps 500 \
29
  --output-repo your-username/vlm-finetuned
30
 
31
  With Trackio dashboard:
32
- uv run vlm-streaming-sft-unsloth.py \
33
- --max-steps 500 \
 
34
  --output-repo your-username/vlm-finetuned \
35
  --trackio-space your-username/trackio
36
  """
@@ -163,6 +172,32 @@ Examples:
163
  help="Local directory to save model (default: vlm-streaming-output)",
164
  )
165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
  return parser.parse_args()
167
 
168
 
@@ -170,11 +205,19 @@ def main():
170
  args = parse_args()
171
 
172
  print("=" * 70)
173
- print("VLM Streaming Fine-tuning with Unsloth")
174
  print("=" * 70)
175
  print("\nConfiguration:")
176
  print(f" Base model: {args.base_model}")
177
  print(f" Dataset: {args.dataset}")
 
 
 
 
 
 
 
 
178
  print(f" Max steps: {args.max_steps}")
179
  print(
180
  f" Batch size: {args.batch_size} x {args.gradient_accumulation} = {args.batch_size * args.gradient_accumulation}"
@@ -194,7 +237,9 @@ def main():
194
  # Set Trackio space if provided
195
  if args.trackio_space:
196
  os.environ["TRACKIO_SPACE_ID"] = args.trackio_space
197
- logger.info(f"Trackio dashboard: https://huggingface.co/spaces/{args.trackio_space}")
 
 
198
 
199
  # Import heavy dependencies (note: import from unsloth.trainer for VLM)
200
  from unsloth import FastVisionModel
@@ -237,31 +282,74 @@ def main():
237
  )
238
  print(f"Model loaded in {time.time() - start:.1f}s")
239
 
240
- # 2. Load streaming dataset
241
- print("\n[2/5] Loading streaming dataset...")
242
- start = time.time()
243
-
244
- dataset = load_dataset(
245
- args.dataset,
246
- split="train",
247
- streaming=True,
248
  )
 
249
 
250
- # Peek at first sample to show info
251
- sample = next(iter(dataset))
252
- print(f"Dataset ready in {time.time() - start:.1f}s")
253
- if "messages" in sample:
254
- print(f" Sample has {len(sample['messages'])} messages")
255
- if "images" in sample:
256
- img_count = len(sample['images']) if isinstance(sample['images'], list) else 1
257
- print(f" Sample has {img_count} image(s)")
258
-
259
- # Reload dataset (consumed one sample above)
260
- dataset = load_dataset(
261
- args.dataset,
262
- split="train",
263
- streaming=True,
264
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265
 
266
  # 3. Configure trainer
267
  print("\n[3/5] Configuring trainer...")
@@ -280,7 +368,7 @@ def main():
280
  optim="adamw_8bit", # Per notebook
281
  weight_decay=0.001,
282
  lr_scheduler_type="linear", # Per notebook (not cosine)
283
- seed=3407,
284
  # VLM-specific settings (required for Unsloth)
285
  remove_unused_columns=False,
286
  dataset_text_field="",
@@ -288,13 +376,14 @@ def main():
288
  max_length=args.max_seq_length,
289
  # Logging
290
  report_to="trackio",
291
- run_name=f"vlm-streaming-{args.max_steps}steps",
292
  )
293
 
294
- # Convert streaming dataset to list (required for Qwen3-VL per Unsloth docs)
295
- print(" Converting streaming dataset to list...")
296
- train_data = list(dataset.take(500)) # Take enough samples for training
297
- print(f" Loaded {len(train_data)} samples")
 
298
 
299
  # Use older 'tokenizer=' parameter (not processing_class) - required for Unsloth VLM
300
  trainer = SFTTrainer(
@@ -302,6 +391,7 @@ def main():
302
  tokenizer=tokenizer, # Full processor, not processor.tokenizer
303
  data_collator=UnslothVisionDataCollator(model, tokenizer),
304
  train_dataset=train_data,
 
305
  args=training_config,
306
  )
307
 
@@ -309,12 +399,36 @@ def main():
309
  print(f"\n[4/5] Training for {args.max_steps} steps...")
310
  start = time.time()
311
 
312
- trainer.train()
313
 
314
  train_time = time.time() - start
315
  print(f"\nTraining completed in {train_time / 60:.1f} minutes")
316
  print(f" Speed: {args.max_steps / train_time:.2f} steps/s")
317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318
  # 5. Save and push
319
  print("\n[5/5] Saving model...")
320
 
@@ -337,27 +451,36 @@ if __name__ == "__main__":
337
  # Show example usage if no arguments
338
  if len(sys.argv) == 1:
339
  print("=" * 70)
340
- print("VLM Streaming Fine-tuning with Unsloth")
341
  print("=" * 70)
342
- print("\nFine-tune Vision-Language Models using streaming datasets.")
343
- print("Data streams directly from the Hub - no disk space needed.")
344
  print("\nFeatures:")
345
  print(" - ~60% less VRAM with Unsloth optimizations")
346
  print(" - 2x faster training vs standard methods")
 
347
  print(" - Trackio integration for monitoring")
348
  print(" - Works with any VLM dataset in conversation format")
349
- print("\nExample usage:")
350
- print("\n uv run vlm-streaming-sft-unsloth.py \\")
351
- print(" --max-steps 500 \\")
 
 
352
  print(" --output-repo your-username/vlm-finetuned")
353
  print("\nHF Jobs example:")
354
- print("\n hf jobs uv run vlm-streaming-sft-unsloth.py \\")
355
- print(" --flavor a100-large \\")
356
- print(" --secrets HF_TOKEN \\")
357
- print(" -- \\")
 
 
 
 
 
 
 
358
  print(" --max-steps 500 \\")
359
  print(" --output-repo your-username/vlm-finetuned")
360
- print("\nFor full help: uv run vlm-streaming-sft-unsloth.py --help")
361
  print("=" * 70)
362
  sys.exit(0)
363
 
 
10
  # ]
11
  # ///
12
  """
13
+ Fine-tune Vision Language Models using Unsloth optimizations.
14
 
 
15
  Uses Unsloth for ~60% less VRAM and 2x faster training.
16
+ Supports optional train/eval split to verify generalization (not just memorization).
17
 
18
+ Run locally with evaluation (recommended):
19
+ uv run vlm-streaming-sft-unsloth-qwen.py \
20
+ --max-steps 200 \
21
+ --num-samples 500 \
22
+ --eval-split 0.2 \
23
  --output-repo your-username/vlm-test
24
 
25
  Run on HF Jobs:
26
+ hf jobs uv run --flavor a100-large --secrets HF_TOKEN -- \
27
+ https://huggingface.co/datasets/uv-scripts/training/raw/main/vlm-streaming-sft-unsloth-qwen.py \
28
+ --max-steps 200 \
29
+ --num-samples 500 \
30
+ --eval-split 0.2 \
31
+ --output-repo your-username/vlm-finetuned
32
+
33
+ For very large datasets, use streaming mode:
34
+ uv run vlm-streaming-sft-unsloth-qwen.py \
35
+ --streaming \
36
  --max-steps 500 \
37
  --output-repo your-username/vlm-finetuned
38
 
39
  With Trackio dashboard:
40
+ uv run vlm-streaming-sft-unsloth-qwen.py \
41
+ --max-steps 200 \
42
+ --eval-split 0.2 \
43
  --output-repo your-username/vlm-finetuned \
44
  --trackio-space your-username/trackio
45
  """
 
172
  help="Local directory to save model (default: vlm-streaming-output)",
173
  )
174
 
175
+ # Evaluation and data control
176
+ parser.add_argument(
177
+ "--eval-split",
178
+ type=float,
179
+ default=0.0,
180
+ help="Fraction of data for evaluation (0.0-0.5). Default: 0.0 (no eval)",
181
+ )
182
+ parser.add_argument(
183
+ "--num-samples",
184
+ type=int,
185
+ default=None,
186
+ help="Limit samples (default: None = use all for non-streaming, 500 for streaming)",
187
+ )
188
+ parser.add_argument(
189
+ "--seed",
190
+ type=int,
191
+ default=3407,
192
+ help="Random seed for reproducibility (default: 3407)",
193
+ )
194
+ parser.add_argument(
195
+ "--streaming",
196
+ action="store_true",
197
+ default=False,
198
+ help="Use streaming mode (default: False). Use for very large datasets.",
199
+ )
200
+
201
  return parser.parse_args()
202
 
203
 
 
205
  args = parse_args()
206
 
207
  print("=" * 70)
208
+ print("VLM Fine-tuning with Unsloth")
209
  print("=" * 70)
210
  print("\nConfiguration:")
211
  print(f" Base model: {args.base_model}")
212
  print(f" Dataset: {args.dataset}")
213
+ print(f" Streaming: {args.streaming}")
214
+ print(
215
+ f" Num samples: {args.num_samples or ('500' if args.streaming else 'all')}"
216
+ )
217
+ print(
218
+ f" Eval split: {args.eval_split if args.eval_split > 0 else '(disabled)'}"
219
+ )
220
+ print(f" Seed: {args.seed}")
221
  print(f" Max steps: {args.max_steps}")
222
  print(
223
  f" Batch size: {args.batch_size} x {args.gradient_accumulation} = {args.batch_size * args.gradient_accumulation}"
 
237
  # Set Trackio space if provided
238
  if args.trackio_space:
239
  os.environ["TRACKIO_SPACE_ID"] = args.trackio_space
240
+ logger.info(
241
+ f"Trackio dashboard: https://huggingface.co/spaces/{args.trackio_space}"
242
+ )
243
 
244
  # Import heavy dependencies (note: import from unsloth.trainer for VLM)
245
  from unsloth import FastVisionModel
 
282
  )
283
  print(f"Model loaded in {time.time() - start:.1f}s")
284
 
285
+ # 2. Load dataset (streaming or non-streaming)
286
+ print(
287
+ f"\n[2/5] Loading dataset ({'streaming' if args.streaming else 'non-streaming'})..."
 
 
 
 
 
288
  )
289
+ start = time.time()
290
 
291
+ if args.streaming:
292
+ # Streaming mode: take limited samples
293
+ dataset = load_dataset(args.dataset, split="train", streaming=True)
294
+ num_samples = args.num_samples or 500
295
+
296
+ # Peek at first sample to show info
297
+ sample = next(iter(dataset))
298
+ if "messages" in sample:
299
+ print(f" Sample has {len(sample['messages'])} messages")
300
+ if "images" in sample:
301
+ img_count = (
302
+ len(sample["images"]) if isinstance(sample["images"], list) else 1
303
+ )
304
+ print(f" Sample has {img_count} image(s)")
305
+
306
+ # Reload and take samples
307
+ dataset = load_dataset(args.dataset, split="train", streaming=True)
308
+ all_data = list(dataset.take(num_samples))
309
+ print(f" Loaded {len(all_data)} samples in {time.time() - start:.1f}s")
310
+
311
+ if args.eval_split > 0:
312
+ # Manual shuffle for streaming (no built-in split)
313
+ import random
314
+
315
+ random.seed(args.seed)
316
+ random.shuffle(all_data)
317
+ split_idx = int(len(all_data) * (1 - args.eval_split))
318
+ train_data = all_data[:split_idx]
319
+ eval_data = all_data[split_idx:]
320
+ print(f" Train: {len(train_data)} samples, Eval: {len(eval_data)} samples")
321
+ else:
322
+ train_data = all_data
323
+ eval_data = None
324
+ else:
325
+ # Non-streaming: use proper train_test_split
326
+ dataset = load_dataset(args.dataset, split="train")
327
+ print(f" Dataset has {len(dataset)} total samples")
328
+
329
+ # Peek at first sample
330
+ sample = dataset[0]
331
+ if "messages" in sample:
332
+ print(f" Sample has {len(sample['messages'])} messages")
333
+ if "images" in sample:
334
+ img_count = (
335
+ len(sample["images"]) if isinstance(sample["images"], list) else 1
336
+ )
337
+ print(f" Sample has {img_count} image(s)")
338
+
339
+ if args.num_samples:
340
+ dataset = dataset.select(range(min(args.num_samples, len(dataset))))
341
+ print(f" Limited to {len(dataset)} samples")
342
+
343
+ if args.eval_split > 0:
344
+ split = dataset.train_test_split(test_size=args.eval_split, seed=args.seed)
345
+ train_data = list(split["train"])
346
+ eval_data = list(split["test"])
347
+ print(f" Train: {len(train_data)} samples, Eval: {len(eval_data)} samples")
348
+ else:
349
+ train_data = list(dataset)
350
+ eval_data = None
351
+
352
+ print(f" Dataset ready in {time.time() - start:.1f}s")
353
 
354
  # 3. Configure trainer
355
  print("\n[3/5] Configuring trainer...")
 
368
  optim="adamw_8bit", # Per notebook
369
  weight_decay=0.001,
370
  lr_scheduler_type="linear", # Per notebook (not cosine)
371
+ seed=args.seed,
372
  # VLM-specific settings (required for Unsloth)
373
  remove_unused_columns=False,
374
  dataset_text_field="",
 
376
  max_length=args.max_seq_length,
377
  # Logging
378
  report_to="trackio",
379
+ run_name=f"vlm-sft-{args.max_steps}steps",
380
  )
381
 
382
+ # Add evaluation config if eval is enabled
383
+ if eval_data:
384
+ training_config.eval_strategy = "steps"
385
+ training_config.eval_steps = max(1, args.max_steps // 5)
386
+ print(f" Evaluation enabled: every {training_config.eval_steps} steps")
387
 
388
  # Use older 'tokenizer=' parameter (not processing_class) - required for Unsloth VLM
389
  trainer = SFTTrainer(
 
391
  tokenizer=tokenizer, # Full processor, not processor.tokenizer
392
  data_collator=UnslothVisionDataCollator(model, tokenizer),
393
  train_dataset=train_data,
394
+ eval_dataset=eval_data, # None if no eval
395
  args=training_config,
396
  )
397
 
 
399
  print(f"\n[4/5] Training for {args.max_steps} steps...")
400
  start = time.time()
401
 
402
+ train_result = trainer.train()
403
 
404
  train_time = time.time() - start
405
  print(f"\nTraining completed in {train_time / 60:.1f} minutes")
406
  print(f" Speed: {args.max_steps / train_time:.2f} steps/s")
407
 
408
+ # Print training metrics
409
+ if train_result.metrics:
410
+ train_loss = train_result.metrics.get("train_loss")
411
+ if train_loss:
412
+ print(f" Final train loss: {train_loss:.4f}")
413
+
414
+ # Print eval results if eval was enabled
415
+ if eval_data:
416
+ print("\nRunning final evaluation...")
417
+ eval_results = trainer.evaluate()
418
+ eval_loss = eval_results.get("eval_loss")
419
+ if eval_loss:
420
+ print(f" Final eval loss: {eval_loss:.4f}")
421
+ if train_loss:
422
+ ratio = eval_loss / train_loss
423
+ if ratio > 1.5:
424
+ print(
425
+ f" ⚠️ Eval loss is {ratio:.1f}x train loss - possible overfitting"
426
+ )
427
+ else:
428
+ print(
429
+ f" ✓ Eval/train ratio: {ratio:.2f} - model generalizes well"
430
+ )
431
+
432
  # 5. Save and push
433
  print("\n[5/5] Saving model...")
434
 
 
451
  # Show example usage if no arguments
452
  if len(sys.argv) == 1:
453
  print("=" * 70)
454
+ print("VLM Fine-tuning with Unsloth")
455
  print("=" * 70)
456
+ print("\nFine-tune Vision-Language Models with optional train/eval split.")
 
457
  print("\nFeatures:")
458
  print(" - ~60% less VRAM with Unsloth optimizations")
459
  print(" - 2x faster training vs standard methods")
460
+ print(" - Optional evaluation to detect overfitting")
461
  print(" - Trackio integration for monitoring")
462
  print(" - Works with any VLM dataset in conversation format")
463
+ print("\nExample usage (with evaluation):")
464
+ print("\n uv run vlm-streaming-sft-unsloth-qwen.py \\")
465
+ print(" --max-steps 200 \\")
466
+ print(" --num-samples 500 \\")
467
+ print(" --eval-split 0.2 \\")
468
  print(" --output-repo your-username/vlm-finetuned")
469
  print("\nHF Jobs example:")
470
+ print("\n hf jobs uv run --flavor a100-large --secrets HF_TOKEN -- \\")
471
+ print(
472
+ " https://huggingface.co/datasets/uv-scripts/training/raw/main/vlm-streaming-sft-unsloth-qwen.py \\"
473
+ )
474
+ print(" --max-steps 200 \\")
475
+ print(" --num-samples 500 \\")
476
+ print(" --eval-split 0.2 \\")
477
+ print(" --output-repo your-username/vlm-finetuned")
478
+ print("\nFor large datasets, use --streaming to avoid loading all data:")
479
+ print("\n uv run vlm-streaming-sft-unsloth-qwen.py \\")
480
+ print(" --streaming \\")
481
  print(" --max-steps 500 \\")
482
  print(" --output-repo your-username/vlm-finetuned")
483
+ print("\nFor full help: uv run vlm-streaming-sft-unsloth-qwen.py --help")
484
  print("=" * 70)
485
  sys.exit(0)
486