Commit
ยท
2063000
1
Parent(s):
6ba36e4
Add dataset card creation and visualization script for object detection results
Browse files- detect-objects.py +222 -12
- visualize-detections.py +241 -0
detect-objects.py
CHANGED
|
@@ -37,19 +37,14 @@ Examples:
|
|
| 37 |
--class-name table \\
|
| 38 |
--max-samples 10
|
| 39 |
|
| 40 |
-
# Run on HF Jobs with
|
| 41 |
-
hf jobs uv run --flavor
|
| 42 |
-
-s HF_TOKEN
|
| 43 |
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \\
|
| 44 |
input-dataset output-dataset \\
|
| 45 |
--class-name photograph \\
|
| 46 |
--confidence-threshold 0.5
|
| 47 |
|
| 48 |
-
Performance:
|
| 49 |
-
- L4 GPU: ~2-4 images/sec (depending on image size and batch size)
|
| 50 |
-
- Memory: ~8-12 GB VRAM
|
| 51 |
-
- Recommended batch size: 4-8 for L4, 8-16 for A10
|
| 52 |
-
|
| 53 |
Note: To detect multiple object types, run the script multiple times with different
|
| 54 |
--class-name values and merge the results.
|
| 55 |
"""
|
|
@@ -58,12 +53,13 @@ import argparse
|
|
| 58 |
import logging
|
| 59 |
import os
|
| 60 |
import sys
|
|
|
|
| 61 |
from typing import Any, Dict, List
|
| 62 |
|
| 63 |
import torch
|
| 64 |
from datasets import ClassLabel, Dataset, Features, Sequence, Value, load_dataset
|
| 65 |
from datasets import Image as ImageFeature
|
| 66 |
-
from huggingface_hub import HfApi, login
|
| 67 |
from PIL import Image
|
| 68 |
from tqdm.auto import tqdm
|
| 69 |
from transformers import Sam3Model, Sam3Processor
|
|
@@ -171,6 +167,196 @@ def parse_args():
|
|
| 171 |
return parser.parse_args()
|
| 172 |
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
def load_and_validate_dataset(
|
| 175 |
dataset_id: str,
|
| 176 |
split: str,
|
|
@@ -225,9 +411,7 @@ def process_batch(
|
|
| 225 |
for img in images:
|
| 226 |
if isinstance(img, str):
|
| 227 |
img = Image.open(img)
|
| 228 |
-
if img.mode == "L":
|
| 229 |
-
img = img.convert("RGB")
|
| 230 |
-
elif img.mode != "RGB":
|
| 231 |
img = img.convert("RGB")
|
| 232 |
pil_images.append(img)
|
| 233 |
|
|
@@ -356,6 +540,7 @@ def main():
|
|
| 356 |
|
| 357 |
# Process dataset with explicit output features
|
| 358 |
logger.info("๐ Processing images...")
|
|
|
|
| 359 |
processed_dataset = dataset.map(
|
| 360 |
lambda batch: process_batch(
|
| 361 |
batch,
|
|
@@ -371,6 +556,9 @@ def main():
|
|
| 371 |
features=new_features,
|
| 372 |
desc="Detecting objects",
|
| 373 |
)
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
# Calculate statistics
|
| 376 |
total_detections = sum(len(objs) for objs in processed_dataset["objects"])
|
|
@@ -399,6 +587,28 @@ def main():
|
|
| 399 |
logger.info("โ
Saved to ./output_dataset")
|
| 400 |
sys.exit(1)
|
| 401 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
|
| 403 |
if __name__ == "__main__":
|
| 404 |
main()
|
|
|
|
| 37 |
--class-name table \\
|
| 38 |
--max-samples 10
|
| 39 |
|
| 40 |
+
# Run on HF Jobs with GPU
|
| 41 |
+
hf jobs uv run --flavor a100-large \\
|
| 42 |
+
-s HF_TOKEN=HF_TOKEN \\
|
| 43 |
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \\
|
| 44 |
input-dataset output-dataset \\
|
| 45 |
--class-name photograph \\
|
| 46 |
--confidence-threshold 0.5
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
Note: To detect multiple object types, run the script multiple times with different
|
| 49 |
--class-name values and merge the results.
|
| 50 |
"""
|
|
|
|
| 53 |
import logging
|
| 54 |
import os
|
| 55 |
import sys
|
| 56 |
+
import time
|
| 57 |
from typing import Any, Dict, List
|
| 58 |
|
| 59 |
import torch
|
| 60 |
from datasets import ClassLabel, Dataset, Features, Sequence, Value, load_dataset
|
| 61 |
from datasets import Image as ImageFeature
|
| 62 |
+
from huggingface_hub import DatasetCard, HfApi, login
|
| 63 |
from PIL import Image
|
| 64 |
from tqdm.auto import tqdm
|
| 65 |
from transformers import Sam3Model, Sam3Processor
|
|
|
|
| 167 |
return parser.parse_args()
|
| 168 |
|
| 169 |
|
| 170 |
+
def create_dataset_card(
|
| 171 |
+
source_dataset: str,
|
| 172 |
+
model: str,
|
| 173 |
+
class_name: str,
|
| 174 |
+
num_samples: int,
|
| 175 |
+
total_detections: int,
|
| 176 |
+
images_with_detections: int,
|
| 177 |
+
processing_time: str,
|
| 178 |
+
confidence_threshold: float,
|
| 179 |
+
mask_threshold: float,
|
| 180 |
+
batch_size: int,
|
| 181 |
+
dtype: str,
|
| 182 |
+
image_column: str = "image",
|
| 183 |
+
split: str = "train",
|
| 184 |
+
) -> str:
|
| 185 |
+
"""Create a dataset card documenting the object detection process."""
|
| 186 |
+
from datetime import datetime
|
| 187 |
+
|
| 188 |
+
model_name = model.split("/")[-1]
|
| 189 |
+
avg_detections = total_detections / num_samples if num_samples > 0 else 0
|
| 190 |
+
detection_rate = (
|
| 191 |
+
(images_with_detections / num_samples * 100) if num_samples > 0 else 0
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
return f"""---
|
| 195 |
+
tags:
|
| 196 |
+
- object-detection
|
| 197 |
+
- sam3
|
| 198 |
+
- segment-anything
|
| 199 |
+
- bounding-boxes
|
| 200 |
+
- uv-script
|
| 201 |
+
- generated
|
| 202 |
+
---
|
| 203 |
+
|
| 204 |
+
# Object Detection: {class_name.title()} Detection using {model_name}
|
| 205 |
+
|
| 206 |
+
This dataset contains object detection results (bounding boxes) for **{class_name}** detected in images from [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using Meta's SAM3 (Segment Anything Model 3).
|
| 207 |
+
|
| 208 |
+
**Generated using**: [uv-scripts/sam3](https://huggingface.co/datasets/uv-scripts/sam3) detection script
|
| 209 |
+
|
| 210 |
+
## Detection Statistics
|
| 211 |
+
|
| 212 |
+
- **Objects Detected**: {class_name}
|
| 213 |
+
- **Total Detections**: {total_detections:,}
|
| 214 |
+
- **Images with Detections**: {images_with_detections:,} / {num_samples:,} ({detection_rate:.1f}%)
|
| 215 |
+
- **Average Detections per Image**: {avg_detections:.2f}
|
| 216 |
+
|
| 217 |
+
## Processing Details
|
| 218 |
+
|
| 219 |
+
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
|
| 220 |
+
- **Model**: [{model}](https://huggingface.co/{model})
|
| 221 |
+
- **Script Repository**: [uv-scripts/sam3](https://huggingface.co/datasets/uv-scripts/sam3)
|
| 222 |
+
- **Number of Samples Processed**: {num_samples:,}
|
| 223 |
+
- **Processing Time**: {processing_time}
|
| 224 |
+
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}
|
| 225 |
+
|
| 226 |
+
### Configuration
|
| 227 |
+
|
| 228 |
+
- **Image Column**: `{image_column}`
|
| 229 |
+
- **Dataset Split**: `{split}`
|
| 230 |
+
- **Class Name**: `{class_name}`
|
| 231 |
+
- **Confidence Threshold**: {confidence_threshold}
|
| 232 |
+
- **Mask Threshold**: {mask_threshold}
|
| 233 |
+
- **Batch Size**: {batch_size}
|
| 234 |
+
- **Model Dtype**: {dtype}
|
| 235 |
+
|
| 236 |
+
## Model Information
|
| 237 |
+
|
| 238 |
+
SAM3 (Segment Anything Model 3) is Meta's state-of-the-art object detection and segmentation model that excels at:
|
| 239 |
+
- ๐ฏ **Zero-shot detection** - Detect objects using natural language prompts
|
| 240 |
+
- ๐ฆ **Bounding boxes** - Accurate object localization
|
| 241 |
+
- ๐ญ **Instance segmentation** - Pixel-perfect masks (not included in this dataset)
|
| 242 |
+
- ๐ผ๏ธ **Any image domain** - Works on photos, documents, medical images, etc.
|
| 243 |
+
|
| 244 |
+
This dataset uses SAM3 in text-prompted detection mode to find instances of "{class_name}" in the source images.
|
| 245 |
+
|
| 246 |
+
## Dataset Structure
|
| 247 |
+
|
| 248 |
+
The dataset contains all original columns from the source dataset plus an `objects` column with detection results in HuggingFace object detection format (dict-of-lists):
|
| 249 |
+
|
| 250 |
+
- **bbox**: List of bounding boxes in `[x, y, width, height]` format (pixel coordinates)
|
| 251 |
+
- **category**: List of category indices (always `0` for single-class detection)
|
| 252 |
+
- **score**: List of confidence scores (0.0 to 1.0)
|
| 253 |
+
|
| 254 |
+
### Schema
|
| 255 |
+
|
| 256 |
+
```python
|
| 257 |
+
{{
|
| 258 |
+
"objects": {{
|
| 259 |
+
"bbox": [[x, y, w, h], ...], # List of bounding boxes
|
| 260 |
+
"category": [0, 0, ...], # All same class
|
| 261 |
+
"score": [0.95, 0.87, ...] # Confidence scores
|
| 262 |
+
}}
|
| 263 |
+
}}
|
| 264 |
+
```
|
| 265 |
+
|
| 266 |
+
## Usage
|
| 267 |
+
|
| 268 |
+
```python
|
| 269 |
+
from datasets import load_dataset
|
| 270 |
+
|
| 271 |
+
# Load the dataset
|
| 272 |
+
dataset = load_dataset("{{{{output_dataset_id}}}}", split="{split}")
|
| 273 |
+
|
| 274 |
+
# Access detections for an image
|
| 275 |
+
example = dataset[0]
|
| 276 |
+
detections = example["objects"]
|
| 277 |
+
|
| 278 |
+
# Iterate through all detected objects in this image
|
| 279 |
+
for bbox, category, score in zip(
|
| 280 |
+
detections["bbox"],
|
| 281 |
+
detections["category"],
|
| 282 |
+
detections["score"]
|
| 283 |
+
):
|
| 284 |
+
x, y, w, h = bbox
|
| 285 |
+
print(f"Detected {class_name} at ({x}, {y}) with confidence {{score:.2f}}")
|
| 286 |
+
|
| 287 |
+
# Filter high-confidence detections
|
| 288 |
+
high_conf_examples = [
|
| 289 |
+
ex for ex in dataset
|
| 290 |
+
if any(score > 0.8 for score in ex["objects"]["score"])
|
| 291 |
+
]
|
| 292 |
+
|
| 293 |
+
# Count total detections across dataset
|
| 294 |
+
total = sum(len(ex["objects"]["bbox"]) for ex in dataset)
|
| 295 |
+
print(f"Total detections: {{total}}")
|
| 296 |
+
```
|
| 297 |
+
|
| 298 |
+
## Visualization
|
| 299 |
+
|
| 300 |
+
To visualize the detections, you can use the visualization script from the same repository:
|
| 301 |
+
|
| 302 |
+
```bash
|
| 303 |
+
# Visualize first sample with detections
|
| 304 |
+
uv run https://huggingface.co/datasets/uv-scripts/sam3/raw/main/visualize-detections.py \\
|
| 305 |
+
{{{{output_dataset_id}}}} \\
|
| 306 |
+
--first-with-detections
|
| 307 |
+
|
| 308 |
+
# Visualize random samples
|
| 309 |
+
uv run https://huggingface.co/datasets/uv-scripts/sam3/raw/main/visualize-detections.py \\
|
| 310 |
+
{{{{output_dataset_id}}}} \\
|
| 311 |
+
--num-samples 5
|
| 312 |
+
|
| 313 |
+
# Save visualizations to files
|
| 314 |
+
uv run https://huggingface.co/datasets/uv-scripts/sam3/raw/main/visualize-detections.py \\
|
| 315 |
+
{{{{output_dataset_id}}}} \\
|
| 316 |
+
--num-samples 3 \\
|
| 317 |
+
--output-dir ./visualizations
|
| 318 |
+
```
|
| 319 |
+
|
| 320 |
+
## Reproduction
|
| 321 |
+
|
| 322 |
+
This dataset was generated using the [uv-scripts/sam3](https://huggingface.co/datasets/uv-scripts/sam3) object detection script:
|
| 323 |
+
|
| 324 |
+
```bash
|
| 325 |
+
uv run https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \\
|
| 326 |
+
{source_dataset} \\
|
| 327 |
+
<output-dataset> \\
|
| 328 |
+
--class-name {class_name} \\
|
| 329 |
+
--confidence-threshold {confidence_threshold} \\
|
| 330 |
+
--mask-threshold {mask_threshold} \\
|
| 331 |
+
--batch-size {batch_size} \\
|
| 332 |
+
--dtype {dtype}
|
| 333 |
+
```
|
| 334 |
+
|
| 335 |
+
### Running on HuggingFace Jobs (GPU)
|
| 336 |
+
|
| 337 |
+
This script requires a GPU. To run on HuggingFace infrastructure:
|
| 338 |
+
|
| 339 |
+
```bash
|
| 340 |
+
hf jobs uv run --flavor a100-large \\
|
| 341 |
+
-s HF_TOKEN=HF_TOKEN \\
|
| 342 |
+
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \\
|
| 343 |
+
{source_dataset} \\
|
| 344 |
+
<output-dataset> \\
|
| 345 |
+
--class-name {class_name} \\
|
| 346 |
+
--confidence-threshold {confidence_threshold}
|
| 347 |
+
```
|
| 348 |
+
|
| 349 |
+
## Performance
|
| 350 |
+
|
| 351 |
+
- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60) if processing_time.split()[0].replace(".", "").isdigit() else "N/A":.1f} images/second
|
| 352 |
+
- **GPU Configuration**: CUDA with {dtype} precision
|
| 353 |
+
|
| 354 |
+
---
|
| 355 |
+
|
| 356 |
+
Generated with ๐ค [UV Scripts](https://huggingface.co/uv-scripts)
|
| 357 |
+
"""
|
| 358 |
+
|
| 359 |
+
|
| 360 |
def load_and_validate_dataset(
|
| 361 |
dataset_id: str,
|
| 362 |
split: str,
|
|
|
|
| 411 |
for img in images:
|
| 412 |
if isinstance(img, str):
|
| 413 |
img = Image.open(img)
|
| 414 |
+
if img.mode == "L" or img.mode != "RGB":
|
|
|
|
|
|
|
| 415 |
img = img.convert("RGB")
|
| 416 |
pil_images.append(img)
|
| 417 |
|
|
|
|
| 540 |
|
| 541 |
# Process dataset with explicit output features
|
| 542 |
logger.info("๐ Processing images...")
|
| 543 |
+
start_time = time.time()
|
| 544 |
processed_dataset = dataset.map(
|
| 545 |
lambda batch: process_batch(
|
| 546 |
batch,
|
|
|
|
| 556 |
features=new_features,
|
| 557 |
desc="Detecting objects",
|
| 558 |
)
|
| 559 |
+
end_time = time.time()
|
| 560 |
+
processing_time_seconds = end_time - start_time
|
| 561 |
+
processing_time_str = f"{processing_time_seconds / 60:.1f} minutes"
|
| 562 |
|
| 563 |
# Calculate statistics
|
| 564 |
total_detections = sum(len(objs) for objs in processed_dataset["objects"])
|
|
|
|
| 587 |
logger.info("โ
Saved to ./output_dataset")
|
| 588 |
sys.exit(1)
|
| 589 |
|
| 590 |
+
# Create and push dataset card
|
| 591 |
+
logger.info("๐ Creating dataset card...")
|
| 592 |
+
card_content = create_dataset_card(
|
| 593 |
+
source_dataset=args.input_dataset,
|
| 594 |
+
model=args.model,
|
| 595 |
+
class_name=class_name,
|
| 596 |
+
num_samples=len(processed_dataset),
|
| 597 |
+
total_detections=total_detections,
|
| 598 |
+
images_with_detections=images_with_detections,
|
| 599 |
+
processing_time=processing_time_str,
|
| 600 |
+
confidence_threshold=args.confidence_threshold,
|
| 601 |
+
mask_threshold=args.mask_threshold,
|
| 602 |
+
batch_size=args.batch_size,
|
| 603 |
+
dtype=args.dtype,
|
| 604 |
+
image_column=args.image_column,
|
| 605 |
+
split=args.split,
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
card = DatasetCard(card_content)
|
| 609 |
+
card.push_to_hub(args.output_dataset, token=args.hf_token or os.getenv("HF_TOKEN"))
|
| 610 |
+
logger.info("โ
Dataset card created and pushed!")
|
| 611 |
+
|
| 612 |
|
| 613 |
if __name__ == "__main__":
|
| 614 |
main()
|
visualize-detections.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# /// script
|
| 3 |
+
# requires-python = ">=3.10"
|
| 4 |
+
# dependencies = [
|
| 5 |
+
# "datasets",
|
| 6 |
+
# "matplotlib",
|
| 7 |
+
# "pillow",
|
| 8 |
+
# ]
|
| 9 |
+
# ///
|
| 10 |
+
|
| 11 |
+
"""
|
| 12 |
+
Visualize object detection predictions from a HuggingFace dataset.
|
| 13 |
+
|
| 14 |
+
This script loads a dataset with object detection predictions and visualizes
|
| 15 |
+
the bounding boxes on sample images.
|
| 16 |
+
|
| 17 |
+
Examples:
|
| 18 |
+
# Visualize the first sample with detections
|
| 19 |
+
uv run visualize-detections.py my-username/detected-objects --first-with-detections
|
| 20 |
+
|
| 21 |
+
# Visualize a specific sample
|
| 22 |
+
uv run visualize-detections.py my-username/detected-objects --index 0
|
| 23 |
+
|
| 24 |
+
# Visualize multiple random samples
|
| 25 |
+
uv run visualize-detections.py my-username/detected-objects --num-samples 5
|
| 26 |
+
|
| 27 |
+
# Save visualizations to files instead of displaying
|
| 28 |
+
uv run visualize-detections.py my-username/detected-objects --num-samples 3 --output-dir ./visualizations
|
| 29 |
+
|
| 30 |
+
# Visualize specific split
|
| 31 |
+
uv run visualize-detections.py my-username/detected-objects --split train --num-samples 5
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
import argparse
|
| 35 |
+
import random
|
| 36 |
+
from pathlib import Path
|
| 37 |
+
|
| 38 |
+
import matplotlib.patches as patches
|
| 39 |
+
import matplotlib.pyplot as plt
|
| 40 |
+
from datasets import load_dataset
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def parse_args():
|
| 44 |
+
"""Parse command line arguments."""
|
| 45 |
+
parser = argparse.ArgumentParser(
|
| 46 |
+
description="Visualize object detection predictions",
|
| 47 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 48 |
+
epilog=__doc__,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
parser.add_argument(
|
| 52 |
+
"dataset_id", help="HuggingFace dataset ID (e.g., 'username/dataset')"
|
| 53 |
+
)
|
| 54 |
+
parser.add_argument(
|
| 55 |
+
"--index",
|
| 56 |
+
type=int,
|
| 57 |
+
default=None,
|
| 58 |
+
help="Index of sample to visualize (default: random)",
|
| 59 |
+
)
|
| 60 |
+
parser.add_argument(
|
| 61 |
+
"--num-samples",
|
| 62 |
+
type=int,
|
| 63 |
+
default=1,
|
| 64 |
+
help="Number of samples to visualize (default: 1)",
|
| 65 |
+
)
|
| 66 |
+
parser.add_argument(
|
| 67 |
+
"--first-with-detections",
|
| 68 |
+
action="store_true",
|
| 69 |
+
help="Find and visualize the first sample with detections",
|
| 70 |
+
)
|
| 71 |
+
parser.add_argument(
|
| 72 |
+
"--split", default="train", help="Dataset split to use (default: 'train')"
|
| 73 |
+
)
|
| 74 |
+
parser.add_argument(
|
| 75 |
+
"--image-column",
|
| 76 |
+
default="image",
|
| 77 |
+
help="Name of the image column (default: 'image')",
|
| 78 |
+
)
|
| 79 |
+
parser.add_argument(
|
| 80 |
+
"--objects-column",
|
| 81 |
+
default="objects",
|
| 82 |
+
help="Name of the objects column (default: 'objects')",
|
| 83 |
+
)
|
| 84 |
+
parser.add_argument(
|
| 85 |
+
"--output-dir",
|
| 86 |
+
type=str,
|
| 87 |
+
default=None,
|
| 88 |
+
help="Directory to save visualizations (default: show interactively)",
|
| 89 |
+
)
|
| 90 |
+
parser.add_argument(
|
| 91 |
+
"--figsize-width",
|
| 92 |
+
type=int,
|
| 93 |
+
default=15,
|
| 94 |
+
help="Figure width in inches (default: 15)",
|
| 95 |
+
)
|
| 96 |
+
parser.add_argument(
|
| 97 |
+
"--figsize-height",
|
| 98 |
+
type=int,
|
| 99 |
+
default=20,
|
| 100 |
+
help="Figure height in inches (default: 20)",
|
| 101 |
+
)
|
| 102 |
+
parser.add_argument(
|
| 103 |
+
"--bbox-color",
|
| 104 |
+
default="red",
|
| 105 |
+
help="Color for bounding boxes (default: 'red')",
|
| 106 |
+
)
|
| 107 |
+
parser.add_argument(
|
| 108 |
+
"--show-scores",
|
| 109 |
+
action="store_true",
|
| 110 |
+
default=True,
|
| 111 |
+
help="Show confidence scores on bounding boxes",
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
return parser.parse_args()
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def visualize_sample(
|
| 118 |
+
sample,
|
| 119 |
+
image_column="image",
|
| 120 |
+
objects_column="objects",
|
| 121 |
+
figsize=(15, 20),
|
| 122 |
+
bbox_color="red",
|
| 123 |
+
show_scores=True,
|
| 124 |
+
title=None,
|
| 125 |
+
):
|
| 126 |
+
"""Visualize a single sample with bounding boxes."""
|
| 127 |
+
image = sample[image_column]
|
| 128 |
+
objects = sample[objects_column]
|
| 129 |
+
|
| 130 |
+
fig, ax = plt.subplots(1, figsize=figsize)
|
| 131 |
+
ax.imshow(image, cmap="gray" if image.mode == "L" else None)
|
| 132 |
+
|
| 133 |
+
# Draw bounding boxes
|
| 134 |
+
num_detections = len(objects["bbox"])
|
| 135 |
+
for i in range(num_detections):
|
| 136 |
+
bbox = objects["bbox"][i]
|
| 137 |
+
score = objects["score"][i]
|
| 138 |
+
category = objects["category"][i]
|
| 139 |
+
|
| 140 |
+
x, y, w, h = bbox
|
| 141 |
+
rect = patches.Rectangle(
|
| 142 |
+
(x, y), w, h, linewidth=2, edgecolor=bbox_color, facecolor="none"
|
| 143 |
+
)
|
| 144 |
+
ax.add_patch(rect)
|
| 145 |
+
|
| 146 |
+
if show_scores:
|
| 147 |
+
label = f"{score:.2f}"
|
| 148 |
+
ax.text(
|
| 149 |
+
x,
|
| 150 |
+
y - 5,
|
| 151 |
+
label,
|
| 152 |
+
color=bbox_color,
|
| 153 |
+
fontsize=10,
|
| 154 |
+
bbox=dict(facecolor="white", alpha=0.7),
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Set title
|
| 158 |
+
if title:
|
| 159 |
+
ax.set_title(title, fontsize=14, pad=20)
|
| 160 |
+
else:
|
| 161 |
+
ax.set_title(f"Detections: {num_detections}", fontsize=14, pad=20)
|
| 162 |
+
|
| 163 |
+
ax.axis("off")
|
| 164 |
+
plt.tight_layout()
|
| 165 |
+
|
| 166 |
+
return fig, ax
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def main():
|
| 170 |
+
args = parse_args()
|
| 171 |
+
|
| 172 |
+
# Load dataset
|
| 173 |
+
print(f"๐ Loading dataset: {args.dataset_id} (split: {args.split})")
|
| 174 |
+
dataset = load_dataset(args.dataset_id, split=args.split)
|
| 175 |
+
print(f"โ
Loaded {len(dataset)} samples")
|
| 176 |
+
|
| 177 |
+
# Determine indices to visualize
|
| 178 |
+
if args.index is not None:
|
| 179 |
+
indices = [args.index]
|
| 180 |
+
elif args.first_with_detections:
|
| 181 |
+
# Find first sample with detections
|
| 182 |
+
print("๐ Finding first sample with detections...")
|
| 183 |
+
first_idx = None
|
| 184 |
+
for idx in range(len(dataset)):
|
| 185 |
+
sample = dataset[idx]
|
| 186 |
+
if len(sample[args.objects_column]["bbox"]) > 0:
|
| 187 |
+
first_idx = idx
|
| 188 |
+
break
|
| 189 |
+
|
| 190 |
+
if first_idx is None:
|
| 191 |
+
print("โ No samples with detections found in dataset")
|
| 192 |
+
return
|
| 193 |
+
|
| 194 |
+
print(f"โ
Found first sample with detections at index {first_idx}")
|
| 195 |
+
indices = [first_idx]
|
| 196 |
+
else:
|
| 197 |
+
# Select random samples
|
| 198 |
+
indices = random.sample(range(len(dataset)), min(args.num_samples, len(dataset)))
|
| 199 |
+
|
| 200 |
+
# Create output directory if saving
|
| 201 |
+
if args.output_dir:
|
| 202 |
+
output_path = Path(args.output_dir)
|
| 203 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
| 204 |
+
print(f"๐พ Saving visualizations to: {output_path}")
|
| 205 |
+
|
| 206 |
+
# Visualize samples
|
| 207 |
+
figsize = (args.figsize_width, args.figsize_height)
|
| 208 |
+
|
| 209 |
+
for idx in indices:
|
| 210 |
+
sample = dataset[idx]
|
| 211 |
+
num_detections = len(sample[args.objects_column]["bbox"])
|
| 212 |
+
|
| 213 |
+
print(f"\n๐ผ๏ธ Sample {idx}: {num_detections} detections")
|
| 214 |
+
|
| 215 |
+
# Create visualization
|
| 216 |
+
title = f"Sample {idx} - {num_detections} detections"
|
| 217 |
+
fig, ax = visualize_sample(
|
| 218 |
+
sample,
|
| 219 |
+
image_column=args.image_column,
|
| 220 |
+
objects_column=args.objects_column,
|
| 221 |
+
figsize=figsize,
|
| 222 |
+
bbox_color=args.bbox_color,
|
| 223 |
+
show_scores=args.show_scores,
|
| 224 |
+
title=title,
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
# Save or show
|
| 228 |
+
if args.output_dir:
|
| 229 |
+
output_file = output_path / f"sample_{idx}.png"
|
| 230 |
+
plt.savefig(output_file, dpi=150, bbox_inches="tight")
|
| 231 |
+
print(f" Saved: {output_file}")
|
| 232 |
+
plt.close(fig)
|
| 233 |
+
else:
|
| 234 |
+
plt.show()
|
| 235 |
+
|
| 236 |
+
if args.output_dir:
|
| 237 |
+
print(f"\nโ
Saved {len(indices)} visualizations to {args.output_dir}")
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
if __name__ == "__main__":
|
| 241 |
+
main()
|