|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Convert document images to markdown using DeepSeek-OCR with vLLM. | 
					
						
						|  |  | 
					
						
						|  | This script processes images through the DeepSeek-OCR model to extract | 
					
						
						|  | text and structure as markdown, using vLLM for efficient batch processing. | 
					
						
						|  |  | 
					
						
						|  | NOTE: Uses vLLM nightly wheels from main (PR #27247 now merged). First run | 
					
						
						|  | may take a few minutes to download and install dependencies. | 
					
						
						|  |  | 
					
						
						|  | Features: | 
					
						
						|  | - Multiple resolution modes (Tiny/Small/Base/Large/Gundam) | 
					
						
						|  | - LaTeX equation recognition | 
					
						
						|  | - Table extraction and formatting | 
					
						
						|  | - Document structure preservation | 
					
						
						|  | - Image grounding and descriptions | 
					
						
						|  | - Multilingual support | 
					
						
						|  | - Batch processing with vLLM for better performance | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import argparse | 
					
						
						|  | import base64 | 
					
						
						|  | import io | 
					
						
						|  | import json | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import sys | 
					
						
						|  | from typing import Any, Dict, List, Union | 
					
						
						|  | from datetime import datetime | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | from huggingface_hub import DatasetCard, login | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from toolz import partition_all | 
					
						
						|  | from tqdm.auto import tqdm | 
					
						
						|  | from vllm import LLM, SamplingParams | 
					
						
						|  |  | 
					
						
						|  | logging.basicConfig(level=logging.INFO) | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | RESOLUTION_MODES = { | 
					
						
						|  | "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False}, | 
					
						
						|  | "small": {"base_size": 640, "image_size": 640, "crop_mode": False}, | 
					
						
						|  | "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False}, | 
					
						
						|  | "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}, | 
					
						
						|  | "gundam": { | 
					
						
						|  | "base_size": 1024, | 
					
						
						|  | "image_size": 640, | 
					
						
						|  | "crop_mode": True, | 
					
						
						|  | }, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PROMPT_MODES = { | 
					
						
						|  | "document": "<image>\n<|grounding|>Convert the document to markdown.", | 
					
						
						|  | "image": "<image>\n<|grounding|>OCR this image.", | 
					
						
						|  | "free": "<image>\nFree OCR.", | 
					
						
						|  | "figure": "<image>\nParse the figure.", | 
					
						
						|  | "describe": "<image>\nDescribe this image in detail.", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_cuda_availability(): | 
					
						
						|  | """Check if CUDA is available and exit if not.""" | 
					
						
						|  | if not torch.cuda.is_available(): | 
					
						
						|  | logger.error("CUDA is not available. This script requires a GPU.") | 
					
						
						|  | logger.error("Please run on a machine with a CUDA-capable GPU.") | 
					
						
						|  | sys.exit(1) | 
					
						
						|  | else: | 
					
						
						|  | logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def make_ocr_message( | 
					
						
						|  | image: Union[Image.Image, Dict[str, Any], str], | 
					
						
						|  | prompt: str = "<image>\n<|grounding|>Convert the document to markdown. ", | 
					
						
						|  | ) -> List[Dict]: | 
					
						
						|  | """Create chat message for OCR processing.""" | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, Image.Image): | 
					
						
						|  | pil_img = image | 
					
						
						|  | elif isinstance(image, dict) and "bytes" in image: | 
					
						
						|  | pil_img = Image.open(io.BytesIO(image["bytes"])) | 
					
						
						|  | elif isinstance(image, str): | 
					
						
						|  | pil_img = Image.open(image) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unsupported image type: {type(image)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pil_img = pil_img.convert("RGB") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | buf = io.BytesIO() | 
					
						
						|  | pil_img.save(buf, format="PNG") | 
					
						
						|  | data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | { | 
					
						
						|  | "role": "user", | 
					
						
						|  | "content": [ | 
					
						
						|  | {"type": "image_url", "image_url": {"url": data_uri}}, | 
					
						
						|  | {"type": "text", "text": prompt}, | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_dataset_card( | 
					
						
						|  | source_dataset: str, | 
					
						
						|  | model: str, | 
					
						
						|  | num_samples: int, | 
					
						
						|  | processing_time: str, | 
					
						
						|  | batch_size: int, | 
					
						
						|  | max_model_len: int, | 
					
						
						|  | max_tokens: int, | 
					
						
						|  | gpu_memory_utilization: float, | 
					
						
						|  | resolution_mode: str, | 
					
						
						|  | base_size: int, | 
					
						
						|  | image_size: int, | 
					
						
						|  | crop_mode: bool, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | split: str = "train", | 
					
						
						|  | ) -> str: | 
					
						
						|  | """Create a dataset card documenting the OCR process.""" | 
					
						
						|  | model_name = model.split("/")[-1] | 
					
						
						|  |  | 
					
						
						|  | return f"""--- | 
					
						
						|  | tags: | 
					
						
						|  | - ocr | 
					
						
						|  | - document-processing | 
					
						
						|  | - deepseek | 
					
						
						|  | - deepseek-ocr | 
					
						
						|  | - markdown | 
					
						
						|  | - uv-script | 
					
						
						|  | - generated | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Document OCR using {model_name} | 
					
						
						|  |  | 
					
						
						|  | This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using DeepSeek-OCR. | 
					
						
						|  |  | 
					
						
						|  | ## Processing Details | 
					
						
						|  |  | 
					
						
						|  | - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) | 
					
						
						|  | - **Model**: [{model}](https://huggingface.co/{model}) | 
					
						
						|  | - **Number of Samples**: {num_samples:,} | 
					
						
						|  | - **Processing Time**: {processing_time} | 
					
						
						|  | - **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} | 
					
						
						|  |  | 
					
						
						|  | ### Configuration | 
					
						
						|  |  | 
					
						
						|  | - **Image Column**: `{image_column}` | 
					
						
						|  | - **Output Column**: `markdown` | 
					
						
						|  | - **Dataset Split**: `{split}` | 
					
						
						|  | - **Batch Size**: {batch_size} | 
					
						
						|  | - **Resolution Mode**: {resolution_mode} | 
					
						
						|  | - **Base Size**: {base_size} | 
					
						
						|  | - **Image Size**: {image_size} | 
					
						
						|  | - **Crop Mode**: {crop_mode} | 
					
						
						|  | - **Max Model Length**: {max_model_len:,} tokens | 
					
						
						|  | - **Max Output Tokens**: {max_tokens:,} | 
					
						
						|  | - **GPU Memory Utilization**: {gpu_memory_utilization:.1%} | 
					
						
						|  |  | 
					
						
						|  | ## Model Information | 
					
						
						|  |  | 
					
						
						|  | DeepSeek-OCR is a state-of-the-art document OCR model that excels at: | 
					
						
						|  | - 📐 **LaTeX equations** - Mathematical formulas preserved in LaTeX format | 
					
						
						|  | - 📊 **Tables** - Extracted and formatted as HTML/markdown | 
					
						
						|  | - 📝 **Document structure** - Headers, lists, and formatting maintained | 
					
						
						|  | - 🖼️ **Image grounding** - Spatial layout and bounding box information | 
					
						
						|  | - 🔍 **Complex layouts** - Multi-column and hierarchical structures | 
					
						
						|  | - 🌍 **Multilingual** - Supports multiple languages | 
					
						
						|  |  | 
					
						
						|  | ### Resolution Modes | 
					
						
						|  |  | 
					
						
						|  | - **Tiny** (512×512): Fast processing, 64 vision tokens | 
					
						
						|  | - **Small** (640×640): Balanced speed/quality, 100 vision tokens | 
					
						
						|  | - **Base** (1024×1024): High quality, 256 vision tokens | 
					
						
						|  | - **Large** (1280×1280): Maximum quality, 400 vision tokens | 
					
						
						|  | - **Gundam** (dynamic): Adaptive multi-tile processing for large documents | 
					
						
						|  |  | 
					
						
						|  | ## Dataset Structure | 
					
						
						|  |  | 
					
						
						|  | The dataset contains all original columns plus: | 
					
						
						|  | - `markdown`: The extracted text in markdown format with preserved structure | 
					
						
						|  | - `inference_info`: JSON list tracking all OCR models applied to this dataset | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | import json | 
					
						
						|  |  | 
					
						
						|  | # Load the dataset | 
					
						
						|  | dataset = load_dataset("{{{{output_dataset_id}}}}", split="{split}") | 
					
						
						|  |  | 
					
						
						|  | # Access the markdown text | 
					
						
						|  | for example in dataset: | 
					
						
						|  | print(example["markdown"]) | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | # View all OCR models applied to this dataset | 
					
						
						|  | inference_info = json.loads(dataset[0]["inference_info"]) | 
					
						
						|  | for info in inference_info: | 
					
						
						|  | print(f"Column: {{{{info['column_name']}}}} - Model: {{{{info['model_id']}}}}") | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Reproduction | 
					
						
						|  |  | 
					
						
						|  | This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DeepSeek OCR vLLM script: | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\\\ | 
					
						
						|  | {source_dataset} \\\\ | 
					
						
						|  | <output-dataset> \\\\ | 
					
						
						|  | --resolution-mode {resolution_mode} \\\\ | 
					
						
						|  | --image-column {image_column} | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Performance | 
					
						
						|  |  | 
					
						
						|  | - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second | 
					
						
						|  | - **Processing Method**: Batch processing with vLLM (2-3x speedup over sequential) | 
					
						
						|  |  | 
					
						
						|  | Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main( | 
					
						
						|  | input_dataset: str, | 
					
						
						|  | output_dataset: str, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | batch_size: int = 8, | 
					
						
						|  | model: str = "deepseek-ai/DeepSeek-OCR", | 
					
						
						|  | resolution_mode: str = "gundam", | 
					
						
						|  | base_size: int = None, | 
					
						
						|  | image_size: int = None, | 
					
						
						|  | crop_mode: bool = None, | 
					
						
						|  | max_model_len: int = 8192, | 
					
						
						|  | max_tokens: int = 8192, | 
					
						
						|  | gpu_memory_utilization: float = 0.8, | 
					
						
						|  | prompt_mode: str = "document", | 
					
						
						|  | prompt: str = None, | 
					
						
						|  | hf_token: str = None, | 
					
						
						|  | split: str = "train", | 
					
						
						|  | max_samples: int = None, | 
					
						
						|  | private: bool = False, | 
					
						
						|  | shuffle: bool = False, | 
					
						
						|  | seed: int = 42, | 
					
						
						|  | ): | 
					
						
						|  | """Process images from HF dataset through DeepSeek-OCR model with vLLM.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | check_cuda_availability() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | start_time = datetime.now() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") | 
					
						
						|  | if HF_TOKEN: | 
					
						
						|  | login(token=HF_TOKEN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if resolution_mode in RESOLUTION_MODES: | 
					
						
						|  | mode_config = RESOLUTION_MODES[resolution_mode] | 
					
						
						|  | final_base_size = ( | 
					
						
						|  | base_size if base_size is not None else mode_config["base_size"] | 
					
						
						|  | ) | 
					
						
						|  | final_image_size = ( | 
					
						
						|  | image_size if image_size is not None else mode_config["image_size"] | 
					
						
						|  | ) | 
					
						
						|  | final_crop_mode = ( | 
					
						
						|  | crop_mode if crop_mode is not None else mode_config["crop_mode"] | 
					
						
						|  | ) | 
					
						
						|  | logger.info(f"Using resolution mode: {resolution_mode}") | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if base_size is None or image_size is None or crop_mode is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Invalid resolution mode '{resolution_mode}'. " | 
					
						
						|  | f"Use one of {list(RESOLUTION_MODES.keys())} or specify " | 
					
						
						|  | f"--base-size, --image-size, and --crop-mode manually." | 
					
						
						|  | ) | 
					
						
						|  | final_base_size = base_size | 
					
						
						|  | final_image_size = image_size | 
					
						
						|  | final_crop_mode = crop_mode | 
					
						
						|  | resolution_mode = "custom" | 
					
						
						|  |  | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Resolution: base_size={final_base_size}, " | 
					
						
						|  | f"image_size={final_image_size}, crop_mode={final_crop_mode}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None: | 
					
						
						|  | final_prompt = prompt | 
					
						
						|  | logger.info(f"Using custom prompt") | 
					
						
						|  | elif prompt_mode in PROMPT_MODES: | 
					
						
						|  | final_prompt = PROMPT_MODES[prompt_mode] | 
					
						
						|  | logger.info(f"Using prompt mode: {prompt_mode}") | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Invalid prompt mode '{prompt_mode}'. " | 
					
						
						|  | f"Use one of {list(PROMPT_MODES.keys())} or specify --prompt" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Prompt: {final_prompt}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading dataset: {input_dataset}") | 
					
						
						|  | dataset = load_dataset(input_dataset, split=split) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if image_column not in dataset.column_names: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Column '{image_column}' not found. Available: {dataset.column_names}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if shuffle: | 
					
						
						|  | logger.info(f"Shuffling dataset with seed {seed}") | 
					
						
						|  | dataset = dataset.shuffle(seed=seed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if max_samples: | 
					
						
						|  | dataset = dataset.select(range(min(max_samples, len(dataset)))) | 
					
						
						|  | logger.info(f"Limited to {len(dataset)} samples") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Initializing vLLM with model: {model}") | 
					
						
						|  | logger.info("This may take a few minutes on first run...") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | llm = LLM( | 
					
						
						|  | model=model, | 
					
						
						|  | trust_remote_code=True, | 
					
						
						|  | max_model_len=max_model_len, | 
					
						
						|  | gpu_memory_utilization=gpu_memory_utilization, | 
					
						
						|  | limit_mm_per_prompt={"image": 1}, | 
					
						
						|  | enforce_eager=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sampling_params = SamplingParams( | 
					
						
						|  | temperature=0.0, | 
					
						
						|  | max_tokens=max_tokens, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") | 
					
						
						|  | logger.info( | 
					
						
						|  | "Using vLLM for batch processing - should be faster than sequential processing" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_markdown = [] | 
					
						
						|  |  | 
					
						
						|  | for batch_indices in tqdm( | 
					
						
						|  | partition_all(batch_size, range(len(dataset))), | 
					
						
						|  | total=(len(dataset) + batch_size - 1) // batch_size, | 
					
						
						|  | desc="DeepSeek-OCR vLLM processing", | 
					
						
						|  | ): | 
					
						
						|  | batch_indices = list(batch_indices) | 
					
						
						|  | batch_images = [dataset[i][image_column] for i in batch_indices] | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | batch_messages = [make_ocr_message(img, final_prompt) for img in batch_images] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = llm.chat(batch_messages, sampling_params) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for output in outputs: | 
					
						
						|  | text = output.outputs[0].text.strip() | 
					
						
						|  | all_markdown.append(text) | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | logger.error(f"Error processing batch: {e}") | 
					
						
						|  |  | 
					
						
						|  | all_markdown.extend(["[OCR FAILED]"] * len(batch_images)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | processing_duration = datetime.now() - start_time | 
					
						
						|  | processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Adding markdown column to dataset") | 
					
						
						|  | dataset = dataset.add_column("markdown", all_markdown) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Updating inference_info...") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "inference_info" in dataset.column_names: | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | existing_info = json.loads(dataset[0]["inference_info"]) | 
					
						
						|  | if not isinstance(existing_info, list): | 
					
						
						|  | existing_info = [existing_info] | 
					
						
						|  | except (json.JSONDecodeError, TypeError): | 
					
						
						|  | existing_info = [] | 
					
						
						|  |  | 
					
						
						|  | dataset = dataset.remove_columns(["inference_info"]) | 
					
						
						|  | else: | 
					
						
						|  | existing_info = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_info = { | 
					
						
						|  | "column_name": "markdown", | 
					
						
						|  | "model_id": model, | 
					
						
						|  | "processing_date": datetime.now().isoformat(), | 
					
						
						|  | "resolution_mode": resolution_mode, | 
					
						
						|  | "base_size": final_base_size, | 
					
						
						|  | "image_size": final_image_size, | 
					
						
						|  | "crop_mode": final_crop_mode, | 
					
						
						|  | "prompt": final_prompt, | 
					
						
						|  | "prompt_mode": prompt_mode if prompt is None else "custom", | 
					
						
						|  | "batch_size": batch_size, | 
					
						
						|  | "max_tokens": max_tokens, | 
					
						
						|  | "gpu_memory_utilization": gpu_memory_utilization, | 
					
						
						|  | "max_model_len": max_model_len, | 
					
						
						|  | "script": "deepseek-ocr-vllm.py", | 
					
						
						|  | "script_version": "1.0.0", | 
					
						
						|  | "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py", | 
					
						
						|  | "implementation": "vllm (batch processing)", | 
					
						
						|  | } | 
					
						
						|  | existing_info.append(new_info) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | info_json = json.dumps(existing_info, ensure_ascii=False) | 
					
						
						|  | dataset = dataset.add_column("inference_info", [info_json] * len(dataset)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Pushing to {output_dataset}") | 
					
						
						|  | dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Creating dataset card...") | 
					
						
						|  | card_content = create_dataset_card( | 
					
						
						|  | source_dataset=input_dataset, | 
					
						
						|  | model=model, | 
					
						
						|  | num_samples=len(dataset), | 
					
						
						|  | processing_time=processing_time_str, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | max_model_len=max_model_len, | 
					
						
						|  | max_tokens=max_tokens, | 
					
						
						|  | gpu_memory_utilization=gpu_memory_utilization, | 
					
						
						|  | resolution_mode=resolution_mode, | 
					
						
						|  | base_size=final_base_size, | 
					
						
						|  | image_size=final_image_size, | 
					
						
						|  | crop_mode=final_crop_mode, | 
					
						
						|  | image_column=image_column, | 
					
						
						|  | split=split, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | card = DatasetCard(card_content) | 
					
						
						|  | card.push_to_hub(output_dataset, token=HF_TOKEN) | 
					
						
						|  | logger.info("✅ Dataset card created and pushed!") | 
					
						
						|  |  | 
					
						
						|  | logger.info("✅ OCR conversion complete!") | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Dataset available at: https://huggingface.co/datasets/{output_dataset}" | 
					
						
						|  | ) | 
					
						
						|  | logger.info(f"Processing time: {processing_time_str}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  |  | 
					
						
						|  | if len(sys.argv) == 1: | 
					
						
						|  | print("=" * 80) | 
					
						
						|  | print("DeepSeek-OCR to Markdown Converter (vLLM)") | 
					
						
						|  | print("=" * 80) | 
					
						
						|  | print("\nThis script converts document images to markdown using") | 
					
						
						|  | print("DeepSeek-OCR with vLLM for efficient batch processing.") | 
					
						
						|  | print("\nFeatures:") | 
					
						
						|  | print("- Multiple resolution modes (Tiny/Small/Base/Large/Gundam)") | 
					
						
						|  | print("- LaTeX equation recognition") | 
					
						
						|  | print("- Table extraction and formatting") | 
					
						
						|  | print("- Document structure preservation") | 
					
						
						|  | print("- Image grounding and spatial layout") | 
					
						
						|  | print("- Multilingual support") | 
					
						
						|  | print("- ⚡ Fast batch processing with vLLM (2-3x speedup)") | 
					
						
						|  | print("\nExample usage:") | 
					
						
						|  | print("\n1. Basic OCR conversion (Gundam mode - dynamic resolution):") | 
					
						
						|  | print("   uv run deepseek-ocr-vllm.py document-images markdown-docs") | 
					
						
						|  | print("\n2. High quality mode (Large - 1280×1280):") | 
					
						
						|  | print( | 
					
						
						|  | "   uv run deepseek-ocr-vllm.py scanned-pdfs extracted-text --resolution-mode large" | 
					
						
						|  | ) | 
					
						
						|  | print("\n3. Fast processing (Tiny - 512×512):") | 
					
						
						|  | print("   uv run deepseek-ocr-vllm.py quick-test output --resolution-mode tiny") | 
					
						
						|  | print("\n4. Parse figures from documents:") | 
					
						
						|  | print("   uv run deepseek-ocr-vllm.py scientific-papers figures --prompt-mode figure") | 
					
						
						|  | print("\n5. Free OCR without layout:") | 
					
						
						|  | print("   uv run deepseek-ocr-vllm.py images text --prompt-mode free") | 
					
						
						|  | print("\n6. Process a subset for testing:") | 
					
						
						|  | print( | 
					
						
						|  | "   uv run deepseek-ocr-vllm.py large-dataset test-output --max-samples 10" | 
					
						
						|  | ) | 
					
						
						|  | print("\n7. Custom resolution:") | 
					
						
						|  | print("   uv run deepseek-ocr-vllm.py dataset output \\") | 
					
						
						|  | print("       --base-size 1024 --image-size 640 --crop-mode") | 
					
						
						|  | print("\n8. Running on HF Jobs:") | 
					
						
						|  | print("   hf jobs uv run --flavor l4x1 \\") | 
					
						
						|  | print("     -s HF_TOKEN \\") | 
					
						
						|  | print("     -e UV_TORCH_BACKEND=auto \\") | 
					
						
						|  | print( | 
					
						
						|  | "     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\" | 
					
						
						|  | ) | 
					
						
						|  | print("       your-document-dataset \\") | 
					
						
						|  | print("       your-markdown-output") | 
					
						
						|  | print("\n" + "=" * 80) | 
					
						
						|  | print("\nFor full help, run: uv run deepseek-ocr-vllm.py --help") | 
					
						
						|  | sys.exit(0) | 
					
						
						|  |  | 
					
						
						|  | parser = argparse.ArgumentParser( | 
					
						
						|  | description="OCR images to markdown using DeepSeek-OCR (vLLM)", | 
					
						
						|  | formatter_class=argparse.RawDescriptionHelpFormatter, | 
					
						
						|  | epilog=""" | 
					
						
						|  | Resolution Modes: | 
					
						
						|  | tiny      512×512 pixels, fast processing (64 vision tokens) | 
					
						
						|  | small     640×640 pixels, balanced (100 vision tokens) | 
					
						
						|  | base      1024×1024 pixels, high quality (256 vision tokens) | 
					
						
						|  | large     1280×1280 pixels, maximum quality (400 vision tokens) | 
					
						
						|  | gundam    Dynamic multi-tile processing (adaptive) | 
					
						
						|  |  | 
					
						
						|  | Prompt Modes: | 
					
						
						|  | document  Convert document to markdown with grounding (default) | 
					
						
						|  | image     OCR any image with grounding | 
					
						
						|  | free      Free OCR without layout preservation | 
					
						
						|  | figure    Parse figures from documents | 
					
						
						|  | describe  Generate detailed image descriptions | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  | # Basic usage with default Gundam mode | 
					
						
						|  | uv run deepseek-ocr-vllm.py my-images-dataset ocr-results | 
					
						
						|  |  | 
					
						
						|  | # High quality processing | 
					
						
						|  | uv run deepseek-ocr-vllm.py documents extracted-text --resolution-mode large | 
					
						
						|  |  | 
					
						
						|  | # Fast processing for testing | 
					
						
						|  | uv run deepseek-ocr-vllm.py dataset output --resolution-mode tiny --max-samples 100 | 
					
						
						|  |  | 
					
						
						|  | # Parse figures from a document dataset | 
					
						
						|  | uv run deepseek-ocr-vllm.py scientific-papers figures --prompt-mode figure | 
					
						
						|  |  | 
					
						
						|  | # Free OCR without layout (fastest) | 
					
						
						|  | uv run deepseek-ocr-vllm.py images text --prompt-mode free | 
					
						
						|  |  | 
					
						
						|  | # Custom prompt for specific task | 
					
						
						|  | uv run deepseek-ocr-vllm.py dataset output --prompt "<image>\nExtract all table data." | 
					
						
						|  |  | 
					
						
						|  | # Custom resolution settings | 
					
						
						|  | uv run deepseek-ocr-vllm.py dataset output --base-size 1024 --image-size 640 --crop-mode | 
					
						
						|  |  | 
					
						
						|  | # With custom batch size for performance tuning | 
					
						
						|  | uv run deepseek-ocr-vllm.py dataset output --batch-size 16 --max-model-len 16384 | 
					
						
						|  | """, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") | 
					
						
						|  | parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--image-column", | 
					
						
						|  | default="image", | 
					
						
						|  | help="Column containing images (default: image)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--batch-size", | 
					
						
						|  | type=int, | 
					
						
						|  | default=8, | 
					
						
						|  | help="Batch size for processing (default: 8, adjust based on GPU memory)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--model", | 
					
						
						|  | default="deepseek-ai/DeepSeek-OCR", | 
					
						
						|  | help="Model to use (default: deepseek-ai/DeepSeek-OCR)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--resolution-mode", | 
					
						
						|  | default="gundam", | 
					
						
						|  | choices=list(RESOLUTION_MODES.keys()) + ["custom"], | 
					
						
						|  | help="Resolution mode preset (default: gundam)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--base-size", | 
					
						
						|  | type=int, | 
					
						
						|  | help="Base resolution size (overrides resolution-mode)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--image-size", | 
					
						
						|  | type=int, | 
					
						
						|  | help="Image tile size (overrides resolution-mode)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--crop-mode", | 
					
						
						|  | action="store_true", | 
					
						
						|  | help="Enable dynamic multi-tile cropping (overrides resolution-mode)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-model-len", | 
					
						
						|  | type=int, | 
					
						
						|  | default=8192, | 
					
						
						|  | help="Maximum model context length (default: 8192)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-tokens", | 
					
						
						|  | type=int, | 
					
						
						|  | default=8192, | 
					
						
						|  | help="Maximum tokens to generate (default: 8192)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--gpu-memory-utilization", | 
					
						
						|  | type=float, | 
					
						
						|  | default=0.8, | 
					
						
						|  | help="GPU memory utilization (default: 0.8)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--prompt-mode", | 
					
						
						|  | default="document", | 
					
						
						|  | choices=list(PROMPT_MODES.keys()), | 
					
						
						|  | help="Prompt mode preset (default: document). Use --prompt for custom prompts.", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--prompt", | 
					
						
						|  | help="Custom OCR prompt (overrides --prompt-mode)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument("--hf-token", help="Hugging Face API token") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--split", default="train", help="Dataset split to use (default: train)" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-samples", | 
					
						
						|  | type=int, | 
					
						
						|  | help="Maximum number of samples to process (for testing)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--private", action="store_true", help="Make output dataset private" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--shuffle", | 
					
						
						|  | action="store_true", | 
					
						
						|  | help="Shuffle the dataset before processing (useful for random sampling)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--seed", | 
					
						
						|  | type=int, | 
					
						
						|  | default=42, | 
					
						
						|  | help="Random seed for shuffling (default: 42)", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | main( | 
					
						
						|  | input_dataset=args.input_dataset, | 
					
						
						|  | output_dataset=args.output_dataset, | 
					
						
						|  | image_column=args.image_column, | 
					
						
						|  | batch_size=args.batch_size, | 
					
						
						|  | model=args.model, | 
					
						
						|  | resolution_mode=args.resolution_mode, | 
					
						
						|  | base_size=args.base_size, | 
					
						
						|  | image_size=args.image_size, | 
					
						
						|  | crop_mode=args.crop_mode if args.crop_mode else None, | 
					
						
						|  | max_model_len=args.max_model_len, | 
					
						
						|  | max_tokens=args.max_tokens, | 
					
						
						|  | gpu_memory_utilization=args.gpu_memory_utilization, | 
					
						
						|  | prompt_mode=args.prompt_mode, | 
					
						
						|  | prompt=args.prompt, | 
					
						
						|  | hf_token=args.hf_token, | 
					
						
						|  | split=args.split, | 
					
						
						|  | max_samples=args.max_samples, | 
					
						
						|  | private=args.private, | 
					
						
						|  | shuffle=args.shuffle, | 
					
						
						|  | seed=args.seed, | 
					
						
						|  | ) | 
					
						
						|  |  |