|
"""Urdu Fake News Dataset""" |
|
|
|
|
|
import glob |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@article{MaazUrdufake2020, |
|
author = {Amjad, Maaz and Sidorov, Grigori and Zhila, Alisa and G’{o}mez-Adorno, Helena and Voronkov, Ilia and Gelbukh, Alexander}, |
|
title = {Bend the Truth: A Benchmark Dataset for Fake News Detection in Urdu and Its Evaluation}, |
|
journal={Journal of Intelligent & Fuzzy Systems}, |
|
volume={39}, |
|
number={2}, |
|
pages={2457-2469}, |
|
doi = {10.3233/JIFS-179905}, |
|
year={2020}, |
|
publisher={IOS Press} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Urdu fake news datasets that contain news of 5 different news domains. |
|
These domains are Sports, Health, Technology, Entertainment, and Business. |
|
The real news are collected by combining manual approaches. |
|
""" |
|
|
|
_URL = "https://github.com/MaazAmjad/Datasets-for-Urdu-news/blob/master/" |
|
_URL += "Urdu%20Fake%20News%20Dataset.zip?raw=true" |
|
|
|
|
|
class UrduFakeNews(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
category_list = [ |
|
"bus", |
|
"hlth", |
|
"sp", |
|
"tch", |
|
"sbz", |
|
] |
|
|
|
def _info(self): |
|
labels_list = ["Fake", "Real"] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"news": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=labels_list), |
|
"category": datasets.ClassLabel(names=self.category_list), |
|
} |
|
), |
|
homepage="https://github.com/MaazAmjad/Datasets-for-Urdu-news", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_path = dl_manager.download_and_extract(_URL) |
|
input_path = os.path.join(dl_path, "1.Corpus") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"pattern": os.path.join(input_path, "Train", "*", "*.txt")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"pattern": os.path.join(input_path, "Test", "*", "*.txt")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, pattern=None): |
|
"""Yields examples.""" |
|
for filename in sorted(glob.glob(pattern)): |
|
|
|
with open(filename, encoding="utf-8") as f: |
|
news = "" |
|
for line in f: |
|
if line == "\n": |
|
continue |
|
news += line |
|
|
|
name = os.path.basename(filename) |
|
key = name.rstrip(".txt") |
|
|
|
_class = 1 if ("Real" in filename) else 0 |
|
_class_name = "Real" if ("Real" in filename) else "Fake" |
|
category = "".join([i for i in key if not i.isdigit()]) |
|
if category == "": |
|
continue |
|
category = self.category_list.index(category) |
|
|
|
yield f"{_class_name}_{key}", {"news": news, "label": _class, "category": category} |
|
|