ashvardanian commited on
Commit
0b5daf1
·
1 Parent(s): 5d1f533

Upload 3 files

Browse files
Files changed (3) hide show
  1. images.zip +3 -0
  2. main.py +57 -0
  3. requirements.txt +6 -0
images.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb6a68e6bace132ee827d922adb88554da67d5a7806cf0ca9e39545aa924abc2
3
+ size 406969617
main.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from os import listdir, path, PathLike
2
+ from os.path import isfile, join
3
+
4
+ import pandas as pd
5
+ import numpy as np
6
+ from PIL import Image
7
+ from PIL import ImageFile
8
+ from tqdm import tqdm
9
+
10
+ from uform import get_model
11
+ from usearch.index import Index
12
+ from usearch.io import save_matrix, load_matrix
13
+
14
+ ImageFile.LOAD_TRUNCATED_IMAGES = True
15
+
16
+
17
+ def is_image(path: PathLike) -> bool:
18
+ if not isfile(path):
19
+ return False
20
+ try:
21
+ Image.open(path)
22
+ return True
23
+ except:
24
+ return False
25
+
26
+
27
+ names = sorted(f for f in listdir('images') if is_image(join('images', f)))
28
+
29
+ names = [filename.rsplit('.', 1)[0] for filename in names]
30
+ table = pd.read_table('images.tsv') if path.exists(
31
+ 'images.tsv') else pd.read_table('images.csv')
32
+ table = table[table['photo_id'].isin(names)]
33
+ table = table.sort_values('photo_id')
34
+ table.reset_index()
35
+ table.to_csv('images.csv', index=False)
36
+
37
+ names = list(set(table['photo_id']).intersection(names))
38
+
39
+ model = get_model('unum-cloud/uform-vl-english')
40
+ vectors = []
41
+
42
+ for name in tqdm(names, desc='Vectorizing images'):
43
+ image = Image.open(join('images', name + '.jpg'))
44
+ image_data = model.preprocess_image(image)
45
+ image_embedding = model.encode_image(image_data).detach().numpy()
46
+ vectors.append(image_embedding)
47
+
48
+ image_mat = np.concatenate(vectors)
49
+ save_matrix(image_mat, 'images.fbin')
50
+
51
+ index = Index(ndim=256, metric='cos')
52
+ image_mat = load_matrix('images.fbin')
53
+
54
+ for idx, vector in tqdm(enumerate(vectors), desc='Indexing vectors'):
55
+ index.add(idx, vector.flatten())
56
+
57
+ index.save('images.usearch')
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ uform
2
+ usearch
3
+
4
+ numpy
5
+ Pillow
6
+ tqdm