Datasets:

ArXiv:
data / processors.py
Elron's picture
Upload folder using huggingface_hub
c096080 verified
import ast
import copy
import json
import re
import string
from difflib import get_close_matches
from typing import Any, Dict
import numpy as np
from .deprecation_utils import deprecation
from .operator import MultiStreamOperator
from .operators import FieldOperator, InstanceFieldOperator
from .settings_utils import get_constants
constants = get_constants()
class PostProcess(MultiStreamOperator):
operator: InstanceFieldOperator
process_prediction: bool = True
process_references: bool = True
def prepare(self):
super().prepare()
self.prediction_operator = copy.copy(self.operator)
self.prediction_operator.field = "prediction"
self.references_operator = copy.copy(self.operator)
self.references_operator.field = "references"
self.references_operator.process_every_value = True
self.references_operator.dont_apply_to_streams = [constants.inference_stream]
def process(self, multi_stream):
if self.process_prediction:
multi_stream = self.prediction_operator(multi_stream)
if self.process_references:
multi_stream = self.references_operator(multi_stream)
return multi_stream
class ToString(FieldOperator):
def process_value(self, text: Any) -> Any:
return str(text)
class ToStringStripped(FieldOperator):
def process_value(self, text: Any) -> Any:
return str(text).strip()
class SplitStrip(FieldOperator):
delimiter: str = " "
strip_every_element: bool = False
def process_value(self, text: Any) -> Any:
return [
x.strip() if self.strip_every_element else x
for x in text.split(self.delimiter)
]
class ToListByComma(SplitStrip):
delimiter = ","
strip_every_element = True
class ToListByCommaSpace(SplitStrip):
delimiter = ", "
strip_every_element = True
class RegexParser(FieldOperator):
"""A processor that uses regex in order to parse a string."""
regex: str
termination_regex: str = None
def process_value(self, text: Any) -> Any:
if self.termination_regex is not None and re.fullmatch(
self.termination_regex, text
):
return []
return re.findall(self.regex, text)
class ExtractWithRegex(RegexParser):
def process_value(self, text: Any) -> Any:
matches = super().process_value(text)
if matches:
return matches[0]
return ""
class ListToEmptyEntitiesTuples(FieldOperator):
def process_value(self, lst: Any) -> Any:
try:
return [(str(item), "") for item in lst]
except json.JSONDecodeError:
return []
class DictOfListsToPairs(FieldOperator):
position_key_before_value: bool = True
def process_value(self, obj: Any) -> Any:
try:
result = []
for key, values in obj.items():
for value in values:
assert isinstance(value, str)
pair = (
(key, value) if self.position_key_before_value else (value, key)
)
result.append(pair)
return result
except:
return []
class TakeFirstNonEmptyLine(FieldOperator):
def process_value(self, text: Any) -> Any:
parts = str(text).strip().split("\n")
if len(parts) == 0:
return ""
return parts[0].strip()
class ConvertToBoolean(FieldOperator):
def process_value(self, text: Any) -> Any:
clean_instance = str(text).strip().lower()
if any(w in clean_instance for w in ["no", "not", "wrong", "false"]):
return "FALSE"
if any(w in clean_instance for w in ["yes", "right", "correct", "true"]):
return "TRUE"
return "OTHER"
class LowerCaseTillPunc(FieldOperator):
def process_value(self, text: Any) -> Any:
non_empty_line = text.lower()
match = re.search(r"[.,!?;]", non_empty_line)
if match:
# Extract text up to the first punctuation
non_empty_line = non_empty_line[: match.start()]
return non_empty_line
class Lower(FieldOperator):
def process_value(self, text: Any) -> Any:
return text.lower()
@deprecation("2.0.0", alternative=Lower)
class LowerCase(Lower):
pass
class Capitalize(FieldOperator):
def process_value(self, text: Any) -> Any:
return text.capitalize()
class GetStringAfter(FieldOperator):
substring: str
def process_value(self, text: Any) -> Any:
return text.split(self.substring, 1)[-1].strip()
class MatchClosestOption(InstanceFieldOperator):
options_field: str = "options"
def process_instance_value(self, value: Any, instance: Dict[str, Any]):
options = instance["task_data"][self.options_field]
return get_close_matches(value, options, n=1, cutoff=0.0)[0]
def process_instance_value(self, value, instance):
options = instance[self.options_field]
# Get the closest match; n=1 returns the single closest match
closest_match = get_close_matches(value, options, n=1, cutoff=0)
return closest_match[0] if closest_match else None
class Substring(FieldOperator):
begin: int = 0
end: int = None
def process_value(self, text: Any) -> Any:
if self.end is None:
return text[self.begin :]
return text[self.begin : self.end]
class FirstCharacter(FieldOperator):
def process_value(self, text: Any) -> Any:
match = re.search(r"\s*(\w)", text)
if match:
return match.groups(0)[0]
return ""
class TakeFirstWord(FieldOperator):
def process_value(self, text: Any) -> Any:
match = re.search(r"([-]*[0-9]+(\.([0-9]+))*)|([\w]+)", text)
if match:
return text[match.start() : match.end()]
return ""
class YesNoToInt(FieldOperator):
def process_value(self, text: Any) -> Any:
if text == "yes":
return "1"
if text == "no":
return "0"
return text
class YesToOneElseZero(FieldOperator):
def process_value(self, text: Any) -> Any:
if text == "yes":
return "1"
return "0"
class StrToFloatFormat(FieldOperator):
def process_value(self, text: Any) -> Any:
try:
return str(float(text))
except Exception:
return str(text)
class ToYesOrNone(FieldOperator):
def process_value(self, text: Any) -> Any:
if text == "yes":
return "yes"
return "none"
class StanceToProCon(FieldOperator):
def process_value(self, text: Any) -> Any:
if text == "positive":
return "PRO"
if text in ["negative", "suggestion"]:
return "CON"
return "none"
class StringEquals(FieldOperator):
string: str
def process_value(self, text: Any) -> Any:
if "not " + self.string.lower() in text.lower():
return "not " + self.string.lower()
if self.string.lower() in text.lower():
return self.string.lower()
return text
@deprecation("2.0.0", alternative=StringEquals)
class StringOrNotString(StringEquals):
pass
class ExtractMtBenchRatingJudgment(FieldOperator):
def process_value(self, text: Any) -> Any:
match = re.search(r"\[\[([\d]+\.?[\d]*)\]\]", text)
try:
return float(match.group(1)) / 10
except:
return 0.0
class ExtractMtBenchLabelJudgment(FieldOperator):
def process_value(self, text: Any) -> Any:
match = re.search(r"\[\[([^\]]+)\]\]", text)
try:
return str(match.group(1))
except:
return "None"
class LiteralEval(FieldOperator):
def process_value(self, text: Any) -> Any:
if text is not None and not isinstance(text, str):
raise ValueError(
f"LiteralEval: field '{self.field}' is expected to be of 'str' input type, got: {type(text)}"
)
if text is None or text == "":
return text
return ast.literal_eval(text.strip())
class ExtractSafeUnsafeJudgment(FieldOperator):
def process_value(self, text: Any) -> Any:
first_line = str(text).strip().split("\n")[0].lower()
if first_line == "safe":
return 1.0
return 0.0
class ExtractArenaHardNumericalJudgment(FieldOperator):
def process_value(self, text: Any) -> Any:
match = re.search(r"\[\[([^\]]+)\]\]", text)
try:
res = str(match.group(1))
if res == "A>B":
return 1
if res == "A>>B":
return 3
if res == "B>A":
return -1
if res == "B>>A":
return -3
return 0
except:
return 0
class InferDictsToBinaryLogprobs(FieldOperator):
neg_class_name: str
pos_class_name: str
take_logprobs_from_end: bool = False
num_logprobs_to_take: int = 3
min_probability_mass = 0.0001
def verify(self):
super().verify()
if (
self.neg_class_name.lower() in self.pos_class_name.lower()
or self.pos_class_name.lower() in self.neg_class_name.lower()
):
raise ValueError(
f"""Class names in {self.__class__.__name__} should not overlap, got "{self.pos_class_name}" and "{self.neg_class_name}"""
)
def process_value(self, obj: Any) -> Any:
for i in self.get_token_range(obj):
try:
pos_probs, neg_probs = self.get_pos_neg_probs(pred_dict=obj[i])
if pos_probs or neg_probs:
sum_probs = sum(pos_probs) + sum(neg_probs)
if sum_probs > self.min_probability_mass:
return sum(pos_probs) / sum_probs
except:
pass
return 0
def get_pos_neg_probs(self, pred_dict):
token_logprobs = pred_dict["top_tokens"]
pos_and_neg_probs = []
for class_name in [self.pos_class_name, self.neg_class_name]:
# We need to capture different variants of model behavior and tokenizers, for example with opening space,
# punctuation etc. but avoid longer words that contain the class name.
# For example, for class "yes" we would capture "YES," and " Yes" but not "yesterday".
name_regex = re.compile(
rf"(\W|Ġ|_)*{class_name}(\W|Ġ|_)*", flags=re.IGNORECASE
)
class_probs = [
np.exp(d["logprob"])
for d in token_logprobs
if name_regex.fullmatch(d["text"])
]
pos_and_neg_probs.append(class_probs)
return pos_and_neg_probs
def get_token_range(self, obj: Any) -> range:
n_tokens = min([self.num_logprobs_to_take, len(obj)])
if self.take_logprobs_from_end:
return range(-1, -(n_tokens + 1), -1)
return range(n_tokens)
class RemoveArticles(FieldOperator):
def process_value(self, text: Any) -> Any:
return re.sub(r"\b(a|an|the)\b", " ", text)
class RemovePunctuations(FieldOperator):
def process_value(self, text: Any) -> Any:
puncs_to_exclude = set(string.punctuation)
return "".join(c for c in text if c not in puncs_to_exclude)
class FixWhiteSpace(FieldOperator):
def process_value(self, text: Any) -> Any:
return " ".join(text.split())