|
from functools import singledispatch |
|
from typing import List, Optional |
|
|
|
import pandas as pd |
|
|
|
from .artifact import verbosed_fetch_artifact |
|
from .metric_utils import get_remote_metrics_endpoint, get_remote_metrics_names |
|
from .operator import SequentialOperator |
|
from .stream import MultiStream |
|
|
|
|
|
@singledispatch |
|
def evaluate( |
|
dataset, metric_names: List[str], compute_conf_intervals: Optional[bool] = False |
|
): |
|
"""Placeholder for overloading the function, supporting both dataframe input and list input.""" |
|
pass |
|
|
|
|
|
@evaluate.register |
|
def _( |
|
dataset: list, |
|
metric_names: List[str], |
|
compute_conf_intervals: Optional[bool] = False, |
|
): |
|
global_scores = {} |
|
remote_metrics = get_remote_metrics_names() |
|
for metric_name in metric_names: |
|
if metric_name in remote_metrics: |
|
metric = verbosed_fetch_artifact(metric_name) |
|
metric_step = as_remote_metric(metric) |
|
else: |
|
|
|
metric_step = metric_name |
|
metrics_operator = SequentialOperator(steps=[metric_step]) |
|
|
|
if not compute_conf_intervals: |
|
first_step = metrics_operator.steps[0] |
|
first_step.disable_confidence_interval_calculation() |
|
|
|
multi_stream = MultiStream.from_iterables({"test": dataset}, copying=True) |
|
instances = list(metrics_operator(multi_stream)["test"]) |
|
for entry, instance in zip(dataset, instances): |
|
entry[metric_name] = instance["score"]["instance"]["score"] |
|
|
|
if len(instances) > 0: |
|
global_scores[metric_name] = instances[0]["score"].get("global", {}) |
|
|
|
return dataset, global_scores |
|
|
|
|
|
@evaluate.register |
|
def _( |
|
dataset: pd.DataFrame, |
|
metric_names: List[str], |
|
compute_conf_intervals: Optional[bool] = False, |
|
): |
|
results, global_scores = evaluate( |
|
dataset.to_dict("records"), |
|
metric_names=metric_names, |
|
compute_conf_intervals=compute_conf_intervals, |
|
) |
|
return pd.DataFrame(results), pd.DataFrame(global_scores) |
|
|
|
|
|
def as_remote_metric(metric): |
|
"""Wrap a metric with a RemoteMetric. |
|
|
|
Currently supported is wrapping the inner metric within a MetricPipeline. |
|
""" |
|
from .metrics import MetricPipeline, RemoteMetric |
|
|
|
remote_metrics_endpoint = get_remote_metrics_endpoint() |
|
if isinstance(metric, MetricPipeline): |
|
metric = RemoteMetric.wrap_inner_metric_pipeline_metric( |
|
metric_pipeline=metric, |
|
remote_metrics_endpoint=remote_metrics_endpoint, |
|
) |
|
else: |
|
raise ValueError( |
|
f"Unexpected remote metric type {type(metric)} for the metric named '{metric.__id__}'. " |
|
f"Remotely executed metrics should be MetricPipeline objects." |
|
) |
|
return metric |
|
|