|
"""Dialog Serializers. |
|
|
|
Dialog serializers are the way to take dialog data and turn it into |
|
text that can be fed to the model. |
|
|
|
The format of the dialog is: |
|
|
|
dialog = [ |
|
{"user": "hello", "system": "hi"}, |
|
{"user": "kkk", "system": ""}, |
|
{"user": "kkk", "system": ""}, |
|
] |
|
""" |
|
from typing import Any, Dict, List, Optional |
|
|
|
from .formats import SystemFormat |
|
from .operators import InstanceFieldOperator |
|
|
|
|
|
class SerializeDialog(InstanceFieldOperator): |
|
"""Serializes dialog data for feeding into a model. |
|
|
|
This class takes structured dialog data and converts it into a text format |
|
according to a specified template. It allows for the inclusion or exclusion |
|
of system responses and can operate on a per-turn basis or aggregate the entire |
|
dialog. |
|
|
|
Attributes: |
|
field (str): The field in the input data that contains the dialog. |
|
to_field (Optional[str]): The field in the output data where the serialized dialog will be stored. |
|
last_user_turn_to_field (Optional[str]): Field to store the last user turn. |
|
last_system_turn_to_field (Optional[str]): Field to store the last system turn. |
|
context_field (Optional[str]): Field that contains additional context to be prepended to the dialog. |
|
""" |
|
|
|
format: SystemFormat = None |
|
last_response_to_field: Optional[str] = None |
|
context_field: Optional[str] = None |
|
context_separator: str = " " |
|
slice_first_and_last_turns_format: bool = True |
|
|
|
def standardize_format(self, demo_format): |
|
turn_format = demo_format.replace("{source}", "{user}") |
|
turn_format = turn_format.replace("{target}", "{system}") |
|
return turn_format.replace("{target_prefix}", "") |
|
|
|
def slice_first_turn(self, turn_format): |
|
return turn_format[turn_format.index("{user}") :] |
|
|
|
def slice_last_turn(self, turn_format): |
|
return turn_format[: turn_format.index("{system}") + len("{system}")] |
|
|
|
def slice_last_response(self, turn_format): |
|
return turn_format[: turn_format.index("{user}") + len("{user}")] |
|
|
|
def get_turn_format(self, turn_format, step, length): |
|
if step == 0 and self.slice_first_and_last_turns_format: |
|
turn_format = self.slice_first_turn(turn_format) |
|
if step == length - 1: |
|
if self.slice_first_and_last_turns_format: |
|
turn_format = self.slice_last_turn(turn_format) |
|
if self.last_response_to_field is not None: |
|
turn_format = self.slice_last_response(turn_format) |
|
return turn_format |
|
|
|
def get_general_turn_format(self, instance): |
|
general_format = ( |
|
instance["recipe_metadata"]["format"] |
|
if self.format is None |
|
else self.format |
|
) |
|
return self.standardize_format(general_format.demo_format) |
|
|
|
def process_instance_value( |
|
self, structured_dialog: List[Dict[str, str]], instance: Dict[str, Any] |
|
): |
|
dialog = ( |
|
"" |
|
if self.context_field is None |
|
else instance[self.context_field] + self.context_separator |
|
) |
|
general_turn_format = self.get_general_turn_format(instance) |
|
for i, turn in enumerate(structured_dialog): |
|
turn_format = self.get_turn_format( |
|
general_turn_format, i, len(structured_dialog) |
|
) |
|
dialog += turn_format.format(**turn) |
|
if self.last_response_to_field is not None: |
|
instance[self.last_response_to_field] = turn["system"] |
|
return dialog |
|
|
|
|
|
class SerializeOpenAiFormatDialog(SerializeDialog): |
|
"""Serializes dialog data for feeding into a model. |
|
|
|
This class takes structured dialog data in the OpenAi format, and converts it into a text format |
|
according to a specified template. It allows for the inclusion or exclusion |
|
of system responses and can operate on a per-turn basis or aggregate the entire |
|
dialog. |
|
|
|
Attributes: |
|
field (str): The field in the input data that contains the dialog. |
|
to_field (Optional[str]): The field in the output data where the serialized dialog will be stored. |
|
last_user_turn_to_field (Optional[str]): Field to store the last user turn. |
|
last_system_turn_to_field (Optional[str]): Field to store the last system turn. |
|
context_field (Optional[str]): Field that contains additional context to be prepended to the dialog. |
|
""" |
|
|
|
is_last_turn_user_only: bool = True |
|
|
|
@staticmethod |
|
def validate_openai_dialog_format(dialog: List[Dict[str, str]]) -> None: |
|
"""Validates that the given dialog follows the correct OpenAI format. |
|
|
|
The function checks that: |
|
1. The dialog is a list of dictionaries. |
|
2. Each dictionary contains the keys 'role' and 'content'. |
|
3. The 'role' value is either 'user' or 'assistant'. |
|
4. Both 'role' and 'content' values are strings. |
|
5. The first 'role' is 'user' |
|
|
|
If the dialog does not conform to the expected format, a descriptive |
|
ValueError is raised indicating the issue. |
|
|
|
Args: |
|
dialog (List[Dict[str, str]]): The dialog to validate. |
|
|
|
Raises: |
|
ValueError: If the dialog does not meet the format requirements. |
|
""" |
|
if not isinstance(dialog, list): |
|
raise ValueError("Dialog must be a list of dictionaries.") |
|
|
|
for i, entry in enumerate(dialog): |
|
if not isinstance(entry, dict): |
|
raise ValueError( |
|
f"Entry {i} is not a dictionary: {entry}. Each entry in the dialog must be a dictionary." |
|
) |
|
|
|
if "role" not in entry: |
|
raise ValueError( |
|
f"Entry {i} is missing the 'role' key: {entry}. Each dictionary must have a 'role' key." |
|
) |
|
|
|
if "content" not in entry: |
|
raise ValueError( |
|
f"Entry {i} is missing the 'content' key: {entry}. Each dictionary must have a 'content' key." |
|
) |
|
|
|
if not isinstance(entry["role"], str): |
|
raise ValueError( |
|
f"Entry {i} has a non-string 'role': {entry['role']}. The 'role' value must be a string." |
|
) |
|
|
|
if not isinstance(entry["content"], str): |
|
raise ValueError( |
|
f"Entry {i} has a non-string 'content': {entry['content']}. The 'content' value must be a string." |
|
) |
|
|
|
if entry["role"].lower() not in {"user", "assistant"}: |
|
raise ValueError( |
|
f"Entry {i} has an invalid role: {entry['role']}. Allowed roles are 'user' and 'assistant'." |
|
) |
|
|
|
first_entry = dialog[0] |
|
if first_entry["role"].lower() != "user": |
|
raise ValueError( |
|
f"First entry role is expected to be 'user' It is {first_entry['role']}." |
|
) |
|
|
|
@staticmethod |
|
def merge_dialog_entries(dialog: List[Dict[str, str]]) -> List[Dict[str, str]]: |
|
"""Merges consecutive dialog entries with the same role. |
|
|
|
Args: |
|
dialog (List[Dict[str, str]]): The input dialog list where each dictionary has a 'role' and 'content'. |
|
|
|
Returns: |
|
List[Dict[str, str]]: A new list where consecutive entries with the same role are merged. |
|
""" |
|
if len(dialog) == 0: |
|
return [] |
|
|
|
merged_dialog = [dialog[0]] |
|
|
|
for entry in dialog[1:]: |
|
if entry["role"] == merged_dialog[-1]["role"]: |
|
merged_dialog[-1]["content"] += " " + entry["content"] |
|
else: |
|
merged_dialog.append(entry) |
|
|
|
return merged_dialog |
|
|
|
def transform_dialog_to_standard_format( |
|
self, dialog: List[Dict[str, str]] |
|
) -> List[Dict[str, str]]: |
|
"""Transforms a dialog from OpenAI format to a simplified format. |
|
|
|
Each dictionary |
|
contains 'user' and 'system' keys with their respective contents. Consecutive entries |
|
with the same role are merged. Entries with invalid roles raise an error. |
|
|
|
Args: |
|
dialog (List[Dict[str, str]]): The input dialog in OpenAI format. |
|
|
|
Returns: |
|
List[Dict[str, str]]: The transformed dialog. |
|
|
|
Raises: |
|
ValueError: If an invalid role is detected. |
|
""" |
|
SerializeOpenAiFormatDialog.validate_openai_dialog_format(dialog) |
|
merged_dialog = SerializeOpenAiFormatDialog.merge_dialog_entries(dialog) |
|
|
|
|
|
result = [] |
|
for i in range(0, len(merged_dialog) - 1, 2): |
|
user_entry = merged_dialog[i] |
|
system_entry = merged_dialog[i + 1] |
|
|
|
result.append( |
|
{"user": user_entry["content"], "system": system_entry["content"]} |
|
) |
|
if len(merged_dialog) % 2 != 0: |
|
user_entry = merged_dialog[-1] |
|
result.append({"user": user_entry["content"], "system": ""}) |
|
|
|
return result |
|
|
|
def process_instance_value( |
|
self, structured_dialog: List[Dict[str, str]], instance: Dict[str, Any] |
|
): |
|
standard_format_dialog = self.transform_dialog_to_standard_format( |
|
structured_dialog |
|
) |
|
return super().process_instance_value(standard_format_dialog, instance) |
|
|