|
"""This section describes unitxt operators for structured data. |
|
|
|
These operators are specialized in handling structured data like tables. |
|
For tables, expected input format is: |
|
{ |
|
"header": ["col1", "col2"], |
|
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]] |
|
} |
|
|
|
For triples, expected input format is: |
|
[[ "subject1", "relation1", "object1" ], [ "subject1", "relation2", "object2"]] |
|
|
|
For key-value pairs, expected input format is: |
|
{"key1": "value1", "key2": value2, "key3": "value3"} |
|
------------------------ |
|
""" |
|
import json |
|
import random |
|
from abc import ABC, abstractmethod |
|
from copy import deepcopy |
|
from typing import ( |
|
Any, |
|
Dict, |
|
List, |
|
Optional, |
|
) |
|
|
|
import pandas as pd |
|
|
|
from .dict_utils import dict_get |
|
from .operators import FieldOperator, StreamInstanceOperator |
|
|
|
|
|
class SerializeTable(ABC, FieldOperator): |
|
"""TableSerializer converts a given table into a flat sequence with special symbols. |
|
|
|
Output format varies depending on the chosen serializer. This abstract class defines structure of a typical table serializer that any concrete implementation should follow. |
|
""" |
|
|
|
|
|
@abstractmethod |
|
def serialize_table(self, table_content: Dict) -> str: |
|
pass |
|
|
|
|
|
def process_header(self, header: List): |
|
pass |
|
|
|
|
|
def process_row(self, row: List, row_index: int): |
|
pass |
|
|
|
|
|
|
|
class SerializeTableAsIndexedRowMajor(SerializeTable): |
|
"""Indexed Row Major Table Serializer. |
|
|
|
Commonly used row major serialization format. |
|
Format: col : col1 | col2 | col 3 row 1 : val1 | val2 | val3 | val4 row 2 : val1 | ... |
|
""" |
|
|
|
def process_value(self, table: Any) -> Any: |
|
table_input = deepcopy(table) |
|
return self.serialize_table(table_content=table_input) |
|
|
|
|
|
|
|
def serialize_table(self, table_content: Dict) -> str: |
|
|
|
header = table_content.get("header", []) |
|
rows = table_content.get("rows", []) |
|
|
|
assert header and rows, "Incorrect input table format" |
|
|
|
|
|
serialized_tbl_str = self.process_header(header) + " " |
|
|
|
|
|
for i, row in enumerate(rows, start=1): |
|
serialized_tbl_str += self.process_row(row, row_index=i) + " " |
|
|
|
|
|
return serialized_tbl_str.strip() |
|
|
|
|
|
def process_header(self, header: List): |
|
return "col : " + " | ".join(header) |
|
|
|
|
|
def process_row(self, row: List, row_index: int): |
|
serialized_row_str = "" |
|
row_cell_values = [ |
|
str(value) if isinstance(value, (int, float)) else value for value in row |
|
] |
|
|
|
serialized_row_str += " | ".join(row_cell_values) |
|
|
|
return f"row {row_index} : {serialized_row_str}" |
|
|
|
|
|
class SerializeTableAsMarkdown(SerializeTable): |
|
"""Markdown Table Serializer. |
|
|
|
Markdown table format is used in GitHub code primarily. |
|
Format: |
|
|col1|col2|col3| |
|
|---|---|---| |
|
|A|4|1| |
|
|I|2|1| |
|
... |
|
""" |
|
|
|
def process_value(self, table: Any) -> Any: |
|
table_input = deepcopy(table) |
|
return self.serialize_table(table_content=table_input) |
|
|
|
|
|
|
|
def serialize_table(self, table_content: Dict) -> str: |
|
|
|
header = table_content.get("header", []) |
|
rows = table_content.get("rows", []) |
|
|
|
assert header and rows, "Incorrect input table format" |
|
|
|
|
|
serialized_tbl_str = self.process_header(header) |
|
|
|
|
|
for i, row in enumerate(rows, start=1): |
|
serialized_tbl_str += self.process_row(row, row_index=i) |
|
|
|
|
|
return serialized_tbl_str.strip() |
|
|
|
|
|
def process_header(self, header: List): |
|
header_str = "|{}|\n".format("|".join(header)) |
|
header_str += "|{}|\n".format("|".join(["---"] * len(header))) |
|
return header_str |
|
|
|
|
|
def process_row(self, row: List, row_index: int): |
|
row_str = "" |
|
row_str += "|{}|\n".format("|".join(str(cell) for cell in row)) |
|
return row_str |
|
|
|
|
|
class SerializeTableAsDFLoader(SerializeTable): |
|
"""DFLoader Table Serializer. |
|
|
|
Pandas dataframe based code snippet format serializer. |
|
Format(Sample): |
|
pd.DataFrame({ |
|
"name" : ["Alex", "Diana", "Donald"], |
|
"age" : [26, 34, 39] |
|
}, |
|
index=[0,1,2]) |
|
""" |
|
|
|
def process_value(self, table: Any) -> Any: |
|
table_input = deepcopy(table) |
|
return self.serialize_table(table_content=table_input) |
|
|
|
|
|
|
|
def serialize_table(self, table_content: Dict) -> str: |
|
|
|
header = table_content.get("header", []) |
|
rows = table_content.get("rows", []) |
|
|
|
assert header and rows, "Incorrect input table format" |
|
|
|
|
|
df = pd.DataFrame(rows, columns=header) |
|
|
|
|
|
data_dict = df.to_dict(orient="list") |
|
|
|
return ( |
|
"pd.DataFrame({\n" |
|
+ json.dumps(data_dict) |
|
+ "},\nindex=" |
|
+ str(list(range(len(rows)))) |
|
+ ")" |
|
) |
|
|
|
|
|
class SerializeTableAsJson(SerializeTable): |
|
"""JSON Table Serializer. |
|
|
|
Json format based serializer. |
|
Format(Sample): |
|
{ |
|
"0":{"name":"Alex","age":26}, |
|
"1":{"name":"Diana","age":34}, |
|
"2":{"name":"Donald","age":39} |
|
} |
|
""" |
|
|
|
def process_value(self, table: Any) -> Any: |
|
table_input = deepcopy(table) |
|
return self.serialize_table(table_content=table_input) |
|
|
|
|
|
|
|
def serialize_table(self, table_content: Dict) -> str: |
|
|
|
header = table_content.get("header", []) |
|
rows = table_content.get("rows", []) |
|
|
|
assert header and rows, "Incorrect input table format" |
|
|
|
|
|
output_dict = {} |
|
for i, row in enumerate(rows): |
|
output_dict[i] = {header[j]: value for j, value in enumerate(row)} |
|
|
|
|
|
return json.dumps(output_dict) |
|
|
|
|
|
|
|
def truncate_cell(cell_value, max_len): |
|
if cell_value is None: |
|
return None |
|
|
|
if isinstance(cell_value, int) or isinstance(cell_value, float): |
|
return None |
|
|
|
if cell_value.strip() == "": |
|
return None |
|
|
|
if len(cell_value) > max_len: |
|
return cell_value[:max_len] |
|
|
|
return None |
|
|
|
|
|
class TruncateTableCells(StreamInstanceOperator): |
|
"""Limit the maximum length of cell values in a table to reduce the overall length. |
|
|
|
Args: |
|
max_length (int) - maximum allowed length of cell values |
|
For tasks that produce a cell value as answer, truncating a cell value should be replicated |
|
with truncating the corresponding answer as well. This has been addressed in the implementation. |
|
|
|
""" |
|
|
|
max_length: int = 15 |
|
table: str = None |
|
text_output: Optional[str] = None |
|
use_query: bool = False |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
table = dict_get(instance, self.table, use_dpath=self.use_query) |
|
|
|
answers = [] |
|
if self.text_output is not None: |
|
answers = dict_get(instance, self.text_output, use_dpath=self.use_query) |
|
|
|
self.truncate_table(table_content=table, answers=answers) |
|
|
|
return instance |
|
|
|
|
|
def truncate_table(self, table_content: Dict, answers: Optional[List]): |
|
cell_mapping = {} |
|
|
|
|
|
for row in table_content.get("rows", []): |
|
for i, cell in enumerate(row): |
|
truncated_cell = truncate_cell(cell, self.max_length) |
|
if truncated_cell is not None: |
|
cell_mapping[cell] = truncated_cell |
|
row[i] = truncated_cell |
|
|
|
|
|
if answers is not None: |
|
for i, case in enumerate(answers): |
|
answers[i] = cell_mapping.get(case, case) |
|
|
|
|
|
class TruncateTableRows(FieldOperator): |
|
"""Limits table rows to specified limit by removing excess rows via random selection. |
|
|
|
Args: |
|
rows_to_keep (int) - number of rows to keep. |
|
""" |
|
|
|
rows_to_keep: int = 10 |
|
|
|
def process_value(self, table: Any) -> Any: |
|
return self.truncate_table_rows(table_content=table) |
|
|
|
def truncate_table_rows(self, table_content: Dict): |
|
|
|
rows = table_content.get("rows", []) |
|
|
|
num_rows = len(rows) |
|
|
|
|
|
if num_rows <= self.rows_to_keep: |
|
return table_content |
|
|
|
|
|
rows_to_delete = num_rows - self.rows_to_keep |
|
|
|
|
|
deleted_rows_indices = random.sample(range(len(rows)), rows_to_delete) |
|
|
|
remaining_rows = [ |
|
row for i, row in enumerate(rows) if i not in deleted_rows_indices |
|
] |
|
table_content["rows"] = remaining_rows |
|
|
|
return table_content |
|
|
|
|
|
class SerializeTableRowAsText(StreamInstanceOperator): |
|
"""Serializes a table row as text. |
|
|
|
Args: |
|
fields (str) - list of fields to be included in serialization. |
|
to_field (str) - serialized text field name. |
|
max_cell_length (int) - limits cell length to be considered, optional. |
|
""" |
|
|
|
fields: str |
|
to_field: str |
|
max_cell_length: Optional[int] = None |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
linearized_str = "" |
|
for field in self.fields: |
|
value = dict_get(instance, field, use_dpath=False) |
|
if self.max_cell_length is not None: |
|
truncated_value = truncate_cell(value, self.max_cell_length) |
|
if truncated_value is not None: |
|
value = truncated_value |
|
|
|
linearized_str = linearized_str + field + " is " + str(value) + ", " |
|
|
|
instance[self.to_field] = linearized_str |
|
return instance |
|
|
|
|
|
class SerializeTableRowAsList(StreamInstanceOperator): |
|
"""Serializes a table row as list. |
|
|
|
Args: |
|
fields (str) - list of fields to be included in serialization. |
|
to_field (str) - serialized text field name. |
|
max_cell_length (int) - limits cell length to be considered, optional. |
|
""" |
|
|
|
fields: str |
|
to_field: str |
|
max_cell_length: Optional[int] = None |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
linearized_str = "" |
|
for field in self.fields: |
|
value = dict_get(instance, field, use_dpath=False) |
|
if self.max_cell_length is not None: |
|
truncated_value = truncate_cell(value, self.max_cell_length) |
|
if truncated_value is not None: |
|
value = truncated_value |
|
|
|
linearized_str = linearized_str + field + ": " + str(value) + ", " |
|
|
|
instance[self.to_field] = linearized_str |
|
return instance |
|
|
|
|
|
class SerializeTriples(FieldOperator): |
|
"""Serializes triples into a flat sequence. |
|
|
|
Sample input in expected format: |
|
[[ "First Clearing", "LOCATION", "On NYS 52 1 Mi. Youngsville" ], [ "On NYS 52 1 Mi. Youngsville", "CITY_OR_TOWN", "Callicoon, New York"]] |
|
|
|
Sample output: |
|
First Clearing : LOCATION : On NYS 52 1 Mi. Youngsville | On NYS 52 1 Mi. Youngsville : CITY_OR_TOWN : Callicoon, New York |
|
|
|
""" |
|
|
|
def process_value(self, tripleset: Any) -> Any: |
|
return self.serialize_triples(tripleset) |
|
|
|
def serialize_triples(self, tripleset) -> str: |
|
return " | ".join( |
|
f"{subj} : {rel.lower()} : {obj}" for subj, rel, obj in tripleset |
|
) |
|
|
|
|
|
class SerializeKeyValPairs(FieldOperator): |
|
"""Serializes key, value pairs into a flat sequence. |
|
|
|
Sample input in expected format: {"name": "Alex", "age": 31, "sex": "M"} |
|
Sample output: name is Alex, age is 31, sex is M |
|
""" |
|
|
|
def process_value(self, kvpairs: Any) -> Any: |
|
return self.serialize_kvpairs(kvpairs) |
|
|
|
def serialize_kvpairs(self, kvpairs) -> str: |
|
serialized_str = "" |
|
for key, value in kvpairs.items(): |
|
serialized_str += f"{key} is {value}, " |
|
|
|
|
|
return serialized_str[:-2] |
|
|
|
|
|
class ListToKeyValPairs(StreamInstanceOperator): |
|
"""Maps list of keys and values into key:value pairs. |
|
|
|
Sample input in expected format: {"keys": ["name", "age", "sex"], "values": ["Alex", 31, "M"]} |
|
Sample output: {"name": "Alex", "age": 31, "sex": "M"} |
|
""" |
|
|
|
fields: List[str] |
|
to_field: str |
|
use_query: bool = False |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
keylist = dict_get(instance, self.fields[0], use_dpath=self.use_query) |
|
valuelist = dict_get(instance, self.fields[1], use_dpath=self.use_query) |
|
|
|
output_dict = {} |
|
for key, value in zip(keylist, valuelist): |
|
output_dict[key] = value |
|
|
|
instance[self.to_field] = output_dict |
|
|
|
return instance |
|
|
|
|
|
class ConvertTableColNamesToSequential(FieldOperator): |
|
"""Replaces actual table column names with static sequential names like col_0, col_1,... |
|
|
|
Sample input: |
|
{ |
|
"header": ["name", "age"], |
|
"rows": [["Alex", 21], ["Donald", 34]] |
|
} |
|
Sample output: |
|
{ |
|
"header": ["col_0", "col_1"], |
|
"rows": [["Alex", 21], ["Donald", 34]] |
|
} |
|
""" |
|
|
|
def process_value(self, table: Any) -> Any: |
|
table_input = deepcopy(table) |
|
return self.replace_header(table_content=table_input) |
|
|
|
|
|
def replace_header(self, table_content: Dict) -> str: |
|
|
|
header = table_content.get("header", []) |
|
|
|
assert header, "Input table missing header" |
|
|
|
new_header = ["col_" + str(i) for i in range(len(header))] |
|
table_content["header"] = new_header |
|
|
|
return table_content |
|
|
|
|
|
class ShuffleTableRows(FieldOperator): |
|
"""Shuffles the input table rows randomly. |
|
|
|
Sample Input: |
|
{ |
|
"header": ["name", "age"], |
|
"rows": [["Alex", 26], ["Raj", 34], ["Donald", 39]], |
|
} |
|
|
|
Sample Output: |
|
{ |
|
"header": ["name", "age"], |
|
"rows": [["Donald", 39], ["Raj", 34], ["Alex", 26]], |
|
} |
|
""" |
|
|
|
def process_value(self, table: Any) -> Any: |
|
table_input = deepcopy(table) |
|
return self.shuffle_rows(table_content=table_input) |
|
|
|
|
|
def shuffle_rows(self, table_content: Dict) -> str: |
|
|
|
header = table_content.get("header", []) |
|
rows = table_content.get("rows", []) |
|
assert header and rows, "Incorrect input table format" |
|
|
|
|
|
random.shuffle(rows) |
|
table_content["rows"] = rows |
|
|
|
return table_content |
|
|
|
|
|
class ShuffleTableColumns(FieldOperator): |
|
"""Shuffles the table columns randomly. |
|
|
|
Sample Input: |
|
{ |
|
"header": ["name", "age"], |
|
"rows": [["Alex", 26], ["Raj", 34], ["Donald", 39]], |
|
} |
|
|
|
Sample Output: |
|
{ |
|
"header": ["age", "name"], |
|
"rows": [[26, "Alex"], [34, "Raj"], [39, "Donald"]], |
|
} |
|
""" |
|
|
|
def process_value(self, table: Any) -> Any: |
|
table_input = deepcopy(table) |
|
return self.shuffle_columns(table_content=table_input) |
|
|
|
|
|
def shuffle_columns(self, table_content: Dict) -> str: |
|
|
|
header = table_content.get("header", []) |
|
rows = table_content.get("rows", []) |
|
assert header and rows, "Incorrect input table format" |
|
|
|
|
|
indices = list(range(len(header))) |
|
random.shuffle(indices) |
|
|
|
|
|
shuffled_header = [header[i] for i in indices] |
|
shuffled_rows = [[row[i] for i in indices] for row in rows] |
|
|
|
table_content["header"] = shuffled_header |
|
table_content["rows"] = shuffled_rows |
|
|
|
return table_content |
|
|