|
from random import Random |
|
from typing import ( |
|
Any, |
|
Dict, |
|
List, |
|
Optional, |
|
Union, |
|
) |
|
|
|
from .operators import FieldOperator |
|
from .random_utils import new_random_generator |
|
from .type_utils import isoftype |
|
|
|
|
|
class Augmentor(FieldOperator): |
|
"""A stream operator that augments the values of either the task input fields before rendering with the template, or the input passed to the model after rendering of the template.""" |
|
|
|
operator: FieldOperator |
|
|
|
def process_value(self, value: Any) -> Any: |
|
return self.operator.process_value(value) |
|
|
|
|
|
class TaskInputsAugmentor(Augmentor): |
|
def set_fields(self, fields: List[str]): |
|
fields = ["input_fields/" + field for field in fields] |
|
self.field_to_field = {field: field for field in fields} |
|
|
|
|
|
class FinalStateInputsAugmentor(Augmentor): |
|
pass |
|
|
|
|
|
class ModelInputAugmentor(FinalStateInputsAugmentor): |
|
field = "source" |
|
|
|
|
|
class ImagesAugmentor(FinalStateInputsAugmentor): |
|
field = "media/images" |
|
process_every_value = True |
|
|
|
|
|
class Identity(FieldOperator): |
|
def process_value(self, value: Any) -> Any: |
|
return value |
|
|
|
|
|
class NullAugmentor(Augmentor): |
|
"""Does not change the input string.""" |
|
|
|
operator = Identity() |
|
|
|
|
|
class AugmentWhitespace(FieldOperator): |
|
"""Augments the inputs by replacing existing whitespaces with other whitespaces. |
|
|
|
Currently, each whitespace is replaced by a random choice of 1-3 whitespace characters (space, tab, newline). |
|
""" |
|
|
|
def process_value(self, value: str) -> str: |
|
import re |
|
|
|
words = re.split(r"(\s+)", value) |
|
new_value = "" |
|
|
|
random_generator = new_random_generator(sub_seed=value) |
|
for word in words: |
|
if word.isspace(): |
|
new_value += random_generator.choice( |
|
["\n", "\t", " "] |
|
) * random_generator.randint(1, 3) |
|
else: |
|
new_value += word |
|
return new_value |
|
|
|
|
|
class AugmentPrefixSuffix(FieldOperator): |
|
r"""Augments the input by prepending and appending randomly selected (typically, whitespace) patterns. |
|
|
|
Args: |
|
prefixes, suffixes (list or dict) : the potential (typically, whitespace) patterns to select from. |
|
The dictionary version allows the specification relative weights for the different patterns. |
|
prefix_len, suffix_len (positive int) : The added prefix or suffix will be of a certain length. |
|
remove_existing_whitespaces : Clean any existing leading and trailing whitespaces. |
|
The strings made of repetitions of the selected pattern(s) are then prepended and/or appended to the potentially |
|
trimmed input. |
|
If only either just prefixes or just suffixes are needed, set the other to None. |
|
|
|
Examples: |
|
To prepend the input with a prefix made of 4 '\n'-s or '\t'-s, employ |
|
AugmentPrefixSuffix(augment_model_input=True, prefixes=['\n','\t'], prefix_len=4, suffixes = None) |
|
To append the input with a suffix made of 3 '\n'-s or '\t'-s, with triple '\n' suffixes |
|
being preferred over triple '\t', at 2:1 ratio, employ |
|
AugmentPrefixSuffix(augment_model_input=True, suffixes={'\n':2,'\t':1}, suffix_len=3, prefixes = None) |
|
which will append '\n'-s twice as often as '\t'-s. |
|
|
|
""" |
|
|
|
prefixes: Optional[Union[List[str], Dict[str, int]]] = { |
|
" ": 20, |
|
"\\t": 10, |
|
"\\n": 40, |
|
"": 30, |
|
} |
|
prefix_len: Optional[int] = 3 |
|
suffixes: Optional[Union[List[str], Dict[str, int]]] = { |
|
" ": 20, |
|
"\\t": 10, |
|
"\\n": 40, |
|
"": 30, |
|
} |
|
suffix_len: Optional[int] = 3 |
|
remove_existing_whitespaces: Optional[bool] = False |
|
|
|
def verify(self): |
|
assert ( |
|
self.prefixes or self.suffixes |
|
), "At least one of prefixes/suffixes should be not None." |
|
for arg, arg_name in zip( |
|
[self.prefixes, self.suffixes], ["prefixes", "suffixes"] |
|
): |
|
assert ( |
|
arg is None or isoftype(arg, List[str]) or isoftype(arg, Dict[str, int]) |
|
), f"Argument {arg_name} should be either None or a list of strings or a dictionary str->int. {arg} is none of the above." |
|
assert ( |
|
self.prefix_len > 0 |
|
), f"prefix_len must be positive, got {self.prefix_len}" |
|
assert ( |
|
self.suffix_len > 0 |
|
), f"suffix_len must be positive, got {self.suffix_len}" |
|
super().verify() |
|
|
|
def _calculate_distributions(self, prefs_or_suffs): |
|
if prefs_or_suffs is None: |
|
return None, None |
|
patterns = ( |
|
prefs_or_suffs |
|
if isinstance(prefs_or_suffs, list) |
|
else [k for k, v in prefs_or_suffs.items()] |
|
) |
|
total_weight = ( |
|
len(patterns) |
|
if isinstance(prefs_or_suffs, list) |
|
else sum([v for k, v in prefs_or_suffs.items()]) |
|
) |
|
weights = ( |
|
[1.0 / total_weight] * len(patterns) |
|
if isinstance(prefs_or_suffs, list) |
|
else [float(prefs_or_suffs[p]) / total_weight for p in patterns] |
|
) |
|
return patterns, weights |
|
|
|
def prepare(self): |
|
|
|
self.verify() |
|
self._prefix_pattern_distribution = {"length": self.prefix_len} |
|
self._suffix_pattern_distribution = {"length": self.suffix_len} |
|
|
|
( |
|
self._prefix_pattern_distribution["patterns"], |
|
self._prefix_pattern_distribution["weights"], |
|
) = self._calculate_distributions(self.prefixes) |
|
( |
|
self._suffix_pattern_distribution["patterns"], |
|
self._suffix_pattern_distribution["weights"], |
|
) = self._calculate_distributions(self.suffixes) |
|
super().prepare() |
|
|
|
def _get_random_pattern( |
|
self, pattern_distribution, random_generator: Random |
|
) -> str: |
|
string_to_add = "" |
|
if pattern_distribution["patterns"]: |
|
string_to_add = "".join( |
|
random_generator.choices( |
|
pattern_distribution["patterns"], |
|
pattern_distribution["weights"], |
|
k=pattern_distribution["length"], |
|
) |
|
) |
|
return string_to_add |
|
|
|
def process_value(self, value: Any) -> Any: |
|
assert value is not None, "input value should not be None" |
|
new_value = str(value) |
|
if self.remove_existing_whitespaces: |
|
new_value = new_value.strip() |
|
random_generator = new_random_generator(sub_seed=value) |
|
prefix = self._get_random_pattern( |
|
self._prefix_pattern_distribution, random_generator |
|
) |
|
suffix = self._get_random_pattern( |
|
self._suffix_pattern_distribution, random_generator |
|
) |
|
return prefix + new_value + suffix |
|
|