Datasets:

ArXiv:
data / metric_utils.py
Elron's picture
Upload metric_utils.py with huggingface_hub
b305aa0 verified
raw
history blame
4.53 kB
from typing import Dict, Iterable, List
from datasets import Features, Value
from .operator import (
MultiStreamOperator,
SequentialOperatorInitilizer,
StreamInitializerOperator,
)
from .operators import (
Apply,
ApplyMetric,
ApplyOperatorsField,
FlattenInstances,
MergeStreams,
SplitByValue,
)
from .register import _reset_env_local_catalogs, register_all_artifacts
from .schema import UNITXT_DATASET_SCHEMA
from .stream import MultiStream, Stream
class MultiStreamScoreMean(MultiStreamOperator):
def aggegate_results(self, multi_stream: MultiStream):
scores = []
for stream in multi_stream.values():
instance = stream.peek()
scores.append(instance["score"]["global"]["score"])
from statistics import mean
return mean(scores)
def spread_results(self, stream: Stream, score: float):
for instance in stream:
instance["score"]["global"]["groups_mean_score"] = score
yield instance
def spread_results_one_stream(self, stream: Stream):
for instance in stream:
instance["score"]["global"]["groups_mean_score"] = instance["score"][
"global"
]["score"]
yield instance
def process(self, multi_stream: MultiStream) -> MultiStream:
result = {}
# optimization in to avoid double calculation of metrics
# when aggregating results, if there is only one stream.
if len(multi_stream) == 1:
for stream_name, stream in multi_stream.items():
result[stream_name] = Stream(
self.spread_results_one_stream, gen_kwargs={"stream": stream}
)
return MultiStream(result)
mean_score = self.aggegate_results(multi_stream)
result = {}
for stream_name, stream in multi_stream.items():
result[stream_name] = Stream(
self.spread_results, gen_kwargs={"stream": stream, "score": mean_score}
)
return MultiStream(result)
class FromPredictionsAndOriginalData(StreamInitializerOperator):
def zip(self, predictions, references):
for prediction, original in zip(predictions, references):
yield {**original, "prediction": prediction}
def process(
self, predictions: List[str], references: Iterable, split_name: str = "all"
) -> MultiStream:
return MultiStream(
{
split_name: Stream(
self.zip,
gen_kwargs={"predictions": predictions, "references": references},
)
}
)
# The additional_inputs field in the schema is defined as
# Sequence({"key": Value(dtype="string"), "value": Value("string")})
# When receiving instances from this scheme, the keys and values are returned as two separate
# lists, and are converted to a dictionary.
def _from_key_value_pairs(key_value_list: Dict[str, list]) -> Dict[str, str]:
return dict(zip(key_value_list["key"], key_value_list["value"]))
class MetricRecipe(SequentialOperatorInitilizer):
calc_confidence_intervals: bool = True
def prepare(self):
register_all_artifacts()
self.steps = [
FromPredictionsAndOriginalData(),
Apply(
"additional_inputs",
function=_from_key_value_pairs,
to_field="additional_inputs",
),
ApplyOperatorsField(
operators_field="postprocessors",
),
SplitByValue(["group"]),
ApplyMetric(
"metrics",
calc_confidence_intervals=self.calc_confidence_intervals,
),
MultiStreamScoreMean(),
MergeStreams(),
]
UNITXT_METRIC_SCHEMA = Features(
{"predictions": Value("string"), "references": dict(UNITXT_DATASET_SCHEMA)}
)
def _compute(
predictions: List[str],
references: Iterable,
flatten: bool = False,
split_name: str = "all",
calc_confidence_intervals: bool = True,
):
_reset_env_local_catalogs()
register_all_artifacts()
recipe = MetricRecipe(calc_confidence_intervals=calc_confidence_intervals)
multi_stream = recipe(
predictions=predictions, references=references, split_name=split_name
)
if flatten:
operator = FlattenInstances()
multi_stream = operator(multi_stream)
stream = multi_stream[split_name]
return list(stream)