|
from typing import Dict, Iterable |
|
|
|
from datasets import Dataset, DatasetDict, IterableDataset, IterableDatasetDict |
|
|
|
from .generator_utils import ReusableGenerator |
|
|
|
|
|
class Stream: |
|
"""A class for handling streaming data in a customizable way. |
|
|
|
This class provides methods for generating, caching, and manipulating streaming data. |
|
|
|
Attributes: |
|
generator (function): A generator function for streaming data. |
|
gen_kwargs (dict, optional): A dictionary of keyword arguments for the generator function. |
|
streaming (bool): Whether the data is streaming or not. |
|
caching (bool): Whether the data is cached or not. |
|
""" |
|
|
|
def __init__(self, generator, gen_kwargs=None, streaming=True, caching=False): |
|
"""Initializes the Stream with the provided parameters. |
|
|
|
Args: |
|
generator (function): A generator function for streaming data. |
|
gen_kwargs (dict, optional): A dictionary of keyword arguments for the generator function. Defaults to None. |
|
streaming (bool, optional): Whether the data is streaming or not. Defaults to True. |
|
caching (bool, optional): Whether the data is cached or not. Defaults to False. |
|
""" |
|
|
|
self.generator = generator |
|
self.gen_kwargs = gen_kwargs if gen_kwargs is not None else {} |
|
self.streaming = streaming |
|
self.caching = caching |
|
|
|
def _get_initator(self): |
|
"""Private method to get the correct initiator based on the streaming and caching attributes. |
|
|
|
Returns: |
|
function: The correct initiator function. |
|
""" |
|
if self.streaming: |
|
if self.caching: |
|
return IterableDataset.from_generator |
|
else: |
|
return ReusableGenerator |
|
else: |
|
if self.caching: |
|
return Dataset.from_generator |
|
else: |
|
raise ValueError("Cannot create non-streaming non-caching stream") |
|
|
|
def _get_stream(self): |
|
"""Private method to get the stream based on the initiator function. |
|
|
|
Returns: |
|
object: The stream object. |
|
""" |
|
return self._get_initator()(self.generator, gen_kwargs=self.gen_kwargs) |
|
|
|
def set_caching(self, caching): |
|
self.caching = caching |
|
|
|
def set_streaming(self, streaming): |
|
self.streaming = streaming |
|
|
|
def __iter__(self): |
|
return iter(self._get_stream()) |
|
|
|
def unwrap(self): |
|
return self._get_stream() |
|
|
|
def peak(self): |
|
return next(iter(self)) |
|
|
|
def take(self, n): |
|
for i, instance in enumerate(self): |
|
if i >= n: |
|
break |
|
yield instance |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}(generator={self.generator.__name__}, gen_kwargs={self.gen_kwargs}, streaming={self.streaming}, caching={self.caching})" |
|
|
|
|
|
def is_stream(obj): |
|
return isinstance(obj, IterableDataset) or isinstance(obj, Stream) or isinstance(obj, Dataset) |
|
|
|
|
|
class MultiStream(dict): |
|
"""A class for handling multiple streams of data in a dictionary-like format. |
|
|
|
This class extends dict and its values should be instances of the Stream class. |
|
|
|
Attributes: |
|
data (dict): A dictionary of Stream objects. |
|
""" |
|
|
|
def __init__(self, data=None): |
|
"""Initializes the MultiStream with the provided data. |
|
|
|
Args: |
|
data (dict, optional): A dictionary of Stream objects. Defaults to None. |
|
|
|
Raises: |
|
AssertionError: If the values are not instances of Stream or keys are not strings. |
|
""" |
|
for key, value in data.items(): |
|
isinstance(value, Stream), "MultiStream values must be Stream" |
|
isinstance(key, str), "MultiStream keys must be strings" |
|
super().__init__(data) |
|
|
|
def get_generator(self, key): |
|
"""Gets a generator for a specified key. |
|
|
|
Args: |
|
key (str): The key for the generator. |
|
|
|
Yields: |
|
object: The next value in the stream. |
|
""" |
|
yield from self[key] |
|
|
|
def unwrap(self, cls): |
|
return cls({key: value.unwrap() for key, value in self.items()}) |
|
|
|
def to_dataset(self) -> DatasetDict: |
|
return DatasetDict( |
|
{key: Dataset.from_generator(self.get_generator, gen_kwargs={"key": key}) for key in self.keys()} |
|
) |
|
|
|
def to_iterable_dataset(self) -> IterableDatasetDict: |
|
return IterableDatasetDict( |
|
{key: IterableDataset.from_generator(self.get_generator, gen_kwargs={"key": key}) for key in self.keys()} |
|
) |
|
|
|
def __setitem__(self, key, value): |
|
assert isinstance(value, Stream), "StreamDict values must be Stream" |
|
assert isinstance(key, str), "StreamDict keys must be strings" |
|
super().__setitem__(key, value) |
|
|
|
@classmethod |
|
def from_generators(cls, generators: Dict[str, ReusableGenerator], streaming=True, caching=False): |
|
"""Creates a MultiStream from a dictionary of ReusableGenerators. |
|
|
|
Args: |
|
generators (Dict[str, ReusableGenerator]): A dictionary of ReusableGenerators. |
|
streaming (bool, optional): Whether the data should be streaming or not. Defaults to True. |
|
caching (bool, optional): Whether the data should be cached or not. Defaults to False. |
|
|
|
Returns: |
|
MultiStream: A MultiStream object. |
|
""" |
|
|
|
assert all(isinstance(v, ReusableGenerator) for v in generators.values()) |
|
return cls( |
|
{ |
|
key: Stream( |
|
generator.get_generator(), |
|
gen_kwargs=generator.get_gen_kwargs(), |
|
streaming=streaming, |
|
caching=caching, |
|
) |
|
for key, generator in generators.items() |
|
} |
|
) |
|
|
|
@classmethod |
|
def from_iterables(cls, iterables: Dict[str, Iterable], streaming=True, caching=False): |
|
"""Creates a MultiStream from a dictionary of iterables. |
|
|
|
Args: |
|
iterables (Dict[str, Iterable]): A dictionary of iterables. |
|
streaming (bool, optional): Whether the data should be streaming or not. Defaults to True. |
|
caching (bool, optional): Whether the data should be cached or not. Defaults to False. |
|
|
|
Returns: |
|
MultiStream: A MultiStream object. |
|
""" |
|
|
|
return cls( |
|
{ |
|
key: Stream(iterable.__iter__, gen_kwargs={}, streaming=streaming, caching=caching) |
|
for key, iterable in iterables.items() |
|
} |
|
) |
|
|