|
from abc import ABC, abstractmethod |
|
from dataclasses import dataclass, field |
|
from typing import Any, Dict, List |
|
|
|
from .operator import SingleStreamOperator, StreamInstanceOperator |
|
from .stream import Stream |
|
|
|
|
|
def absrtact_factory(): |
|
return {} |
|
|
|
|
|
def abstract_field(): |
|
return field(default_factory=absrtact_factory) |
|
|
|
|
|
class UpdateStream(StreamInstanceOperator): |
|
update: dict |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
instance.update(self.update) |
|
return instance |
|
|
|
|
|
class Metric(ABC): |
|
@property |
|
@abstractmethod |
|
def main_score(self): |
|
pass |
|
|
|
|
|
class GlobalMetric(SingleStreamOperator, Metric): |
|
def process(self, stream: Stream): |
|
references = [] |
|
predictions = [] |
|
global_score = {} |
|
|
|
instances = [] |
|
|
|
for instance in stream: |
|
if "score" not in instance: |
|
instance["score"] = {"global": global_score, "instance": {}} |
|
else: |
|
global_score = instance["score"]["global"] |
|
|
|
refs, pred = instance["references"], instance["prediction"] |
|
|
|
instance_score = self._compute([refs], [pred]) |
|
instance["score"]["instance"].update(instance_score) |
|
|
|
references.append(refs) |
|
predictions.append(pred) |
|
instances.append(instance) |
|
|
|
result = self._compute(references, predictions) |
|
|
|
global_score.update(result) |
|
|
|
for instance in instances: |
|
instance["score"]["global"] = global_score |
|
yield instance |
|
|
|
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict: |
|
result = self.compute(references, predictions) |
|
result["score"] = result[self.main_score] |
|
return result |
|
|
|
@abstractmethod |
|
def compute(self, references: List[List[str]], predictions: List[str]) -> dict: |
|
pass |
|
|
|
|
|
class InstanceMetric(SingleStreamOperator, Metric): |
|
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"]) |
|
|
|
@property |
|
@abstractmethod |
|
def reduction_map(self) -> dict: |
|
pass |
|
|
|
def process(self, stream: Stream): |
|
global_score = {} |
|
instances = [] |
|
|
|
for instance in stream: |
|
refs, pred = instance["references"], instance["prediction"] |
|
|
|
instance_score = self._compute(refs, pred) |
|
|
|
if "score" not in instance: |
|
instance["score"] = {"global": global_score, "instance": {}} |
|
else: |
|
global_score = instance["score"]["global"] |
|
|
|
instance["score"]["instance"].update(instance_score) |
|
|
|
instances.append(instance) |
|
|
|
for reduction, fields in self.reduction_map.items(): |
|
assert ( |
|
reduction in self.implemented_reductions |
|
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}" |
|
|
|
if reduction == "mean": |
|
from statistics import mean |
|
|
|
for field in fields: |
|
global_score[field] = mean([instance["score"]["instance"][field] for instance in instances]) |
|
if field == self.main_score: |
|
global_score["score"] = global_score[field] |
|
|
|
for instance in instances: |
|
yield instance |
|
|
|
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict: |
|
result = self.compute(references, predictions) |
|
result["score"] = result[self.main_score] |
|
return result |
|
|
|
@abstractmethod |
|
def compute(self, references: List[str], prediction: str) -> dict: |
|
pass |
|
|
|
|
|
class SingleReferenceInstanceMetric(InstanceMetric): |
|
def _compute(self, references: List[str], prediction: str) -> dict: |
|
result = self.compute(references[0], prediction) |
|
result["score"] = result[self.main_score] |
|
return result |
|
|
|
@abstractmethod |
|
def compute(self, reference, prediction: str) -> dict: |
|
pass |
|
|
|
|
|
class Accuracy(SingleReferenceInstanceMetric): |
|
reduction_map = {"mean": ["accuracy"]} |
|
main_score = "accuracy" |
|
|
|
def compute(self, reference, prediction: str) -> dict: |
|
return {"accuracy": float(str(reference) == str(prediction))} |
|
|