Datasets:

ArXiv:
data / operators.py
Elron's picture
Upload operators.py with huggingface_hub
2f710b1
raw
history blame
7.11 kB
from .stream import MultiStream, Stream
from .artifact import Artifact, fetch_artifact
from .operator import (
StreamInstanceOperator,
MultiStreamOperator,
SingleStreamOperator,
SingleStreamReducer,
StreamInitializerOperator,
Stream,
MultiStream,
)
from dataclasses import field
from typing import List, Union, Dict, Optional, Generator, Any, Iterable
from typing import Dict, Any
class FromIterables(StreamInitializerOperator):
def process(self, iterables: Dict[str, Iterable]) -> MultiStream:
return MultiStream.from_iterables(iterables)
class MapInstanceValues(StreamInstanceOperator):
mappers: Dict[str, Dict[str, str]]
strict: bool = True
def verify(self):
# make sure the mappers are valid
for key, mapper in self.mappers.items():
assert isinstance(mapper, dict), f"Mapper for given field {key} should be a dict, got {type(mapper)}"
for k, v in mapper.items():
assert isinstance(k, str), f'Key "{k}" in mapper for field "{key}" should be a string, got {type(k)}'
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
result = {}
for key, value in instance.items():
str_value = str(value)
if key in self.mappers:
mapper = self.mappers[key]
if self.strict:
value = mapper[str_value]
else:
if str_value in mapper:
value = mapper[str_value]
result[key] = value
return result
def flatten_dict(d: Dict[str, Any], parent_key: str = "", sep: str = "_") -> Dict[str, Any]:
items = []
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, dict):
items.extend(flatten_dict(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
class FlattenInstances(StreamInstanceOperator):
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return flatten_dict(instance)
class AddFields(StreamInstanceOperator):
fields: Dict[str, object]
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return {**instance, **self.fields}
class ArtifactFetcherMixin:
cache: Dict[str, Artifact] = {}
@classmethod
def get_artifact(cls, artifact_identifier: str) -> Artifact:
if artifact_identifier not in cls.cache:
artifact, artifactory = fetch_artifact(artifact_identifier)
cls.cache[artifact_identifier] = artifact
return cls.cache[artifact_identifier]
class ApplyValueOperatorsField(StreamInstanceOperator, ArtifactFetcherMixin):
value_field: str
operators_field: str
default_operators: List[str] = None
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
operator_names = instance.get(self.operators_field)
if operator_names is None:
assert (
self.default_operators is not None
), f"No operators found in {self.field} field and no default operators provided"
operator_names = self.default_operators
if isinstance(operator_names, str):
operator_names = [operator_names]
for name in operator_names:
operator = self.get_artifact(name)
instance = operator(instance, self.value_field)
return instance
class FilterByValues(SingleStreamOperator):
values: Dict[str, Any]
def process(self, stream: Stream, stream_name: str = None) -> Generator:
for instance in stream:
if all(instance[key] == value for key, value in self.values.items()):
yield instance
class Unique(SingleStreamReducer):
fields: List[str] = field(default_factory=list)
@staticmethod
def to_tuple(instance: dict, fields: List[str]) -> tuple:
result = []
for field in fields:
value = instance[field]
if isinstance(value, list):
value = tuple(value)
result.append(value)
return tuple(result)
def process(self, stream: Stream) -> Stream:
seen = set()
for instance in stream:
values = self.to_tuple(instance, self.fields)
if values not in seen:
seen.add(values)
return list(seen)
from .text_utils import nested_tuple_to_string
class SplitByValue(MultiStreamOperator):
fields: List[str] = field(default_factory=list)
def process(self, multi_stream: MultiStream) -> MultiStream:
uniques = Unique(fields=self.fields)(multi_stream)
result = {}
for stream_name, stream in multi_stream.items():
stream_unique_values = uniques[stream_name]
for unique_values in stream_unique_values:
filtering_values = {field: value for field, value in zip(self.fields, unique_values)}
filtered_streams = FilterByValues(values=filtering_values)._process_single_stream(stream)
filtered_stream_name = stream_name + "_" + nested_tuple_to_string(unique_values)
result[filtered_stream_name] = filtered_streams
return MultiStream(result)
class ApplyStreamOperatorsField(SingleStreamOperator, ArtifactFetcherMixin):
field: str
reversed: bool = False
def process(self, stream: Stream, stream_name: str = None) -> Generator:
first_instance = stream.peak()
operators = first_instance.get(self.field, [])
if isinstance(operators, str):
operators = [operators]
if self.reversed:
operators = list(reversed(operators))
for operator_name in operators:
operator = self.get_artifact(operator_name)
assert isinstance(
operator, SingleStreamOperator
), f"Operator {operator_name} must be a SingleStreamOperator"
stream = operator.process(stream)
yield from stream
class AddFieldNamePrefix(StreamInstanceOperator):
prefix_dict: Dict[str, str]
def prepare(self):
return super().prepare()
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return {self.prefix_dict[stream_name] + key: value for key, value in instance.items()}
class MergeStreams(MultiStreamOperator):
new_stream_name: str = "all"
add_origin_stream_name: bool = True
origin_stream_name_field_name: str = "origin"
def merge(self, multi_stream):
for stream_name, stream in multi_stream.items():
for instance in stream:
if self.add_origin_stream_name:
instance[self.origin_stream_name_field_name] = stream_name
yield instance
def process(self, multi_stream: MultiStream) -> MultiStream:
return MultiStream({self.new_stream_name: Stream(self.merge, gen_kwargs={"multi_stream": multi_stream})})