|
from typing import Union |
|
|
|
from .card import TaskCard |
|
from .collections import ItemPicker, RandomPicker |
|
from .operator import SourceOperator |
|
from .recipe import Recipe, SequentialRecipe |
|
from .schema import ToUnitxtGroup |
|
from .splitters import RandomSampler, SliceSplit, SpreadSplit |
|
from .stream import MultiStream |
|
from .templates import RenderTemplatedICL |
|
|
|
|
|
class CommonRecipe(Recipe, SourceOperator): |
|
card: TaskCard |
|
demos_pool_name: str = "demos_pool" |
|
demos_pool_size: int = None |
|
demos_field: str = "demos" |
|
num_demos: int = None |
|
sampler_type: str = "random" |
|
instruction_item: Union[str, int] = None |
|
template_item: Union[str, int] = None |
|
|
|
def verify(self): |
|
self.sampler_type in ["random"] |
|
|
|
def prepare(self): |
|
steps = [ |
|
self.card.loader, |
|
] |
|
|
|
if self.card.preprocess_steps is not None: |
|
steps.extend(self.card.preprocess_steps) |
|
|
|
steps.append(self.card.task) |
|
|
|
if self.demos_pool_size is not None: |
|
steps.append( |
|
SliceSplit( |
|
slices={ |
|
self.demos_pool_name: f"train[:{int(self.demos_pool_size)}]", |
|
"train": f"train[{int(self.demos_pool_size)}:]", |
|
"validation": "validation", |
|
"test": "test", |
|
} |
|
) |
|
) |
|
|
|
if self.num_demos is not None: |
|
if self.sampler_type == "random": |
|
sampler = RandomSampler(sample_size=int(self.num_demos)) |
|
|
|
steps.append( |
|
SpreadSplit( |
|
source_stream=self.demos_pool_name, |
|
target_field=self.demos_field, |
|
sampler=sampler, |
|
) |
|
) |
|
|
|
if self.card.instructions is not None: |
|
if self.instruction_item is None: |
|
picker = ItemPicker(self.instruction_item) |
|
else: |
|
picker = RandomPicker() |
|
instruction = picker(self.card.instructions) |
|
else: |
|
instruction = None |
|
|
|
if self.card.templates is not None: |
|
if self.template_item is None: |
|
picker = ItemPicker(self.template_item) |
|
else: |
|
picker = RandomPicker() |
|
template = picker(self.card.templates) |
|
else: |
|
template = None |
|
|
|
render = RenderTemplatedICL( |
|
instruction=instruction, |
|
template=template, |
|
demos_field=self.demos_field, |
|
) |
|
|
|
steps.append(render) |
|
|
|
postprocessors = render.get_postprocessors() |
|
|
|
steps.append( |
|
ToUnitxtGroup( |
|
group="unitxt", |
|
metrics=self.card.task.metrics, |
|
postprocessors=postprocessors, |
|
) |
|
) |
|
|
|
self.recipe = SequentialRecipe(steps) |
|
|
|
def process(self) -> MultiStream: |
|
return self.recipe() |
|
|