|
"""This section describes unitxt operators. |
|
|
|
Operators: Building Blocks of Unitxt Processing Pipelines |
|
============================================================== |
|
|
|
Within the Unitxt framework, operators serve as the foundational elements used to assemble processing pipelines. |
|
Each operator is designed to perform specific manipulations on dictionary structures within a stream. |
|
These operators are callable entities that receive a MultiStream as input. |
|
The output is a MultiStream, augmented with the operator's manipulations, which are then systematically applied to each instance in the stream when pulled. |
|
|
|
Creating Custom Operators |
|
------------------------------- |
|
To enhance the functionality of Unitxt, users are encouraged to develop custom operators. |
|
This can be achieved by inheriting from any of the existing operators listed below or from one of the fundamental :class:`base operators<unitxt.operator>`. |
|
The primary task in any operator development is to implement the `process` function, which defines the unique manipulations the operator will perform. |
|
|
|
General or Specelized Operators |
|
-------------------------------- |
|
Some operators are specielized in specific task such as: |
|
|
|
- :class:`loaders<unitxt.loaders>` for loading data. |
|
- :class:`splitters<unitxt.splitters>` for fixing data splits. |
|
|
|
Other specelized operators are used by unitxt internally: |
|
|
|
- :class:`templates<unitxt.templates>` for verbalizing data examples. |
|
- :class:`formats<unitxt.formats>` for preparing data for models. |
|
|
|
The rest of this section is dedicated for general operators. |
|
|
|
General Operaotrs List: |
|
------------------------ |
|
""" |
|
import collections |
|
import importlib |
|
import operator |
|
import os |
|
import uuid |
|
import zipfile |
|
from abc import abstractmethod |
|
from collections import Counter |
|
from copy import deepcopy |
|
from dataclasses import field |
|
from importlib import import_module |
|
from itertools import zip_longest |
|
from random import Random |
|
from typing import ( |
|
Any, |
|
Callable, |
|
Dict, |
|
Generator, |
|
Iterable, |
|
List, |
|
Optional, |
|
Tuple, |
|
Union, |
|
) |
|
|
|
import requests |
|
|
|
from .artifact import Artifact, fetch_artifact |
|
from .dataclass import NonPositionalField, OptionalField |
|
from .dict_utils import dict_delete, dict_get, dict_set, is_subpath |
|
from .operator import ( |
|
MultiStream, |
|
MultiStreamOperator, |
|
PagedStreamOperator, |
|
SequentialOperator, |
|
SideEffectOperator, |
|
SingleStreamOperator, |
|
SingleStreamReducer, |
|
SourceOperator, |
|
StreamingOperator, |
|
StreamInitializerOperator, |
|
StreamInstanceOperator, |
|
) |
|
from .random_utils import new_random_generator |
|
from .settings_utils import get_settings |
|
from .stream import Stream |
|
from .text_utils import nested_tuple_to_string |
|
from .type_utils import isoftype |
|
from .utils import flatten_dict |
|
|
|
settings = get_settings() |
|
|
|
|
|
class FromIterables(StreamInitializerOperator): |
|
"""Creates a MultiStream from a dict of named iterables. |
|
|
|
Example: |
|
operator = FromIterables() |
|
ms = operator.process(iterables) |
|
|
|
""" |
|
|
|
def process(self, iterables: Dict[str, Iterable]) -> MultiStream: |
|
return MultiStream.from_iterables(iterables) |
|
|
|
|
|
class IterableSource(SourceOperator): |
|
"""Creates a MultiStream from a dict of named iterables. |
|
|
|
It is a callable. |
|
|
|
Args: |
|
iterables (Dict[str, Iterable]): A dictionary mapping stream names to iterables. |
|
|
|
Example: |
|
operator = IterableSource(input_dict) |
|
ms = operator() |
|
|
|
""" |
|
|
|
iterables: Dict[str, Iterable] |
|
|
|
def process(self) -> MultiStream: |
|
return MultiStream.from_iterables(self.iterables) |
|
|
|
|
|
class MapInstanceValues(StreamInstanceOperator): |
|
"""A class used to map instance values into other values. |
|
|
|
This class is a type of StreamInstanceOperator, |
|
it maps values of instances in a stream using predefined mappers. |
|
|
|
Attributes: |
|
mappers (Dict[str, Dict[str, str]]): The mappers to use for mapping instance values. |
|
Keys are the names of the fields to be mapped, and values are dictionaries |
|
that define the mapping from old values to new values. |
|
strict (bool): If True, the mapping is applied strictly. That means if a value |
|
does not exist in the mapper, it will raise a KeyError. If False, values |
|
that are not present in the mapper are kept as they are. |
|
process_every_value (bool): If True, all fields to be mapped should be lists, and the mapping |
|
is to be applied to their individual elements. If False, mapping is only applied to a field |
|
containing a single value. |
|
|
|
Examples: |
|
MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}) |
|
replaces '1' with 'hi' and '2' with 'bye' in field 'a' in all instances of all streams: |
|
instance {"a":"1", "b": 2} becomes {"a":"hi", "b": 2}. |
|
|
|
MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, process_every_element=True) |
|
Assuming field 'a' is a list of values, potentially including "1"-s and "2"-s, this replaces |
|
each such "1" with "hi" and "2" -- with "bye" in all instances of all streams: |
|
instance {"a": ["1", "2"], "b": 2} becomes {"a": ["hi", "bye"], "b": 2}. |
|
|
|
MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, strict=True) |
|
To ensure that all values of field 'a' are mapped in every instance, use strict=True. |
|
Input instance {"a":"3", "b": 2} will raise an exception per the above call, |
|
because "3" is not a key in the mapper of "a". |
|
|
|
MapInstanceValues(mappers={"a": {str([1,2,3,4]): 'All', str([]): 'None'}}, strict=True) |
|
replaces a list [1,2,3,4] with the string 'All' and an empty list by string 'None'. |
|
Note that mapped values are defined by their string representation, so mapped values |
|
must be converted to strings. |
|
""" |
|
|
|
mappers: Dict[str, Dict[str, str]] |
|
strict: bool = True |
|
use_query: bool = False |
|
process_every_value: bool = False |
|
|
|
def verify(self): |
|
|
|
for key, mapper in self.mappers.items(): |
|
assert isinstance( |
|
mapper, dict |
|
), f"Mapper for given field {key} should be a dict, got {type(mapper)}" |
|
for k in mapper.keys(): |
|
assert isinstance( |
|
k, str |
|
), f'Key "{k}" in mapper for field "{key}" should be a string, got {type(k)}' |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
for key, mapper in self.mappers.items(): |
|
value = dict_get(instance, key, use_dpath=self.use_query) |
|
if value is not None: |
|
if (self.process_every_value is True) and (not isinstance(value, list)): |
|
raise ValueError( |
|
f"'process_every_field' == True is allowed only when all fields which have mappers, i.e., {list(self.mappers.keys())} are lists. Instace = {instance}" |
|
) |
|
if isinstance(value, list) and self.process_every_value: |
|
for i, val in enumerate(value): |
|
value[i] = self.get_mapped_value(instance, key, mapper, val) |
|
else: |
|
value = self.get_mapped_value(instance, key, mapper, value) |
|
dict_set( |
|
instance, |
|
key, |
|
value, |
|
use_dpath=self.use_query, |
|
) |
|
|
|
return instance |
|
|
|
def get_mapped_value(self, instance, key, mapper, val): |
|
val_as_str = str(val) |
|
if self.strict and (val_as_str not in mapper): |
|
raise KeyError( |
|
f"value '{val}' in instance '{instance}' is not found in mapper '{mapper}', associated with field '{key}'." |
|
) |
|
|
|
if val_as_str in mapper: |
|
return deepcopy(mapper[val_as_str]) |
|
return val |
|
|
|
|
|
class FlattenInstances(StreamInstanceOperator): |
|
"""Flattens each instance in a stream, making nested dictionary entries into top-level entries. |
|
|
|
Args: |
|
parent_key (str): A prefix to use for the flattened keys. Defaults to an empty string. |
|
sep (str): The separator to use when concatenating nested keys. Defaults to "_". |
|
""" |
|
|
|
parent_key: str = "" |
|
sep: str = "_" |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
return flatten_dict(instance, parent_key=self.parent_key, sep=self.sep) |
|
|
|
|
|
class AddFields(StreamInstanceOperator): |
|
"""Adds specified fields to each instance in a given stream or all streams (default) If fields exist, updates them. |
|
|
|
Args: |
|
fields (Dict[str, object]): The fields to add to each instance. |
|
use_query (bool) : Use '/' to access inner fields |
|
use_deepcopy (bool) : Deep copy the input value to avoid later modifications |
|
|
|
Examples: |
|
# Add a 'classes' field with a value of a list "positive" and "negative" to all streams |
|
AddFields(fields={"classes": ["positive","negatives"]}) |
|
|
|
# Add a 'start' field under the 'span' field with a value of 0 to all streams |
|
AddFields(fields={"span/start": 0} |
|
|
|
# Add a 'classes' field with a value of a list "positive" and "negative" to 'train' stream |
|
AddFields(fields={"classes": ["positive","negatives"], apply_to_stream=["train"]}) |
|
|
|
# Add a 'classes' field on a given list, prevent modification of original list |
|
# from changing the instance. |
|
AddFields(fields={"classes": alist}), use_deepcopy=True) |
|
# if now alist is modified, still the instances remain intact. |
|
""" |
|
|
|
fields: Dict[str, object] |
|
use_query: bool = False |
|
use_deepcopy: bool = False |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
if self.use_query: |
|
for key, value in self.fields.items(): |
|
if self.use_deepcopy: |
|
value = deepcopy(value) |
|
dict_set(instance, key, value, use_dpath=self.use_query) |
|
else: |
|
if self.use_deepcopy: |
|
self.fields = deepcopy(self.fields) |
|
instance.update(self.fields) |
|
return instance |
|
|
|
|
|
class RemoveFields(StreamInstanceOperator): |
|
"""Remove specified fields from each instance in a stream. |
|
|
|
Args: |
|
fields (List[str]): The fields to remove from each instance. |
|
""" |
|
|
|
fields: List[str] |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
for field_name in self.fields: |
|
del instance[field_name] |
|
return instance |
|
|
|
|
|
class FieldOperator(StreamInstanceOperator): |
|
"""A general stream instance operator that processes the values of a field (or multiple ones). |
|
|
|
Args: |
|
field (Optional[str]): The field to process, if only a single one is passed. Defaults to None |
|
to_field (Optional[str]): Field name to save result into, if only one field is processed, if None is passed the |
|
operation would happen in-place and its result would replace the value of "field". Defaults to None |
|
field_to_field (Optional[Union[List[List[str]], Dict[str, str]]]): Mapping from names of fields to process, |
|
to names of fields to save the results into. Inner List, if used, should be of length 2. |
|
A field is processed by feeding its value into method 'process_value' and storing the result in to_field that |
|
is mapped to the field. |
|
When the type of argument 'field_to_field' is List, the order by which the fields are processed is their order |
|
in the (outer) List. But when the type of argument 'field_to_field' is Dict, there is no uniquely determined |
|
order. The end result might depend on that order if either (1) two different fields are mapped to the same |
|
to_field, or (2) a field shows both as a key and as a value in different mappings. |
|
The operator throws an AssertionError in either of these cases. |
|
field_to_field defaults to None |
|
process_every_value (bool): Processes the values in a list instead of the list as a value, similar to *var. Defaults to False |
|
use_query (bool): Whether to use dpath style queries. Defaults to False. |
|
|
|
Note: if 'field' and 'to_field' (or both members of a pair in 'field_to_field') are equal (or share a common |
|
prefix if 'use_query'=True), then the result of the operation is saved within 'field' |
|
""" |
|
|
|
field: Optional[str] = None |
|
to_field: Optional[str] = None |
|
field_to_field: Optional[Union[List[List[str]], Dict[str, str]]] = None |
|
process_every_value: bool = False |
|
use_query: bool = False |
|
get_default: Any = None |
|
not_exist_ok: bool = False |
|
|
|
def verify(self): |
|
super().verify() |
|
|
|
assert ( |
|
self.field is not None or self.field_to_field is not None |
|
), "Must supply a field to work on" |
|
assert ( |
|
self.to_field is None or self.field_to_field is None |
|
), f"Can not apply operator to create both on {self.to_field} and on the mapping from fields to fields {self.field_to_field}" |
|
assert ( |
|
self.field is None or self.field_to_field is None |
|
), f"Can not apply operator both on {self.field} and on the from fields in the mapping {self.field_to_field}" |
|
assert self._field_to_field, f"the from and to fields must be defined or implied from the other inputs got: {self._field_to_field}" |
|
assert ( |
|
len(self._field_to_field) > 0 |
|
), f"'input argument 'field_to_field' should convey at least one field to process. Got {self.field_to_field}" |
|
|
|
if self.field_to_field is None: |
|
return |
|
|
|
if isoftype(self.field_to_field, List[List[str]]) or isoftype( |
|
self.field_to_field, List[Tuple[str, str]] |
|
): |
|
for pair in self._field_to_field: |
|
assert ( |
|
len(pair) == 2 |
|
), f"when 'field_to_field' is defined as a list of lists, the inner lists should all be of length 2. {self.field_to_field}" |
|
|
|
return |
|
if isoftype(self.field_to_field, Dict[str, str]): |
|
if len(self.field_to_field) < 2: |
|
return |
|
for ff, tt in self.field_to_field.items(): |
|
for f, t in self.field_to_field.items(): |
|
if f == ff: |
|
continue |
|
assert ( |
|
t != ff |
|
), f"In input argument 'field_to_field': {self.field_to_field}, field {f} is mapped to field {t}, while the latter is mapped to {tt}. Whether {f} or {t} is processed first might impact end result." |
|
assert ( |
|
tt != t |
|
), f"In input argument 'field_to_field': {self.field_to_field}, two different fields: {ff} and {f} are mapped to field {tt}. Whether {ff} or {f} is processed last might impact end result." |
|
return |
|
raise ValueError( |
|
"Input argument 'field_to_field': {self.field_to_field} is neither of type List{List[str]] nor of type Dict[str, str]." |
|
) |
|
|
|
@abstractmethod |
|
def process_value(self, value: Any) -> Any: |
|
pass |
|
|
|
def prepare(self): |
|
super().prepare() |
|
|
|
|
|
assert ( |
|
(self.field is None) != (self.field_to_field is None) |
|
), "Must uniquely define the field to work on, through exactly one of either 'field' or 'field_to_field'" |
|
assert ( |
|
self.to_field is None or self.field_to_field is None |
|
), f"Can not apply operator to create both {self.to_field} and the to fields in the mapping {self.field_to_field}" |
|
|
|
if self.field_to_field is None: |
|
self._field_to_field = [ |
|
(self.field, self.to_field if self.to_field is not None else self.field) |
|
] |
|
else: |
|
self._field_to_field = ( |
|
list(self.field_to_field.items()) |
|
if isinstance(self.field_to_field, dict) |
|
else self.field_to_field |
|
) |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
for from_field, to_field in self._field_to_field: |
|
try: |
|
old_value = dict_get( |
|
instance, |
|
from_field, |
|
use_dpath=self.use_query, |
|
default=self.get_default, |
|
not_exist_ok=self.not_exist_ok, |
|
) |
|
except Exception as e: |
|
raise ValueError( |
|
f"Failed to get '{from_field}' from {instance} due to : {e}" |
|
) from e |
|
try: |
|
if self.process_every_value: |
|
new_value = [self.process_value(value) for value in old_value] |
|
else: |
|
new_value = self.process_value(old_value) |
|
except Exception as e: |
|
raise ValueError( |
|
f"Failed to process '{from_field}' from {instance} due to : {e}" |
|
) from e |
|
if is_subpath(from_field, to_field) or is_subpath(to_field, from_field): |
|
dict_delete(instance, from_field) |
|
dict_set( |
|
instance, |
|
to_field, |
|
new_value, |
|
use_dpath=self.use_query, |
|
not_exist_ok=True, |
|
) |
|
return instance |
|
|
|
|
|
class RenameFields(FieldOperator): |
|
"""Renames fields. |
|
|
|
Move value from one field to another, potentially, if 'use_query'=True, from one branch into another. |
|
Remove the from field, potentially part of it in case of use_query. |
|
|
|
Examples: |
|
RenameFields(field_to_field={"b": "c"}) |
|
will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "c": 2}, {"a": 2, "c": 3}] |
|
|
|
RenameFields(field_to_field={"b": "c/d"}, use_query=True) |
|
will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "c": {"d": 2}}, {"a": 2, "c": {"d": 3}}] |
|
|
|
RenameFields(field_to_field={"b": "b/d"}, use_query=True) |
|
will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "b": {"d": 2}}, {"a": 2, "b": {"d": 3}}] |
|
|
|
RenameFields(field_to_field={"b/c/e": "b/d"}, use_query=True) |
|
will change inputs [{"a": 1, "b": {"c": {"e": 2, "f": 20}}}] to [{"a": 1, "b": {"c": {"f": 20}, "d": 2}}] |
|
|
|
""" |
|
|
|
def process_value(self, value: Any) -> Any: |
|
return value |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
res = super().process(instance=instance, stream_name=stream_name) |
|
for from_field, to_field in self._field_to_field: |
|
if (not is_subpath(from_field, to_field)) and ( |
|
not is_subpath(to_field, from_field) |
|
): |
|
dict_delete(res, from_field) |
|
if self.use_query: |
|
from_field_components = list( |
|
os.path.normpath(from_field).split(os.path.sep) |
|
) |
|
while len(from_field_components) > 1: |
|
from_field_components.pop() |
|
parent = dict_get(res, os.path.sep.join(from_field_components)) |
|
if isinstance(parent, dict) and not parent: |
|
dict_delete(res, os.path.sep.join(from_field_components)) |
|
else: |
|
break |
|
|
|
return res |
|
|
|
|
|
class AddConstant(FieldOperator): |
|
"""Adds a constant, being argument 'add', to the processed value. |
|
|
|
Args: |
|
add: the constant to add. |
|
""" |
|
|
|
add: Any |
|
|
|
def process_value(self, value: Any) -> Any: |
|
return self.add + value |
|
|
|
|
|
class Augmentor(StreamInstanceOperator): |
|
"""A stream operator that augments the values of either the task input fields before rendering with the template, or the input passed to the model after rendering of the template. |
|
|
|
Args: |
|
augment_model_input: Whether to augment the input to the model. |
|
augment_task_input: Whether to augment the task input fields. The specific fields are defined in the FormTask operator. |
|
|
|
""" |
|
|
|
augment_task_input: bool = False |
|
augment_model_input: bool = False |
|
|
|
def verify(self): |
|
assert not ( |
|
self.augment_task_input and self.augment_model_input |
|
), "Augmentor must set either 'augment_task_input' and 'augment_model_input' but not both" |
|
assert ( |
|
self.augment_task_input or self.augment_model_input |
|
), "Augmentor must set either 'augment_task_input' or 'augment_model_input'" |
|
|
|
super().verify() |
|
|
|
@abstractmethod |
|
def process_value(self, value: Any) -> Any: |
|
pass |
|
|
|
def prepare(self): |
|
pass |
|
|
|
def set_task_input_fields(self, task_input_fields: List[str]): |
|
self._task_input_fields = [ |
|
"inputs/" + task_input_field for task_input_field in task_input_fields |
|
] |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
if self.augment_task_input: |
|
assert ( |
|
len(self._task_input_fields) > 0 |
|
), "No augmentable input fields were defined in FormTask, and augmentation was requested. Specify the fields to augment in 'argumentable_inputs' attribute of the FormTask." |
|
fields = self._task_input_fields |
|
assert not self.augment_model_input |
|
|
|
if self.augment_model_input: |
|
fields = ["source"] |
|
assert not self.augment_task_input |
|
|
|
for field_name in fields: |
|
try: |
|
old_value = dict_get( |
|
instance, |
|
field_name, |
|
use_dpath=True, |
|
default="", |
|
not_exist_ok=False, |
|
) |
|
except ValueError as e: |
|
raise TypeError(f"Failed to get {field_name} from {instance}") from e |
|
|
|
try: |
|
new_value = self.process_value(old_value) |
|
except Exception as e: |
|
raise RuntimeError( |
|
f"Error augmenting value '{old_value}' from '{field_name}' in instance: {instance}" |
|
) from e |
|
dict_set(instance, field_name, new_value, use_dpath=True, not_exist_ok=True) |
|
return instance |
|
|
|
|
|
class NullAugmentor(Augmentor): |
|
"""Does not change the input string.""" |
|
|
|
def verify(self): |
|
pass |
|
|
|
def process_value(self, value: Any) -> Any: |
|
return value |
|
|
|
|
|
class AugmentWhitespace(Augmentor): |
|
"""Augments the inputs by replacing existing whitespaces with other whitespaces. |
|
|
|
Currently, each whitespace is replaced by a random choice of 1-3 whitespace characters (space, tab, newline). |
|
""" |
|
|
|
def process_value(self, value: Any) -> Any: |
|
import re |
|
|
|
words = re.split(r"(\s+)", value) |
|
new_value = "" |
|
|
|
random_generator = new_random_generator(sub_seed=value) |
|
for word in words: |
|
if word.isspace(): |
|
new_value += random_generator.choice( |
|
["\n", "\t", " "] |
|
) * random_generator.randint(1, 3) |
|
else: |
|
new_value += word |
|
return new_value |
|
|
|
|
|
class AugmentPrefixSuffix(Augmentor): |
|
r"""Augments the input by prepending and appending to it a randomly selected (typically, whitespace) patterns. |
|
|
|
Args: |
|
prefixes, suffixes (list or dict) : the potential (typically, whitespace) patterns to select from. |
|
The dictionary version allows to specify relative weights of the different patterns. |
|
prefix_len, suffix_len (positive int) : The added prefix or suffix will be of length |
|
prefix_len of suffix_len, respectively, repetitions of the randomly selected patterns. |
|
remove_existing_whitespaces : allows to first clean any existing leading and trailing whitespaces. |
|
The strings made of repetitions of the selected pattern(s) are then prepended and/or appended to the potentially |
|
trimmed input. |
|
If only one of prefixes/suffixes is needed, set the other to None. |
|
|
|
Examples: |
|
To prepend the input with a prefix made of 4 '\n'-s or '\t'-s, employ |
|
AugmentPrefixSuffix(augment_model_input=True, prefixes=['\n','\t'], prefix_len=4, suffixes = None) |
|
To append the input with a suffix made of 3 '\n'-s or '\t'-s, with triple '\n' suffixes |
|
being preferred over triple '\t', at 2:1 ratio, employ |
|
AugmentPrefixSuffix(augment_model_input=True, suffixes={'\n':2,'\t':1}, suffix_len=3, prefixes = None) |
|
which will append '\n'-s twice as often as '\t'-s. |
|
|
|
""" |
|
|
|
prefixes: Optional[Union[List[str], Dict[str, int]]] = { |
|
" ": 20, |
|
"\\t": 10, |
|
"\\n": 40, |
|
"": 30, |
|
} |
|
prefix_len: Optional[int] = 3 |
|
suffixes: Optional[Union[List[str], Dict[str, int]]] = { |
|
" ": 20, |
|
"\\t": 10, |
|
"\\n": 40, |
|
"": 30, |
|
} |
|
suffix_len: Optional[int] = 3 |
|
remove_existing_whitespaces: Optional[bool] = False |
|
|
|
def verify(self): |
|
assert ( |
|
self.prefixes or self.suffixes |
|
), "At least one of prefixes/suffixes should be not None." |
|
for arg, arg_name in zip( |
|
[self.prefixes, self.suffixes], ["prefixes", "suffixes"] |
|
): |
|
assert ( |
|
arg is None or isoftype(arg, List[str]) or isoftype(arg, Dict[str, int]) |
|
), f"Argument {arg_name} should be either None or a list of strings or a dictionary str->int. {arg} is none of the above." |
|
assert ( |
|
self.prefix_len > 0 |
|
), f"prefix_len must be positive, got {self.prefix_len}" |
|
assert ( |
|
self.suffix_len > 0 |
|
), f"suffix_len must be positive, got {self.suffix_len}" |
|
super().verify() |
|
|
|
def _calculate_distributions(self, prefs_or_suffs): |
|
if prefs_or_suffs is None: |
|
return None, None |
|
patterns = ( |
|
prefs_or_suffs |
|
if isinstance(prefs_or_suffs, list) |
|
else [k for k, v in prefs_or_suffs.items()] |
|
) |
|
total_weight = ( |
|
len(patterns) |
|
if isinstance(prefs_or_suffs, list) |
|
else sum([v for k, v in prefs_or_suffs.items()]) |
|
) |
|
weights = ( |
|
[1.0 / total_weight] * len(patterns) |
|
if isinstance(prefs_or_suffs, list) |
|
else [float(prefs_or_suffs[p]) / total_weight for p in patterns] |
|
) |
|
return patterns, weights |
|
|
|
def prepare(self): |
|
|
|
self.verify() |
|
self._prefix_pattern_distribution = {"length": self.prefix_len} |
|
self._suffix_pattern_distribution = {"length": self.suffix_len} |
|
|
|
( |
|
self._prefix_pattern_distribution["patterns"], |
|
self._prefix_pattern_distribution["weights"], |
|
) = self._calculate_distributions(self.prefixes) |
|
( |
|
self._suffix_pattern_distribution["patterns"], |
|
self._suffix_pattern_distribution["weights"], |
|
) = self._calculate_distributions(self.suffixes) |
|
super().prepare() |
|
|
|
def _get_random_pattern( |
|
self, pattern_distribution, random_generator: Random |
|
) -> str: |
|
string_to_add = "" |
|
if pattern_distribution["patterns"]: |
|
string_to_add = "".join( |
|
random_generator.choices( |
|
pattern_distribution["patterns"], |
|
pattern_distribution["weights"], |
|
k=pattern_distribution["length"], |
|
) |
|
) |
|
return string_to_add |
|
|
|
def process_value(self, value: Any) -> Any: |
|
assert value is not None, "input value should not be None" |
|
new_value = str(value) |
|
if self.remove_existing_whitespaces: |
|
new_value = new_value.strip() |
|
random_generator = new_random_generator(sub_seed=value) |
|
prefix = self._get_random_pattern( |
|
self._prefix_pattern_distribution, random_generator |
|
) |
|
suffix = self._get_random_pattern( |
|
self._suffix_pattern_distribution, random_generator |
|
) |
|
return prefix + new_value + suffix |
|
|
|
|
|
class ShuffleFieldValues(FieldOperator): |
|
"""Shuffles a list of values found in a field.""" |
|
|
|
def process_value(self, value: Any) -> Any: |
|
res = list(value) |
|
random_generator = new_random_generator(sub_seed=res) |
|
random_generator.shuffle(res) |
|
return res |
|
|
|
|
|
class JoinStr(FieldOperator): |
|
"""Joins a list of strings (contents of a field), similar to str.join(). |
|
|
|
Args: |
|
separator (str): text to put between values |
|
""" |
|
|
|
separator: str = "," |
|
|
|
def process_value(self, value: Any) -> Any: |
|
return self.separator.join(str(x) for x in value) |
|
|
|
|
|
class Apply(StreamInstanceOperator): |
|
"""A class used to apply a python function and store the result in a field. |
|
|
|
Args: |
|
function (str): name of function. |
|
to_field (str): the field to store the result |
|
additional arguments are field names passed to the function |
|
|
|
Examples: |
|
Store in field "b" the uppercase string of the value in field "a" |
|
Apply("a", function=str.upper, to_field="b") |
|
|
|
Dump the json representation of field "t" and store back in the same field. |
|
Apply("t", function=json.dumps, to_field="t") |
|
|
|
Set the time in a field 'b'. |
|
Apply(function=time.time, to_field="b") |
|
|
|
""" |
|
|
|
__allow_unexpected_arguments__ = True |
|
function: Callable = NonPositionalField(required=True) |
|
to_field: str = NonPositionalField(required=True) |
|
|
|
def function_to_str(self, function: Callable) -> str: |
|
parts = [] |
|
|
|
if hasattr(function, "__module__"): |
|
parts.append(function.__module__) |
|
if hasattr(function, "__qualname__"): |
|
parts.append(function.__qualname__) |
|
else: |
|
parts.append(function.__name__) |
|
|
|
return ".".join(parts) |
|
|
|
def str_to_function(self, function_str: str) -> Callable: |
|
splitted = function_str.split(".", 1) |
|
if len(splitted) == 1: |
|
return __builtins__[splitted[0]] |
|
|
|
module_name, function_name = splitted |
|
if module_name in __builtins__: |
|
obj = __builtins__[module_name] |
|
elif module_name in globals(): |
|
obj = globals()[module_name] |
|
else: |
|
obj = importlib.import_module(module_name) |
|
for part in function_name.split("."): |
|
obj = getattr(obj, part) |
|
return obj |
|
|
|
def prepare(self): |
|
super().prepare() |
|
if isinstance(self.function, str): |
|
self.function = self.str_to_function(self.function) |
|
self._init_dict["function"] = self.function_to_str(self.function) |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
argv = [instance[arg] for arg in self._argv] |
|
kwargs = {key: instance[val] for key, val in self._kwargs} |
|
|
|
result = self.function(*argv, **kwargs) |
|
|
|
instance[self.to_field] = result |
|
return instance |
|
|
|
|
|
class ListFieldValues(StreamInstanceOperator): |
|
"""Concatenates values of multiple fields into a list, and assigns it to a new field.""" |
|
|
|
fields: List[str] |
|
to_field: str |
|
use_query: bool = False |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
values = [] |
|
for field_name in self.fields: |
|
values.append(dict_get(instance, field_name, use_dpath=self.use_query)) |
|
instance[self.to_field] = values |
|
return instance |
|
|
|
|
|
class ZipFieldValues(StreamInstanceOperator): |
|
"""Zips values of multiple fields in a given instance, similar to list(zip(*fields)). |
|
|
|
The value in each of the specified 'fields' is assumed to be a list. The lists from all 'fields' |
|
are zipped, and stored into 'to_field'. |
|
|
|
If 'longest'=False, the length of the zipped result is determined by the shortest input value. |
|
If 'longest'=False, the length of the zipped result is determined by the longest input, padding shorter |
|
inputs with None -s. |
|
|
|
""" |
|
|
|
fields: List[str] |
|
to_field: str |
|
longest: bool = False |
|
use_query: bool = False |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
values = [] |
|
for field_name in self.fields: |
|
values.append(dict_get(instance, field_name, use_dpath=self.use_query)) |
|
if self.longest: |
|
zipped = zip_longest(*values) |
|
else: |
|
zipped = zip(*values) |
|
instance[self.to_field] = list(zipped) |
|
return instance |
|
|
|
|
|
class IndexOf(StreamInstanceOperator): |
|
"""For a given instance, finds the offset of value of field 'index_of', within the value of field 'search_in'.""" |
|
|
|
search_in: str |
|
index_of: str |
|
to_field: str |
|
use_query: bool = False |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
lst = dict_get(instance, self.search_in, use_dpath=self.use_query) |
|
item = dict_get(instance, self.index_of, use_dpath=self.use_query) |
|
instance[self.to_field] = lst.index(item) |
|
return instance |
|
|
|
|
|
class TakeByField(StreamInstanceOperator): |
|
"""From field 'field' of a given instance, select the member indexed by field 'index', and store to field 'to_field'.""" |
|
|
|
field: str |
|
index: str |
|
to_field: str = None |
|
use_query: bool = False |
|
|
|
def prepare(self): |
|
if self.to_field is None: |
|
self.to_field = self.field |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
value = dict_get(instance, self.field, use_dpath=self.use_query) |
|
index_value = dict_get(instance, self.index, use_dpath=self.use_query) |
|
instance[self.to_field] = value[index_value] |
|
return instance |
|
|
|
|
|
class Perturbate(FieldOperator): |
|
"""Slightly perturbates the contents of 'field'. Could be Handy for imitating prediction from given target. |
|
|
|
When task was classification, argument 'select_from' can be used to list the other potential classes, as a |
|
relevant perturbation |
|
""" |
|
|
|
select_from: List[Any] = [] |
|
percentage_to_perturbate: int = 1 |
|
|
|
def verify(self): |
|
assert ( |
|
0 <= self.percentage_to_perturbate and self.percentage_to_perturbate <= 100 |
|
), f"'percentage_to_perturbate' should be in the range 0..100. Received {self.percentage_to_perturbate}" |
|
|
|
def prepare(self): |
|
super().prepare() |
|
self.random_generator = new_random_generator(sub_seed="CopyWithPerturbation") |
|
|
|
def process_value(self, value: Any) -> Any: |
|
perturbate = ( |
|
self.random_generator.randint(1, 100) <= self.percentage_to_perturbate |
|
) |
|
if not perturbate: |
|
return value |
|
|
|
if value in self.select_from: |
|
|
|
if self.random_generator.random() < 0.8: |
|
return self.random_generator.choice(self.select_from) |
|
|
|
if isinstance(value, float): |
|
return value * (0.5 + self.random_generator.random()) |
|
|
|
if isinstance(value, int): |
|
perturb = 1 if self.random_generator.random() < 0.5 else -1 |
|
return value + perturb |
|
|
|
if isinstance(value, str): |
|
if len(value) < 2: |
|
|
|
return value |
|
|
|
prefix_len = self.random_generator.randint(1, len(value) - 1) |
|
return value[:prefix_len] + value[prefix_len + 1 :] |
|
|
|
|
|
return value |
|
|
|
|
|
class CopyFields(FieldOperator): |
|
"""Copies values from specified fields to specified fields. |
|
|
|
Args (of parent class): |
|
field_to_field (Union[List[List], Dict[str, str]]): A list of lists, where each sublist contains the source field and the destination field, or a dictionary mapping source fields to destination fields. |
|
use_query (bool): Whether to use dpath for accessing fields. Defaults to False. |
|
|
|
Examples: |
|
An input instance {"a": 2, "b": 3}, when processed by |
|
CopyField(field_to_field={"a": "b"} |
|
would yield {"a": 2, "b": 2}, and when processed by |
|
CopyField(field_to_field={"a": "c"} would yield |
|
{"a": 2, "b": 3, "c": 2} |
|
|
|
with use_query=True, we can also copy inside the field: |
|
CopyFields(field_to_field={"a/0": "a"}, use_query=True) |
|
would process instance {"a": [1, 3]} into {"a": 1} |
|
|
|
|
|
""" |
|
|
|
def process_value(self, value: Any) -> Any: |
|
return value |
|
|
|
|
|
class AddID(StreamInstanceOperator): |
|
"""Stores a unique id value in the designated 'id_field_name' field of the given instance.""" |
|
|
|
id_field_name: str = "id" |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
instance[self.id_field_name] = str(uuid.uuid4()).replace("-", "") |
|
return instance |
|
|
|
|
|
class CastFields(StreamInstanceOperator): |
|
"""Casts specified fields to specified types. |
|
|
|
Args: |
|
use_nested_query (bool): Whether to cast nested fields, expressed in dpath. Defaults to False. |
|
fields (Dict[str, str]): A dictionary mapping field names to the names of the types to cast the fields to. |
|
e.g: "int", "str", "float", "bool". Basic names of types |
|
defaults (Dict[str, object]): A dictionary mapping field names to default values for cases of casting failure. |
|
process_every_value (bool): If true, all fields involved must contain lists, and each value in the list is then casted. Defaults to False. |
|
|
|
Examples: |
|
CastFields( |
|
fields={"a/d": "float", "b": "int"}, |
|
failure_defaults={"a/d": 0.0, "b": 0}, |
|
process_every_value=True, |
|
use_nested_query=True |
|
) |
|
would process the input instance: {"a": {"d": ["half", "0.6", 1, 12]}, "b": ["2"]} |
|
into {"a": {"d": [0.0, 0.6, 1.0, 12.0]}, "b": [2]} |
|
|
|
""" |
|
|
|
fields: Dict[str, str] = field(default_factory=dict) |
|
failure_defaults: Dict[str, object] = field(default_factory=dict) |
|
use_nested_query: bool = False |
|
process_every_value: bool = False |
|
|
|
def prepare(self): |
|
self.types = {"int": int, "float": float, "str": str, "bool": bool} |
|
|
|
def _cast_single(self, value, type, field): |
|
try: |
|
return self.types[type](value) |
|
except Exception as e: |
|
if field not in self.failure_defaults: |
|
raise ValueError( |
|
f'Failed to cast field "{field}" with value {value} to type "{type}", and no default value is provided.' |
|
) from e |
|
return self.failure_defaults[field] |
|
|
|
def _cast_multiple(self, values, type, field): |
|
return [self._cast_single(value, type, field) for value in values] |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
for field_name, type in self.fields.items(): |
|
value = dict_get(instance, field_name, use_dpath=self.use_nested_query) |
|
if self.process_every_value: |
|
assert isinstance( |
|
value, list |
|
), f"'process_every_value' can be set to True only for fields that contain lists, whereas in instance {instance}, the contents of field '{field_name}' is of type '{type(value)}'" |
|
casted_value = self._cast_multiple(value, type, field_name) |
|
else: |
|
casted_value = self._cast_single(value, type, field_name) |
|
dict_set( |
|
instance, field_name, casted_value, use_dpath=self.use_nested_query |
|
) |
|
return instance |
|
|
|
|
|
class DivideAllFieldsBy(StreamInstanceOperator): |
|
"""Recursively reach down to all fields that are float, and divide each by 'divisor'. |
|
|
|
The given instance is viewed as a tree whose internal nodes are dictionaries and lists, and |
|
the leaves are either 'float' and then divided, or other basic type, in which case, a ValueError is raised |
|
if input flag 'strict' is True, or -- left alone, if 'strict' is False. |
|
|
|
Args: |
|
divisor (float) the value to divide by |
|
strict (bool) whether to raise an error upon visiting a leaf that is not float. Defaults to False. |
|
|
|
Example: |
|
when instance {"a": 10.0, "b": [2.0, 4.0, 7.0], "c": 5} is processed by operator: |
|
operator = DivideAllFieldsBy(divisor=2.0) |
|
the output is: {"a": 5.0, "b": [1.0, 2.0, 3.5], "c": 5} |
|
If the operator were defined with strict=True, through: |
|
operator = DivideAllFieldsBy(divisor=2.0, strict=True), |
|
the processing of the above instance would raise a ValueError, for the integer at "c". |
|
""" |
|
|
|
divisor: float = 1.0 |
|
strict: bool = False |
|
|
|
def _recursive_divide(self, instance, divisor): |
|
if isinstance(instance, dict): |
|
for key, value in instance.items(): |
|
instance[key] = self._recursive_divide(value, divisor) |
|
elif isinstance(instance, list): |
|
for i, value in enumerate(instance): |
|
instance[i] = self._recursive_divide(value, divisor) |
|
elif isinstance(instance, float): |
|
instance /= divisor |
|
elif self.strict: |
|
raise ValueError(f"Cannot divide instance of type {type(instance)}") |
|
return instance |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
return self._recursive_divide(instance, self.divisor) |
|
|
|
|
|
class ArtifactFetcherMixin: |
|
"""Provides a way to fetch and cache artifacts in the system. |
|
|
|
Args: |
|
cache (Dict[str, Artifact]): A cache for storing fetched artifacts. |
|
""" |
|
|
|
cache: Dict[str, Artifact] = {} |
|
|
|
@classmethod |
|
def get_artifact(cls, artifact_identifier: str) -> Artifact: |
|
if artifact_identifier not in cls.cache: |
|
artifact, artifactory = fetch_artifact(artifact_identifier) |
|
cls.cache[artifact_identifier] = artifact |
|
return cls.cache[artifact_identifier] |
|
|
|
|
|
class ApplyOperatorsField(StreamInstanceOperator): |
|
"""Applies value operators to each instance in a stream based on specified fields. |
|
|
|
Args: |
|
operators_field (str): name of the field that contains a single name, or a list of names, of the operators to be applied, |
|
one after the other, for the processing of the instance. Each operator is equipped with 'process_instance()' |
|
method. |
|
|
|
default_operators (List[str]): A list of default operators to be used if no operators are found in the instance. |
|
|
|
Example: |
|
when instance {"prediction": 111, "references": [222, 333] , "c": ["processors.to_string", "processors.first_character"]} |
|
is processed by operator (please look up the catalog that these operators, they are tuned to process fields "prediction" and |
|
"references"): |
|
operator = ApplyOperatorsField(operators_field="c"), |
|
the resulting instance is: {"prediction": "1", "references": ["2", "3"], "c": ["processors.to_string", "processors.first_character"]} |
|
|
|
""" |
|
|
|
operators_field: str |
|
default_operators: List[str] = None |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
operator_names = instance.get(self.operators_field) |
|
if operator_names is None: |
|
assert ( |
|
self.default_operators is not None |
|
), f"No operators found in field '{self.operators_field}', and no default operators provided." |
|
operator_names = self.default_operators |
|
|
|
if isinstance(operator_names, str): |
|
operator_names = [operator_names] |
|
|
|
|
|
|
|
operator = SequentialOperator(steps=operator_names) |
|
return operator.process_instance(instance) |
|
|
|
|
|
class FilterByCondition(SingleStreamOperator): |
|
"""Filters a stream, yielding only instances for which the required values follows the required condition operator. |
|
|
|
Raises an error if a required key is missing. |
|
|
|
Args: |
|
values (Dict[str, Any]): Values that instances must match using the condition to be included in the output. |
|
condition: the name of the desired condition operator between the key and the value in values ("gt", "ge", "lt", "le", "ne", "eq") |
|
error_on_filtered_all (bool, optional): If True, raises an error if all instances are filtered out. Defaults to True. |
|
|
|
Examples: |
|
FilterByCondition(values = {"a":4}, condition = "gt") will yield only instances where "a">4 |
|
FilterByCondition(values = {"a":4}, condition = "le") will yield only instances where "a"<=4 |
|
FilterByCondition(values = {"a":[4,8]}, condition = "in") will yield only instances where "a" is 4 or 8 |
|
FilterByCondition(values = {"a":[4,8]}, condition = "not in") will yield only instances where "a" different from 4 or 8 |
|
|
|
""" |
|
|
|
values: Dict[str, Any] |
|
condition: str |
|
condition_to_func = { |
|
"gt": operator.gt, |
|
"ge": operator.ge, |
|
"lt": operator.lt, |
|
"le": operator.le, |
|
"eq": operator.eq, |
|
"ne": operator.ne, |
|
"in": None, |
|
"not in": None, |
|
} |
|
error_on_filtered_all: bool = True |
|
|
|
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator: |
|
yielded = False |
|
for instance in stream: |
|
if self._is_required(instance): |
|
yielded = True |
|
yield instance |
|
|
|
if not yielded and self.error_on_filtered_all: |
|
raise RuntimeError( |
|
f"{self.__class__.__name__} filtered out every instance in stream '{stream_name}'. If this is intended set error_on_filtered_all=False" |
|
) |
|
|
|
def verify(self): |
|
if self.condition not in self.condition_to_func: |
|
raise ValueError( |
|
f"Unsupported condition operator '{self.condition}', supported {list(self.condition_to_func.keys())}" |
|
) |
|
|
|
for key, value in self.values.items(): |
|
if self.condition in ["in", "not it"] and not isinstance(value, list): |
|
raise ValueError( |
|
f"The filter for key ('{key}') in FilterByCondition with condition '{self.condition}' must be list but is not : '{value}'" |
|
) |
|
return super().verify() |
|
|
|
def _is_required(self, instance: dict) -> bool: |
|
for key, value in self.values.items(): |
|
if key not in instance: |
|
raise ValueError( |
|
f"Required filter field ('{key}') in FilterByCondition is not found in {instance}" |
|
) |
|
if self.condition == "in": |
|
if instance[key] not in value: |
|
return False |
|
elif self.condition == "not in": |
|
if instance[key] in value: |
|
return False |
|
else: |
|
func = self.condition_to_func[self.condition] |
|
if func is None: |
|
raise ValueError( |
|
f"Function not defined for condition '{self.condition}'" |
|
) |
|
if not func(instance[key], value): |
|
return False |
|
return True |
|
|
|
|
|
class ComputeExpressionMixin(Artifact): |
|
"""Computes an expression expressed over fields of an instance. |
|
|
|
Args: |
|
expression (str): the expression, in terms of names of fields of an instance |
|
imports_list (List[str]): list of names of imports needed for the evaluation of the expression |
|
""" |
|
|
|
expression: str |
|
imports_list: List[str] = OptionalField(default_factory=list) |
|
|
|
def prepare(self): |
|
|
|
self.globs = {} |
|
self.to_import = True |
|
|
|
def compute_expression(self, instance: dict) -> Any: |
|
if self.to_import: |
|
for module_name in self.imports_list: |
|
self.globs[module_name] = import_module(module_name) |
|
self.to_import = False |
|
|
|
if settings.allow_unverified_code: |
|
return eval(self.expression, self.globs, instance) |
|
|
|
raise ValueError( |
|
f"Cannot run expression by {self} when unitxt.settings.allow_unverified_code=False either set it to True or set {settings.allow_unverified_code_key} environment variable." |
|
) |
|
|
|
|
|
class FilterByExpression(SingleStreamOperator, ComputeExpressionMixin): |
|
"""Filters a stream, yielding only instances which fulfil a condition specified as a string to be python's eval-uated. |
|
|
|
Raises an error if a field participating in the specified condition is missing from the instance |
|
|
|
Args: |
|
expression (str): a condition over fields of the instance, to be processed by python's eval() |
|
imports_list (List[str]): names of imports needed for the eval of the query (e.g. 're', 'json') |
|
error_on_filtered_all (bool, optional): If True, raises an error if all instances are filtered out. Defaults to True. |
|
|
|
Examples: |
|
FilterByExpression(expression = "a > 4") will yield only instances where "a">4 |
|
FilterByExpression(expression = "a <= 4 and b > 5") will yield only instances where the value of field "a" is not exceeding 4 and in field "b" -- greater than 5 |
|
FilterByExpression(expression = "a in [4, 8]") will yield only instances where "a" is 4 or 8 |
|
FilterByExpression(expression = "a not in [4, 8]") will yield only instances where "a" is neither 4 nor 8 |
|
|
|
""" |
|
|
|
error_on_filtered_all: bool = True |
|
|
|
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator: |
|
yielded = False |
|
for instance in stream: |
|
if self.compute_expression(instance): |
|
yielded = True |
|
yield instance |
|
|
|
if not yielded and self.error_on_filtered_all: |
|
raise RuntimeError( |
|
f"{self.__class__.__name__} filtered out every instance in stream '{stream_name}'. If this is intended set error_on_filtered_all=False" |
|
) |
|
|
|
|
|
class ExecuteExpression(StreamInstanceOperator, ComputeExpressionMixin): |
|
"""Compute an expression, specified as a string to be eval-uated, over the instance's fields, and store the result in field to_field. |
|
|
|
Raises an error if a field mentioned in the query is missing from the instance. |
|
|
|
Args: |
|
expression (str): an expression to be evaluated over the fields of the instance |
|
to_field (str): the field where the result is to be stored into |
|
imports_list (List[str]): names of imports needed for the eval of the query (e.g. 're', 'json') |
|
|
|
Examples: |
|
When instance {"a": 2, "b": 3} is process-ed by operator |
|
ExecuteExpression(expression="a+b", to_field = "c") |
|
the result is {"a": 2, "b": 3, "c": 5} |
|
|
|
When instance {"a": "hello", "b": "world"} is process-ed by operator |
|
ExecuteExpression(expression = "a+' '+b", to_field = "c") |
|
the result is {"a": "hello", "b": "world", "c": "hello world"} |
|
|
|
""" |
|
|
|
to_field: str |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
instance[self.to_field] = self.compute_expression(instance) |
|
return instance |
|
|
|
|
|
class ExtractMostCommonFieldValues(MultiStreamOperator): |
|
field: str |
|
stream_name: str |
|
overall_top_frequency_percent: Optional[int] = 100 |
|
min_frequency_percent: Optional[int] = 0 |
|
to_field: str |
|
process_every_value: Optional[bool] = False |
|
|
|
""" |
|
Extract the unique values of a field ('field') of a given stream ('stream_name') and store (the most frequent of) them |
|
as a list in a new field ('to_field') in all streams. |
|
|
|
More specifically, sort all the unique values encountered in field 'field' by decreasing order of frequency. |
|
When 'overall_top_frequency_percent' is smaller than 100, trim the list from bottom, so that the total frequency of |
|
the remaining values makes 'overall_top_frequency_percent' of the total number of instances in the stream. |
|
When 'min_frequency_percent' is larger than 0, remove from the list any value whose relative frequency makes |
|
less than 'min_frequency_percent' of the total number of instances in the stream. |
|
At most one of 'overall_top_frequency_percent' and 'min_frequency_percent' is allowed to move from their default values. |
|
|
|
Examples: |
|
|
|
ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes") - extracts all the unique values of |
|
field 'label', sorts them by decreasing frequency, and stores the resulting list in field 'classes' of each and |
|
every instance in all streams. |
|
|
|
ExtractMostCommonFieldValues(stream_name="train", field="labels", to_field="classes", process_every_value=True) - |
|
in case that field 'labels' contains a list of values (and not a single value) - track the occurrences of all the possible |
|
value members in these lists, and report the most frequent values. |
|
if process_every_value=False, track the most frequent whole lists, and report those (as a list of lists) in field |
|
'to_field' of each instance of all streams. |
|
|
|
ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes",overall_top_frequency_percent=80) - |
|
extracts the most frequent possible values of field 'label' that together cover at least 80% of the instances of stream_name, |
|
and stores them in field 'classes' of each instance of all streams. |
|
|
|
ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes",min_frequency_percent=5) - |
|
extracts all possible values of field 'label' that cover, each, at least 5% of the instances. |
|
Stores these values, sorted by decreasing order of frequency, in field 'classes' of each instance in all streams. |
|
""" |
|
|
|
def verify(self): |
|
assert ( |
|
self.overall_top_frequency_percent <= 100 |
|
and self.overall_top_frequency_percent >= 0 |
|
), "'overall_top_frequency_percent' must be between 0 and 100" |
|
assert ( |
|
self.min_frequency_percent <= 100 and self.min_frequency_percent >= 0 |
|
), "'min_frequency_percent' must be between 0 and 100" |
|
assert not ( |
|
self.overall_top_frequency_percent < 100 and self.min_frequency_percent > 0 |
|
), "At most one of 'overall_top_frequency_percent' and 'min_frequency_percent' is allowed to move from their default value" |
|
super().verify() |
|
|
|
def process(self, multi_stream: MultiStream) -> MultiStream: |
|
stream = multi_stream[self.stream_name] |
|
counter = Counter() |
|
for instance in stream: |
|
if (not isinstance(instance[self.field], list)) and ( |
|
self.process_every_value is True |
|
): |
|
raise ValueError( |
|
"'process_every_field' is allowed to change to 'True' only for fields whose contents are lists" |
|
) |
|
if (not isinstance(instance[self.field], list)) or ( |
|
self.process_every_value is False |
|
): |
|
|
|
counter.update( |
|
[(*instance[self.field],)] |
|
if isinstance(instance[self.field], list) |
|
else [instance[self.field]] |
|
) |
|
|
|
else: |
|
|
|
counter.update(instance[self.field]) |
|
|
|
values_and_counts = counter.most_common() |
|
if self.overall_top_frequency_percent < 100: |
|
top_frequency = ( |
|
sum(counter.values()) * self.overall_top_frequency_percent / 100.0 |
|
) |
|
sum_counts = 0 |
|
for _i, p in enumerate(values_and_counts): |
|
sum_counts += p[1] |
|
if sum_counts >= top_frequency: |
|
break |
|
values_and_counts = counter.most_common(_i + 1) |
|
if self.min_frequency_percent > 0: |
|
min_frequency = self.min_frequency_percent * sum(counter.values()) / 100.0 |
|
while values_and_counts[-1][1] < min_frequency: |
|
values_and_counts.pop() |
|
values_to_keep = [ |
|
[*ele[0]] if isinstance(ele[0], tuple) else ele[0] |
|
for ele in values_and_counts |
|
] |
|
|
|
addmostcommons = AddFields(fields={self.to_field: values_to_keep}) |
|
return addmostcommons(multi_stream) |
|
|
|
|
|
class ExtractFieldValues(ExtractMostCommonFieldValues): |
|
def verify(self): |
|
super().verify() |
|
|
|
def prepare(self): |
|
self.overall_top_frequency_percent = 100 |
|
self.min_frequency_percent = 0 |
|
|
|
|
|
class Intersect(FieldOperator): |
|
"""Intersects the value of a field, which must be a list, with a given list. |
|
|
|
Args: |
|
allowed_values (list) - list to intersect. |
|
""" |
|
|
|
allowed_values: List[Any] |
|
|
|
def verify(self): |
|
super().verify() |
|
if self.process_every_value: |
|
raise ValueError( |
|
"'process_every_value=True' is not supported in Intersect operator" |
|
) |
|
|
|
if not isinstance(self.allowed_values, list): |
|
raise ValueError( |
|
f"The allowed_values is not a list but '{self.allowed_values}'" |
|
) |
|
|
|
def process_value(self, value: Any) -> Any: |
|
super().process_value(value) |
|
if not isinstance(value, list): |
|
raise ValueError(f"The value in field is not a list but '{value}'") |
|
return [e for e in value if e in self.allowed_values] |
|
|
|
|
|
class RemoveValues(FieldOperator): |
|
"""Removes elements in a field, which must be a list, using a given list of unallowed. |
|
|
|
Args: |
|
unallowed_values (list) - values to be removed. |
|
""" |
|
|
|
unallowed_values: List[Any] |
|
|
|
def verify(self): |
|
super().verify() |
|
if self.process_every_value: |
|
raise ValueError( |
|
"'process_every_value=True' is not supported in RemoveValues operator" |
|
) |
|
|
|
if not isinstance(self.unallowed_values, list): |
|
raise ValueError( |
|
f"The unallowed_values is not a list but '{self.unallowed_values}'" |
|
) |
|
|
|
def process_value(self, value: Any) -> Any: |
|
if not isinstance(value, list): |
|
raise ValueError(f"The value in field is not a list but '{value}'") |
|
return [e for e in value if e not in self.unallowed_values] |
|
|
|
|
|
class Unique(SingleStreamReducer): |
|
"""Reduces a stream to unique instances based on specified fields. |
|
|
|
Args: |
|
fields (List[str]): The fields that should be unique in each instance. |
|
""" |
|
|
|
fields: List[str] = field(default_factory=list) |
|
|
|
@staticmethod |
|
def to_tuple(instance: dict, fields: List[str]) -> tuple: |
|
result = [] |
|
for field_name in fields: |
|
value = instance[field_name] |
|
if isinstance(value, list): |
|
value = tuple(value) |
|
result.append(value) |
|
return tuple(result) |
|
|
|
def process(self, stream: Stream) -> Stream: |
|
seen = set() |
|
for instance in stream: |
|
values = self.to_tuple(instance, self.fields) |
|
if values not in seen: |
|
seen.add(values) |
|
return list(seen) |
|
|
|
|
|
class SplitByValue(MultiStreamOperator): |
|
"""Splits a MultiStream into multiple streams based on unique values in specified fields. |
|
|
|
Args: |
|
fields (List[str]): The fields to use when splitting the MultiStream. |
|
""" |
|
|
|
fields: List[str] = field(default_factory=list) |
|
|
|
def process(self, multi_stream: MultiStream) -> MultiStream: |
|
uniques = Unique(fields=self.fields)(multi_stream) |
|
|
|
result = {} |
|
|
|
for stream_name, stream in multi_stream.items(): |
|
stream_unique_values = uniques[stream_name] |
|
for unique_values in stream_unique_values: |
|
filtering_values = dict(zip(self.fields, unique_values)) |
|
filtered_streams = FilterByCondition( |
|
values=filtering_values, condition="eq" |
|
)._process_single_stream(stream) |
|
filtered_stream_name = ( |
|
stream_name + "_" + nested_tuple_to_string(unique_values) |
|
) |
|
result[filtered_stream_name] = filtered_streams |
|
|
|
return MultiStream(result) |
|
|
|
|
|
class ApplyStreamOperatorsField(SingleStreamOperator, ArtifactFetcherMixin): |
|
"""Applies stream operators to a stream based on specified fields in each instance. |
|
|
|
Args: |
|
field (str): The field containing the operators to be applied. |
|
reversed (bool): Whether to apply the operators in reverse order. |
|
""" |
|
|
|
field: str |
|
reversed: bool = False |
|
|
|
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator: |
|
first_instance = stream.peek() |
|
|
|
operators = first_instance.get(self.field, []) |
|
if isinstance(operators, str): |
|
operators = [operators] |
|
|
|
if self.reversed: |
|
operators = list(reversed(operators)) |
|
|
|
for operator_name in operators: |
|
operator = self.get_artifact(operator_name) |
|
assert isinstance( |
|
operator, StreamingOperator |
|
), f"Operator {operator_name} must be a SingleStreamOperator" |
|
|
|
stream = operator(MultiStream({"tmp": stream}))["tmp"] |
|
|
|
yield from stream |
|
|
|
|
|
class ApplyMetric(SingleStreamOperator, ArtifactFetcherMixin): |
|
"""Applies metric operators to a stream based on a metric field specified in each instance. |
|
|
|
Args: |
|
metric_field (str): The field containing the metrics to be applied. |
|
calc_confidence_intervals (bool): Whether the applied metric should calculate confidence intervals or not. |
|
""" |
|
|
|
metric_field: str |
|
calc_confidence_intervals: bool |
|
|
|
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator: |
|
from .metrics import Metric, MetricPipeline, MetricWithConfidenceInterval |
|
|
|
first_instance = stream.peek() |
|
|
|
metric_names = first_instance.get(self.metric_field, []) |
|
if not metric_names: |
|
raise RuntimeError( |
|
f"Missing metric names in field '{self.metric_field}' and instance '{first_instance}'." |
|
) |
|
|
|
if isinstance(metric_names, str): |
|
metric_names = [metric_names] |
|
|
|
|
|
|
|
|
|
|
|
metric_names = list(reversed(metric_names)) |
|
|
|
for metric_name in metric_names: |
|
metric = self.get_artifact(metric_name) |
|
assert isinstance( |
|
metric, Metric |
|
), f"Operator {metric_name} must be a Metric" |
|
|
|
if not self.calc_confidence_intervals: |
|
if isinstance(metric, MetricWithConfidenceInterval): |
|
metric.disable_confidence_interval_calculation() |
|
elif isinstance(metric, MetricPipeline) and isinstance( |
|
metric.metric, MetricWithConfidenceInterval |
|
): |
|
metric.metric.disable_confidence_interval_calculation() |
|
|
|
stream = metric(MultiStream({"tmp": stream}))["tmp"] |
|
|
|
yield from stream |
|
|
|
|
|
class MergeStreams(MultiStreamOperator): |
|
"""Merges multiple streams into a single stream. |
|
|
|
Args: |
|
new_stream_name (str): The name of the new stream resulting from the merge. |
|
add_origin_stream_name (bool): Whether to add the origin stream name to each instance. |
|
origin_stream_name_field_name (str): The field name for the origin stream name. |
|
""" |
|
|
|
streams_to_merge: List[str] = None |
|
new_stream_name: str = "all" |
|
add_origin_stream_name: bool = True |
|
origin_stream_name_field_name: str = "origin" |
|
|
|
def merge(self, multi_stream): |
|
for stream_name, stream in multi_stream.items(): |
|
if self.streams_to_merge is None or stream_name in self.streams_to_merge: |
|
for instance in stream: |
|
if self.add_origin_stream_name: |
|
instance[self.origin_stream_name_field_name] = stream_name |
|
yield instance |
|
|
|
def process(self, multi_stream: MultiStream) -> MultiStream: |
|
return MultiStream( |
|
{ |
|
self.new_stream_name: Stream( |
|
self.merge, gen_kwargs={"multi_stream": multi_stream} |
|
) |
|
} |
|
) |
|
|
|
|
|
class Shuffle(PagedStreamOperator): |
|
"""Shuffles the order of instances in each page of a stream. |
|
|
|
Args (of superclass): |
|
page_size (int): The size of each page in the stream. Defaults to 1000. |
|
""" |
|
|
|
random_generator: Random = None |
|
|
|
def before_process_multi_stream(self): |
|
super().before_process_multi_stream() |
|
self.random_generator = new_random_generator(sub_seed="shuffle") |
|
|
|
def process(self, page: List[Dict], stream_name: Optional[str] = None) -> Generator: |
|
self.random_generator.shuffle(page) |
|
yield from page |
|
|
|
|
|
class EncodeLabels(StreamInstanceOperator): |
|
"""Encode each value encountered in any field in 'fields' into the integers 0,1,... |
|
|
|
Encoding is determined by a str->int map that is built on the go, as different values are |
|
first encountered in the stream, either as list members or as values in single-value fields. |
|
|
|
Args: |
|
fields (List[str]): The fields to encode together. |
|
|
|
Example: applying |
|
EncodeLabels(fields = ["a", "b/*"]) |
|
on input stream = [{"a": "red", "b": ["red", "blue"], "c":"bread"}, |
|
{"a": "blue", "b": ["green"], "c":"water"}] will yield the |
|
output stream = [{'a': 0, 'b': [0, 1], 'c': 'bread'}, {'a': 1, 'b': [2], 'c': 'water'}] |
|
|
|
Note: dpath is applied here, and hence, fields that are lists, should be included in |
|
input 'fields' with the appendix "/*" as in the above example. |
|
|
|
""" |
|
|
|
fields: List[str] |
|
|
|
def _process_multi_stream(self, multi_stream: MultiStream) -> MultiStream: |
|
self.encoder = {} |
|
return super()._process_multi_stream(multi_stream) |
|
|
|
def process( |
|
self, instance: Dict[str, Any], stream_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
for field_name in self.fields: |
|
values = dict_get(instance, field_name, use_dpath=True) |
|
if not isinstance(values, list): |
|
values = [values] |
|
for value in values: |
|
if value not in self.encoder: |
|
self.encoder[value] = len(self.encoder) |
|
new_values = [self.encoder[value] for value in values] |
|
dict_set( |
|
instance, field_name, new_values, use_dpath=True, set_multiple=True |
|
) |
|
|
|
return instance |
|
|
|
|
|
class StreamRefiner(SingleStreamOperator): |
|
"""Discard from the input stream all instances beyond the leading 'max_instances' instances. |
|
|
|
Thereby, if the input stream consists of no more than 'max_instances' instances, the resulting stream is the whole of the |
|
input stream. And if the input stream consists of more than 'max_instances' instances, the resulting stream only consists |
|
of the leading 'max_instances' of the input stream. |
|
|
|
Args: max_instances (int) |
|
apply_to_streams (optional, list(str)): names of streams to refine. |
|
|
|
Examples: |
|
when input = [{"a": 1},{"a": 2},{"a": 3},{"a": 4},{"a": 5},{"a": 6}] is fed into |
|
StreamRefiner(max_instances=4) |
|
the resulting stream is [{"a": 1},{"a": 2},{"a": 3},{"a": 4}] |
|
""" |
|
|
|
max_instances: int = None |
|
apply_to_streams: Optional[List[str]] = None |
|
|
|
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator: |
|
if self.max_instances is not None: |
|
yield from stream.take(self.max_instances) |
|
else: |
|
yield from stream |
|
|
|
|
|
class DeterministicBalancer(StreamRefiner): |
|
"""A class used to balance streams deterministically. |
|
|
|
For each instance, a signature is constructed from the values of the instance in specified input 'fields'. |
|
By discarding instances from the input stream, DeterministicBalancer maintains equal number of instances for all signatures. |
|
When also input 'max_instances' is specified, DeterministicBalancer maintains a total instance count not exceeding |
|
'max_instances'. The total number of discarded instances is as few as possible. |
|
|
|
Attributes: |
|
fields (List[str]): A list of field names to be used in producing the instance's signature. |
|
max_instances (Optional, int) |
|
|
|
Usage: |
|
balancer = DeterministicBalancer(fields=["field1", "field2"], max_instances=200) |
|
balanced_stream = balancer.process(stream) |
|
|
|
Example: |
|
When input [{"a": 1, "b": 1},{"a": 1, "b": 2},{"a": 2},{"a": 3},{"a": 4}] is fed into |
|
DeterministicBalancer(fields=["a"]) |
|
the resulting stream will be: [{"a": 1, "b": 1},{"a": 2},{"a": 3},{"a": 4}] |
|
""" |
|
|
|
fields: List[str] |
|
|
|
def signature(self, instance): |
|
return str( |
|
tuple(dict_get(instance, field, use_dpath=True) for field in self.fields) |
|
) |
|
|
|
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator: |
|
counter = collections.Counter() |
|
|
|
for instance in stream: |
|
counter[self.signature(instance)] += 1 |
|
|
|
if len(counter) == 0: |
|
return |
|
|
|
lowest_count = counter.most_common()[-1][-1] |
|
|
|
max_total_instances_per_sign = lowest_count |
|
if self.max_instances is not None: |
|
max_total_instances_per_sign = min( |
|
lowest_count, self.max_instances // len(counter) |
|
) |
|
|
|
counter = collections.Counter() |
|
|
|
for instance in stream: |
|
sign = self.signature(instance) |
|
if counter[sign] < max_total_instances_per_sign: |
|
counter[sign] += 1 |
|
yield instance |
|
|
|
|
|
class LengthBalancer(DeterministicBalancer): |
|
"""Balances by a signature that reflects the total length of the fields' values, quantized into integer segments. |
|
|
|
Args: |
|
segments_boundaries (List[int]): distinct integers sorted in increasing order, that maps a given total length |
|
into the index of the least of them that exceeds the total length. (If none exceeds -- into one index |
|
beyond, namely, the length of segments_boudaries) |
|
|
|
fields (Optional, List[str]) |
|
|
|
Example: |
|
when input [{"a": [1, 3], "b": 0, "id": 0}, {"a": [1, 3], "b": 0, "id": 1}, {"a": [], "b": "a", "id": 2}] is fed into |
|
|
|
.. code-block:: |
|
|
|
LengthBalancer(fields=["a"], segments_boundaries=[1]) |
|
|
|
input instances will be counted and balanced against two categories: empty total length (less than 1), and non-empty. |
|
""" |
|
|
|
segments_boundaries: List[int] |
|
fields: Optional[List[str]] |
|
|
|
def signature(self, instance): |
|
total_len = 0 |
|
for field_name in self.fields: |
|
total_len += len(dict_get(instance, field_name, use_dpath=True)) |
|
for i, val in enumerate(self.segments_boundaries): |
|
if total_len < val: |
|
return i |
|
return i + 1 |
|
|
|
|
|
class DownloadError(Exception): |
|
def __init__( |
|
self, |
|
message, |
|
): |
|
self.__super__(message) |
|
|
|
|
|
class UnexpectedHttpCodeError(Exception): |
|
def __init__(self, http_code): |
|
self.__super__(f"unexpected http code {http_code}") |
|
|
|
|
|
class DownloadOperator(SideEffectOperator): |
|
"""Operator for downloading a file from a given URL to a specified local path. |
|
|
|
Attributes: |
|
source (str): URL of the file to be downloaded. |
|
target (str): Local path where the downloaded file should be saved. |
|
""" |
|
|
|
source: str |
|
target: str |
|
|
|
def process(self): |
|
try: |
|
response = requests.get(self.source, allow_redirects=True) |
|
except Exception as e: |
|
raise DownloadError(f"Unabled to download {self.source}") from e |
|
if response.status_code != 200: |
|
raise UnexpectedHttpCodeError(response.status_code) |
|
with open(self.target, "wb") as f: |
|
f.write(response.content) |
|
|
|
|
|
class ExtractZipFile(SideEffectOperator): |
|
"""Operator for extracting files from a zip archive. |
|
|
|
Attributes: |
|
zip_file (str): Path of the zip file to be extracted. |
|
target_dir (str): Directory where the contents of the zip file will be extracted. |
|
""" |
|
|
|
zip_file: str |
|
target_dir: str |
|
|
|
def process(self): |
|
with zipfile.ZipFile(self.zip_file) as zf: |
|
zf.extractall(self.target_dir) |
|
|