Datasets:

ArXiv:
data / templates.py
Elron's picture
Upload templates.py with huggingface_hub
e1ab91f verified
raw
history blame
18.8 kB
import json
from abc import abstractmethod
from typing import Any, Dict, List, Optional, Tuple
from .collections import ListCollection
from .dataclass import NonPositionalField
from .operator import StreamInstanceOperator
from .random_utils import new_random_generator
from .type_utils import isoftype
class TemplateFormatKeyError(KeyError):
def __init__(self, template, data, data_type, format_str, format_name):
keys = ", ".join(data.keys())
super().__init__(
f"Available {data_type}s are [{keys}] "
f"but {template.__class__.__name__}.{format_name} format requires a different ones: '{format_str}'"
)
class Template(StreamInstanceOperator):
"""The role of template is to take the fields of every instance and verbalize it.
Meaning the template is taking the instance and generating source, target and references.
Args:
skip_rendered_instance (bool): if "source", "target", and "references" are already defined fields in the instance, skip its processing
postprocessors: a list of strings being artifact names of text processors, to be applied on the model output
instruction: a formatting string that yields an instruction with potential participation of values from the "inputs" part of the instance
target_prefix: a string to be used to format the prompt. Not a formatting string.
"""
skip_rendered_instance: bool = NonPositionalField(default=True)
postprocessors: List[str] = NonPositionalField(
default_factory=lambda: ["processors.to_string_stripped"]
)
instruction: str = NonPositionalField(default="")
target_prefix: str = NonPositionalField(default="")
title_fields: List[str] = NonPositionalField(default_factory=list)
def inputs_to_instruction_and_target_prefix(self, inputs):
instruction = self.apply_formatting(
inputs, "input", self.instruction, "instruction", serialize=True
)
target_prefix = self.apply_formatting(
inputs, "input", self.target_prefix, "target_prefix", serialize=True
)
return instruction, target_prefix
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
if self.skip_rendered_instance:
if (
"source" in instance
and "target" in instance
and "references" in instance
):
return instance
inputs = instance.get("inputs")
outputs = instance.get("outputs")
self.set_titles(inputs)
source = self.inputs_to_source(inputs)
instruction, target_prefix = self.inputs_to_instruction_and_target_prefix(
inputs
)
target, references = self.outputs_to_target_and_references(outputs)
return {
**instance,
"source": source,
"target": target,
"references": references,
"instruction": instruction,
"target_prefix": target_prefix,
}
@abstractmethod
def inputs_to_source(self, inputs: Dict[str, object]) -> Tuple[str, str]:
pass
def set_titles(self, data):
for field in self.title_fields:
data[field] = data[field].title()
@abstractmethod
def outputs_to_target_and_references(
self, outputs: Dict[str, object]
) -> Tuple[str, List[str]]:
pass
def get_postprocessors(self) -> List[str]:
return self.postprocessors
def serialize_data(self, data):
return {
k: ", ".join(str(t) for t in v) if isinstance(v, list) else v
for k, v in data.items()
}
def apply_formatting(
self, data, data_type, format_str, format_name, serialize=False
) -> str:
if serialize:
data = self.serialize_data(data)
try:
return format_str.format(**data)
except KeyError as e:
raise TemplateFormatKeyError(
self, data, data_type, format_str, format_name
) from e
class InputOutputTemplate(Template):
"""Generate field 'source' from fields designated as input, and fields 'target' and 'references' from fields designated as output, of the processed instance.
Args specify the formatting strings with which to glue together the input and output designated fields of the processed instance into one string ('source' and 'target'), and into a list of strings ('references').
"""
input_format: str = None
output_format: str = None
def inputs_to_source(self, inputs: Dict[str, object]) -> Tuple[str, str]:
return self.apply_formatting(
inputs, "input", self.input_format, "input_format", serialize=True
)
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
target = self.apply_formatting(
outputs, "output", self.output_format, "output_format", serialize=True
)
references = [target]
return target, references
class InputOutputReferenceTemplate(InputOutputTemplate):
reference: str
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
target = self.apply_formatting(
outputs, "output", self.output_format, "output_format", serialize=True
)
reference = self.apply_formatting(
outputs, "output", self.reference, "reference", serialize=True
)
return target, [reference]
class MultipleChoiceTemplate(Template):
"""Formats the input (that specifies the question), the multiple choices to select the answer from, and specifies the field with the correct answer."""
input_format: str
target_prefix: str = ""
choices_field: str = "choices"
target_field: str = "label"
choices_seperator: str = ", "
source_choice_format: str = "{choice_numeral}. {choice_text}"
target_choice_format: str = "{choice_numeral}"
enumerator: str = "capitals"
def prepare(self):
super().prepare()
if self.enumerator == "capitals":
self.enumerator = "ABCDEFGHIJKLMNOP"
if self.enumerator == "lowercase":
self.enumerator = "abcdefghijklmnop"
if self.enumerator == "numbers":
self.enumerator = [str(i + 1) for i in range(20)]
if self.enumerator == "roman":
self.enumerator = [
"I",
"II",
"III",
"IV",
"V",
"VI",
"VII",
"VIII",
"IX",
"X",
"XI",
"XII",
"XIII",
"XIV",
"XV",
"XVI",
"XVII",
"XVIII",
"XIX",
"XX",
]
def inputs_to_choices(self, data: Dict[str, object], choice_format: str) -> str:
choices = data[self.choices_field]
enumrated_choices = []
for i, choice in enumerate(choices):
enumrated_choices.append(
choice_format.format(
choice_text=choice,
choice_numeral=self.enumerator[i],
)
)
return enumrated_choices
def inputs_to_numerals(self, inputs: Dict[str, object]) -> Tuple[str, str]:
return self.inputs_to_choices(inputs, "{choice_numeral}")
def prepare_multiple_choice_inputs(
self, inputs: Dict[str, object]
) -> Dict[str, object]:
choices = self.inputs_to_choices(inputs, self.source_choice_format)
return {
"numerals": self.inputs_to_numerals(inputs),
**inputs,
self.choices_field: self.choices_seperator.join(choices),
}
def inputs_to_source(self, inputs: Dict[str, object]) -> Tuple[str, str]:
inputs = self.prepare_multiple_choice_inputs(inputs)
return self.apply_formatting(
inputs, "input", self.input_format, "input_format", serialize=True
)
def inputs_to_instruction_and_target_prefix(self, inputs):
inputs = self.prepare_multiple_choice_inputs(inputs)
return super().inputs_to_instruction_and_target_prefix(inputs)
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
target = outputs[self.target_field]
if not isinstance(target, int):
try:
target = outputs[self.choices_field].index(target)
except ValueError as e:
raise ValueError(
f"MultipleChoiceTemplate could not locate textual target '{target}' in choices list: {outputs[self.choices_field]}"
) from e
choices = self.inputs_to_choices(outputs, self.target_choice_format)
try:
target = choices[target]
except IndexError as e:
raise IndexError(
f"MultipleChoiceTemplate cannot find index number {target} in choices: {choices}"
) from e
return target, [target]
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
result = super().process(instance, stream_name)
if "options" not in result["outputs"]:
result["outputs"]["options"] = self.inputs_to_choices(
instance["outputs"], self.target_choice_format
)
return result
class YesNoTemplate(Template):
"""A template for generating binary Yes/No questions asking whether an input text is of a specific class.
input_format:
Defines the format of the question.
class_field:
Defines the field that contains the name of the class that this template
asks of.
label_field:
Defines the field which contains the true label of the input text. If a gold label is equal to the
value in class_name, then the correct output is self.yes_answer (by default, "Yes").
Otherwise the correct output is self.no_answer (by default, "No").
yes_answer:
The output value for when the gold label equals self.class_name.
Defaults to "Yes".
no_answer:
The output value for when the gold label differs from self.class_name.
Defaults to "No".
"""
input_format: str = None
class_field: str = None
label_field: str = None
yes_answer: str = "Yes"
no_answer: str = "No"
def inputs_to_source(self, inputs: Dict[str, object]) -> Tuple[str, str]:
return self.apply_formatting(
inputs, "input", self.input_format, "input_format", serialize=True
)
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
try:
gold_class_names = outputs[self.label_field]
except KeyError as e:
raise RuntimeError(
f"Available outputs are {list(outputs.keys())}, missing required label field: '{self.label_field}'."
) from e
if not isinstance(gold_class_names, list) or not gold_class_names:
raise RuntimeError(
f"Unexpected value for gold_class_names: '{gold_class_names}'. Expected a non-empty list."
)
try:
queried_class_names = outputs[self.class_field]
except KeyError as e:
raise RuntimeError(
f"Available outputs are {list(outputs.keys())}, missing required class field: '{self.class_field}'."
) from e
if (
not queried_class_names
or not isinstance(queried_class_names, list)
or not len(queried_class_names) == 1
):
raise RuntimeError(
f"Unexpected value for queried_class_names: '{queried_class_names}'. Expected a list with one item."
)
queried_class_name = queried_class_names[0]
if queried_class_name in gold_class_names:
return self.yes_answer, [self.yes_answer]
return self.no_answer, [self.no_answer]
class KeyValTemplate(Template):
"""Generate field 'source' from fields designated as input, and fields 'target' and 'references' from fields designated as output, of the processed instance.
Args specify with what separators to glue together the input and output designated fields of the processed instance into one string ('source' and 'target'), and into a list of strings ('references').
"""
pairs_seperator: str = ", "
key_val_seperator: str = ": "
use_keys_for_inputs: bool = True
outputs_key_val_seperator: str = ": "
use_keys_for_outputs: bool = False
def process_dict(
self, data: Dict[str, object], key_val_sep, pairs_sep, use_keys
) -> str:
data = self.serialize_data(data)
pairs = []
for key, val in data.items():
key_val = [key, str(val)] if use_keys else [str(val)]
pairs.append(key_val_sep.join(key_val))
return pairs_sep.join(pairs)
def inputs_to_source(self, inputs: Dict[str, object]) -> Tuple[str, str]:
return self.process_dict(
inputs,
key_val_sep=self.key_val_seperator,
pairs_sep=self.pairs_seperator,
use_keys=self.use_keys_for_inputs,
)
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
target = self.process_dict(
outputs,
key_val_sep=self.key_val_seperator,
pairs_sep=self.pairs_seperator,
use_keys=self.use_keys_for_outputs,
)
return target, [target]
class OutputQuantizingTemplate(InputOutputTemplate):
quantum: float = 0.1
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
quantum_str = f"{self.quantum:.10f}".rstrip("0").rstrip(".")
quantized_outputs = {
key: f"{round(value / self.quantum) * self.quantum:{quantum_str}}"
for key, value in outputs.items()
}
return super().outputs_to_target_and_references(quantized_outputs)
class MultiLabelTemplate(InputOutputTemplate):
labels_field: str = "labels"
labels_seprator: str = ", "
postprocessors: List[str] = ["processors.to_list_by_comma"]
output_format: str = "{labels}"
empty_label: str = "None"
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> str:
labels = outputs[self.labels_field]
if not isinstance(labels, list):
raise ValueError(
f"MultiLabelTemplate requires labels field '{self.labels_field}' to be a list. Got {self.labels_field}<{type(labels).__name__}>: {labels}"
)
if len(labels) == 0:
labels = [self.empty_label]
labels_str = self.labels_seprator.join(labels)
return super().outputs_to_target_and_references({self.labels_field: labels_str})
class MultiReferenceTemplate(InputOutputTemplate):
references_field: str = "references"
random_reference: bool = False
def outputs_to_target_and_references(self, outputs: Dict[str, object]) -> List[str]:
references = outputs[self.references_field]
if not isoftype(references, List[str]):
raise ValueError(
f"MultiReferenceTemplate requires references field '{self.references_field}' to be List[str]. Got {self.references_field}<{type(references).__name__}>: {references}"
)
if len(references) == 0:
raise ValueError(
"No references found. MultiReferenceTemplate requires at least one reference."
)
if self.random_reference:
random_generator = new_random_generator(outputs)
target = random_generator.choice(references)
else:
target = references[0]
return target, references
def escape_chars(s, chars_to_escape):
for char in chars_to_escape:
s = s.replace(char, f"\\{char}")
return s
class SpanLabelingBaseTemplate(MultiLabelTemplate):
spans_starts_field: str = "spans_starts"
spans_ends_field: str = "spans_ends"
text_field: str = "text"
labels_support: list = None
def extract_span_label_pairs(self, outputs):
spans_starts = outputs[self.spans_starts_field]
spans_ends = outputs[self.spans_ends_field]
text = outputs[self.text_field]
labels = outputs[self.labels_field]
spans = []
for span_start, span_end, label in zip(spans_starts, spans_ends, labels):
if self.labels_support is None or label in self.labels_support:
spans.append((span_start, span_end, text[span_start:span_end], label))
for span in sorted(spans):
if self.labels_support is None or span[3] in self.labels_support:
yield span[2], span[3]
def outputs_to_target_and_references(
self, outputs: Dict[str, object]
) -> Dict[str, object]:
span_lables_pairs = self.extract_span_label_pairs(outputs)
targets = self.span_label_pairs_to_targets(span_lables_pairs)
return super().outputs_to_target_and_references({"labels": targets})
@abstractmethod
def span_label_pairs_to_targets(self, pairs):
pass
class SpanLabelingTemplate(SpanLabelingBaseTemplate):
span_label_format: str = "{span}: {label}"
escape_characters: List[str] = [":", ","]
postprocessors: List[str] = ["processors.to_span_label_pairs"]
def span_label_pairs_to_targets(self, span_label_pairs):
targets = []
for span, label in span_label_pairs:
if self.escape_characters is not None:
span = escape_chars(span, self.escape_characters)
target = self.span_label_format.format(span=span, label=label)
targets.append(target)
return targets
class SpanLabelingJsonTemplate(SpanLabelingBaseTemplate):
postprocessors = [
"processors.load_json",
"processors.dict_of_lists_to_value_key_pairs",
]
def span_label_pairs_to_targets(self, span_label_pairs):
groups = {}
for span, label in span_label_pairs:
if label not in groups:
groups[label] = []
groups[label].append(span)
if len(groups) > 0:
targets = [json.dumps(groups, ensure_ascii=False)]
else:
targets = []
return targets
class TemplatesList(ListCollection):
def verify(self):
for template in self.items:
assert isinstance(template, Template)
class TemplatesDict(Dict):
def verify(self):
for _key, template in self.items():
assert isinstance(template, Template)