albertvillanova HF staff commited on
Commit
f54b2b5
·
verified ·
1 Parent(s): 5ee4cad

Delete loading script

Browse files
Files changed (1) hide show
  1. svhn.py +0 -199
svhn.py DELETED
@@ -1,199 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """Street View House Numbers (SVHN) dataset."""
16
-
17
- import io
18
- import os
19
-
20
- import h5py
21
- import numpy as np
22
- import scipy.io as sio
23
-
24
- import datasets
25
- from datasets.tasks import ImageClassification
26
-
27
-
28
- logger = datasets.logging.get_logger(__name__)
29
-
30
-
31
- _CITATION = """\
32
- @article{netzer2011reading,
33
- title={Reading digits in natural images with unsupervised feature learning},
34
- author={Netzer, Yuval and Wang, Tao and Coates, Adam and Bissacco, Alessandro and Wu, Bo and Ng, Andrew Y},
35
- year={2011}
36
- }
37
- """
38
-
39
- _DESCRIPTION = """\
40
- SVHN is a real-world image dataset for developing machine learning and object recognition algorithms with minimal requirement on data preprocessing and formatting.
41
- It can be seen as similar in flavor to MNIST (e.g., the images are of small cropped digits), but incorporates an order of magnitude more labeled data (over 600,000 digit images)
42
- and comes from a significantly harder, unsolved, real world problem (recognizing digits and numbers in natural scene images). SVHN is obtained from house numbers in Google Street View images.
43
- """
44
-
45
- _HOMEPAGE = "http://ufldl.stanford.edu/housenumbers/"
46
-
47
- _LICENSE = "Custom (non-commercial)"
48
-
49
- _URLs = {
50
- "full_numbers": [
51
- "http://ufldl.stanford.edu/housenumbers/train.tar.gz",
52
- "http://ufldl.stanford.edu/housenumbers/test.tar.gz",
53
- "http://ufldl.stanford.edu/housenumbers/extra.tar.gz",
54
- ],
55
- "cropped_digits": [
56
- "http://ufldl.stanford.edu/housenumbers/train_32x32.mat",
57
- "http://ufldl.stanford.edu/housenumbers/test_32x32.mat",
58
- "http://ufldl.stanford.edu/housenumbers/extra_32x32.mat",
59
- ],
60
- }
61
-
62
- _DIGIT_LABELS = [str(num) for num in range(10)]
63
-
64
-
65
- class SVHN(datasets.GeneratorBasedBuilder):
66
- """Street View House Numbers (SVHN) dataset."""
67
-
68
- VERSION = datasets.Version("1.0.0")
69
-
70
- BUILDER_CONFIGS = [
71
- datasets.BuilderConfig(
72
- name="full_numbers",
73
- version=VERSION,
74
- description="Contains the original, variable-resolution, color house-number images with character level bounding boxes.",
75
- ),
76
- datasets.BuilderConfig(
77
- name="cropped_digits",
78
- version=VERSION,
79
- description="Character level ground truth in an MNIST-like format. All digits have been resized to a fixed resolution of 32-by-32 pixels. The original character bounding boxes are extended in the appropriate dimension to become square windows, so that resizing them to 32-by-32 pixels does not introduce aspect ratio distortions. Nevertheless this preprocessing introduces some distracting digits to the sides of the digit of interest.",
80
- ),
81
- ]
82
-
83
- def _info(self):
84
- if self.config.name == "full_numbers":
85
- features = datasets.Features(
86
- {
87
- "image": datasets.Image(),
88
- "digits": datasets.Sequence(
89
- {
90
- "bbox": datasets.Sequence(datasets.Value("int32"), length=4),
91
- "label": datasets.ClassLabel(num_classes=10),
92
- }
93
- ),
94
- }
95
- )
96
- else:
97
- features = datasets.Features(
98
- {
99
- "image": datasets.Image(),
100
- "label": datasets.ClassLabel(num_classes=10),
101
- }
102
- )
103
- return datasets.DatasetInfo(
104
- description=_DESCRIPTION,
105
- features=features,
106
- supervised_keys=None,
107
- homepage=_HOMEPAGE,
108
- license=_LICENSE,
109
- citation=_CITATION,
110
- task_templates=[ImageClassification(image_column="image", label_column="label")]
111
- if self.config.name == "cropped_digits"
112
- else None,
113
- )
114
-
115
- def _split_generators(self, dl_manager):
116
- if self.config.name == "full_numbers":
117
- train_archive, test_archive, extra_archive = dl_manager.download(_URLs[self.config.name])
118
- for path, f in dl_manager.iter_archive(train_archive):
119
- if path.endswith("digitStruct.mat"):
120
- train_annot_data = f.read()
121
- break
122
- for path, f in dl_manager.iter_archive(test_archive):
123
- if path.endswith("digitStruct.mat"):
124
- test_annot_data = f.read()
125
- break
126
- for path, f in dl_manager.iter_archive(extra_archive):
127
- if path.endswith("digitStruct.mat"):
128
- extra_annot_data = f.read()
129
- break
130
- train_archive = dl_manager.iter_archive(train_archive)
131
- test_archive = dl_manager.iter_archive(test_archive)
132
- extra_archive = dl_manager.iter_archive(extra_archive)
133
- train_filepath, test_filepath, extra_filepath = None, None, None
134
- else:
135
- train_annot_data, test_annot_data, extra_annot_data = None, None, None
136
- train_archive, test_archive, extra_archive = None, None, None
137
- train_filepath, test_filepath, extra_filepath = dl_manager.download(_URLs[self.config.name])
138
- return [
139
- datasets.SplitGenerator(
140
- name=datasets.Split.TRAIN,
141
- gen_kwargs={
142
- "annot_data": train_annot_data,
143
- "files": train_archive,
144
- "filepath": train_filepath,
145
- },
146
- ),
147
- datasets.SplitGenerator(
148
- name=datasets.Split.TEST,
149
- gen_kwargs={
150
- "annot_data": test_annot_data,
151
- "files": test_archive,
152
- "filepath": test_filepath,
153
- },
154
- ),
155
- datasets.SplitGenerator(
156
- name="extra",
157
- gen_kwargs={
158
- "annot_data": extra_annot_data,
159
- "files": extra_archive,
160
- "filepath": extra_filepath,
161
- },
162
- ),
163
- ]
164
-
165
- def _generate_examples(self, annot_data, files, filepath):
166
- if self.config.name == "full_numbers":
167
-
168
- def _get_digits(bboxes, h5_file):
169
- def key_to_values(key, bbox):
170
- if bbox[key].shape[0] == 1:
171
- return [int(bbox[key][0][0])]
172
- else:
173
- return [int(h5_file[bbox[key][i][0]][()].item()) for i in range(bbox[key].shape[0])]
174
-
175
- bbox = h5_file[bboxes[0]]
176
- assert bbox.keys() == {"height", "left", "top", "width", "label"}
177
- bbox_columns = [key_to_values(key, bbox) for key in ["left", "top", "width", "height", "label"]]
178
- return [
179
- {"bbox": [left, top, width, height], "label": label % 10}
180
- for left, top, width, height, label in zip(*bbox_columns)
181
- ]
182
-
183
- with h5py.File(io.BytesIO(annot_data), "r") as h5_file:
184
- for path, f in files:
185
- root, ext = os.path.splitext(path)
186
- if ext != ".png":
187
- continue
188
- img_idx = int(os.path.basename(root)) - 1
189
- yield img_idx, {
190
- "image": {"path": path, "bytes": f.read()},
191
- "digits": _get_digits(h5_file["digitStruct/bbox"][img_idx], h5_file),
192
- }
193
- else:
194
- data = sio.loadmat(filepath)
195
- for i, (image_array, label) in enumerate(zip(np.rollaxis(data["X"], -1), data["y"])):
196
- yield i, {
197
- "image": image_array,
198
- "label": label.item() % 10,
199
- }