Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TWEETQA: A Social Media Focused Question Answering Dataset""" | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{xiong2019tweetqa, | |
title={TweetQA: A Social Media Focused Question Answering Dataset}, | |
author={Xiong, Wenhan and Wu, Jiawei and Wang, Hong and Kulkarni, Vivek and Yu, Mo and Guo, Xiaoxiao and Chang, Shiyu and Wang, William Yang}, | |
booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics}, | |
year={2019} | |
} | |
""" | |
_DESCRIPTION = """\ | |
TweetQA is the first dataset for QA on social media data by leveraging news media and crowdsourcing. | |
""" | |
_HOMEPAGE = "https://tweetqa.github.io/" | |
_LICENSE = "CC BY-SA 4.0" | |
_URL = "https://sites.cs.ucsb.edu/~xwhan/datasets/tweetqa.zip" | |
class TweetQA(datasets.GeneratorBasedBuilder): | |
"""TweetQA: first large-scale dataset for QA over social media data""" | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"Question": datasets.Value("string"), | |
"Answer": datasets.Sequence(datasets.Value("string")), | |
"Tweet": datasets.Value("string"), | |
"qid": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URL) | |
train_path = os.path.join(data_dir, "TweetQA_data", "train.json") | |
test_path = os.path.join(data_dir, "TweetQA_data", "test.json") | |
dev_path = os.path.join(data_dir, "TweetQA_data", "dev.json") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": train_path, | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": test_path, | |
"split": "test", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": dev_path, | |
"split": "dev", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
tweet_qa = json.load(f) | |
idx = 0 | |
for data in tweet_qa: | |
yield idx, { | |
"Question": data["Question"], | |
"Answer": [] if split == "test" else data["Answer"], | |
"Tweet": data["Tweet"], | |
"qid": data["qid"], | |
} | |
idx += 1 | |