|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import xml.etree.ElementTree as ET |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@Article{Sharjeel2016, |
|
author="Sharjeel, Muhammad |
|
and Nawab, Rao Muhammad Adeel |
|
and Rayson, Paul", |
|
title="COUNTER: corpus of Urdu news text reuse", |
|
journal="Language Resources and Evaluation", |
|
year="2016", |
|
pages="1--27", |
|
issn="1574-0218", |
|
doi="10.1007/s10579-016-9367-2", |
|
url="http://dx.doi.org/10.1007/s10579-016-9367-2" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The COrpus of Urdu News TExt Reuse (COUNTER) corpus contains 1200 documents with real examples of text reuse from the field of journalism. It has been manually annotated at document level with three levels of reuse: wholly derived, partially derived and non derived. |
|
""" |
|
|
|
_HOMEPAGE = "http://ucrel.lancs.ac.uk/textreuse/counter.php" |
|
|
|
_LICENSE = ( |
|
"The corpus is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. " |
|
) |
|
|
|
_DOWNLOAD_URL = "http://ucrel.lancs.ac.uk/textreuse/COUNTER.zip" |
|
|
|
_NUM_EXAMPLES = 600 |
|
|
|
_CLASS_NAME_MAP = {"WD": "wholly_derived", "PD": "partially_derived", "ND": "not_derived"} |
|
|
|
|
|
class Counter(datasets.GeneratorBasedBuilder): |
|
"""Corpus of Urdu News Text Reuse""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"source": { |
|
"filename": datasets.Value("string"), |
|
"headline": datasets.Value("string"), |
|
"body": datasets.Value("string"), |
|
"total_number_of_words": datasets.Value("int64"), |
|
"total_number_of_sentences": datasets.Value("int64"), |
|
"number_of_words_with_swr": datasets.Value("int64"), |
|
"newspaper": datasets.Value("string"), |
|
"newsdate": datasets.Value("string"), |
|
"domain": datasets.ClassLabel( |
|
names=[ |
|
"business", |
|
"sports", |
|
"national", |
|
"foreign", |
|
"showbiz", |
|
] |
|
), |
|
"classification": datasets.ClassLabel( |
|
names=["wholly_derived", "partially_derived", "not_derived"] |
|
), |
|
}, |
|
"derived": { |
|
"filename": datasets.Value("string"), |
|
"headline": datasets.Value("string"), |
|
"body": datasets.Value("string"), |
|
"total_number_of_words": datasets.Value("int64"), |
|
"total_number_of_sentences": datasets.Value("int64"), |
|
"number_of_words_with_swr": datasets.Value("int64"), |
|
"newspaper": datasets.Value("string"), |
|
"newsdate": datasets.Value("string"), |
|
"domain": datasets.ClassLabel( |
|
names=[ |
|
"business", |
|
"sports", |
|
"national", |
|
"foreign", |
|
"showbiz", |
|
] |
|
), |
|
"classification": datasets.ClassLabel( |
|
names=["wholly_derived", "partially_derived", "not_derived"] |
|
), |
|
}, |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_DOWNLOAD_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_dir": data_dir}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_dir): |
|
"""Yields examples.""" |
|
|
|
def parse_file(file): |
|
tree = ET.parse(file) |
|
root = tree.getroot() |
|
attributes = root.attrib |
|
headline = root.find("headline").text |
|
body = root.find("body").text |
|
parsed = { |
|
"filename": attributes["filename"], |
|
"headline": headline, |
|
"body": body, |
|
"total_number_of_words": int(attributes["totalnoofwords"]), |
|
"total_number_of_sentences": int(attributes["totalnoofsentences"]), |
|
"number_of_words_with_swr": int(attributes["noofwordswithSWR"]), |
|
"newspaper": attributes["newspaper"], |
|
"newsdate": attributes["newsdate"], |
|
"domain": attributes["domain"], |
|
"classification": _CLASS_NAME_MAP[attributes["classification"]], |
|
} |
|
return parsed |
|
|
|
base_path = Path(data_dir) |
|
base_path = base_path / "COUNTER" |
|
files = sorted(base_path.glob(r"[0-9][0-9][0-9][0-9].xml")) |
|
for _id, file in enumerate(files): |
|
example = {} |
|
with file.open(encoding="utf-8") as f: |
|
source = parse_file(f) |
|
example["source"] = source |
|
|
|
if file.stem == "0032": |
|
derived_file = base_path / (file.stem + "P" + file.suffix) |
|
else: |
|
derived_file = base_path / (file.stem + "p" + file.suffix) |
|
with derived_file.open(encoding="utf-8") as f: |
|
derived = parse_file(f) |
|
example["derived"] = derived |
|
yield _id, example |
|
|