Datasets:
Commit
·
7603457
1
Parent(s):
210a4d2
Convert dataset to Parquet (#2)
Browse files- Convert dataset to Parquet (ffd96bdfa1890b305a8f6d10b8bad0aadac5fc1c)
- Delete loading script (1251ea30cab7d811a89a9810b280dd0ab2c9f9fd)
- Delete legacy dataset_infos.json (c9e8b5f6725ede38f0fc0c9a36cb85d46a9fe168)
- README.md +12 -5
- data/train-00000-of-00001.parquet +3 -0
- data/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
- drop.py +0 -202
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
pretty_name: DROP
|
3 |
annotations_creators:
|
4 |
- crowdsourced
|
5 |
language_creators:
|
@@ -21,6 +20,7 @@ task_ids:
|
|
21 |
- extractive-qa
|
22 |
- abstractive-qa
|
23 |
paperswithcode_id: drop
|
|
|
24 |
dataset_info:
|
25 |
features:
|
26 |
- name: section_id
|
@@ -39,13 +39,20 @@ dataset_info:
|
|
39 |
dtype: string
|
40 |
splits:
|
41 |
- name: train
|
42 |
-
num_bytes:
|
43 |
num_examples: 77400
|
44 |
- name: validation
|
45 |
-
num_bytes:
|
46 |
num_examples: 9535
|
47 |
-
download_size:
|
48 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
---
|
50 |
|
51 |
# Dataset Card for "drop"
|
|
|
1 |
---
|
|
|
2 |
annotations_creators:
|
3 |
- crowdsourced
|
4 |
language_creators:
|
|
|
20 |
- extractive-qa
|
21 |
- abstractive-qa
|
22 |
paperswithcode_id: drop
|
23 |
+
pretty_name: DROP
|
24 |
dataset_info:
|
25 |
features:
|
26 |
- name: section_id
|
|
|
39 |
dtype: string
|
40 |
splits:
|
41 |
- name: train
|
42 |
+
num_bytes: 105572506
|
43 |
num_examples: 77400
|
44 |
- name: validation
|
45 |
+
num_bytes: 11737755
|
46 |
num_examples: 9535
|
47 |
+
download_size: 11538387
|
48 |
+
dataset_size: 117310261
|
49 |
+
configs:
|
50 |
+
- config_name: default
|
51 |
+
data_files:
|
52 |
+
- split: train
|
53 |
+
path: data/train-*
|
54 |
+
- split: validation
|
55 |
+
path: data/validation-*
|
56 |
---
|
57 |
|
58 |
# Dataset Card for "drop"
|
data/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abb5e578c2156a61f83b56c066a922ec1c7c5140638a3f0f2a7c348fafe1cb35
|
3 |
+
size 10333127
|
data/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f9a3bdbb1b5909abfa25cbab693f89f47568c98e6e03473500d604f044c8f68
|
3 |
+
size 1205260
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.\n. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a\nquestion, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or\n sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was\n necessary for prior datasets.\n", "citation": "@inproceedings{Dua2019DROP,\n author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},\n title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},\n booktitle={Proc. of NAACL},\n year={2019}\n}\n", "homepage": "https://allennlp.org/drop", "license": "", "features": {"section_id": {"dtype": "string", "id": null, "_type": "Value"}, "query_id": {"dtype": "string", "id": null, "_type": "Value"}, "passage": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers_spans": {"feature": {"spans": {"dtype": "string", "id": null, "_type": "Value"}, "types": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "drop", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 105572762, "num_examples": 77400, "dataset_name": "drop"}, "validation": {"name": "validation", "num_bytes": 11737787, "num_examples": 9535, "dataset_name": "drop"}}, "download_checksums": {"https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip": {"num_bytes": 8308692, "checksum": "39d2278a29fd729de301b111a45f434c24834f40df8f4ff116d864589e3249d6"}}, "download_size": 8308692, "post_processing_size": null, "dataset_size": 117310549, "size_in_bytes": 125619241}}
|
|
|
|
drop.py
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
"""TODO(drop): Add a description here."""
|
2 |
-
|
3 |
-
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
|
7 |
-
import datasets
|
8 |
-
|
9 |
-
|
10 |
-
_CITATION = """\
|
11 |
-
@inproceedings{Dua2019DROP,
|
12 |
-
author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
|
13 |
-
title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},
|
14 |
-
booktitle={Proc. of NAACL},
|
15 |
-
year={2019}
|
16 |
-
}
|
17 |
-
"""
|
18 |
-
|
19 |
-
_DESCRIPTION = """\
|
20 |
-
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.
|
21 |
-
. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a
|
22 |
-
question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or
|
23 |
-
sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was
|
24 |
-
necessary for prior datasets.
|
25 |
-
"""
|
26 |
-
_URL = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip"
|
27 |
-
|
28 |
-
|
29 |
-
class AnswerParsingError(Exception):
|
30 |
-
pass
|
31 |
-
|
32 |
-
|
33 |
-
class DropDateObject:
|
34 |
-
"""
|
35 |
-
Custom parser for date answers in DROP.
|
36 |
-
A date answer is a dict <date> with at least one of day|month|year.
|
37 |
-
|
38 |
-
Example: date == {
|
39 |
-
'day': '9',
|
40 |
-
'month': 'March',
|
41 |
-
'year': '2021'
|
42 |
-
}
|
43 |
-
|
44 |
-
This dict is parsed and flattend to '{day} {month} {year}', not including
|
45 |
-
blank values.
|
46 |
-
|
47 |
-
Example: str(DropDateObject(date)) == '9 March 2021'
|
48 |
-
"""
|
49 |
-
|
50 |
-
def __init__(self, dict_date):
|
51 |
-
self.year = dict_date.get("year", "")
|
52 |
-
self.month = dict_date.get("month", "")
|
53 |
-
self.day = dict_date.get("day", "")
|
54 |
-
|
55 |
-
def __iter__(self):
|
56 |
-
yield from [self.day, self.month, self.year]
|
57 |
-
|
58 |
-
def __bool__(self):
|
59 |
-
return any(self)
|
60 |
-
|
61 |
-
def __repr__(self):
|
62 |
-
return " ".join(self).strip()
|
63 |
-
|
64 |
-
|
65 |
-
class Drop(datasets.GeneratorBasedBuilder):
|
66 |
-
"""TODO(drop): Short description of my dataset."""
|
67 |
-
|
68 |
-
# TODO(drop): Set up version.
|
69 |
-
VERSION = datasets.Version("0.1.0")
|
70 |
-
|
71 |
-
def _info(self):
|
72 |
-
# TODO(drop): Specifies the datasets.DatasetInfo object
|
73 |
-
return datasets.DatasetInfo(
|
74 |
-
# This is the description that will appear on the datasets page.
|
75 |
-
description=_DESCRIPTION,
|
76 |
-
# datasets.features.FeatureConnectors
|
77 |
-
features=datasets.Features(
|
78 |
-
{
|
79 |
-
"section_id": datasets.Value("string"),
|
80 |
-
"query_id": datasets.Value("string"),
|
81 |
-
"passage": datasets.Value("string"),
|
82 |
-
"question": datasets.Value("string"),
|
83 |
-
"answers_spans": datasets.features.Sequence(
|
84 |
-
{"spans": datasets.Value("string"), "types": datasets.Value("string")}
|
85 |
-
)
|
86 |
-
# These are the features of your dataset like images, labels ...
|
87 |
-
}
|
88 |
-
),
|
89 |
-
# If there's a common (input, target) tuple from the features,
|
90 |
-
# specify them here. They'll be used if as_supervised=True in
|
91 |
-
# builder.as_dataset.
|
92 |
-
supervised_keys=None,
|
93 |
-
# Homepage of the dataset for documentation
|
94 |
-
homepage="https://allennlp.org/drop",
|
95 |
-
citation=_CITATION,
|
96 |
-
)
|
97 |
-
|
98 |
-
def _split_generators(self, dl_manager):
|
99 |
-
"""Returns SplitGenerators."""
|
100 |
-
# TODO(drop): Downloads the data and defines the splits
|
101 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
102 |
-
# download and extract URLs
|
103 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
104 |
-
data_dir = os.path.join(dl_dir, "drop_dataset")
|
105 |
-
return [
|
106 |
-
datasets.SplitGenerator(
|
107 |
-
name=datasets.Split.TRAIN,
|
108 |
-
# These kwargs will be passed to _generate_examples
|
109 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_train.json"), "split": "train"},
|
110 |
-
),
|
111 |
-
datasets.SplitGenerator(
|
112 |
-
name=datasets.Split.VALIDATION,
|
113 |
-
# These kwargs will be passed to _generate_examples
|
114 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_dev.json"), "split": "validation"},
|
115 |
-
),
|
116 |
-
]
|
117 |
-
|
118 |
-
def _generate_examples(self, filepath, split):
|
119 |
-
"""Yields examples."""
|
120 |
-
# TODO(drop): Yields (key, example) tuples from the dataset
|
121 |
-
with open(filepath, mode="r", encoding="utf-8") as f:
|
122 |
-
data = json.load(f)
|
123 |
-
id_ = 0
|
124 |
-
for i, (section_id, section) in enumerate(data.items()):
|
125 |
-
for j, qa in enumerate(section["qa_pairs"]):
|
126 |
-
|
127 |
-
example = {
|
128 |
-
"section_id": section_id,
|
129 |
-
"query_id": qa["query_id"],
|
130 |
-
"passage": section["passage"],
|
131 |
-
"question": qa["question"],
|
132 |
-
}
|
133 |
-
|
134 |
-
if split == "train":
|
135 |
-
answers = [qa["answer"]]
|
136 |
-
else:
|
137 |
-
answers = qa["validated_answers"]
|
138 |
-
|
139 |
-
try:
|
140 |
-
example["answers_spans"] = self.build_answers(answers)
|
141 |
-
yield id_, example
|
142 |
-
id_ += 1
|
143 |
-
except AnswerParsingError:
|
144 |
-
# This is expected for 9 examples of train
|
145 |
-
# and 1 of validation.
|
146 |
-
continue
|
147 |
-
|
148 |
-
@staticmethod
|
149 |
-
def _raise(message):
|
150 |
-
"""
|
151 |
-
Raise a custom AnswerParsingError, to be sure to only catch our own
|
152 |
-
errors. Messages are irrelavant for this script, but are written to
|
153 |
-
ease understanding the code.
|
154 |
-
"""
|
155 |
-
raise AnswerParsingError(message)
|
156 |
-
|
157 |
-
def build_answers(self, answers):
|
158 |
-
|
159 |
-
returned_answers = {
|
160 |
-
"spans": list(),
|
161 |
-
"types": list(),
|
162 |
-
}
|
163 |
-
for answer in answers:
|
164 |
-
date = DropDateObject(answer["date"])
|
165 |
-
|
166 |
-
if answer["number"] != "":
|
167 |
-
# sanity checks
|
168 |
-
if date:
|
169 |
-
self._raise("This answer is both number and date!")
|
170 |
-
if len(answer["spans"]):
|
171 |
-
self._raise("This answer is both number and text!")
|
172 |
-
|
173 |
-
returned_answers["spans"].append(answer["number"])
|
174 |
-
returned_answers["types"].append("number")
|
175 |
-
|
176 |
-
elif date:
|
177 |
-
# sanity check
|
178 |
-
if len(answer["spans"]):
|
179 |
-
self._raise("This answer is both date and text!")
|
180 |
-
|
181 |
-
returned_answers["spans"].append(str(date))
|
182 |
-
returned_answers["types"].append("date")
|
183 |
-
|
184 |
-
# won't triger if len(answer['spans']) == 0
|
185 |
-
for span in answer["spans"]:
|
186 |
-
# sanity checks
|
187 |
-
if answer["number"] != "":
|
188 |
-
self._raise("This answer is both text and number!")
|
189 |
-
if date:
|
190 |
-
self._raise("This answer is both text and date!")
|
191 |
-
|
192 |
-
returned_answers["spans"].append(span)
|
193 |
-
returned_answers["types"].append("span")
|
194 |
-
|
195 |
-
# sanity check
|
196 |
-
_len = len(returned_answers["spans"])
|
197 |
-
if not _len:
|
198 |
-
self._raise("Empty answer.")
|
199 |
-
if any(len(l) != _len for _, l in returned_answers.items()):
|
200 |
-
self._raise("Something went wrong while parsing answer values/types")
|
201 |
-
|
202 |
-
return returned_answers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|