licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 3465 | using Documenter
using Literate
using RigidBodyDynamics, RigidBodyDynamics.OdeIntegrators
gendir = joinpath(@__DIR__, "src", "generated")
tutorialpages = String[]
let
rm(gendir, recursive=true, force=true)
mkdir(gendir)
exampledir = joinpath(@__DIR__, "..", "examples")
excludedirs = String[]
excludefiles = String[]
if VERSION < v"1.1.0"
push!(excludefiles, "Symbolic double pendulum.jl")
end
for subdir in readdir(exampledir)
subdir in excludedirs && continue
root = joinpath(exampledir, subdir)
isdir(root) || continue
for file in readdir(root)
file in excludefiles && continue
name, ext = splitext(file)
lowercase(ext) == ".jl" || continue
outputdir = joinpath(gendir, subdir)
cp(root, outputdir)
preprocess = function (str)
str = replace(str, "@__DIR__" => "\"$(relpath(root, outputdir))\"")
str = replace(str, "# PREAMBLE" =>
"""
# This example is also available as a Jupyter notebook that can be run locally
# The notebook can be found in the `examples` directory of the package.
# If the notebooks are missing, you may need to run `using Pkg; Pkg.build()`.
""")
return str
end
stripped_name = replace(name, r"[\s;]" => "")
postprocess = function(str)
str = replace(str, "PKG_SETUP" =>
"""
```@setup $stripped_name
import Pkg
let
original_stdout = stdout
out_rd, out_wr = redirect_stdout()
@async read(out_rd, String)
try
Pkg.activate("$(relpath(root, outputdir))")
Pkg.instantiate()
finally
redirect_stdout(original_stdout)
close(out_wr)
end
end
```
""")
return str
end
absfile = joinpath(root, file)
tutorialpage = Literate.markdown(absfile, outputdir; preprocess=preprocess, postprocess=postprocess)
push!(tutorialpages, relpath(tutorialpage, joinpath(@__DIR__, "src")))
end
end
end
makedocs(
modules = [RigidBodyDynamics, RigidBodyDynamics.OdeIntegrators],
root = @__DIR__,
checkdocs = :exports,
sitename ="RigidBodyDynamics.jl",
authors = "Twan Koolen and contributors.",
pages = [
"Home" => "index.md",
"Tutorials" => tutorialpages,
"Library" => [
"Spatial vector algebra" => "spatial.md",
"Joints" => "joints.md",
"Rigid bodies" => "rigidbody.md",
"Mechanism" => "mechanism.md",
"MechanismState" => "mechanismstate.md",
"Kinematics/dynamics algorithms" => "algorithms.md",
"Custom collection types" => "customcollections.md",
"Cache types" => "caches.md",
"Simulation" => "simulation.md",
"URDF parsing and writing" => "urdf.md",
],
"Benchmarks" => "benchmarks.md",
],
format = Documenter.HTML(prettyurls = parse(Bool, get(ENV, "CI", "false")))
)
deploydocs(
repo = "github.com/JuliaRobotics/RigidBodyDynamics.jl.git"
)
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 626 | using Literate
function preprocess(str)
str = replace(str, "# PREAMBLE" => "")
str = replace(str, "# PKG_SETUP" =>
"""
using Pkg
Pkg.activate(@__DIR__)
Pkg.instantiate()
""")
return str
end
exampledir = @__DIR__
for subdir in readdir(exampledir)
root = joinpath(exampledir, subdir)
isdir(root) || continue
@show subdir
for file in readdir(root)
name, ext = splitext(file)
lowercase(ext) == ".jl" || continue
absfile = joinpath(root, file)
@show absfile
Literate.notebook(absfile, root, execute=false, preprocess=preprocess)
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 142 | using Pkg
for x in readdir()
if isdir(x) && isfile(joinpath(x, "Project.toml"))
Pkg.activate(x)
Pkg.update()
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 6859 | # # @__NAME__
# PREAMBLE
# PKG_SETUP
# ## Setup
# In addition to `RigidBodyDynamics`, we'll be using the `StaticArrays` package, used throughout `RigidBodyDynamics`, which provides stack-allocated, fixed-size arrays:
using RigidBodyDynamics
using LinearAlgebra
using StaticArrays
# ## Creating a double pendulum `Mechanism`
# We're going to create a simple `Mechanism` that represents a [double pendulum](https://en.wikipedia.org/wiki/Double_pendulum). The `Mechanism` type can be thought of as an interconnection of rigid bodies and joints.
#
# We'll start by creating a 'root' rigid body, representing the fixed world, and using it to create a new `Mechanism`:
g = -9.81 # gravitational acceleration in z-direction
world = RigidBody{Float64}("world")
doublependulum = Mechanism(world; gravity = SVector(0, 0, g))
# Note that the `RigidBody` type is parameterized on the 'scalar type', here `Float64`.
#
# We'll now add a second body, called 'upper link', to the `Mechanism`. We'll attach it to the world with a revolute joint, with the $y$-axis as the axis of rotation. We'll start by creating a `SpatialInertia`, which stores the inertial properties of the new body:
axis = SVector(0., 1., 0.) # joint axis
I_1 = 0.333 # moment of inertia about joint axis
c_1 = -0.5 # center of mass location with respect to joint axis
m_1 = 1. # mass
frame1 = CartesianFrame3D("upper_link") # the reference frame in which the spatial inertia will be expressed
inertia1 = SpatialInertia(frame1,
moment=I_1 * axis * axis',
com=SVector(0, 0, c_1),
mass=m_1)
# Note that the created `SpatialInertia` is annotated with the frame in which it is expressed (in the form of a `CartesianFrame3D`). This is a common theme among `RigidBodyDynamics` objects. Storing frame information with the data obviates the need for the complicated variable naming conventions that are used in some other libraries to disambiguate the frame in which quantities are expressed. It also enables automated reference frame checks.
# We'll now create the second body:
upperlink = RigidBody(inertia1)
# and a new revolute joint called 'shoulder':
shoulder = Joint("shoulder", Revolute(axis))
# Creating a `Joint` automatically constructs two new `CartesianFrame3D` objects: a frame directly before the joint, and one directly after. To attach the new body to the world by this joint, we'll have to specify where the frame before the joint is located on the parent body (here, the world):
before_shoulder_to_world = one(Transform3D,
frame_before(shoulder), default_frame(world))
# Now we can attach the upper link to the world:
attach!(doublependulum, world, upperlink, shoulder,
joint_pose = before_shoulder_to_world)
# which changes the tree representation of the `Mechanism`.
# We can attach the lower link in similar fashion:
l_1 = -1. # length of the upper link
I_2 = 0.333 # moment of inertia about joint axis
c_2 = -0.5 # center of mass location with respect to joint axis
m_2 = 1. # mass
inertia2 = SpatialInertia(CartesianFrame3D("lower_link"),
moment=I_2 * axis * axis',
com=SVector(0, 0, c_2),
mass=m_2)
lowerlink = RigidBody(inertia2)
elbow = Joint("elbow", Revolute(axis))
before_elbow_to_after_shoulder = Transform3D(
frame_before(elbow), frame_after(shoulder), SVector(0, 0, l_1))
attach!(doublependulum, upperlink, lowerlink, elbow,
joint_pose = before_elbow_to_after_shoulder)
# Now our double pendulum `Mechanism` is complete.
# **Note**: instead of defining the `Mechanism` in this way, it is also possible to load in a [URDF](http://wiki.ros.org/urdf) file (an XML file format used in ROS), using the `parse_urdf` function, e.g.:
srcdir = dirname(pathof(RigidBodyDynamics))
urdf = joinpath(srcdir, "..", "test", "urdf", "Acrobot.urdf")
parse_urdf(urdf)
# ## The state of a `Mechanism`
# A `Mechanism` stores the joint/rigid body layout, but no state information. State information is separated out into a `MechanismState` object:
state = MechanismState(doublependulum)
# Let's first set the configurations and velocities of the joints:
set_configuration!(state, shoulder, 0.3)
set_configuration!(state, elbow, 0.4)
set_velocity!(state, shoulder, 1.)
set_velocity!(state, elbow, 2.);
# The joint configurations and velocities are stored as `Vector`s (denoted $q$ and $v$ respectively in this package) inside the `MechanismState` object:
q = configuration(state)
v = velocity(state)
# ## Kinematics
# We are now ready to do kinematics. Here's how you transform a point at the origin of the frame after the elbow joint to world frame:
transform(state, Point3D(frame_after(elbow), zero(SVector{3})),
default_frame(world))
# Other objects like `Wrench`es, `Twist`s, and `SpatialInertia`s can be transformed in similar fashion.
# You can also ask for the homogeneous transform to world:
transform_to_root(state, frame_after(elbow))
# Or a relative transform:
relative_transform(state, frame_after(elbow), frame_after(shoulder))
# and here's the center of mass of the double pendulum:
center_of_mass(state)
# ## Dynamics
# A `MechanismState` can also be used to compute quantities related to the dynamics of the `Mechanism`. Here we compute the mass matrix:
mass_matrix(state)
# Note that there is also a zero-allocation version, `mass_matrix!` (the `!` at the end of a method is a Julia convention signifying that the function is 'in-place', i.e. modifies its input data).
# We can do inverse dynamics as follows (note again that there is a non-allocating version of this method as well):
v̇ = similar(velocity(state)) # the joint acceleration vector, i.e., the time derivative of the joint velocity vector v
v̇[shoulder][1] = 1
v̇[elbow][1] = 2
inverse_dynamics(state, v̇)
# ## Simulation
# Let's simulate the double pendulum for 5 seconds, starting from the state we defined earlier. For this, we can use the basic `simulate` function:
ts, qs, vs = simulate(state, 5., Δt = 1e-3);
# `simulate` returns a vector of times (`ts`) and associated joint configurations (`qs`) and velocities (`vs`). You can of course plot the trajectories using your favorite plotting package (see e.g. [Plots.jl](https://github.com/JuliaPlots/Plots.jl)). The [MeshCatMechanisms](https://github.com/JuliaRobotics/MeshCatMechanisms.jl) or [RigidBodyTreeInspector](https://github.com/rdeits/RigidBodyTreeInspector.jl) packages can also be used for 3D animation of the double pendulum in action. See also [RigidBodySim.jl](https://github.com/JuliaRobotics/RigidBodySim.jl) for a more full-fledge simulation environment.
# A lower level interface for simulation/ODE integration with more options is also available.
# Consult the documentation for more information.
# In addition, [RigidBodySim.jl](https://github.com/JuliaRobotics/RigidBodySim.jl) offers a more full-featured simulation environment.
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 2233 | # # @__NAME__
# PREAMBLE
# PKG_SETUP
# Please note that [RigidBodySim.jl](https://github.com/JuliaRobotics/RigidBodySim.jl) now provides a more capable simulation environment.
# ## Setup
using RigidBodyDynamics
# ## Model definition
# We'll just use the double pendulum model, loaded from a URDF:
srcdir = dirname(pathof(RigidBodyDynamics))
urdf = joinpath(srcdir, "..", "test", "urdf", "Acrobot.urdf")
mechanism = parse_urdf(urdf)
# ## Controller
# Let's write a simple controller that just applies $10 \sin(t)$ at the elbow joint and adds some damping at the shoulder joint:
shoulder, elbow = joints(mechanism)
function simple_control!(torques::AbstractVector, t, state::MechanismState)
torques[velocity_range(state, shoulder)] .= -1 .* velocity(state, shoulder)
torques[velocity_range(state, elbow)] .= 10 * sin(t)
end;
# ## Simulation
# Basic simulation can be done using the `simulate` function. We'll first create a `MechanismState` object, and set the initial joint configurations and velocities:
state = MechanismState(mechanism)
zero_velocity!(state)
set_configuration!(state, shoulder, 0.7)
set_configuration!(state, elbow, -0.8);
# Now we can simply call `simulate`, which will return a tuple consisting of:
# * simulation times (a `Vector` of numbers)
# * joint configuration vectors (a `Vector` of `Vector`s)
# * joint velocity vectors (a `Vector` of `Vector`s)
final_time = 10.
ts, qs, vs = simulate(state, final_time, simple_control!; Δt = 1e-3);
# For access to lower-level functionality, such as different ways of storing or visualizing the data generated during the simulation, it is advised to simply pattern match the basic `simulate` function.
# ## Visualization
# For visualization, we'll use [`MeshCatMechanisms`](https://github.com/JuliaRobotics/MeshCatMechanisms.jl), an external package based on RigidBodyDynamics.jl.
using MeshCatMechanisms
# Create a `MechanismVisualizer` and open it in a new browser tab
# (see [`MeshCat.jl`](https://github.com/rdeits/MeshCat.jl) for other options):
mvis = MechanismVisualizer(mechanism, URDFVisuals(urdf));
#-
#nb ##NBSKIP
#nb open(mvis)
#md ## open(mvis)
# And animate:
MeshCatMechanisms.animate(mvis, ts, qs; realtimerate = 1.);
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 5046 | # # @__NAME__
# PREAMBLE
# PKG_SETUP
# This example is a (slightly modified) contribution by [Aykut Satici](https://github.com/symplectomorphism).
# ## Setup
using Pkg # hide
Pkg.activate(@__DIR__) # hide
Pkg.instantiate() # hide
using LinearAlgebra
using RigidBodyDynamics
using StaticArrays
# ## Model definition
# We're going to create a [four-bar linkage](https://en.wikipedia.org/wiki/Four-bar_linkage) that looks like this:
# 
#
# We'll 'cut' the mechanism at joint 4: joints 1, 2, and 3 will be part of the spanning tree of the mechanism, but joint 4 will be a 'loop joint' (see e.g. Featherstone's 'Rigid Body Dynamics Algorithms'), for which the dynamics will be enforced using Lagrange multipliers.
#
# First, we'll define some relevant constants:
## gravitational acceleration
g = -9.81
## link lengths
l_0 = 1.10
l_1 = 0.5
l_2 = 1.20
l_3 = 0.75
## link masses
m_1 = 0.5
m_2 = 1.0
m_3 = 0.75
## link center of mass offsets from the preceding joint axes
c_1 = 0.25
c_2 = 0.60
c_3 = 0.375
## moments of inertia about the center of mass of each link
I_1 = 0.333
I_2 = 0.537
I_3 = 0.4
## Rotation axis: negative y-axis
axis = SVector(0., -1., 0.);
# Construct the world rigid body and create a new mechanism:
world = RigidBody{Float64}("world")
fourbar = Mechanism(world; gravity = SVector(0., 0., g))
# Next, we'll construct the spanning tree of the mechanism,
# consisting of bodies 1, 2, and 3 connected by joints 1, 2, and 3.
# Note the use of the `moment_about_com` keyword (as opposed to `moment`):
# Link 1 and joint 1:
joint1 = Joint("joint1", Revolute(axis))
inertia1 = SpatialInertia(frame_after(joint1),
com=SVector(c_1, 0, 0),
moment_about_com=I_1*axis*transpose(axis),
mass=m_1)
link1 = RigidBody(inertia1)
before_joint1_to_world = one(Transform3D,
frame_before(joint1), default_frame(world))
attach!(fourbar, world, link1, joint1,
joint_pose = before_joint1_to_world)
# Link 2 and joint 2:
joint2 = Joint("joint2", Revolute(axis))
inertia2 = SpatialInertia(frame_after(joint2),
com=SVector(c_2, 0, 0),
moment_about_com=I_2*axis*transpose(axis),
mass=m_2)
link2 = RigidBody(inertia2)
before_joint2_to_after_joint1 = Transform3D(
frame_before(joint2), frame_after(joint1), SVector(l_1, 0., 0.))
attach!(fourbar, link1, link2, joint2,
joint_pose = before_joint2_to_after_joint1)
# Link 3 and joint 3:
joint3 = Joint("joint3", Revolute(axis))
inertia3 = SpatialInertia(frame_after(joint3),
com=SVector(l_0, 0., 0.),
moment_about_com=I_3*axis*transpose(axis),
mass=m_3)
link3 = RigidBody(inertia3)
before_joint3_to_world = Transform3D(
frame_before(joint3), default_frame(world), SVector(l_0, 0., 0.))
attach!(fourbar, world, link3, joint3, joint_pose = before_joint3_to_world)
# Finally, we'll add joint 4 in almost the same way we did the other joints,
# with the following exceptions:
# 1. both `link2` and `link3` are already part of the `Mechanism`, so the `attach!`
# function will figure out that `joint4` will be a loop joint.
# 2. instead of using the default (identity) for the argument that specifies the
# transform from the successor of joint 4 (i.e., link 3) to the frame directly after
# joint 4, we'll specify a transform that incorporates the $l_3$ offset.
## joint between link2 and link3
joint4 = Joint("joint4", Revolute(axis))
before_joint4_to_joint2 = Transform3D(
frame_before(joint4), frame_after(joint2), SVector(l_2, 0., 0.))
joint3_to_after_joint4 = Transform3D(
frame_after(joint3), frame_after(joint4), SVector(-l_3, 0., 0.))
attach!(fourbar, link2, link3, joint4,
joint_pose = before_joint4_to_joint2, successor_pose = joint3_to_after_joint4)
# Note the additional non-tree joint in the printed `Mechanism` summary.
# ## Simulation
# As usual, we'll now construct a `MechanismState` and `DynamicsResult` for the
# four-bar `Mechanism`. We'll set some initial conditions for a simulation, which
# were solved for a priori using a nonlinear program (not shown here).
state = MechanismState(fourbar)
result = DynamicsResult(fourbar);
set_configuration!(state, joint1, 1.6707963267948966) # θ
set_configuration!(state, joint2, -1.4591054166649482) # γ
set_configuration!(state, joint3, 1.5397303602625536) # ϕ
set_velocity!(state, joint1, 0.5)
set_velocity!(state, joint2, -0.47295)
set_velocity!(state, joint3, 0.341)
# Next, we'll do a 3-second simulation:
ts, qs, vs = simulate(state, 3., Δt = 1e-2);
# ## Visualization
# For visualization, we'll use [`MeshCatMechanisms`](https://github.com/JuliaRobotics/MeshCatMechanisms.jl),
# an external package based on RigidBodyDynamics.jl.
using MeshCatMechanisms
# Create a `MechanismVisualizer` for the four-bar linkage and open it in a new browser tab
# (see [`MeshCat.jl`](https://github.com/rdeits/MeshCat.jl) for other options):
mvis = MechanismVisualizer(fourbar, Skeleton(inertias=false));
#-
#nb ##NBSKIP
#nb open(mvis)
#md ## open(mvis)
# And animate:
MeshCatMechanisms.animate(mvis, ts, qs; realtimerate = 1.);
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 7459 | # # @__NAME__
# PREAMBLE
# PKG_SETUP
# In this notebook, we'll demonstrate an extremely simple approach for computing basic inverse kinematics (IK) and controlling the position of some point on our robot using the Jacobian transpose.
#
# For a brief technical introduction, see <https://groups.csail.mit.edu/drl/journal_club/papers/033005/buss-2004.pdf> or <https://homes.cs.washington.edu/~todorov/courses/cseP590/06_JacobianMethods.pdf>
# ## Setup
using Pkg # hide
Pkg.activate(@__DIR__) # hide
Pkg.instantiate() # hide
using RigidBodyDynamics
using StaticArrays
using MeshCat, MeshCatMechanisms
using Electron: Application
# Fix the random seed, so we get repeatable results
using Random
Random.seed!(42);
# First we'll load our double pendulum robot from URDF:
srcdir = dirname(pathof(RigidBodyDynamics))
urdf = joinpath(srcdir, "..", "test", "urdf", "Acrobot.urdf")
mechanism = parse_urdf(urdf)
state = MechanismState(mechanism)
mechanism
# Now we choose a point on the robot to control. We'll pick the end of the second link, which is located 2m from the origin of the `lower_link` body:
body = findbody(mechanism, "lower_link")
point = Point3D(default_frame(body), 0., 0, -2)
# Let's visualize the mechanism and its attached point. For visualization, we'll use [MeshCatMechanisms.jl](https://github.com/JuliaRobotics/MeshCatMechanisms.jl) with [Electron.jl](https://github.com/davidanthoff/Electron.jl).
## Create the visualizer
vis = MechanismVisualizer(mechanism, URDFVisuals(urdf))
## Render our target point attached to the robot as a sphere with radius 0.07
setelement!(vis, point, 0.07)
# Open the visualizer in a new Electron window:
#nb ##NBSKIP
#nb open(vis, Application());
#md ## open(vis, Application());
# ## Inverse Kinematics
# First, let's use the point jacobian to solve a simple inverse kinematics problem. Given a target location `desired` expressed in world frame, we want to find the joint angles `q` such that the `point` attached to the robot is at the desired location.
#
# To do that, we'll iteratively update `q` by applying:
#
# \begin{align}
# \Delta q = \alpha \, J_p^\top \, \Delta p
# \end{align}
#
# where $\alpha$ is our step size (equivalent to a learning rate in gradient descent) and $\Delta p$ is the error in the position of our target point.
function jacobian_transpose_ik!(state::MechanismState,
body::RigidBody,
point::Point3D,
desired::Point3D;
α=0.1,
iterations=100)
mechanism = state.mechanism
world = root_frame(mechanism)
## Compute the joint path from world to our target body
p = path(mechanism, root_body(mechanism), body)
## Allocate the point jacobian (we'll update this in-place later)
Jp = point_jacobian(state, p, transform(state, point, world))
q = copy(configuration(state))
for i in 1:iterations
## Update the position of the point
point_in_world = transform(state, point, world)
## Update the point's jacobian
point_jacobian!(Jp, state, p, point_in_world)
## Compute an update in joint coordinates using the jacobian transpose
Δq = α * Array(Jp)' * (transform(state, desired, world) - point_in_world).v
## Apply the update
q .= configuration(state) .+ Δq
set_configuration!(state, q)
end
state
end
# To use our IK method, we just have to set our current state and choose a desired location for the tip of the robot's arm:
rand!(state)
set_configuration!(vis, configuration(state))
# Choose a desired location. We'll move the tip of the arm to
# [0.5, 0, 2]
desired_tip_location = Point3D(root_frame(mechanism), 0.5, 0, 2)
# Run the IK, updating `state` in place
jacobian_transpose_ik!(state, body, point, desired_tip_location)
set_configuration!(vis, configuration(state))
# We asked for our point to be close to [0.5, 0, 2],
# but since the arm cannot move in the y direction at all
# we end up near [0.5, 0.25, 2] instead
transform(state, point, root_frame(mechanism))
# We can try varying the target and watching the IK solution change:
qs = typeof(configuration(state))[]
# Vary the desired x position from -1 to 1
for x in range(-1, stop=1, length=100)
desired = Point3D(root_frame(mechanism), x, 0, 2)
jacobian_transpose_ik!(state, body, point, desired)
push!(qs, copy(configuration(state)))
end
ts = collect(range(0, stop=1, length=length(qs)))
setanimation!(vis, Animation(vis, ts, qs))
# ## Control
# Now let's use the same principle to generate torques and actually control the robot. To make things more interesting, let's get the end of the robot's arm to trace out a circle.
circle_origin = SVector(0., 0.25, 2)
radius = 0.5
ω = 1.0 # radians per second at which the point should move in its circle
using GeometryTypes: Point
## Draw the circle in the viewer
θ = repeat(range(0, stop=2π, length=100), inner=(2,))[2:end]
cx, cy, cz = circle_origin
geometry = PointCloud(Point.(cx .+ radius .* sin.(θ), cy, cz .+ 0.5 .* cos.(θ)))
setobject!(vis[:circle], LineSegments(geometry, LineBasicMaterial()))
# This function will take in the parameters of the circle
# and the target point and return a function we can use
# as the controller. By wrapping the construction of the
# controller in this way, we avoid any issues with accessing
# non-const global variables.
function make_circle_controller(state::MechanismState,
body::RigidBody,
point::Point3D,
circle_origin::AbstractVector,
radius,
ω)
mechanism = state.mechanism
world = root_frame(mechanism)
joint_path = path(mechanism, root_body(mechanism), body)
point_world = transform(state, point, root_frame(mechanism))
Jp = point_jacobian(state, joint_path, point_world)
v̇ = similar(velocity(state))
function controller!(τ, t, state)
desired = Point3D(world, circle_origin .+ radius .* SVector(sin(t / ω), 0, cos(t / ω)))
point_in_world = transform_to_root(state, body) * point
point_jacobian!(Jp, state, joint_path, point_in_world)
Kp = 200
Kd = 20
Δp = desired - point_in_world
v̇ .= Kp * Array(Jp)' * Δp.v .- 20 .* velocity(state)
τ .= inverse_dynamics(state, v̇)
end
end
controller! = make_circle_controller(state, body, point, circle_origin, radius, ω)
ts, qs, vs = simulate(state, 10, controller!);
# Animate the resulting trajectory:
setanimation!(vis, Animation(vis, ts, qs))
# Now we can plot the behavior of the controller. The initial state is quite far from the target, so there's some significant overshoot early in the trajectory, but the controller eventually settles into tracking the desired circular path. This controller isn't very well-tuned, and we could certainly do better with a more advanced approach, but this is still a nice demonstration of a very simple control policy.
using Plots: plot
xs = Float64[]
zs = Float64[]
## Downsample by 100 just so the plot doesn't become a huge file:
for q in qs[1:100:end]
set_configuration!(state, q)
p = transform(state, point, root_frame(mechanism))
push!(xs, p.v[1])
push!(zs, p.v[3])
end
plot(xs, zs, xlim=(-1, 1), ylim=(1, 3), aspect_ratio=:equal, legend=nothing)
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 8046 | # # @__NAME__
# PREAMBLE
# PKG_SETUP
# ## Setup
using Pkg # hide
Pkg.activate(@__DIR__) # hide
Pkg.instantiate() # hide
using RigidBodyDynamics, StaticArrays, ForwardDiff
using Test, Random
Random.seed!(1); # to get repeatable results
# ## Jacobians with respect to $q$ and $v$ - the naive way
# First, we'll load our trusty double pendulum from a URDF:
srcdir = dirname(pathof(RigidBodyDynamics))
urdf = joinpath(srcdir, "..", "test", "urdf", "Acrobot.urdf")
mechanism = parse_urdf(urdf)
# Of course, we can create a `MechanismState` for the double pendulum, and compute its momentum in some random state:
float64state = MechanismState(mechanism)
rand!(float64state)
momentum(float64state)
# But now suppose we want the Jacobian of momentum with respect to the joint velocity vector $v$.
# We can do this using the `ForwardDiff.Dual` type and the `ForwardDiff.jacobian` function.
# The ForwardDiff package implements forward-mode [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).
# To use `ForwardDiff.jacobian` we'll create a function that maps `v` (as a `Vector`) to momentum (as a `Vector`):
q = configuration(float64state)
function momentum_vec(v::AbstractVector{T}) where T
## create a `MechanismState` that can handle the element type of `v` (which will be some `ForwardDiff.Dual`):
state = MechanismState{T}(mechanism)
## set the state variables:
set_configuration!(state, q)
set_velocity!(state, v)
## return momentum converted to an `SVector` (as ForwardDiff expects an `AbstractVector`)
Vector(SVector(momentum(state)))
end
# Let's first check that the function returns the same thing we got from `float64state`:
v = velocity(float64state)
@test momentum_vec(v) == SVector(momentum(float64state))
# That works, so now let's compute the Jacobian with `ForwardDiff`:
J = ForwardDiff.jacobian(momentum_vec, v)
# At this point we note that the matrix `J` is simply the momentum matrix (in world frame) of the `Mechanism`. In this case, RigidBodyDynamics.jl has a specialized algorithm for computing this matrix, so let's verify the results:
A = momentum_matrix(float64state)
@test J ≈ Array(A) atol = 1e-12
# Gradients with respect to $q$ can be computed in similar fashion.
# ## Improving performance
# Ignoring the fact that we have a specialized method available, let's look at the performance of using `ForwardDiff.jacobian`.
using BenchmarkTools
@benchmark ForwardDiff.jacobian($momentum_vec, $v)
# That's not great. Note all the allocations. We can do better by making the following modifications:
#
# 1. use an in-place version of the `jacobian` function, `ForwardDiff.jacobian!`
# 2. reimplement our `momentum_vec` function to be in-place as well
# 3. don't create a new `MechanismState` every time
#
# The third point is especially important; creating a `MechanismState` is expensive!
#
# Regarding the second point, we could also just stop converting momentum from a `StaticArrays.SVector` to a `Vector` to avoid allocations. However, the solution of making the function in-place also applies when the size of the output vector is not known statically (e.g., for `dynamics_bias!`).
# To facillitate reuse of `MechanismState`s while keeping the code nice and generic, we can use a `StateCache` object.
# `StateCache` is a container that stores `MechanismState`s of various types (associated with one `Mechanism`), and will ease the process of using `ForwardDiff`.
# Creating one is easy:
const statecache = StateCache(mechanism)
# `MechanismState`s of a given type can be accessed as follows (note that if a `MechanismState` of a certain type is already available, it will be reused):
float32state = statecache[Float32]
@test float32state === statecache[Float32]
# Now we'll use the `StateCache` to reimplement `momentum_vec`, making it in-place as well:
function momentum_vec!(out::AbstractVector, v::AbstractVector{T}) where T
## retrieve a `MechanismState` that can handle the element type of `v`:
state = statecache[T]
## set the state variables:
set_configuration!(state, q)
set_velocity!(state, v)
## compute momentum and store it in `out`
m = momentum(state)
copyto!(out, SVector(m))
end
# Check that the in-place version works as expected on `Float64` inputs:
const out = zeros(6) # where we'll be storing our results
momentum_vec!(out, v)
@test out == SVector(momentum(float64state))
# And use `ForwardDiff.jacobian!` to compute the Jacobian:
const result = DiffResults.JacobianResult(out, v)
const config = ForwardDiff.JacobianConfig(momentum_vec!, out, v)
ForwardDiff.jacobian!(result, momentum_vec!, out, v, config)
J = DiffResults.jacobian(result)
@test J ≈ Array(A) atol = 1e-12
# Let's check the performance again:
@benchmark ForwardDiff.jacobian!($result, $momentum_vec!, $out, $v, $config)
# That's much better. Do note that the specialized algorithm is still faster:
q = copy(configuration(float64state))
@benchmark begin
set_configuration!($float64state, $q)
momentum_matrix!($A, $float64state)
end
# ## Time derivatives
# We can also use ForwardDiff to compute time derivatives. Let's verify that energy is conserved for the double pendulum in the absence of nonconservative forces (like damping). That is, we expect that the time derivative of the pendulum's total energy is zero when its state evolves according to the passive dynamics.
# Let's first compute the joint acceleration vector $\dot{v}$ using the passive dynamics:
dynamicsresult = DynamicsResult(mechanism)
set_configuration!(float64state, q)
set_velocity!(float64state, v)
dynamics!(dynamicsresult, float64state)
v̇ = dynamicsresult.v̇
# Now for the time derivative of total energy. ForwardDiff has a `derivative` function that can be used to take derivatives of functions that map a scalar to a scalar. But in this example, we'll instead use ForwardDiff's `Dual` type directly. `ForwardDiff.Dual` represents a (potentially multidimensional) dual number, i.e., a type that stores both the value of a function evaluated at a certain point, as well as the partial derivatives of the function, again evaluated at the same point. See the [ForwardDiff documentation](http://www.juliadiff.org/ForwardDiff.jl/stable/dev/how_it_works.html) for more information.
# We'll create a vector of `Dual`s representing the value and derivative of $q(t)$:
q̇ = v
q_dual = ForwardDiff.Dual.(q, q̇)
# **Note**: for the double pendulum, $\dot{q} = v$, but this is not the case in general for `Mechanism`s created using RigidBodyDynamics.jl. For example, the `QuaternionSpherical` joint type uses a unit quaternion to represent the joint configuration, but angular velocity (in body frame) to represent velocity. In general $\dot{q}$ can be computed from the velocity vector $v$ stored in a `MechanismState` using
#
# ```julia
# configuration_derivative(::MechanismState)
# ```
#
# or its in-place variant, `configuration_derivative!`.
# We'll do the same thing for $v(t)$:
v_dual = ForwardDiff.Dual.(v, v̇)
# Now we're ready to compute the total energy (kinetic + potential) using these `ForwardDiff.Dual` inputs. We'll use our `StateCache` again:
T = eltype(q_dual)
state = statecache[T]
set_configuration!(state, q_dual)
set_velocity!(state, v_dual)
energy_dual = kinetic_energy(state) + gravitational_potential_energy(state)
# Note that the result type of `energy_dual` is again a `ForwardDiff.Dual`. We can extract the energy and its time derivative (mechanical power) from `energy_dual` as follows:
energy = ForwardDiff.value(energy_dual)
partials = ForwardDiff.partials(energy_dual)
power = partials[1];
# So the total energy in the system is:
energy
# **Note**: the total energy is negative because the origin of the world frame is used as a reference for computing gravitational potential energy, i.e., the center of mass of the double pendulum is somewhere below this origin.
# And we can verify that, indeed, there is no power flow into or out of the system:
@test power ≈ 0 atol = 1e-14
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 2778 | # # @__NAME__
# PREAMBLE
# PKG_SETUP
# ## Setup
using RigidBodyDynamics
using StaticArrays
using Symbolics
# ## Create symbolic parameters
# * Masses: $m_1, m_2$
# * Mass moments of inertia (about center of mass): $I_1, I_2$
# * Link lengths: $l_1, l_2$
# * Center of mass locations (w.r.t. preceding joint axis): $c_1, c_2$
# * Gravitational acceleration: $g$
inertias = @variables m_1 m_2 I_1 I_2 positive = true
lengths = @variables l_1 l_2 c_1 c_2 real = true
gravitational_acceleration = @variables g real = true
params = [inertias..., lengths..., gravitational_acceleration...]
transpose(params)
# ## Create double pendulum `Mechanism`
# A `Mechanism` contains the joint layout and inertia parameters, but no state information.
T = Num # the 'scalar type' of the Mechanism we'll construct
axis = SVector(zero(T), one(T), zero(T)) # axis of rotation for each of the joints
double_pendulum = Mechanism(RigidBody{T}("world"); gravity=SVector(zero(T), zero(T), g))
world = root_body(double_pendulum) # the fixed 'world' rigid body
# Attach the first (upper) link to the world via a revolute joint named 'shoulder'
inertia1 = SpatialInertia(CartesianFrame3D("upper_link"),
moment=I_1 * axis * transpose(axis),
com=SVector(zero(T), zero(T), c_1),
mass=m_1)
body1 = RigidBody(inertia1)
joint1 = Joint("shoulder", Revolute(axis))
joint1_to_world = one(Transform3D{T}, frame_before(joint1), default_frame(world));
attach!(double_pendulum, world, body1, joint1,
joint_pose=joint1_to_world);
# Attach the second (lower) link to the world via a revolute joint named 'elbow'
inertia2 = SpatialInertia(CartesianFrame3D("lower_link"),
moment=I_2 * axis * transpose(axis),
com=SVector(zero(T), zero(T), c_2),
mass=m_2)
body2 = RigidBody(inertia2)
joint2 = Joint("elbow", Revolute(axis))
joint2_to_body1 = Transform3D(
frame_before(joint2), default_frame(body1), SVector(zero(T), zero(T), l_1))
attach!(double_pendulum, body1, body2, joint2,
joint_pose=joint2_to_body1)
# ## Create `MechanismState` associated with the double pendulum `Mechanism`
# A `MechanismState` stores all state-dependent information associated with a `Mechanism`.
x = MechanismState(double_pendulum);
# Set the joint configuration vector of the MechanismState to a new vector of symbolic variables
q = configuration(x)
for i in eachindex(q)
q[i] = symbols("q_$i", real=true)
end
# Set the joint velocity vector of the MechanismState to a new vector of symbolic variables
v = velocity(x)
for i in eachindex(v)
v[i] = symbols("v_$i", real=true)
end
# ## Compute dynamical quantities in symbolic form
# Mass matrix
simplify.(mass_matrix(x))
# Kinetic energy
simplify(kinetic_energy(x))
# Potential energy
simplify(gravitational_potential_energy(x))
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 4011 | # # @__NAME__
# PREAMBLE
# PKG_SETUP
# ## Floating-point error
# In computers, real numbers are commonly approximated using floating-point numbers, such as Julia's `Float64`. Unfortunately, not all real numbers can be exactly represented as a finite-size floating-point number, and the results of operations on floating-point numbers can only approximate the results of applying the operation to a true real number. This results in peculiarities like:
2.6 - 0.7 - 1.9
# IntervalArithmetic.jl can be used to quantify floating point error, by computing _rigorous_ worst-case bounds on floating point error, within which the true result is _guaranteed_ to lie.
using Pkg # hide
Pkg.activate(@__DIR__) # hide
Pkg.instantiate() # hide
using IntervalArithmetic
# IntervalArithmetic.jl provides the `Interval` type, which stores an upper and a lower bound:
i = Interval(1.0, 2.0)
#-
dump(i)
# IntervalArithmetic.jl provides overloads for most common Julia functions that take these bounds into account. For example:
i + i
#-
sin(i)
# Note that the bounds computed by IntervalArithmetic.jl take floating point error into account. Also note that a given real number, once converted to (approximated by) a floating-point number may not be equal to the original real number. To rigorously construct an `Interval` that contains a given real number as an input, IntervalArithmetic.jl provides the `@interval` macro:
i = @interval(2.9)
i.lo === i.hi
#-
dump(i)
# Compare this to
i = Interval(2.9)
i.lo === i.hi
#-
dump(i)
# As an example, consider again the peculiar result from before, now using interval arithmetic:
i = @interval(2.6) - @interval(0.7) - @interval(1.9)
# showing that the true result, `0`, is indeed in the guaranteed interval, and indeed:
using Test
@test (2.6 - 0.7 - 1.9) ∈ i
# ## Accuracy of RigidBodyDynamics.jl's `mass_matrix`
# Let's use IntervalArithmetic.jl to establish rigorous bounds on the accuracy of the accuracy of the `mass_matrix` algorithm for the Acrobot (double pendulum) in a certain configuration. Let's get started.
using RigidBodyDynamics
# We'll create a `Mechanism` by parsing the Acrobot URDF, passing in `Interval{Float64}` as the type used to store the parameters (inertias, link lengths, etc.) of the mechanism. Note that the parameters parsed from the URDF are treated as floating point numbers (i.e., like `Interval(2.9)` instead of `@interval(2.9)` above).
const T = Interval{Float64}
srcdir = dirname(pathof(RigidBodyDynamics))
urdf = joinpath(srcdir, "..", "test", "urdf", "Acrobot.urdf")
const mechanism = parse_urdf(urdf; scalar_type=T)
state = MechanismState(mechanism)
# Let's set the initial joint angle of the shoulder joint to the smallest `Interval{Float64}` containing the real number $1$, and similarly for the elbow joint:
shoulder, elbow = joints(mechanism)
set_configuration!(state, shoulder, @interval(1))
set_configuration!(state, elbow, @interval(2));
# And now we can compute the mass matrix as normal:
M = mass_matrix(state)
# Woah, those bounds look pretty big. RigidBodyDynamics.jl must not be very accurate! Actually, things aren't so bad; the issue is just that IntervalArithmetic.jl isn't kidding when it comes to guaranteed bounds, and that includes printing the numbers in shortened form. Here are the lengths of the intervals:
err = map(x -> x.hi - x.lo, M)
#-
@test maximum(abs, err) ≈ 0 atol = 1e-14
# ## Rigorous (worst-case) uncertainty propagation
# IntervalArithmetic.jl can also be applied to propagate uncertainty in a rigorous way when the inputs themselves are uncertain. Consider for example the case that we only know the joint angles up to $\pm 0.05$ radians:
set_configuration!(state, shoulder, @interval(0.95, 1.05))
set_configuration!(state, elbow, @interval(1.95, 2.05));
# and let's compute bounds on the center of mass position:
center_of_mass(state)
# Note that the bounds on the $y$-coordinate are very tight, since our mechanism only lives in the $x$-$z$ plane.
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 5886 | using Pkg
Pkg.activate(@__DIR__)
Pkg.instantiate()
using RigidBodyDynamics
using RigidBodyDynamics.OdeIntegrators
using Random
using Profile
using BenchmarkTools
using LinearAlgebra
# Due to https://github.com/JuliaRobotics/RigidBodyDynamics.jl/issues/500:
BLAS.set_num_threads(1)
const ScalarType = Float64
# const ScalarType = Float32
function create_floating_atlas()
url = "https://raw.githubusercontent.com/RobotLocomotion/drake/6e3ca768cbaabf15d0f2bed0fb5bd703fa022aa5/drake/examples/Atlas/urdf/atlas_minimal_contact.urdf"
urdf = RigidBodyDynamics.cached_download(url, "atlas.urdf")
atlas = parse_urdf(urdf, scalar_type=ScalarType, floating=true)
atlas
end
function create_benchmark_suite()
suite = BenchmarkGroup()
mechanism = create_floating_atlas()
remove_fixed_tree_joints!(mechanism)
state = MechanismState{ScalarType}(mechanism)
result = DynamicsResult{ScalarType}(mechanism)
nv = num_velocities(state)
mat = MomentumMatrix(root_frame(mechanism), Matrix{ScalarType}(undef, 3, nv), Matrix{ScalarType}(undef, 3, nv))
torques = similar(velocity(state))
rfoot = findbody(mechanism, "r_foot")
lhand = findbody(mechanism, "l_hand")
p = path(mechanism, rfoot, lhand)
jac = GeometricJacobian(default_frame(lhand), default_frame(rfoot), root_frame(mechanism),
Matrix{ScalarType}(undef, 3, nv), Matrix{ScalarType}(undef, 3, nv))
suite["mass_matrix!"] = @benchmarkable(begin
setdirty!($state)
mass_matrix!($(result.massmatrix), $state)
end, setup = rand!($state), evals = 10)
suite["dynamics_bias!"] = @benchmarkable(begin
setdirty!($state)
dynamics_bias!($result, $state)
end, setup = begin
rand!($state)
end, evals = 10)
suite["inverse_dynamics!"] = @benchmarkable(begin
setdirty!($state)
inverse_dynamics!($torques, $(result.jointwrenches), $(result.accelerations), $state, v̇, externalwrenches)
end, setup = begin
v̇ = similar(velocity($state))
rand!(v̇)
externalwrenches = RigidBodyDynamics.BodyDict(convert(BodyID, body) => rand(Wrench{ScalarType}, root_frame($mechanism)) for body in bodies($mechanism))
rand!($state)
end, evals = 10)
suite["dynamics!"] = @benchmarkable(begin
setdirty!($state)
dynamics!($result, $state, τ, externalwrenches)
end, setup = begin
rand!($state)
τ = similar(velocity($state))
rand!(τ)
externalwrenches = RigidBodyDynamics.BodyDict(convert(BodyID, body) => rand(Wrench{ScalarType}, root_frame($mechanism)) for body in bodies($mechanism))
end, evals = 10)
suite["momentum_matrix!"] = @benchmarkable(begin
setdirty!($state)
momentum_matrix!($mat, $state)
end, setup = rand!($state), evals = 10)
suite["geometric_jacobian!"] = @benchmarkable(begin
setdirty!($state)
geometric_jacobian!($jac, $state, $p)
end, setup = rand!($state), evals = 10)
suite["mass_matrix! and geometric_jacobian!"] = @benchmarkable(begin
setdirty!($state)
mass_matrix!($(result.massmatrix), $state)
geometric_jacobian!($jac, $state, $p)
end, setup = begin
rand!($state)
end, evals = 10)
suite["momentum"] = @benchmarkable(begin
setdirty!($state)
momentum($state)
end, setup = rand!($state), evals = 10)
suite["momentum_rate_bias"] = @benchmarkable(begin
setdirty!($state)
momentum_rate_bias($state)
end, setup = rand!($state), evals = 10)
suite["kinetic_energy"] = @benchmarkable(begin
setdirty!($state)
kinetic_energy($state)
end, setup = rand!($state), evals = 10)
suite["gravitational_potential_energy"] = @benchmarkable(begin
setdirty!($state)
gravitational_potential_energy($state)
end, setup = rand!($state), evals = 10)
suite["center_of_mass"] = @benchmarkable(begin
setdirty!($state)
center_of_mass($state)
end, setup = rand!($state), evals = 10)
let
Δt = 1e-4
final_time = 0.1
tableau = runge_kutta_4(ScalarType)
storage = RingBufferStorage{ScalarType}(state, ceil(Int64, final_time / Δt * 1.001)) # very rough overestimate of number of time steps
passive_dynamics! = let result=result # https://github.com/JuliaLang/julia/issues/15276
function (v̇::AbstractArray, ṡ::AbstractArray, t, state)
dynamics!(result, state)
copyto!(v̇, result.v̇)
copyto!(ṡ, result.ṡ)
nothing
end
end
integrator = MuntheKaasIntegrator(state, passive_dynamics!, tableau, storage)
suite["simulate tree"] = @benchmarkable(begin
integrate($integrator, $final_time, $Δt)
end, setup = rand!($state), evals = 10)
end
mcmechanism = maximal_coordinates(mechanism)
mcstate = MechanismState{ScalarType}(mcmechanism)
mcresult = DynamicsResult{ScalarType}(mcmechanism)
suite["constraint_jacobian!"] = @benchmarkable(begin
setdirty!($mcstate)
RigidBodyDynamics.constraint_jacobian!($(mcresult.constraintjacobian), $(mcresult.constraintrowranges), $mcstate)
end, setup = rand!($mcstate), evals = 10)
suite["constraint_bias!"] = @benchmarkable(begin
setdirty!($mcstate)
RigidBodyDynamics.constraint_bias!($(mcresult.constraintbias), $mcstate)
end, setup = rand!($mcstate), evals = 10)
suite
end
function runbenchmarks()
suite = create_benchmark_suite()
Profile.clear_malloc_data()
overhead = BenchmarkTools.estimate_overhead()
Random.seed!(1)
results = run(suite, verbose=true, overhead=overhead, gctrial=false)
for result in results
println("$(first(result)):")
display(last(result))
println()
end
end
runbenchmarks()
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 4448 | module RigidBodyDynamics
using Random
using LinearAlgebra
using StaticArrays
using Rotations
using TypeSortedCollections
using DocStringExtensions
using Reexport
using Base.Iterators: filter, flatten
using Base: @propagate_inbounds, promote_eltype
# mechanism-related types
export
RigidBody,
Joint,
JointType,
Mechanism,
MechanismState,
DynamicsResult,
StateCache,
DynamicsResultCache,
SegmentedVectorCache
# specific joint types
export
QuaternionFloating,
SPQuatFloating,
Revolute,
Prismatic,
Fixed,
Planar,
QuaternionSpherical,
SinCosRevolute
# basic functionality related to mechanism structure
export
has_defined_inertia,
mass,
default_frame,
frame_before,
frame_after,
joint_type,
add_frame!,
root_frame,
root_body,
non_root_bodies,
isroot,
bodies,
path,
joints,
tree_joints,
non_tree_joints,
successor,
predecessor,
in_joints,
out_joints,
joints_to_children,
joint_to_parent,
num_bodies,
num_positions,
num_velocities,
num_additional_states,
num_constraints,
isfloating,
configuration_range,
velocity_range,
has_fixed_subspaces,
spatial_inertia!, # TODO: rename to set_spatial_inertia!
add_body_fixed_frame!,
fixed_transform,
findbody,
findjoint,
body_fixed_frame_to_body,
position_bounds,
velocity_bounds,
effort_bounds
# mechanism creation and modification
export
rand_chain_mechanism,
rand_tree_mechanism,
rand_floating_tree_mechanism,
attach!,
remove_joint!,
replace_joint!,
maximal_coordinates,
submechanism,
remove_fixed_tree_joints!,
remove_subtree!
# contact-related functionality
export # note: contact-related functionality may be changed significantly in the future
contact_points,
add_contact_point!,
add_environment_primitive!
# state-dependent functionality
export
local_coordinates!,
global_coordinates!,
configuration_derivative!,
configuration_derivative,
velocity_to_configuration_derivative!, # TODO: consider merging with configuration_derivative!
configuration_derivative_to_velocity!,
configuration_derivative_to_velocity_adjoint!,
configuration,
velocity,
additional_state,
joint_transform,
motion_subspace,
constraint_wrench_subspace,
bias_acceleration,
spatial_inertia,
crb_inertia,
twist_wrt_world,
relative_twist,
transform_to_root,
relative_transform,
setdirty!,
rand_configuration!,
zero_configuration!,
rand_velocity!,
zero_velocity!,
set_configuration!,
set_velocity!,
set_additional_state!,
zero!, # TODO: remove
normalize_configuration!,
principal_value!,
center_of_mass,
geometric_jacobian,
geometric_jacobian!,
point_velocity,
point_acceleration,
point_jacobian,
point_jacobian!,
relative_acceleration,
kinetic_energy,
gravitational_potential_energy,
spatial_accelerations!,
mass_matrix!,
mass_matrix,
momentum,
momentum_matrix!,
momentum_matrix,
momentum_rate_bias,
inverse_dynamics!,
inverse_dynamics,
dynamics_bias!,
dynamics_bias,
dynamics!,
simulate
# Utility
export
SegmentedVector,
JointDict,
BodyDict,
JointID,
BodyID,
segments
# Type aliases
const ModifiedRodriguesParam = Rotations.MRP
include(joinpath("custom_collections", "custom_collections.jl"))
include(joinpath("graphs", "Graphs.jl"))
include(joinpath("spatial", "Spatial.jl"))
include("contact.jl")
include("pdcontrol.jl")
@reexport using .Spatial
using .CustomCollections
using .Contact
using .Graphs
using .PDControl
import .Spatial: rotation, translation, transform, center_of_mass, newton_euler, kinetic_energy
include("util.jl")
include("joint.jl")
include(joinpath("joint_types", "joint_types.jl"))
include("rigid_body.jl")
include("mechanism.jl")
include("mechanism_modification.jl")
include("mechanism_state.jl")
include("dynamics_result.jl")
include("caches.jl")
include("mechanism_algorithms.jl")
include("ode_integrators.jl")
include("simulate.jl")
include(joinpath("urdf", "URDF.jl"))
@reexport using .URDF
# import these for MechanismGeometries compatibility. TODO: stop importing these after updating MechanismGeometries.
import .URDF: parse_scalar, parse_vector, parse_pose
end # module
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 3552 | abstract type AbstractTypeDict end
function valuetype end
function makevalue end
function Base.getindex(c::C, ::Type{T}) where {C<:AbstractTypeDict, T}
ReturnType = valuetype(C, T)
key = objectid(T)
@inbounds for i in eachindex(c.keys)
if c.keys[i] === key
return c.values[i]::ReturnType
end
end
value = makevalue(c, T)::ReturnType
push!(c.keys, key)
push!(c.values, value)
value::ReturnType
end
"""
$(TYPEDEF)
A container that manages the creation and storage of [`MechanismState`](@ref)
objects of various scalar types, associated with a given `Mechanism`.
A `StateCache` can be used to write generic functions that use `MechanismState`
objects, while avoiding overhead due to the construction of a new `MechanismState`
with a given scalar type every time the function is called.
# Examples
```julia-repl
julia> mechanism = rand_tree_mechanism(Float64, Revolute{Float64}, Prismatic{Float64}, QuaternionFloating{Float64});
julia> cache = StateCache(mechanism)
StateCache{…}
julia> state32 = cache[Float32]
MechanismState{Float32, Float64, Float64, …}(…)
julia> cache[Float32] === state32
true
julia> cache[Float64]
MechanismState{Float64, Float64, Float64, …}(…)
```
"""
struct StateCache{M, JointCollection} <: AbstractTypeDict
mechanism::Mechanism{M}
keys::Vector{UInt}
values::Vector{MechanismState}
end
function StateCache(mechanism::Mechanism{M}) where M
JointCollection = typeof(TypeSortedCollection(joints(mechanism)))
StateCache{M, JointCollection}(mechanism, [], [])
end
Base.show(io::IO, ::StateCache) = print(io, "StateCache{…}(…)")
@inline function valuetype(::Type{StateCache{M, JC}}, ::Type{X}) where {M, JC, X}
C = promote_type(X, M)
MechanismState{X, M, C, JC}
end
@inline makevalue(c::StateCache, ::Type{X}) where X = MechanismState{X}(c.mechanism)
"""
$(TYPEDEF)
A container that manages the creation and storage of [`DynamicsResult`](@ref)
objects of various scalar types, associated with a given `Mechanism`.
Similar to [`StateCache`](@ref).
"""
struct DynamicsResultCache{M} <: AbstractTypeDict
mechanism::Mechanism{M}
keys::Vector{UInt}
values::Vector{DynamicsResult{<:Any, M}}
end
Base.show(io::IO, ::DynamicsResultCache{M}) where {M} = print(io, "DynamicsResultCache{$M}(…)")
DynamicsResultCache(mechanism::Mechanism{M}) where {M} = DynamicsResultCache{M}(mechanism, [], [])
@inline valuetype(::Type{DynamicsResultCache{M}}, ::Type{T}) where {M, T} = DynamicsResult{T, M}
@inline makevalue(c::DynamicsResultCache, ::Type{T}) where {T} = DynamicsResult{T}(c.mechanism)
"""
$(TYPEDEF)
A container that manages the creation and storage of heterogeneously typed [`SegmentedVector`](@ref)
objects. Similar to [`StateCache`](@ref).
"""
struct SegmentedVectorCache{K, KeyRange<:AbstractUnitRange{K}} <: AbstractTypeDict
ranges::IndexDict{K, KeyRange, UnitRange{Int}}
length::Int
keys::Vector{UInt}
values::Vector{SegmentedVector}
end
function SegmentedVectorCache(ranges::IndexDict{K, KeyRange, UnitRange{Int}}) where {K, KeyRange<:AbstractUnitRange{K}}
SegmentedVectorCache(ranges, sum(length, values(ranges)), Vector{UInt}(), Vector{SegmentedVector}())
end
@inline function valuetype(::Type{SegmentedVectorCache{K, KeyRange}}, ::Type{T}) where {K, T, KeyRange}
SegmentedVector{K, T, KeyRange, Vector{T}}
end
@inline function makevalue(c::SegmentedVectorCache{K, KeyRange}, ::Type{T}) where {K, T, KeyRange}
SegmentedVector{K, T, KeyRange}(Vector{T}(undef, c.length), c.ranges)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 9384 | module Contact
using LinearAlgebra
using RigidBodyDynamics.Spatial
using StaticArrays
using Base: promote_eltype
# base types
export SoftContactModel,
SoftContactState,
SoftContactStateDeriv,
ContactPoint,
ContactEnvironment,
HalfSpace3D
# interface functions
export num_states,
location,
contact_model,
contact_dynamics!,
reset!,
point_inside,
separation,
detect_contact
# specific models
export HuntCrossleyModel,
hunt_crossley_hertz
export ViscoelasticCoulombModel,
ViscoelasticCoulombState,
ViscoelasticCoulombStateDeriv
# defaults
export DefaultContactPoint,
DefaultSoftContactState,
DefaultSoftContactStateDeriv
# Normal force model/state/state derivative interface:
# * `normal_force(model, state, z::Number, ż::Number)`: return the normal force given penetration `z` and penetration velocity `ż`
# * `num_states(model)`: return the number of state variables associated with the model
# * `state(model, statevec, frame)`: create a new state associated with the model
# * `state_derivative(model, statederivvec, frame)`: create a new state derivative associated with the model
# * `reset!(state)`: resets the contact state
# * `dynamics!(state_deriv, model, state, fnormal)`: sets state_deriv given the current state and the normal force
# Friction model/state/state derivative interface:
# * `friction_force(model, state, fnormal::Number, tangential_velocity::FreeVector3D)`: return the friction force given normal force `fnormal` and tangential velocity `tangential_velocity`
# * `num_states(model)`: return the number of state variables associated with the model
# * `state(model, statevec, frame)`: create a new state associated with the model
# * `state_derivative(model, statederivvec, frame)`: create a new state derivative associated with the model
# * `reset!(state)`: resets the contact state
# * `dynamics!(state_deriv, model, state, ftangential)`: sets state_deriv given the current state and the tangential force force
## SoftContactModel and related types.
struct SoftContactModel{N, F}
normal::N
friction::F
end
struct SoftContactState{N, F}
normal::N
friction::F
end
struct SoftContactStateDeriv{N, F}
normal::N
friction::F
end
normal_force_model(model::SoftContactModel) = model.normal
friction_model(model::SoftContactModel) = model.friction
normal_force_state(state::SoftContactState) = state.normal
friction_state(state::SoftContactState) = state.friction
normal_force_state_deriv(deriv::SoftContactStateDeriv) = deriv.normal
friction_state_deriv(deriv::SoftContactStateDeriv) = deriv.friction
num_states(model::SoftContactModel) = num_states(normal_force_model(model)) + num_states(friction_model(model))
for (fun, returntype) in [(:state, :SoftContactState), (:state_derivative, :SoftContactStateDeriv)]
@eval function $returntype(model::SoftContactModel, vec::AbstractVector, frame::CartesianFrame3D)
nnormal = num_states(normal_force_model(model))
nfriction = num_states(friction_model(model))
vecnormal = view(vec, 1 : nnormal - 1)
vecfriction = view(vec, 1 + nnormal : nnormal + nfriction)
$returntype($fun(normal_force_model(model), vecnormal, frame), $fun(friction_model(model), vecfriction, frame))
end
end
reset!(state::SoftContactState) = (reset!(normal_force_state(state)); reset!(friction_state(state)))
zero!(deriv::SoftContactStateDeriv) = (zero!(friction_state_deriv(deriv)); zero!(friction_state_deriv(deriv)))
## ContactPoint
mutable struct ContactPoint{T, M <: SoftContactModel}
location::Point3D{SVector{3, T}}
model::M
end
location(point::ContactPoint) = point.location
contact_model(point::ContactPoint) = point.model
function contact_dynamics!(state_deriv::SoftContactStateDeriv, state::SoftContactState,
model::SoftContactModel, penetration::Number, velocity::FreeVector3D, normal::FreeVector3D)
@boundscheck penetration >= 0 || error("penetration must be nonnegative")
z = penetration
ż = -dot(velocity, normal) # penetration velocity
fnormal = max(normal_force(normal_force_model(model), normal_force_state(state), z, ż), 0)
dynamics!(normal_force_state_deriv(state_deriv), normal_force_model(model), normal_force_state(state), fnormal)
tangential_velocity = velocity + ż * normal
ftangential = friction_force(friction_model(model), friction_state(state), fnormal, tangential_velocity)
dynamics!(friction_state_deriv(state_deriv), friction_model(model), friction_state(state), ftangential)
fnormal * normal + ftangential
end
## Models with no state
reset!(::Nothing) = nothing
zero!(::Nothing) = nothing
## Normal contact models
struct HuntCrossleyModel{T}
# (2) in Marhefka, Orin, "A Compliant Contact Model with Nonlinear Damping for Simulation of Robotic Systems"
k::T
λ::T
n::T
end
function hunt_crossley_hertz(; k = 50e3, α = 0.2)
λ = 3/2 * α * k # (12) in Marhefka, Orin
HuntCrossleyModel(k, λ, 3/2)
end
num_states(::HuntCrossleyModel) = 0
state(::HuntCrossleyModel, ::AbstractVector, ::CartesianFrame3D) = nothing
state_derivative(::HuntCrossleyModel, ::AbstractVector, ::CartesianFrame3D) = nothing
function normal_force(model::HuntCrossleyModel, ::Nothing, z, ż)
zn = z^model.n
f = model.λ * zn * ż + model.k * zn # (2) in Marhefka, Orin (note: z is penetration, returning repelling force)
end
dynamics!(ẋ::Nothing, model::HuntCrossleyModel, state::Nothing, fnormal::Number) = nothing
# Friction models
struct ViscoelasticCoulombModel{T}
# See section 11.8 of Featherstone, "Rigid Body Dynamics Algorithms", 2008
μ::T
k::T
b::T
end
mutable struct ViscoelasticCoulombState{V}
tangential_displacement::FreeVector3D{V} # Use a 3-vector; technically only need one state for each tangential direction, but this is easier to work with.
end
mutable struct ViscoelasticCoulombStateDeriv{V}
deriv::FreeVector3D{V}
end
num_states(::ViscoelasticCoulombModel) = 3
function state(::ViscoelasticCoulombModel, statevec::AbstractVector, frame::CartesianFrame3D)
ViscoelasticCoulombState(FreeVector3D(frame, statevec))
end
function state_derivative(::ViscoelasticCoulombModel, statederivvec::AbstractVector, frame::CartesianFrame3D)
ViscoelasticCoulombStateDeriv(FreeVector3D(frame, statederivvec))
end
reset!(state::ViscoelasticCoulombState) = fill!(state.tangential_displacement.v, 0)
zero!(deriv::ViscoelasticCoulombStateDeriv) = fill!(deriv.deriv.v, 0)
function friction_force(model::ViscoelasticCoulombModel, state::ViscoelasticCoulombState,
fnormal, tangential_velocity::FreeVector3D)
T = typeof(fnormal)
μ = model.μ
k = model.k
b = model.b
x = convert(FreeVector3D{SVector{3, T}}, state.tangential_displacement)
v = tangential_velocity
# compute friction force that would be needed to avoid slip
fstick = -k * x - b * v
# limit friction force to lie within friction cone
fstick_norm² = dot(fstick, fstick)
fstick_max_norm² = (μ * fnormal)^2
ftangential = if fstick_norm² > fstick_max_norm²
fstick * sqrt(fstick_max_norm² / fstick_norm²)
else
fstick
end
end
function dynamics!(ẋ::ViscoelasticCoulombStateDeriv, model::ViscoelasticCoulombModel, state::ViscoelasticCoulombState, ftangential::FreeVector3D)
k = model.k
b = model.b
x = state.tangential_displacement
@framecheck ẋ.deriv.frame x.frame
ẋ.deriv.v .= (-k .* x.v .- ftangential.v) ./ b
end
## VectorSegment: type of a view of a vector
const VectorSegment{T} = SubArray{T,1,Array{T, 1},Tuple{UnitRange{Int64}},true} # TODO: a bit too specific
const DefaultContactPoint{T} = ContactPoint{T,SoftContactModel{HuntCrossleyModel{T},ViscoelasticCoulombModel{T}}}
const DefaultSoftContactState{T} = SoftContactState{Nothing, ViscoelasticCoulombState{VectorSegment{T}}}
const DefaultSoftContactStateDeriv{T} = SoftContactStateDeriv{Nothing, ViscoelasticCoulombStateDeriv{VectorSegment{T}}}
# Contact detection
# TODO: should probably move this somewhere else
mutable struct HalfSpace3D{T}
point::Point3D{SVector{3, T}}
outward_normal::FreeVector3D{SVector{3, T}}
function HalfSpace3D(point::Point3D{SVector{3, T}}, outward_normal::FreeVector3D{SVector{3, T}}) where {T}
@framecheck point.frame outward_normal.frame
new{T}(point, normalize(outward_normal))
end
end
frame(halfspace::HalfSpace3D) = halfspace.point.frame
function HalfSpace3D(point::Point3D, outward_normal::FreeVector3D)
T = promote_eltype(point, outward_normal)
HalfSpace3D(convert(Point3D{SVector{3, T}}, point), convert(FreeVector3D{SVector{3, T}}, outward_normal))
end
Base.eltype(::Type{HalfSpace3D{T}}) where {T} = T
separation(halfspace::HalfSpace3D, p::Point3D) = dot(p - halfspace.point, halfspace.outward_normal)
point_inside(halfspace::HalfSpace3D, p::Point3D) = separation(halfspace, p) <= 0
detect_contact(halfspace::HalfSpace3D, p::Point3D) = separation(halfspace, p), halfspace.outward_normal
# ContactEnvironment
mutable struct ContactEnvironment{T}
halfspaces::Vector{HalfSpace3D{T}}
ContactEnvironment{T}() where {T} = new{T}(HalfSpace3D{T}[])
end
Base.push!(environment::ContactEnvironment, halfspace::HalfSpace3D) = push!(environment.halfspaces, halfspace)
Base.length(environment::ContactEnvironment) = length(environment.halfspaces)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 5239 | """
$(TYPEDEF)
Stores variables related to the dynamics of a `Mechanism`, e.g. the
`Mechanism`'s mass matrix and joint acceleration vector.
Type parameters:
* `T`: the scalar type of the dynamics-related variables.
* `M`: the scalar type of the `Mechanism`.
"""
mutable struct DynamicsResult{T, M}
mechanism::Mechanism{M}
massmatrix::Symmetric{T, Matrix{T}}
dynamicsbias::SegmentedVector{JointID, T, Base.OneTo{JointID}, Vector{T}}
constraintjacobian::Matrix{T}
constraintbias::SegmentedVector{JointID, T, UnitRange{JointID}, Vector{T}}
constraintrowranges::IndexDict{JointID, UnitRange{JointID}, UnitRange{Int}}
q̇::SegmentedVector{JointID, T, Base.OneTo{JointID}, Vector{T}}
v̇::SegmentedVector{JointID, T, Base.OneTo{JointID}, Vector{T}}
ṡ::Vector{T}
λ::Vector{T}
contactwrenches::BodyDict{Wrench{T}}
totalwrenches::BodyDict{Wrench{T}}
accelerations::BodyDict{SpatialAcceleration{T}}
jointwrenches::BodyDict{Wrench{T}} # TODO: index by joint tree index?
contact_state_derivatives::BodyDict{Vector{Vector{DefaultSoftContactStateDeriv{T}}}}
# see solve_dynamics! for meaning of the following variables:
L::Matrix{T} # lower triangular
A::Matrix{T} # symmetric
z::Vector{T}
Y::Matrix{T}
function DynamicsResult{T}(mechanism::Mechanism{M}) where {T, M}
nq = num_positions(mechanism)
nv = num_velocities(mechanism)
nc = num_constraints(mechanism)
massmatrix = Symmetric(Matrix{T}(undef, nv, nv), :L)
dynamicsbias = SegmentedVector(Vector{T}(undef, nv), tree_joints(mechanism), num_velocities)
constraintjacobian = Matrix{T}(undef, nc, nv)
constraintbias = SegmentedVector{JointID, T, UnitRange{JointID}}(
Vector{T}(undef, nc), non_tree_joints(mechanism), num_constraints)
constraintrowranges = ranges(constraintbias)
q̇ = SegmentedVector(Vector{T}(undef, nq), tree_joints(mechanism), num_positions)
v̇ = SegmentedVector(Vector{T}(undef, nv), tree_joints(mechanism), num_velocities)
ṡ = Vector{T}(undef, num_additional_states(mechanism))
λ = Vector{T}(undef, nc)
rootframe = root_frame(mechanism)
contactwrenches = BodyDict{Wrench{T}}(b => zero(Wrench{T}, rootframe) for b in bodies(mechanism))
totalwrenches = BodyDict{Wrench{T}}(b => zero(Wrench{T}, rootframe) for b in bodies(mechanism))
accelerations = BodyDict{SpatialAcceleration{T}}(
b => zero(SpatialAcceleration{T}, rootframe, rootframe, rootframe) for b in bodies(mechanism))
jointwrenches = BodyDict{Wrench{T}}(b => zero(Wrench{T}, rootframe) for b in bodies(mechanism))
contact_state_derivs = BodyDict{Vector{Vector{DefaultSoftContactStateDeriv{T}}}}(
b => Vector{Vector{DefaultSoftContactStateDeriv{T}}}() for b in bodies(mechanism))
startind = Ref(1)
for body in bodies(mechanism)
for point::DefaultContactPoint{M} in contact_points(body)
model = contact_model(point)
n = num_states(model)
push!(contact_state_derivs[body], collect(begin
ṡ_part = view(ṡ, startind[] : startind[] + n - 1)
contact_state_deriv = SoftContactStateDeriv(model, ṡ_part, root_frame(mechanism))
startind[] += n
contact_state_deriv
end for j = 1 : length(mechanism.environment)))
end
end
L = Matrix{T}(undef, nv, nv)
A = Matrix{T}(undef, nc, nc)
z = Vector{T}(undef, nv)
Y = Matrix{T}(undef, nc, nv)
new{T, M}(mechanism, massmatrix, dynamicsbias, constraintjacobian, constraintbias, constraintrowranges,
q̇, v̇, ṡ, λ, contactwrenches, totalwrenches, accelerations, jointwrenches, contact_state_derivs,
L, A, z, Y)
end
end
DynamicsResult(mechanism::Mechanism{M}) where {M} = DynamicsResult{M}(mechanism)
function Base.copyto!(ẋ::AbstractVector, result::DynamicsResult)
nq = length(result.q̇)
nv = length(result.v̇)
ns = length(result.ṡ)
@boundscheck length(ẋ) == nq + nv + ns || throw(DimensionMismatch())
@inbounds copyto!(ẋ, 1, result.q̇, 1, nq)
@inbounds copyto!(ẋ, nq + 1, result.v̇, 1, nv)
@inbounds copyto!(ẋ, nq + nv + 1, result.ṡ, 1, ns)
ẋ
end
contact_state_derivatives(result::DynamicsResult, body::Union{<:RigidBody, BodyID}) =
result.contact_state_derivatives[body]
contact_wrench(result::DynamicsResult, body::Union{<:RigidBody, BodyID}) =
result.contactwrenches[body]
set_contact_wrench!(result::DynamicsResult, body::Union{<:RigidBody, BodyID}, wrench::Wrench) =
(result.contactwrenches[body] = wrench)
acceleration(result::DynamicsResult, body::Union{<:RigidBody, BodyID}) =
result.accelerations[body]
set_acceleration!(result::DynamicsResult, body::Union{<:RigidBody, BodyID}, accel::SpatialAcceleration) =
(result.accelerations[body] = accel)
joint_wrench(result::DynamicsResult, body::Union{<:RigidBody, BodyID}) =
result.jointwrenches[body]
set_joint_wrench!(result::DynamicsResult, body::Union{<:RigidBody, BodyID}, wrench::Wrench) =
(result.jointwrenches[body] = wrench)
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 17467 | @indextype JointID
"""
$(TYPEDEF)
The abstract supertype of all concrete joint types.
"""
abstract type JointType{T} end
Base.eltype(::Type{<:JointType{T}}) where {T} = T
isfloating(::T) where {T<:JointType} = isfloating(T)
num_velocities(::T) where {T<:JointType} = num_velocities(T)
num_positions(::T) where {T<:JointType} = num_positions(T)
num_constraints(::Type{T}) where {T<:JointType} = 6 - num_velocities(T)
"""
$(TYPEDEF)
A joint represents a kinematic restriction of the relative twist between two
rigid bodies to a linear subspace of dimension ``k``.
A joint has a direction. The rigid body before the joint is called the
joint's predecessor, and the rigid body after the joint is its successor.
The state related to the joint is parameterized by two sets of variables, namely
* a vector ``q \\in \\mathcal{Q}``, parameterizing the relative homogeneous transform.
* a vector ``v \\in \\mathbb{R}^k``, parameterizing the relative twist.
The twist of the successor with respect to the predecessor is a linear function
of ``v``.
For some joint types (notably those using a redundant representation of relative
orientation, such as a unit quaternion), ``\\dot{q}``, the time derivative of
``q``, may not be the same as ``v``.
However, an invertible linear transformation exists between
``\\dot{q}`` and ``v``.
See also:
* Definition 2.9 in Duindam, "Port-Based Modeling and Control for Efficient Bipedal Walking Robots", 2006.
* Section 4.4 of Featherstone, "Rigid Body Dynamics Algorithms", 2008.
"""
struct Joint{T, JT<:JointType{T}}
name::String
frame_before::CartesianFrame3D
frame_after::CartesianFrame3D
joint_type::JT
id::Base.RefValue{JointID}
joint_to_predecessor::Base.RefValue{Transform3D{T}}
joint_to_successor::Base.RefValue{Transform3D{T}}
position_bounds::Vector{Bounds{T}}
velocity_bounds::Vector{Bounds{T}}
effort_bounds::Vector{Bounds{T}}
function Joint(name::String, frame_before::CartesianFrame3D, frame_after::CartesianFrame3D, joint_type::JointType{T};
position_bounds::Vector{Bounds{T}}=fill(Bounds{T}(), num_positions(joint_type)),
velocity_bounds::Vector{Bounds{T}}=fill(Bounds{T}(), num_velocities(joint_type)),
effort_bounds::Vector{Bounds{T}}=fill(Bounds{T}(), num_velocities(joint_type))) where {T}
JT = typeof(joint_type)
id = Ref(JointID(-1))
joint_to_predecessor = Ref(one(Transform3D{T}, frame_before))
joint_to_successor = Ref(one(Transform3D{T}, frame_after))
new{T, JT}(name, frame_before, frame_after, joint_type, id,
joint_to_predecessor, joint_to_successor,
position_bounds, velocity_bounds, effort_bounds)
end
end
function Joint(name::String, jtype::JointType; kw...)
Joint(name, CartesianFrame3D(string("before_", name)), CartesianFrame3D(string("after_", name)), jtype; kw...)
end
Base.print(io::IO, joint::Joint) = print(io, joint.name)
frame_before(joint::Joint) = joint.frame_before
frame_after(joint::Joint) = joint.frame_after
joint_type(joint::Joint) = joint.joint_type
joint_to_predecessor(joint::Joint) = joint.joint_to_predecessor[]
joint_to_successor(joint::Joint) = joint.joint_to_successor[]
"""
$(SIGNATURES)
Return a `Vector{Bounds{T}}` giving the upper and lower bounds of the
configuration for `joint`
"""
position_bounds(joint::Joint) = joint.position_bounds
"""
$(SIGNATURES)
Return a `Vector{Bounds{T}}` giving the upper and lower bounds of the
velocity for `joint`
"""
velocity_bounds(joint::Joint) = joint.velocity_bounds
"""
$(SIGNATURES)
Return a `Vector{Bounds{T}}` giving the upper and lower bounds of the
effort for `joint`
"""
effort_bounds(joint::Joint) = joint.effort_bounds
JointID(joint::Joint) = joint.id[]
Base.convert(::Type{JointID}, joint::Joint) = JointID(joint)
@inline RigidBodyDynamics.Graphs.edge_id_type(::Type{<:Joint}) = JointID
@inline RigidBodyDynamics.Graphs.edge_id(joint::Joint) = convert(JointID, joint)
@inline RigidBodyDynamics.Graphs.set_edge_id!(joint::Joint, id::JointID) = (joint.id[] = id)
function RigidBodyDynamics.Graphs.flip_direction(joint::Joint)
jtype = RigidBodyDynamics.flip_direction(joint_type(joint))
Joint(string(joint), frame_after(joint), frame_before(joint), jtype;
position_bounds = .-joint.position_bounds,
velocity_bounds = .-joint.velocity_bounds,
effort_bounds = .-joint.effort_bounds)
end
function set_joint_to_predecessor!(joint::Joint, tf::Transform3D)
@framecheck tf.from frame_before(joint)
joint.joint_to_predecessor[] = tf
joint
end
function set_joint_to_successor!(joint::Joint, tf::Transform3D)
@framecheck tf.from frame_after(joint)
joint.joint_to_successor[] = tf
joint
end
function Base.show(io::IO, joint::Joint)
if get(io, :compact, false)
print(io, joint)
else
print(io, "Joint \"$(string(joint))\": $(joint.joint_type)")
end
end
num_positions(itr) = reduce((val, joint) -> val + num_positions(joint), 0, itr)
num_velocities(itr) = reduce((val, joint) -> val + num_velocities(joint), 0, itr)
@inline function check_num_positions(joint::Joint, vec::AbstractVector)
length(vec) == num_positions(joint) || error("wrong size")
nothing
end
@inline function check_num_velocities(joint::Joint, vec::AbstractVector)
length(vec) == num_velocities(joint) || error("wrong size")
nothing
end
@propagate_inbounds function set_configuration!(q::AbstractVector, joint::Joint, config::AbstractVector)
@boundscheck check_num_positions(joint, q)
copyto!(q, config)
q
end
@propagate_inbounds function set_velocity!(v::AbstractVector, joint::Joint, vel::AbstractVector)
@boundscheck check_num_velocities(joint, v)
copyto!(v, vel)
v
end
"""
$(SIGNATURES)
Return the length of the configuration vector of `joint`.
"""
@inline num_positions(joint::Joint) = num_positions(joint.joint_type)
"""
$(SIGNATURES)
Return the length of the velocity vector of `joint`.
"""
@inline num_velocities(joint::Joint) = num_velocities(joint.joint_type)
"""
$(SIGNATURES)
Return the number of constraints imposed on the relative twist between the joint's predecessor and successor
"""
@inline num_constraints(joint::Joint) = 6 - num_velocities(joint)
"""
$(SIGNATURES)
Return a `Transform3D` representing the homogeneous transform from the frame
after the joint to the frame before the joint for joint configuration vector ``q``.
"""
@propagate_inbounds function joint_transform(joint::Joint, q::AbstractVector)
@boundscheck check_num_positions(joint, q)
@inbounds return joint_transform(joint.joint_type, frame_after(joint), frame_before(joint), q)
end
"""
$(SIGNATURES)
Return a basis for the motion subspace of the joint in configuration ``q``.
The motion subspace basis is a ``6 \\times k`` matrix, where ``k`` is the dimension of
the velocity vector ``v``, that maps ``v`` to the twist of the joint's successor
with respect to its predecessor. The returned motion subspace is expressed in
the frame after the joint, which is attached to the joint's successor.
"""
@propagate_inbounds function motion_subspace(joint::Joint, q::AbstractVector)
@boundscheck check_num_positions(joint, q)
@inbounds return motion_subspace(joint.joint_type, frame_after(joint), joint_to_predecessor(joint).to, q)
end
"""
$(SIGNATURES)
Return a basis for the constraint wrench subspace of the joint, where
`joint_transform` is the transform from the frame after the joint to the frame
before the joint.
The constraint wrench subspace is a ``6 \\times (6 - k)`` matrix, where ``k``
is the dimension of the velocity vector ``v``, that maps a vector of Lagrange
multipliers ``\\lambda`` to the constraint wrench exerted across the joint onto
its successor.
The constraint wrench subspace is orthogonal to the motion subspace.
"""
@propagate_inbounds function constraint_wrench_subspace(joint::Joint, joint_transform::Transform3D)
@framecheck joint_transform.from frame_after(joint)
@framecheck joint_transform.to frame_before(joint)
@inbounds return constraint_wrench_subspace(joint.joint_type, joint_transform)
end
"""
$(SIGNATURES)
Return the acceleration of the joint's successor with respect to its predecessor
in configuration ``q`` and at velocity ``v``, when the joint acceleration
``\\dot{v}`` is zero.
"""
@propagate_inbounds function bias_acceleration(joint::Joint, q::AbstractVector, v::AbstractVector)
@boundscheck check_num_positions(joint, q)
@boundscheck check_num_velocities(joint, v)
@inbounds return bias_acceleration(joint.joint_type, frame_after(joint), joint_to_predecessor(joint).to, q, v)
end
"""
$(SIGNATURES)
Whether the joint's motion subspace and constraint wrench subspace depend on
``q``.
"""
has_fixed_subspaces(joint::Joint) = has_fixed_subspaces(joint.joint_type)
"""
$(SIGNATURES)
Compute joint velocity vector ``v`` given the joint configuration vector ``q``
and its time derivative ``\\dot{q}`` (in place).
Note that this mapping is linear.
See also [`velocity_to_configuration_derivative!`](@ref), the inverse mapping.
"""
@propagate_inbounds function configuration_derivative_to_velocity!(v::AbstractVector, joint::Joint, q::AbstractVector, q̇::AbstractVector)
@boundscheck check_num_velocities(joint, v)
@boundscheck check_num_positions(joint, q)
@boundscheck check_num_positions(joint, q̇)
@inbounds return configuration_derivative_to_velocity!(v, joint.joint_type, q, q̇)
end
"""
$(SIGNATURES)
Given a linear function
```math
f(v) = \\langle f_v, v \\rangle
```
where ``v`` is the joint velocity vector, return a vector ``f_q`` such that
```math
\\langle f_v, v \\rangle = \\langle f_q, \\dot{q}(v) \\rangle.
```
Note: since ``v`` is a linear function of ``\\dot{q}`` (see [`configuration_derivative_to_velocity!`](@ref)),
we can write ``v = J_{\\dot{q} \\rightarrow v} \\dot{q}``, so
```math
\\langle f_v, v \\rangle = \\langle f_v, J_{\\dot{q} \\rightarrow v} \\dot{q} \\rangle = \\langle J_{\\dot{q} \\rightarrow v}^{*} f_v, \\dot{q} \\rangle
```
so ``f_q = J_{\\dot{q} \\rightarrow v}^{*} f_v``.
To compute ``J_{\\dot{q} \\rightarrow v}`` see [`configuration_derivative_to_velocity_jacobian`](@ref).
"""
@propagate_inbounds function configuration_derivative_to_velocity_adjoint!(fq, joint::Joint, q::AbstractVector, fv)
@boundscheck check_num_positions(joint, fq)
@boundscheck check_num_positions(joint, q)
@boundscheck check_num_velocities(joint, fv)
@inbounds return configuration_derivative_to_velocity_adjoint!(fq, joint_type(joint), q, fv)
end
"""
$(SIGNATURES)
Compute the time derivative ``\\dot{q}`` of the joint configuration vector ``q``
given ``q`` and the joint velocity vector ``v`` (in place).
Note that this mapping is linear.
See also [`configuration_derivative_to_velocity!`](@ref), the inverse mapping.
"""
@propagate_inbounds function velocity_to_configuration_derivative!(q̇::AbstractVector, joint::Joint, q::AbstractVector, v::AbstractVector)
@boundscheck check_num_positions(joint, q̇)
@boundscheck check_num_positions(joint, q)
@boundscheck check_num_velocities(joint, v)
@inbounds return velocity_to_configuration_derivative!(q̇, joint.joint_type, q, v)
end
"""
$(SIGNATURES)
Compute the jacobian ``J_{v \\rightarrow \\dot{q}}`` which maps joint velocity to configuration
derivative for the given joint:
```math
\\dot{q} = J_{v \\rightarrow \\dot{q}} v
```
"""
@propagate_inbounds function velocity_to_configuration_derivative_jacobian(joint::Joint, q::AbstractVector)
@boundscheck check_num_positions(joint, q)
@inbounds return velocity_to_configuration_derivative_jacobian(joint.joint_type, q)
end
"""
$(SIGNATURES)
Compute the jacobian ``J_{\\dot{q} \\rightarrow v}`` which maps joint
configuration derivative to velocity for the given joint:
```math
v = J_{\\dot{q} \\rightarrow v} \\dot{q}
```
"""
@propagate_inbounds function configuration_derivative_to_velocity_jacobian(joint::Joint, q::AbstractVector)
@boundscheck check_num_positions(joint, q)
@inbounds return configuration_derivative_to_velocity_jacobian(joint.joint_type, q)
end
"""
$(SIGNATURES)
Set ``q`` to the 'zero' configuration, corresponding to an identity joint
transform.
"""
@propagate_inbounds function zero_configuration!(q::AbstractVector, joint::Joint)
@boundscheck check_num_positions(joint, q)
@inbounds return zero_configuration!(q, joint.joint_type)
end
"""
$(SIGNATURES)
Set ``q`` to a random configuration. The distribution used depends on the
joint type.
"""
@propagate_inbounds function rand_configuration!(q::AbstractVector, joint::Joint)
@boundscheck check_num_positions(joint, q)
@inbounds return rand_configuration!(q, joint.joint_type)
end
"""
$(SIGNATURES)
Return the twist of `joint`'s successor with respect to its predecessor,
expressed in the frame after the joint.
Note that this is the same as `Twist(motion_subspace(joint, q), v)`.
"""
@propagate_inbounds function joint_twist(joint::Joint, q::AbstractVector, v::AbstractVector)
@boundscheck check_num_positions(joint, q)
@boundscheck check_num_velocities(joint, v)
@inbounds return joint_twist(joint.joint_type, frame_after(joint), joint_to_predecessor(joint).to, q, v)
end
"""
$(SIGNATURES)
Return the spatial acceleration of `joint`'s successor with respect to its predecessor,
expressed in the frame after the joint.
"""
@propagate_inbounds function joint_spatial_acceleration(joint::Joint, q::AbstractVector, v::AbstractVector, vd::AbstractVector)
@boundscheck check_num_positions(joint, q)
@boundscheck check_num_velocities(joint, v)
@boundscheck check_num_velocities(joint, vd)
@inbounds return joint_spatial_acceleration(joint.joint_type, frame_after(joint), joint_to_predecessor(joint).to, q, v, vd)
end
"""
$(SIGNATURES)
Given the wrench exerted across the joint on the joint's successor, compute the
vector of joint torques ``\\tau`` (in place), in configuration `q`.
"""
@propagate_inbounds function joint_torque!(τ::AbstractVector, joint::Joint, q::AbstractVector, joint_wrench::Wrench)
@boundscheck check_num_velocities(joint, τ)
@boundscheck check_num_positions(joint, q)
@framecheck(joint_wrench.frame, frame_after(joint))
@inbounds return joint_torque!(τ, joint.joint_type, q, joint_wrench)
end
"""
$(SIGNATURES)
Compute a vector of local coordinates ``\\phi`` around configuration ``q_0``
corresponding to configuration ``q`` (in place). Also compute the time
derivative ``\\dot{\\phi}`` of ``\\phi`` given the joint velocity vector ``v``.
The local coordinate vector ``\\phi`` must be zero if and only if ``q = q_0``.
For revolute or prismatic joint types, the local coordinates can just be
``\\phi = q - q_0``, but for joint types with configuration vectors that are
restricted to a manifold (e.g. when unit quaternions are used to represent
orientation), elementwise subtraction may not make sense. For such joints,
exponential coordinates could be used as the local coordinate vector ``\\phi``.
See also [`global_coordinates!`](@ref).
"""
@propagate_inbounds function local_coordinates!(ϕ::AbstractVector, ϕ̇::AbstractVector,
joint::Joint, q0::AbstractVector, q::AbstractVector, v::AbstractVector)
@boundscheck check_num_velocities(joint, ϕ)
@boundscheck check_num_velocities(joint, ϕ̇)
@boundscheck check_num_positions(joint, q0)
@boundscheck check_num_positions(joint, q)
@boundscheck check_num_velocities(joint, v)
@inbounds return local_coordinates!(ϕ, ϕ̇, joint.joint_type, q0, q, v)
end
"""
$(SIGNATURES)
Compute the global parameterization of the joint's configuration, ``q``, given
a 'base' orientation ``q_0`` and a vector of local coordinates ``ϕ`` centered
around ``q_0``.
See also [`local_coordinates!`](@ref).
"""
@propagate_inbounds function global_coordinates!(q::AbstractVector, joint::Joint, q0::AbstractVector, ϕ::AbstractVector)
@boundscheck check_num_positions(joint, q)
@boundscheck check_num_positions(joint, q0)
@boundscheck check_num_velocities(joint, ϕ)
@inbounds return global_coordinates!(q, joint.joint_type, q0, ϕ)
end
"""
$(SIGNATURES)
Whether the joint is a floating joint, i.e., whether it imposes no constraints
on the relative motions of its successor and predecessor bodies.
"""
isfloating(joint::Joint) = isfloating(joint.joint_type)
"""
$(SIGNATURES)
Renormalize the configuration vector ``q`` associated with `joint` so that it
lies on the joint's configuration manifold.
"""
@propagate_inbounds function normalize_configuration!(q::AbstractVector, joint::Joint)
@boundscheck check_num_positions(joint, q)
@inbounds return normalize_configuration!(q, joint.joint_type)
end
@propagate_inbounds function is_configuration_normalized(joint::Joint, q::AbstractVector{X}; rtol::Real = sqrt(eps(X)), atol::Real = zero(X)) where {X}
@boundscheck check_num_positions(joint, q)
@inbounds return is_configuration_normalized(joint.joint_type, q, rtol, atol)
end
"""
$(SIGNATURES)
Applies the principal_value functions from [Rotations.jl](https://github.com/FugroRoames/Rotations.jl/blob/d080990517f89b56c37962ad53a7fd24bd94b9f7/src/principal_value.jl)
to joint angles. This currently only applies to `SPQuatFloating` joints.
"""
@propagate_inbounds function principal_value!(q::AbstractVector, joint::Joint)
@boundscheck check_num_positions(joint, q)
@inbounds return principal_value!(q, joint.joint_type)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 9562 | const DEFAULT_GRAVITATIONAL_ACCELERATION = SVector(0.0, 0.0, -9.81)
"""
$(TYPEDEF)
A `Mechanism` represents an interconnection of rigid bodies and joints.
`Mechanism`s store the joint layout and inertia parameters, but no
state-dependent information.
"""
mutable struct Mechanism{T}
graph::DirectedGraph{RigidBody{T}, Joint{T}}
tree::SpanningTree{RigidBody{T}, Joint{T}}
environment::ContactEnvironment{T}
gravitational_acceleration::FreeVector3D{SVector{3, T}} # TODO: consider removing
modcount::Int
@doc """
$(SIGNATURES)
Create a new `Mechanism` containing only a root body, to which other bodies can
be attached with joints.
The `gravity` keyword argument can be used to set the gravitational acceleration
(a 3-vector expressed in the `Mechanism`'s root frame). Default: `$(DEFAULT_GRAVITATIONAL_ACCELERATION)`.
""" ->
function Mechanism(root_body::RigidBody{T}; gravity::AbstractVector=DEFAULT_GRAVITATIONAL_ACCELERATION) where {T}
graph = DirectedGraph{RigidBody{T}, Joint{T}}()
add_vertex!(graph, root_body)
tree = SpanningTree(graph, root_body)
gravitational_acceleration = FreeVector3D(default_frame(root_body), convert(SVector{3, T}, gravity))
environment = ContactEnvironment{T}()
new{T}(graph, tree, environment, gravitational_acceleration, 0)
end
end
Base.eltype(::Type{Mechanism{T}}) where {T} = T
"""
$(SIGNATURES)
Return the `Joint`s that are part of the `Mechanism` as an iterable collection.
"""
joints(mechanism::Mechanism) = edges(mechanism.graph)
"""
$(SIGNATURES)
Return the `Joint`s that are part of the `Mechanism`'s spanning tree as an iterable collection.
"""
tree_joints(mechanism::Mechanism) = edges(mechanism.tree)
"""
$(SIGNATURES)
Return the `Joint`s that are not part of the `Mechanism`'s spanning tree as an iterable collection.
"""
non_tree_joints(mechanism::Mechanism) = setdiff(edges(mechanism.graph), edges(mechanism.tree))
"""
$(SIGNATURES)
Return the `RigidBody`s that are part of the `Mechanism` as an iterable collection.
"""
bodies(mechanism::Mechanism) = vertices(mechanism.graph)
"""
$(SIGNATURES)
Return the root (stationary 'world') body of the `Mechanism`.
"""
root_body(mechanism::Mechanism) = first(bodies(mechanism))
"""
$(SIGNATURES)
Return the default frame of the root body.
"""
root_frame(mechanism::Mechanism) = default_frame(root_body(mechanism))
"""
$(SIGNATURES)
Return the path from rigid body `from` to `to` along edges of the `Mechanism`'s
kinematic tree.
"""
path(mechanism::Mechanism, from::RigidBody, to::RigidBody) = TreePath(from, to, mechanism.tree)
has_loops(mechanism::Mechanism) = num_edges(mechanism.graph) > num_edges(mechanism.tree)
@inline modcount(mechanism::Mechanism) = mechanism.modcount
register_modification!(mechanism::Mechanism) = mechanism.modcount += 1
function Base.show(io::IO, mechanism::Mechanism)
println(io, "Spanning tree:")
print(io, mechanism.tree)
nontreejoints = non_tree_joints(mechanism)
println(io)
if isempty(nontreejoints)
print(io, "No non-tree joints.")
else
print(io, "Non-tree joints:")
for joint in nontreejoints
println(io)
show(IOContext(io, :compact => true), joint)
print(io, ", predecessor: ")
show(IOContext(io, :compact => true), predecessor(joint, mechanism))
print(io, ", successor: ")
show(IOContext(io, :compact => true), successor(joint, mechanism))
end
end
end
isroot(b::RigidBody{T}, mechanism::Mechanism{T}) where {T} = b == root_body(mechanism)
non_root_bodies(mechanism::Mechanism) = Base.unsafe_view(bodies(mechanism), 2 : length(bodies(mechanism)))
num_bodies(mechanism::Mechanism) = num_vertices(mechanism.graph)
"""
$(SIGNATURES)
Return the dimension of the joint configuration vector ``q``.
"""
num_positions(mechanism::Mechanism)::Int = mapreduce(num_positions, +, tree_joints(mechanism); init=0)
"""
$(SIGNATURES)
Return the dimension of the joint velocity vector ``v``.
"""
num_velocities(mechanism::Mechanism)::Int = mapreduce(num_velocities, +, tree_joints(mechanism); init=0)
"""
$(SIGNATURES)
Return the number of constraints imposed by the mechanism's non-tree joints (i.e., the number of rows of the constraint Jacobian).
"""
num_constraints(mechanism::Mechanism)::Int = mapreduce(num_constraints, +, non_tree_joints(mechanism); init=0)
"""
$(SIGNATURES)
Return the dimension of the vector of additional states ``s`` (used for stateful contact models).
"""
function num_additional_states(mechanism::Mechanism)
num_states_per_environment_element = 0
for body in bodies(mechanism), point in contact_points(body)
num_states_per_environment_element += num_states(contact_model(point))
end
num_states_per_environment_element * length(mechanism.environment)
end
"""
$(SIGNATURES)
Return the `RigidBody` to which `frame` is attached.
Note: this function is linear in the number of bodies and is not meant to be
called in tight loops.
"""
function body_fixed_frame_to_body(mechanism::Mechanism, frame::CartesianFrame3D)
for body in bodies(mechanism)
if is_fixed_to_body(body, frame)
return body
end
end
error("Unable to determine to what body $(frame) is attached")
end
"""
$(SIGNATURES)
Return the definition of body-fixed frame `frame`, i.e., the `Transform3D` from
`frame` to the default frame of the body to which it is attached.
Note: this function is linear in the number of bodies and is not meant to be
called in tight loops.
See also [`default_frame`](@ref), [`frame_definition`](@ref).
"""
function body_fixed_frame_definition(mechanism::Mechanism, frame::CartesianFrame3D)
frame_definition(body_fixed_frame_to_body(mechanism, frame), frame)
end
"""
$(SIGNATURES)
Return the transform from `CartesianFrame3D` `from` to `to`, both of which are
rigidly attached to the same `RigidBody`.
Note: this function is linear in the number of bodies and is not meant to be
called in tight loops.
"""
function fixed_transform(mechanism::Mechanism, from::CartesianFrame3D, to::CartesianFrame3D)
fixed_transform(body_fixed_frame_to_body(mechanism, from), from, to)
end
"""
$(SIGNATURES)
Return the body 'before' the joint, i.e. the 'tail' of the joint interpreted as an
arrow in the `Mechanism`'s kinematic graph.
See [`Joint`](@ref).
"""
predecessor(joint::Joint, mechanism::Mechanism) = source(joint, mechanism.graph)
"""
$(SIGNATURES)
Return the body 'after' the joint, i.e. the 'head' of the joint interpreted as an
arrow in the `Mechanism`'s kinematic graph.
See [`Joint`](@ref).
"""
successor(joint::Joint, mechanism::Mechanism) = target(joint, mechanism.graph)
"""
$(SIGNATURES)
Return the joints that have `body` as their [`predecessor`](@ref).
"""
out_joints(body::RigidBody, mechanism::Mechanism) = out_edges(body, mechanism.graph)
"""
$(SIGNATURES)
Return the joints that have `body` as their [`successor`](@ref).
"""
in_joints(body::RigidBody, mechanism::Mechanism) = in_edges(body, mechanism.graph)
"""
$(SIGNATURES)
Return the joints that are part of the mechanism's kinematic tree and have
`body` as their predecessor.
"""
joints_to_children(body::RigidBody, mechanism::Mechanism) = edges_to_children(body, mechanism.tree)
"""
$(SIGNATURES)
Return the joint that is part of the mechanism's kinematic tree and has
`body` as its successor.
"""
joint_to_parent(body::RigidBody, mechanism::Mechanism) = edge_to_parent(body, mechanism.tree)
function add_body_fixed_frame!(mechanism::Mechanism{T}, transform::Transform3D) where {T}
add_frame!(body_fixed_frame_to_body(mechanism, transform.to), transform)
end
function canonicalize_frame_definitions!(mechanism::Mechanism{T}, body::RigidBody{T}) where {T}
if !isroot(body, mechanism)
change_default_frame!(body, frame_after(joint_to_parent(body, mechanism)))
end
for joint in in_joints(body, mechanism)
set_joint_to_successor!(joint, frame_definition(body, frame_after(joint)))
end
for joint in out_joints(body, mechanism)
set_joint_to_predecessor!(joint, frame_definition(body, frame_before(joint)))
end
end
function canonicalize_frame_definitions!(mechanism::Mechanism)
for body in bodies(mechanism)
canonicalize_frame_definitions!(mechanism, body)
end
end
function gravitational_spatial_acceleration(mechanism::Mechanism)
frame = mechanism.gravitational_acceleration.frame
SpatialAcceleration(frame, frame, frame, zero(SVector{3, eltype(mechanism)}), mechanism.gravitational_acceleration.v)
end
"""
$(SIGNATURES)
Return the `RigidBody` with the given name. Errors if there is no body with the given name,
or if there's more than one.
"""
findbody(mechanism::Mechanism, name::String) = findunique(b -> string(b) == name, bodies(mechanism))
"""
$(SIGNATURES)
Return the `Joint` with the given name. Errors if there is no joint with the given name,
or if there's more than one.
"""
findjoint(mechanism::Mechanism, name::String) = findunique(j -> string(j) == name, joints(mechanism))
"""
$(SIGNATURES)
Return the `RigidBody` with the given `BodyID`.
"""
function findbody(mechanism::Mechanism, id::BodyID)
ret = bodies(mechanism)[id]
BodyID(ret) == id || error() # should never happen
ret
end
"""
$(SIGNATURES)
Return the `Joint` with the given `JointID`.
"""
function findjoint(mechanism::Mechanism, id::JointID)
ret = joints(mechanism)[id]
JointID(ret) == id || error() # should never happen
ret
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 32850 | const noalloc_doc = """This method does its computation in place, performing no dynamic memory allocation."""
"""
$(SIGNATURES)
Return the mass of a subtree of a `Mechanism`, rooted at `base` (including
the mass of `base`).
"""
function subtree_mass(base::RigidBody{T}, mechanism::Mechanism{T}) where {T}
result = isroot(base, mechanism) ? zero(T) : spatial_inertia(base).mass
for joint in joints_to_children(base, mechanism)
result += subtree_mass(successor(joint, mechanism), mechanism)
end
result
end
"""
$(SIGNATURES)
Return the total mass of the `Mechanism`.
"""
mass(m::Mechanism) = subtree_mass(root_body(m), m)
"""
$(SIGNATURES)
Compute the center of mass of an iterable subset of a `Mechanism`'s bodies in
the given state. Ignores the root body of the mechanism.
"""
function center_of_mass(state::MechanismState, itr)
update_transforms!(state)
T = cache_eltype(state)
mechanism = state.mechanism
frame = root_frame(mechanism)
com = Point3D(frame, zero(SVector{3, T}))
mass = zero(T)
for body in itr
if body.inertia !== nothing
inertia = spatial_inertia(body)
if inertia.mass > 0
bodycom = transform_to_root(state, body, false) * center_of_mass(inertia)
com += inertia.mass * FreeVector3D(bodycom)
mass += inertia.mass
end
end
end
com /= mass
com
end
"""
$(SIGNATURES)
Compute the center of mass of the whole `Mechanism` in the given state.
"""
center_of_mass(state::MechanismState) = center_of_mass(state, bodies(state.mechanism))
const geometric_jacobian_doc = """Compute a geometric Jacobian (also known as a
basic, or spatial Jacobian) associated with a directed path in the `Mechanism`'s
spanning tree, (a collection of `Joint`s and traversal directions) in the given state.
A geometric Jacobian maps the `Mechanism`'s joint velocity vector ``v``
to the twist of the target of the joint path (the body succeeding the last joint
in the path) with respect to the source of the joint path (the body preceding the
first joint in the path).
See also [`path`](@ref), [`GeometricJacobian`](@ref), [`Twist`](@ref).
"""
"""
$(SIGNATURES)
$geometric_jacobian_doc
`transformfun` is a callable that may be used to transform the individual motion
subspaces of each of the joints to the frame in which `out` is expressed.
$noalloc_doc
"""
function geometric_jacobian!(jac::GeometricJacobian, state::MechanismState, path::TreePath, transformfun)
@boundscheck num_velocities(state) == size(jac, 2) || throw(DimensionMismatch())
@framecheck jac.body default_frame(target(path))
@framecheck jac.base default_frame(source(path))
update_motion_subspaces!(state)
fill!(jac.angular, 0)
fill!(jac.linear, 0)
for i in eachindex(path.edges) # TODO: just use @inbounds here; currently messes with frame check in set_col!
@inbounds joint = path.edges[i]
vrange = velocity_range(state, joint)
@inbounds direction = directions(path)[i]
for col in eachindex(vrange)
@inbounds vindex = vrange[col]
@inbounds Scol = transformfun(state.motion_subspaces.data[vindex])
direction == PathDirections.up && (Scol = -Scol)
set_col!(jac, vindex, Scol)
end
end
jac
end
"""
$(SIGNATURES)
$geometric_jacobian_doc
`root_to_desired` is the transform from the `Mechanism`'s root frame to the frame
in which `out` is expressed.
$noalloc_doc
"""
function geometric_jacobian!(out::GeometricJacobian, state::MechanismState, path::TreePath, root_to_desired::Transform3D)
geometric_jacobian!(out, state, path, S -> transform(S, root_to_desired))
end
"""
$(SIGNATURES)
$geometric_jacobian_doc
See [`geometric_jacobian!(out, state, path, root_to_desired)`](@ref). Uses `state`
to compute the transform from the `Mechanism`'s root frame to the frame in which
`out` is expressed.
$noalloc_doc
"""
function geometric_jacobian!(out::GeometricJacobian, state::MechanismState, path::TreePath)
if out.frame == root_frame(state.mechanism)
geometric_jacobian!(out, state, path, identity)
else
geometric_jacobian!(out, state, path, inv(transform_to_root(state, out.frame)))
end
end
"""
$(SIGNATURES)
$geometric_jacobian_doc
The Jacobian is computed in the `Mechanism`'s root frame.
See [`geometric_jacobian!(out, state, path)`](@ref).
"""
function geometric_jacobian(state::MechanismState{X, M, C}, path::TreePath{RigidBody{M}, Joint{M}}) where {X, M, C}
nv = num_velocities(state)
angular = Matrix{C}(undef, 3, nv)
linear = Matrix{C}(undef, 3, nv)
bodyframe = default_frame(target(path))
baseframe = default_frame(source(path))
jac = GeometricJacobian(bodyframe, baseframe, root_frame(state.mechanism), angular, linear)
geometric_jacobian!(jac, state, path, identity)
end
const point_jacobian_doc = """
Compute the Jacobian mapping the `Mechanism`'s joint velocity vector ``v`` to
the velocity of a point fixed to the target of the joint path (the body
succeeding the last joint in the path) with respect to the source of the joint
path (the body preceding the first joint in the path).
"""
"""
$(SIGNATURES)
$point_jacobian_doc
$noalloc_doc
"""
function _point_jacobian!(Jp::PointJacobian, state::MechanismState, path::TreePath,
point::Point3D, transformfun)
@framecheck Jp.frame point.frame
update_motion_subspaces!(state)
fill!(Jp.J, 0)
p̂ = Spatial.hat(point.v)
@inbounds for i in eachindex(path.edges)
joint = path.edges[i]
vrange = velocity_range(state, joint)
direction = path.directions[i]
for col in eachindex(vrange)
vindex = vrange[col]
Scol = transformfun(state.motion_subspaces.data[vindex])
direction == PathDirections.up && (Scol = -Scol)
newcol = -p̂ * angular(Scol) + linear(Scol)
for row in 1:3
Jp.J[row, vindex] = newcol[row]
end
end
end
Jp
end
"""
$(SIGNATURES)
$point_jacobian_doc
Uses `state` to compute the transform from the `Mechanism`'s root frame to the
frame in which `out` is expressed if necessary.
$noalloc_doc
"""
function point_jacobian!(out::PointJacobian, state::MechanismState, path::TreePath, point::Point3D)
if out.frame == root_frame(state.mechanism)
_point_jacobian!(out, state, path, point, identity)
else
root_to_desired = inv(transform_to_root(state, out.frame))
let root_to_desired = root_to_desired
_point_jacobian!(out, state, path, point, S -> transform(S, root_to_desired))
end
end
end
"""
$(SIGNATURES)
$point_jacobian_doc
"""
function point_jacobian(state::MechanismState{X, M, C},
path::TreePath{RigidBody{M}, Joint{M}},
point::Point3D) where {X, M, C}
Jp = PointJacobian(point.frame, Matrix{C}(undef, 3, num_velocities(state)))
point_jacobian!(Jp, state, path, point)
Jp
end
const mass_matrix_doc = """Compute the joint-space mass matrix
(also known as the inertia matrix) of the `Mechanism` in the given state, i.e.,
the matrix ``M(q)`` in the unconstrained joint-space equations of motion
```math
M(q) \\dot{v} + c(q, v, w_\\text{ext}) = \\tau
```
This method implements the composite rigid body algorithm.
"""
"""
$(SIGNATURES)
$mass_matrix_doc
$noalloc_doc
The `out` argument must be an ``n_v \\times n_v`` lower triangular
`Symmetric` matrix, where ``n_v`` is the dimension of the `Mechanism`'s joint
velocity vector ``v``.
"""
function mass_matrix!(M::Symmetric, state::MechanismState)
nv = num_velocities(state)
@boundscheck size(M, 1) == nv || throw(DimensionMismatch("mass matrix has wrong size"))
@boundscheck M.uplo == 'L' || throw(ArgumentError(("expected a lower triangular symmetric matrix")))
update_motion_subspaces!(state)
update_crb_inertias!(state)
motion_subspaces = state.motion_subspaces.data
@inbounds for i in Base.OneTo(nv)
jointi = velocity_index_to_joint_id(state, i)
bodyi = successorid(jointi, state)
Ici = crb_inertia(state, bodyi, false)
Si = motion_subspaces[i]
Fi = Ici * Si
for j in Base.OneTo(i)
jointj = velocity_index_to_joint_id(state, j)
M.data[i, j] = if supports(jointj, bodyi, state)
Sj = motion_subspaces[j]
(transpose(Fi) * Sj)[1]
else
zero(eltype(M))
end
end
end
M
end
mass_matrix!(result::DynamicsResult, state::MechanismState) = mass_matrix!(result.massmatrix, state)
"""
$(SIGNATURES)
$mass_matrix_doc
"""
function mass_matrix(state::MechanismState{X, M, C}) where {X, M, C}
nv = num_velocities(state)
ret = Symmetric(Matrix{C}(undef, nv, nv), :L)
mass_matrix!(ret, state)
ret
end
const momentum_matrix_doc = """Compute the momentum matrix ``A(q)`` of the
`Mechanism` in the given state.
The momentum matrix maps the `Mechanism`'s joint velocity vector ``v`` to
its total momentum.
See also [`MomentumMatrix`](@ref).
"""
const momentum_matrix!_doc = """$momentum_matrix_doc
The `out` argument must be a mutable `MomentumMatrix` with as many columns as
the dimension of the `Mechanism`'s joint velocity vector ``v``.
"""
"""
$(SIGNATURES)
$momentum_matrix!_doc
`transformfun` is a callable that may be used to transform the individual
momentum matrix blocks associated with each of the joints to the frame in which
`out` is expressed.
$noalloc_doc
"""
function momentum_matrix!(mat::MomentumMatrix, state::MechanismState, transformfun)
nv = num_velocities(state)
@boundscheck size(mat, 2) == nv || throw(DimensionMismatch())
update_motion_subspaces!(state)
update_crb_inertias!(state)
@inbounds for i in 1 : nv
jointi = velocity_index_to_joint_id(state, i)
bodyi = successorid(jointi, state)
Ici = crb_inertia(state, bodyi)
Si = state.motion_subspaces.data[i]
Fi = transformfun(Ici * Si)
set_col!(mat, i, Fi)
end
mat
end
"""
$(SIGNATURES)
$momentum_matrix!_doc
`root_to_desired` is the transform from the `Mechanism`'s root frame to the frame
in which `out` is expressed.
$noalloc_doc
"""
function momentum_matrix!(mat::MomentumMatrix, state::MechanismState, root_to_desired::Transform3D)
momentum_matrix!(mat, state, F -> transform(F, root_to_desired))
end
"""
$(SIGNATURES)
$momentum_matrix!_doc
See [`momentum_matrix!(out, state, root_to_desired)`](@ref). Uses `state`
to compute the transform from the `Mechanism`'s root frame to the frame in which
`out` is expressed.
$noalloc_doc
"""
function momentum_matrix!(out::MomentumMatrix, state::MechanismState)
if out.frame == root_frame(state.mechanism)
momentum_matrix!(out, state, identity)
else
momentum_matrix!(out, state, inv(transform_to_root(state, out.frame)))
end
end
"""
$(SIGNATURES)
$momentum_matrix_doc
See [`momentum_matrix!(out, state)`](@ref).
"""
function momentum_matrix(state::MechanismState)
ncols = num_velocities(state)
T = cache_eltype(state)
ret = MomentumMatrix(root_frame(state.mechanism), Matrix{T}(undef, 3, ncols), Matrix{T}(undef, 3, ncols))
momentum_matrix!(ret, state, identity)
ret
end
function bias_accelerations!(out::AbstractDict{BodyID, SpatialAcceleration{T}}, state::MechanismState{X, M}) where {T, X, M}
update_bias_accelerations_wrt_world!(state)
gravitybias = convert(SpatialAcceleration{T}, -gravitational_spatial_acceleration(state.mechanism))
for jointid in state.treejointids
bodyid = successorid(jointid, state)
out[bodyid] = gravitybias + bias_acceleration(state, bodyid, false)
end
nothing
end
function spatial_accelerations!(out::AbstractDict{BodyID, SpatialAcceleration{T}}, state::MechanismState, v̇::SegmentedVector{JointID}) where T
update_transforms!(state)
update_twists_wrt_world!(state)
# Compute joint accelerations
joints = state.treejoints
qs = values(segments(state.q))
vs = values(segments(state.v))
v̇s = values(segments(v̇))
foreach_with_extra_args(state, out, joints, qs, vs, v̇s) do state, accels, joint, qjoint, vjoint, v̇joint
bodyid = successorid(JointID(joint), state)
accels[bodyid] = joint_spatial_acceleration(joint, qjoint, vjoint, v̇joint)
end
# Recursive propagation
# TODO: manual frame changes. Find a way to not avoid the frame checks here.
mechanism = state.mechanism
root = root_body(mechanism)
out[root] = convert(SpatialAcceleration{T}, -gravitational_spatial_acceleration(mechanism))
@inbounds for jointid in state.treejointids
parentbodyid, bodyid = predsucc(jointid, state)
toroot = transform_to_root(state, bodyid, false)
parenttwist = twist_wrt_world(state, parentbodyid, false)
bodytwist = twist_wrt_world(state, bodyid, false)
jointaccel = out[bodyid]
jointaccel = SpatialAcceleration(jointaccel.body, parenttwist.body, toroot.to,
Spatial.transform_spatial_motion(jointaccel.angular, jointaccel.linear, rotation(toroot), translation(toroot))...)
out[bodyid] = out[parentbodyid] + (-bodytwist) × parenttwist + jointaccel
end
nothing
end
spatial_accelerations!(result::DynamicsResult, state::MechanismState) = spatial_accelerations!(result.accelerations, state, result.v̇)
function relative_acceleration(accels::AbstractDict{BodyID, SpatialAcceleration{T}}, body::RigidBody{M}, base::RigidBody{M}) where {T, M}
-accels[BodyID(base)] + accels[BodyID(body)]
end
# TODO: ensure that accelerations are up-to-date
relative_acceleration(result::DynamicsResult, body::RigidBody, base::RigidBody) = relative_acceleration(result.accelerations, body, base)
function newton_euler!(
out::AbstractDict{BodyID, Wrench{T}}, state::MechanismState{X, M},
accelerations::AbstractDict{BodyID, SpatialAcceleration{T}},
externalwrenches::AbstractDict{BodyID, Wrench{W}}) where {T, X, M, W}
update_twists_wrt_world!(state)
update_spatial_inertias!(state)
for jointid in state.treejointids
bodyid = successorid(jointid, state)
wrench = newton_euler(state, bodyid, accelerations[bodyid], false)
out[bodyid] = haskey(externalwrenches, bodyid) ? wrench - externalwrenches[bodyid] : wrench
end
end
function joint_wrenches_and_torques!(
torquesout::SegmentedVector{JointID},
net_wrenches_in_joint_wrenches_out::AbstractDict{BodyID, <:Wrench}, # TODO: consider having a separate Associative{Joint{M}, Wrench{T}} for joint wrenches
state::MechanismState)
update_motion_subspaces!(state)
# Note: pass in net wrenches as wrenches argument. wrenches argument is modified to be joint wrenches
@boundscheck length(torquesout) == num_velocities(state) || error("length of torque vector is wrong")
wrenches = net_wrenches_in_joint_wrenches_out
for jointid in reverse(state.treejointids)
parentbodyid, bodyid = predsucc(jointid, state)
jointwrench = wrenches[bodyid]
wrenches[parentbodyid] += jointwrench # action = -reaction
for vindex in velocity_range(state, jointid)
Scol = state.motion_subspaces.data[vindex]
torquesout[vindex] = (transpose(Scol) * jointwrench)[1]
end
end
end
const dynamics_bias_doc = """Compute the 'dynamics bias term', i.e. the term
```math
c(q, v, w_\\text{ext})
```
in the unconstrained joint-space equations of motion
```math
M(q) \\dot{v} + c(q, v, w_\\text{ext}) = \\tau
```
given joint configuration vector ``q``, joint velocity vector ``v``,
joint acceleration vector ``\\dot{v}`` and (optionally) external
wrenches ``w_\\text{ext}``.
The `externalwrenches` argument can be used to specify additional
wrenches that act on the `Mechanism`'s bodies.
"""
"""
$(SIGNATURES)
$dynamics_bias_doc
$noalloc_doc
"""
function dynamics_bias!(
torques::SegmentedVector{JointID},
biasaccelerations::AbstractDict{BodyID, <:SpatialAcceleration},
wrenches::AbstractDict{BodyID, <:Wrench},
state::MechanismState{X},
externalwrenches::AbstractDict{BodyID, <:Wrench} = NullDict{BodyID, Wrench{X}}()) where X
bias_accelerations!(biasaccelerations, state)
newton_euler!(wrenches, state, biasaccelerations, externalwrenches)
joint_wrenches_and_torques!(torques, wrenches, state)
torques
end
function dynamics_bias!(result::DynamicsResult, state::MechanismState)
dynamics_bias!(result.dynamicsbias, result.accelerations, result.jointwrenches, state, result.totalwrenches)
end
"""
$(SIGNATURES)
$dynamics_bias_doc
"""
function dynamics_bias(
state::MechanismState{X, M},
externalwrenches::AbstractDict{BodyID, Wrench{W}} = NullDict{BodyID, Wrench{X}}()) where {X, M, W}
T = promote_type(X, M, W)
mechanism = state.mechanism
torques = similar(velocity(state), T)
rootframe = root_frame(mechanism)
jointwrenches = BodyDict(BodyID(b) => zero(Wrench{T}, rootframe) for b in bodies(mechanism))
accelerations = BodyDict(BodyID(b) => zero(SpatialAcceleration{T}, rootframe, rootframe, rootframe) for b in bodies(mechanism))
dynamics_bias!(torques, accelerations, jointwrenches, state, externalwrenches)
torques
end
const inverse_dynamics_doc = """Do inverse dynamics, i.e. compute ``\\tau``
in the unconstrained joint-space equations of motion
```math
M(q) \\dot{v} + c(q, v, w_\\text{ext}) = \\tau
```
given joint configuration vector ``q``, joint velocity vector ``v``,
joint acceleration vector ``\\dot{v}`` and (optionally) external
wrenches ``w_\\text{ext}``.
The `externalwrenches` argument can be used to specify additional
wrenches that act on the `Mechanism`'s bodies.
This method implements the recursive Newton-Euler algorithm.
Currently doesn't support `Mechanism`s with cycles.
"""
"""
$(SIGNATURES)
$inverse_dynamics_doc
$noalloc_doc
"""
function inverse_dynamics!(
torquesout::SegmentedVector{JointID},
jointwrenchesout::AbstractDict{BodyID, Wrench{T}},
accelerations::AbstractDict{BodyID, SpatialAcceleration{T}},
state::MechanismState,
v̇::SegmentedVector{JointID},
externalwrenches::AbstractDict{BodyID, <:Wrench} = NullDict{BodyID, Wrench{T}}()) where T
@boundscheck length(tree_joints(state.mechanism)) == length(joints(state.mechanism)) || error("This method can currently only handle tree Mechanisms.")
spatial_accelerations!(accelerations, state, v̇)
newton_euler!(jointwrenchesout, state, accelerations, externalwrenches)
joint_wrenches_and_torques!(torquesout, jointwrenchesout, state)
end
"""
$(SIGNATURES)
$inverse_dynamics_doc
"""
function inverse_dynamics(
state::MechanismState{X, M},
v̇::SegmentedVector{JointID, V},
externalwrenches::AbstractDict{BodyID, Wrench{W}} = NullDict{BodyID, Wrench{X}}()) where {X, M, V, W}
T = promote_type(X, M, V, W)
mechanism = state.mechanism
torques = similar(velocity(state), T)
rootframe = root_frame(mechanism)
jointwrenches = BodyDict(BodyID(b) => zero(Wrench{T}, rootframe) for b in bodies(mechanism))
accelerations = BodyDict(BodyID(b) => zero(SpatialAcceleration{T}, rootframe, rootframe, rootframe) for b in bodies(mechanism))
inverse_dynamics!(torques, jointwrenches, accelerations, state, v̇, externalwrenches)
torques
end
function constraint_jacobian!(jac::AbstractMatrix, rowranges, state::MechanismState)
# TODO: traversing jac in the wrong order
update_motion_subspaces!(state)
update_constraint_wrench_subspaces!(state)
fill!(jac, 0)
@inbounds for nontreejointid in state.nontreejointids
path = state.constraint_jacobian_structure[nontreejointid]
for cindex in constraint_range(state, nontreejointid)
Tcol = state.constraint_wrench_subspaces.data[cindex]
for i in eachindex(path.edges)
treejoint = path.edges[i]
vrange = velocity_range(state, treejoint)
direction = directions(path)[i]
sign = ifelse(direction == PathDirections.up, -1, 1)
for col in eachindex(vrange)
vindex = vrange[col]
Scol = state.motion_subspaces.data[vindex]
jacelement = flipsign((transpose(Tcol) * Scol)[1], sign)
jac[cindex, vindex] = jacelement
end
end
end
end
jac
end
function constraint_jacobian!(result::DynamicsResult, state::MechanismState)
constraint_jacobian!(result.constraintjacobian, result.constraintrowranges, state)
end
"""
$(SIGNATURES)
Return the default Baumgarte constraint stabilization gains. These gains result in
critical damping, and correspond to ``T_{stab} = 0.1`` in Featherstone (2008), section 8.3.
"""
function default_constraint_stabilization_gains(scalar_type::Type{T}) where T
ConstDict{JointID}(SE3PDGains(PDGains(T(100), T(20)), PDGains(T(100), T(20))))
end
const stabilization_gains_doc = """
The `stabilization_gains` keyword argument can be used to set PD gains for Baumgarte
stabilization, which can be used to prevent separation of non-tree (loop) joints.
See Featherstone (2008), section 8.3 for more information. There are several options
for specifying gains:
* `nothing` can be used to completely disable Baumgarte stabilization.
* Gains can be specifed on a per-joint basis using any `AbstractDict{JointID, <:RigidBodyDynamics.PDControl.SE3PDGains}`,
which maps the `JointID` for the non-tree joints of the mechanism to the gains for that joint.
* As a special case of the second option, the same gains can be used for all joints
by passing in a `RigidBodyDynamics.CustomCollections.ConstDict{JointID}`.
The [`default_constraint_stabilization_gains`](@ref) function is called to produce the default gains,
which use the last option.
"""
function constraint_bias!(bias::SegmentedVector, state::MechanismState{X};
stabilization_gains::Union{AbstractDict{JointID, <:SE3PDGains}, Nothing}=default_constraint_stabilization_gains(X)) where X
update_transforms!(state)
update_twists_wrt_world!(state)
update_bias_accelerations_wrt_world!(state)
update_constraint_wrench_subspaces!(state)
constraint_wrench_subspaces = state.constraint_wrench_subspaces.data
for nontreejointid in state.nontreejointids
predid, succid = predsucc(nontreejointid, state)
predtwist = twist_wrt_world(state, predid, false)
succtwist = twist_wrt_world(state, succid, false)
crossterm = succtwist × predtwist
succbias = bias_acceleration(state, succid, false)
predbias = bias_acceleration(state, predid, false)
jointbias = -predbias + succbias
biasaccel = crossterm + jointbias # what's inside parentheses in 8.47 in Featherstone
if stabilization_gains !== nothing
# TODO: make this nicer (less manual frame juggling and no manual transformations)
jointtransform = joint_transform(state, nontreejointid, false)
jointtwist = -predtwist + succtwist
jointtwist = Twist(jointtransform.from, jointtransform.to, jointtwist.frame, jointtwist.angular, jointtwist.linear) # make frames line up
successor_to_root = transform_to_root(state, jointtransform.from) # TODO: expensive
jointtwist = transform(jointtwist, inv(successor_to_root)) # twist needs to be in successor frame for pd method
stabaccel = pd(stabilization_gains[nontreejointid], jointtransform, jointtwist, SE3PDMethod{:Linearized}()) # in successor frame
stabaccel = SpatialAcceleration(stabaccel.body, stabaccel.base, biasaccel.frame,
Spatial.transform_spatial_motion(stabaccel.angular, stabaccel.linear,
rotation(successor_to_root), translation(successor_to_root))...) # back to world frame. TODO: ugly way to do this
stabaccel = SpatialAcceleration(biasaccel.body, biasaccel.body, stabaccel.frame, stabaccel.angular, stabaccel.linear) # make frames line up
@inbounds biasaccel = biasaccel + -stabaccel
end
for cindex in constraint_range(state, nontreejointid)
Tcol = constraint_wrench_subspaces[cindex]
# TODO: make nicer:
@framecheck Tcol.frame biasaccel.frame
bias[cindex] = (transpose(Tcol.angular) * biasaccel.angular + transpose(Tcol.linear) * biasaccel.linear)[1]
end
end
bias
end
function constraint_bias!(result::DynamicsResult, state::MechanismState{X};
stabilization_gains::Union{AbstractDict{JointID, <:SE3PDGains}, Nothing}=default_constraint_stabilization_gains(X)) where X
constraint_bias!(result.constraintbias, state; stabilization_gains=stabilization_gains)
end
function contact_dynamics!(result::DynamicsResult{T, M}, state::MechanismState{X, M, C}) where {X, M, C, T}
update_transforms!(state)
update_twists_wrt_world!(state)
mechanism = state.mechanism
root = root_body(mechanism)
frame = default_frame(root)
for body in bodies(mechanism)
bodyid = BodyID(body)
wrench = zero(Wrench{T}, frame)
points = contact_points(body)
if !isempty(points)
# TODO: AABB
body_to_root = transform_to_root(state, bodyid, false)
twist = twist_wrt_world(state, bodyid, false)
states_for_body = contact_states(state, bodyid)
state_derivs_for_body = contact_state_derivatives(result, bodyid)
for i = 1 : length(points)
@inbounds c = points[i]
point = body_to_root * location(c)
velocity = point_velocity(twist, point)
states_for_point = states_for_body[i]
state_derivs_for_point = state_derivs_for_body[i]
for j = 1 : length(mechanism.environment.halfspaces)
primitive = mechanism.environment.halfspaces[j]
contact_state = states_for_point[j]
contact_state_deriv = state_derivs_for_point[j]
model = contact_model(c)
# TODO: would be good to move this to Contact module
# arguments: model, state, state_deriv, point, velocity, primitive
if point_inside(primitive, point)
separation, normal = Contact.detect_contact(primitive, point)
force = Contact.contact_dynamics!(contact_state_deriv, contact_state,
model, -separation, velocity, normal)
wrench += Wrench(point, force)
else
Contact.reset!(contact_state)
Contact.zero!(contact_state_deriv)
end
end
end
end
set_contact_wrench!(result, body, wrench)
end
end
function dynamics_solve!(result::DynamicsResult, τ::AbstractVector)
# version for general scalar types
# TODO: make more efficient
M = result.massmatrix
c = parent(result.dynamicsbias)
v̇ = parent(result.v̇)
K = result.constraintjacobian
k = result.constraintbias
λ = result.λ
nv = size(M, 1)
nl = size(K, 1)
G = [Matrix(M) K'; # TODO: Matrix because of https://github.com/JuliaLang/julia/issues/21332
K zeros(nl, nl)]
r = [τ - c; -k]
v̇λ = G \ r
v̇ .= view(v̇λ, 1 : nv)
λ .= view(v̇λ, nv + 1 : nv + nl)
nothing
end
function dynamics_solve!(result::DynamicsResult{T, S}, τ::AbstractVector{T}) where {S, T<:LinearAlgebra.BlasReal}
# optimized version for BLAS floats
M = result.massmatrix
c = parent(result.dynamicsbias)
v̇ = parent(result.v̇)
K = result.constraintjacobian
k = result.constraintbias
λ = result.λ
L = result.L
A = result.A
z = result.z
Y = result.Y
L .= M.data
uplo = M.uplo
LinearAlgebra.LAPACK.potrf!(uplo, L) # L <- Cholesky decomposition of M; M == L Lᵀ (note: Featherstone, page 151 uses M == Lᵀ L instead)
τbiased = v̇
τbiased .= τ .- c
if size(K, 1) > 0
# Loops.
# Basic math:
# DAE:
# [M Kᵀ] [v̇] = [τ - c]
# [K 0 ] [λ] = [-k]
# Solve for v̇:
# v̇ = M⁻¹ (τ - c - Kᵀ λ)
# Plug into λ equation:
# K M⁻¹ (τ - c - Kᵀ λ) = -k
# K M⁻¹ Kᵀ λ = K M⁻¹(τ - c) + k
# which can be solved for λ, after which λ can be used to solve for v̇.
# Implementation loosely follows page 151 of Featherstone, Rigid Body Dynamics Algorithms.
# It is slightly different because Featherstone uses M = Lᵀ L, whereas BLAS uses M = L Lᵀ.
# M = L Lᵀ (Cholesky decomposition)
# Y = K L⁻ᵀ, so that Y Yᵀ = K L⁻ᵀ L⁻¹ Kᵀ = K M⁻¹ Kᵀ = A
# z = L⁻¹ (τ - c)
# b = Y z + k
# solve A λ = b for λ
# solve M v̇ = τ - c for v̇
# Compute Y = K L⁻ᵀ
Y .= K
LinearAlgebra.BLAS.trsm!('R', uplo, 'T', 'N', one(T), L, Y)
# Compute z = L⁻¹ (τ - c)
z .= τbiased
LinearAlgebra.BLAS.trsv!(uplo, 'N', 'N', L, z) # z <- L⁻¹ (τ - c)
# Compute A = Y Yᵀ == K * M⁻¹ * Kᵀ
LinearAlgebra.BLAS.gemm!('N', 'T', one(T), Y, Y, zero(T), A) # A <- K * M⁻¹ * Kᵀ
# Compute b = Y z + k
b = λ
b .= k
LinearAlgebra.BLAS.gemv!('N', one(T), Y, z, one(T), b) # b <- Y z + k
# Compute λ = A⁻¹ b == (K * M⁻¹ * Kᵀ)⁻¹ * (K * M⁻¹ * (τ - c) + k)
# LinearAlgebra.LAPACK.posv!(uplo, A, b) # NOTE: doesn't work in general because A is only guaranteed to be positive semidefinite
singular_value_zero_tolerance = 1e-10 # TODO: more principled choice
# TODO: https://github.com/JuliaLang/julia/issues/22242
b[:], _ = LinearAlgebra.LAPACK.gelsy!(A, b, singular_value_zero_tolerance) # b == λ <- (K * M⁻¹ * Kᵀ)⁻¹ * (K * M⁻¹ * (τ - c) + k)
# Update τbiased: subtract Kᵀ * λ
LinearAlgebra.BLAS.gemv!('T', -one(T), K, λ, one(T), τbiased) # τbiased <- τ - c - Kᵀ * λ
# Solve for v̇ = M⁻¹ * (τ - c - Kᵀ * λ)
LinearAlgebra.LAPACK.potrs!(uplo, L, τbiased) # τbiased ==v̇ <- M⁻¹ * (τ - c - Kᵀ * λ)
else
# No loops.
LinearAlgebra.LAPACK.potrs!(uplo, L, τbiased) # τbiased == v̇ <- M⁻¹ * (τ - c)
end
nothing
end
"""
$(SIGNATURES)
Compute the joint acceleration vector ``\\dot{v}`` and Lagrange multipliers
``\\lambda`` that satisfy the joint-space equations of motion
```math
M(q) \\dot{v} + c(q, v, w_\\text{ext}) = \\tau - K(q)^{T} \\lambda
```
and the constraint equations
```math
K(q) \\dot{v} = -k
```
given joint configuration vector ``q``, joint velocity vector ``v``, and
(optionally) joint torques ``\\tau`` and external wrenches ``w_\\text{ext}``.
The `externalwrenches` argument can be used to specify additional
wrenches that act on the `Mechanism`'s bodies.
$stabilization_gains_doc
"""
function dynamics!(result::DynamicsResult, state::MechanismState{X},
torques::AbstractVector = ConstVector(zero(X), num_velocities(state)),
externalwrenches::AbstractDict{BodyID, <:Wrench} = NullDict{BodyID, Wrench{X}}();
stabilization_gains=default_constraint_stabilization_gains(X)) where X
configuration_derivative!(result.q̇, state)
contact_dynamics!(result, state)
for jointid in state.treejointids
bodyid = successorid(jointid, state)
contactwrench = result.contactwrenches[bodyid]
result.totalwrenches[bodyid] = haskey(externalwrenches, bodyid) ? externalwrenches[bodyid] + contactwrench : contactwrench
end
dynamics_bias!(result, state)
mass_matrix!(result, state)
if has_loops(state.mechanism)
constraint_jacobian!(result, state)
constraint_bias!(result, state; stabilization_gains=stabilization_gains)
end
dynamics_solve!(result, parent(torques))
nothing
end
"""
$(SIGNATURES)
Convenience function for use with standard ODE integrators that takes a
`Vector` argument
```math
x = \\left(\\begin{array}{c}
q\\\\
v
\\end{array}\\right)
```
and returns a `Vector` ``\\dot{x}``.
"""
function dynamics!(ẋ::StridedVector{X},
result::DynamicsResult, state::MechanismState{X}, x::AbstractVector{X},
torques::AbstractVector = ConstVector(zero(X), num_velocities(state)),
externalwrenches::AbstractDict{BodyID, <:Wrench} = NullDict{BodyID, Wrench{X}}();
stabilization_gains=default_constraint_stabilization_gains(X)) where X
copyto!(state, x)
dynamics!(result, state, torques, externalwrenches; stabilization_gains=stabilization_gains)
copyto!(ẋ, result)
ẋ
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 17482 | """
$(SIGNATURES)
Attach `successor` to `predecessor` using `joint`.
See [`Joint`](@ref) for definitions of the terms successor and predecessor.
The `Transform3D`s `joint_pose` and `successor_pose` define where
`joint` is attached to each body. `joint_pose` should define
`frame_before(joint)` with respect to any frame fixed to `predecessor`, and likewise
`successor_pose` should define any frame fixed to `successor` with respect to
`frame_after(joint)`.
`predecessor` is required to already be among the bodies of the `Mechanism`.
If `successor` is not yet a part of the `Mechanism`, it will be added to the
`Mechanism`. Otherwise, the `joint` will be treated as a non-tree edge in the
`Mechanism`, effectively creating a loop constraint that will be enforced
using Lagrange multipliers (as opposed to using recursive algorithms).
"""
function attach!(mechanism::Mechanism{T}, predecessor::RigidBody{T}, successor::RigidBody{T}, joint::Joint{T};
joint_pose::Transform3D = one(Transform3D{T}, frame_before(joint), default_frame(predecessor)),
successor_pose::Transform3D = one(Transform3D{T}, default_frame(successor), frame_after(joint))) where {T}
@assert joint_pose.from == frame_before(joint)
@assert successor_pose.to == frame_after(joint)
@assert predecessor ∈ bodies(mechanism)
@assert joint ∉ joints(mechanism)
# define where joint is attached on predecessor
joint.joint_to_predecessor[] = joint_pose
add_frame!(predecessor, joint_pose)
# define where child is attached to joint
joint.joint_to_successor[] = inv(successor_pose)
add_frame!(successor, joint.joint_to_successor[])
# update graph
if successor ∈ bodies(mechanism)
add_edge!(mechanism.graph, predecessor, successor, joint)
else
add_edge!(mechanism.tree, predecessor, successor, joint)
canonicalize_frame_definitions!(mechanism, successor)
end
register_modification!(mechanism)
mechanism
end
function _copyjoint!(dest::Mechanism{T}, src::Mechanism{T}, srcjoint::Joint{T},
bodymap::AbstractDict{RigidBody{T}, RigidBody{T}}, jointmap::AbstractDict{Joint{T}, Joint{T}}) where {T}
srcpredecessor = source(srcjoint, src.graph)
srcsuccessor = target(srcjoint, src.graph)
joint_to_predecessor = fixed_transform(srcpredecessor, frame_before(srcjoint), default_frame(srcpredecessor))
successor_to_joint = fixed_transform(srcsuccessor, default_frame(srcsuccessor), frame_after(srcjoint))
destpredecessor = get!(() -> deepcopy(srcpredecessor), bodymap, srcpredecessor)
destsuccessor = get!(() -> deepcopy(srcsuccessor), bodymap, srcsuccessor)
destjoint = jointmap[srcjoint] = deepcopy(srcjoint)
attach!(dest, destpredecessor, destsuccessor, destjoint; joint_pose = joint_to_predecessor, successor_pose = successor_to_joint)
end
const bodymap_jointmap_doc = """
* `bodymap::AbstractDict{RigidBody{T}, RigidBody{T}}`: will be populated with
the mapping from input mechanism's bodies to output mechanism's bodies
* `jointmap::AbstractDict{<:Joint{T}, <:Joint{T}}`: will be populated with
the mapping from input mechanism's joints to output mechanism's joints
where `T` is the element type of `mechanism`.
"""
"""
$(SIGNATURES)
Attach a copy of `childmechanism` to `mechanism`.
Essentially replaces the root body of a copy of `childmechanism` with `parentbody` (which
belongs to `mechanism`).
Note: gravitational acceleration for `childmechanism` is ignored.
Keyword arguments:
* `child_root_pose`: pose of the default frame of the root body of `childmechanism` relative to that of `parentbody`.
Default: the identity transformation.
$bodymap_jointmap_doc
"""
function attach!(mechanism::Mechanism{T}, parentbody::RigidBody{T}, childmechanism::Mechanism{T};
child_root_pose = one(Transform3D{T}, default_frame(root_body(childmechanism)), default_frame(parentbody)),
bodymap::AbstractDict{RigidBody{T}, RigidBody{T}}=Dict{RigidBody{T}, RigidBody{T}}(),
jointmap::AbstractDict{<:Joint{T}, <:Joint{T}}=Dict{Joint{T}, Joint{T}}()) where {T}
# FIXME: test with cycles
@assert mechanism != childmechanism # infinite loop otherwise
empty!(bodymap)
empty!(jointmap)
# Define where child root body is located w.r.t parent body and add frames that were attached to childroot to parentbody.
childroot = root_body(childmechanism)
add_frame!(parentbody, child_root_pose)
for transform in frame_definitions(childroot)
add_frame!(parentbody, transform)
end
bodymap[childroot] = parentbody
# Insert childmechanism's non-root vertices and joints, starting with the tree joints (to preserve order).
for joint in flatten((tree_joints(childmechanism), non_tree_joints(childmechanism)))
_copyjoint!(mechanism, childmechanism, joint, bodymap, jointmap)
end
canonicalize_frame_definitions!(mechanism, parentbody)
mechanism
end
"""
$(SIGNATURES)
Create a new `Mechanism` from the subtree of `mechanism` rooted at `submechanismroot`.
Any non-tree joint in `mechanism` will appear in the returned `Mechanism` if and
only if both its successor and its predecessor are part of the subtree.
Keyword arguments:
$bodymap_jointmap_doc
"""
function submechanism(mechanism::Mechanism{T}, submechanismroot::RigidBody{T};
bodymap::AbstractDict{RigidBody{T}, RigidBody{T}}=Dict{RigidBody{T}, RigidBody{T}}(),
jointmap::AbstractDict{<:Joint{T}, <:Joint{T}}=Dict{Joint{T}, Joint{T}}()) where {T}
# FIXME: test with cycles
empty!(bodymap)
empty!(jointmap)
# Create Mechanism
root = bodymap[submechanismroot] = deepcopy(submechanismroot)
ret = Mechanism(root; gravity = mechanism.gravitational_acceleration.v)
# Add tree joints, preserving order in input mechanism.
for joint in tree_joints(mechanism) # assumes toposort
if haskey(bodymap, predecessor(joint, mechanism))
_copyjoint!(ret, mechanism, joint, bodymap, jointmap)
end
end
# Add non-tree joints.
for joint in non_tree_joints(mechanism)
if haskey(bodymap, predecessor(joint, mechanism)) && haskey(bodymap, successor(joint, mechanism))
_copyjoint!(ret, mechanism, joint, bodymap, jointmap)
end
end
ret
end
"""
Remove all bodies in the subtree rooted at `subtree_root`, including `subtree_root` itself,
as well as all joints connected to these bodies.
The ordering of the joints that remain in the mechanism is retained.
"""
function remove_subtree!(mechanism::Mechanism{T}, subtree_root::RigidBody{T}) where {T}
@assert subtree_root != root_body(mechanism)
tree = mechanism.tree
graph = mechanism.graph
bodies_to_remove = subtree_vertices(subtree_root, tree)
new_tree_joints = copy(edges(tree))
for body in bodies_to_remove
# Remove the tree joint from our new ordered list of joints.
tree_joint = edge_to_parent(body, tree)
deleteat!(new_tree_joints, findfirst(isequal(tree_joint), new_tree_joints))
end
for body in bodies_to_remove
# Remove all edges to and from the vertex in the graph.
for joint in copy(in_edges(body, graph))
remove_edge!(graph, joint)
end
for joint in copy(out_edges(body, graph))
remove_edge!(graph, joint)
end
# Remove the vertex itself.
remove_vertex!(graph, body)
end
# Construct a new spanning tree with the new list of tree joints.
mechanism.tree = SpanningTree(graph, root_body(mechanism), new_tree_joints)
canonicalize_graph!(mechanism)
mechanism
end
"""
$(SIGNATURES)
Reconstruct the mechanism's spanning tree.
Optionally, the `flipped_joint_map` keyword argument can be used to pass in an associative container
that will be populated with a mapping from original joints to flipped joints, if the rebuilding process
required the polarity of some joints to be flipped.
Also optionally, `next_edge` can be used to select which joints should become part of the
new spanning tree.
"""
function rebuild_spanning_tree!(mechanism::Mechanism{M},
flipped_joint_map::Union{AbstractDict, Nothing} = nothing;
next_edge = first #= breadth first =#) where {M}
mechanism.tree = SpanningTree(mechanism.graph, root_body(mechanism), flipped_joint_map; next_edge = next_edge)
register_modification!(mechanism)
canonicalize_frame_definitions!(mechanism)
mechanism
end
"""
$(SIGNATURES)
Remove a joint from the mechanism. Rebuilds the spanning tree if the joint is
part of the current spanning tree.
Optionally, the `flipped_joint_map` keyword argument can be used to pass in an associative container
that will be populated with a mapping from original joints to flipped joints, if removing `joint`
requires rebuilding the spanning tree of `mechanism` and the polarity of some joints needed to be changed in the process.
Also optionally, `spanning_tree_next_edge` can be used to select which joints should become part of the
new spanning tree, if rebuilding the spanning tree is required.
"""
function remove_joint!(mechanism::Mechanism{M}, joint::Joint{M};
flipped_joint_map::Union{AbstractDict, Nothing} = nothing,
spanning_tree_next_edge = first #= breadth first =#) where {M}
istreejoint = joint ∈ tree_joints(mechanism)
remove_edge!(mechanism.graph, joint)
register_modification!(mechanism)
if istreejoint
rebuild_spanning_tree!(mechanism, flipped_joint_map,
next_edge=spanning_tree_next_edge) # also recanonicalizes frame definitions
canonicalize_graph!(mechanism)
end
nothing
end
function replace_joint!(mechanism::Mechanism, oldjoint::Joint, newjoint::Joint)
# TODO: can hopefully remove this again once Joint is mutable again
@assert frame_before(newjoint) == frame_before(oldjoint)
@assert frame_after(newjoint) == frame_after(oldjoint)
set_joint_to_predecessor!(newjoint, oldjoint.joint_to_predecessor[])
set_joint_to_successor!(newjoint, oldjoint.joint_to_successor[])
if oldjoint ∈ tree_joints(mechanism)
replace_edge!(mechanism.tree, oldjoint, newjoint)
else
replace_edge!(mechanism.graph, oldjoint, newjoint)
end
register_modification!(mechanism)
nothing
end
"""
$(SIGNATURES)
Remove any fixed joints present as tree edges in `mechanism` by merging the
rigid bodies that these fixed joints join together into bodies with equivalent
inertial properties.
"""
function remove_fixed_tree_joints!(mechanism::Mechanism{T}) where T
# FIXME: test with cycles
graph = mechanism.graph
# Update graph.
fixedjoints = filter(j -> joint_type(j) isa Fixed, tree_joints(mechanism))
newtreejoints = setdiff(tree_joints(mechanism), fixedjoints)
for fixedjoint in fixedjoints
pred = source(fixedjoint, graph)
succ = target(fixedjoint, graph)
# Add identity joint transform as a body-fixed frame definition.
jointtransform = one(Transform3D{T}, frame_after(fixedjoint), frame_before(fixedjoint))
add_frame!(pred, jointtransform)
# Migrate body fixed frames to parent body.
for tf in frame_definitions(succ)
add_frame!(pred, tf)
end
# Migrate contact points to parent body.
for point in contact_points(succ)
add_contact_point!(pred, point)
end
# Add inertia to parent body.
if has_defined_inertia(pred)
inertia = spatial_inertia(succ)
parentinertia = spatial_inertia(pred)
toparent = fixed_transform(pred, inertia.frame, parentinertia.frame)
spatial_inertia!(pred, parentinertia + transform(inertia, toparent))
end
# Merge vertex into parent.
for joint in copy(in_edges(succ, graph))
if joint == fixedjoint
remove_edge!(graph, joint)
else
rewire!(graph, joint, source(joint, graph), pred)
end
end
for joint in copy(out_edges(succ, graph))
rewire!(graph, joint, pred, target(joint, graph))
end
remove_vertex!(mechanism.graph, succ)
end
# Recompute spanning tree (preserves order for non-fixed joints)
mechanism.tree = SpanningTree(graph, root_body(mechanism), newtreejoints)
# Recanonicalize graph and frames
canonicalize_frame_definitions!(mechanism)
canonicalize_graph!(mechanism)
register_modification!(mechanism)
mechanism
end
# TODO: remove floating_non_tree_joints
"""
$(SIGNATURES)
Return a dynamically equivalent `Mechanism`, but with a flat tree structure:
all bodies are attached to the root body via a floating joint, and
the tree joints of the input `Mechanism` are transformed into non-tree
joints (with joint constraints enforced using Lagrange multipliers in `dynamics!`).
Keyword arguments:
* `floating_joint_type::Type{<:JointType{T}}`: which floating joint type to
use for the joints between each body and the root. Default: `QuaternionFloating{T}`
$bodymap_jointmap_doc
"""
function maximal_coordinates(mechanism::Mechanism{T};
floating_joint_type::Type{<:JointType{T}}=QuaternionFloating{T},
bodymap::AbstractDict{RigidBody{T}, RigidBody{T}}=Dict{RigidBody{T}, RigidBody{T}}(),
jointmap::AbstractDict{<:Joint{T}, <:Joint{T}}=Dict{Joint{T}, Joint{T}}()) where T
@assert isfloating(floating_joint_type)
empty!(bodymap)
empty!(jointmap)
# Copy root.
root = bodymap[root_body(mechanism)] = deepcopy(root_body(mechanism))
ret = Mechanism(root, gravity = mechanism.gravitational_acceleration.v)
# Copy non-root bodies and attach them to the root with a floating joint.
for srcbody in non_root_bodies(mechanism)
framebefore = default_frame(root)
frameafter = default_frame(srcbody)
body = bodymap[srcbody] = deepcopy(srcbody)
floatingjoint = Joint(string(body), framebefore, frameafter, floating_joint_type())
attach!(ret, root, body, floatingjoint, joint_pose = one(Transform3D{T}, framebefore), successor_pose = one(Transform3D{T}, frameafter))
end
# Copy input Mechanism's joints.
for joint in flatten((tree_joints(mechanism), non_tree_joints(mechanism)))
_copyjoint!(ret, mechanism, joint, bodymap, jointmap)
end
ret
end
function canonicalize_graph!(mechanism::Mechanism)
root = root_body(mechanism)
treejoints = copy(tree_joints(mechanism))
edges = vcat(treejoints, non_tree_joints(mechanism))
vertices = append!([root], successor(joint, mechanism) for joint in treejoints)
reindex!(mechanism.graph, vertices, edges)
mechanism.tree = SpanningTree(mechanism.graph, root, treejoints) # otherwise tree.edge_tree_indices can go out of sync
register_modification!(mechanism)
mechanism
end
add_environment_primitive!(mechanism::Mechanism, halfspace::HalfSpace3D) = push!(mechanism.environment, halfspace)
"""
$(SIGNATURES)
Create a random tree `Mechanism` with the given joint types. Each new body is
attached to a parent selected using the `parentselector` function.
"""
function rand_tree_mechanism(::Type{T}, parentselector::Function, jointtypes::Vararg{Type{<:JointType{T}}}) where {T}
parentbody = RigidBody{T}("world")
mechanism = Mechanism(parentbody)
for (i, jointtype) in enumerate(jointtypes)
joint = Joint("joint$i", rand(jointtype))
joint_to_parent_body = rand(Transform3D{T}, frame_before(joint), default_frame(parentbody))
body = RigidBody(rand(SpatialInertia{T}, CartesianFrame3D("body$i")))
body_to_joint = one(Transform3D{T}, default_frame(body), frame_after(joint))
attach!(mechanism, parentbody, body, joint, joint_pose = joint_to_parent_body, successor_pose = body_to_joint)
parentbody = parentselector(mechanism)
end
return mechanism
end
rand_tree_mechanism(parentselector::Function, jointtypes::Vararg{Type{<:JointType{T}}}) where {T} = rand_tree_mechanism(T, parentselector, jointtypes...)
"""
$(SIGNATURES)
Create a random chain `Mechanism` with the given joint types.
"""
rand_chain_mechanism(::Type{T}, jointtypes::Vararg{Type{<:JointType{T}}}) where {T} = rand_tree_mechanism(T, mechanism::Mechanism -> last(bodies(mechanism)), jointtypes...)
rand_chain_mechanism(jointtypes::Vararg{Type{<:JointType{T}}}) where {T} = rand_chain_mechanism(T, jointtypes...)
"""
$(SIGNATURES)
Create a random tree `Mechanism`.
"""
rand_tree_mechanism(::Type{T}, jointtypes::Vararg{Type{<:JointType{T}}}) where {T} = rand_tree_mechanism(T, mechanism::Mechanism -> rand(bodies(mechanism)), jointtypes...)
rand_tree_mechanism(jointtypes::Vararg{Type{<:JointType{T}}}) where {T} = rand_tree_mechanism(T, jointtypes...)
"""
$(SIGNATURES)
Create a random tree `Mechanism`, with a quaternion floating
joint as the first joint (between the root body and the first non-root body).
"""
function rand_floating_tree_mechanism(::Type{T}, nonfloatingjointtypes::Vararg{Type{<:JointType{T}}}) where {T}
parentselector = (mechanism::Mechanism) -> begin
only_root = length(bodies(mechanism)) == 1
only_root ? root_body(mechanism) : rand(collect(non_root_bodies(mechanism)))
end
rand_tree_mechanism(parentselector, QuaternionFloating{T}, nonfloatingjointtypes...)
end
rand_floating_tree_mechanism(nonfloatingjointtypes::Vararg{Type{<:JointType{T}}}) where {T} = rand_floating_tree_mechanism(T, nonfloatingjointtypes...)
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 41374 | ## BodyDict, JointDict
const BodyDict{V} = IndexDict{BodyID, Base.OneTo{BodyID}, V}
const BodyCacheDict{V} = CacheIndexDict{BodyID, Base.OneTo{BodyID}, V}
@propagate_inbounds Base.getindex(d::AbstractIndexDict{BodyID}, key::RigidBody) = d[BodyID(key)]
@propagate_inbounds Base.setindex!(d::AbstractIndexDict{BodyID}, value, key::RigidBody) = d[BodyID(key)] = value
const JointDict{V} = IndexDict{JointID, Base.OneTo{JointID}, V}
const JointCacheDict{V} = CacheIndexDict{JointID, Base.OneTo{JointID}, V}
@propagate_inbounds Base.getindex(d::AbstractIndexDict{JointID}, key::Joint) = d[JointID(key)]
@propagate_inbounds Base.setindex!(d::AbstractIndexDict{JointID}, value, key::Joint) = d[JointID(key)] = value
## SegmentedVector method overloads
@propagate_inbounds Base.getindex(v::SegmentedVector{JointID}, joint::Joint) = v[JointID(joint)]
@propagate_inbounds Base.view(v::SegmentedVector{JointID}, joint::Joint) = Base.view(v, JointID(joint))
function SegmentedVector(parent::AbstractVector{T}, joints::AbstractVector{<:Joint}, viewlengthfun) where T
SegmentedVector{JointID, T, Base.OneTo{JointID}}(parent, joints, viewlengthfun)
end
"""
$(TYPEDEF)
A `MechanismState` stores state information for an entire `Mechanism`. It
contains the joint configuration and velocity vectors ``q`` and ``v``, and
a vector of additional states ``s``. In addition, it stores cache
variables that depend on ``q`` and ``v`` and are aimed at preventing double work.
Type parameters:
* `X`: the scalar type of the ``q``, ``v``, and ``s`` vectors.
* `M`: the scalar type of the `Mechanism`
* `C`: the scalar type of the cache variables (`== promote_type(X, M)`)
* `JointCollection`: the type of the `treejoints` and `nontreejoints` members (a `TypeSortedCollection` subtype)
"""
struct MechanismState{X, M, C, JointCollection}
modcount::Int
# mechanism layout
mechanism::Mechanism{M}
nonrootbodies::Vector{RigidBody{M}} # TODO: remove once https://github.com/JuliaLang/julia/issues/14955 is fixed
treejoints::JointCollection
nontreejoints::JointCollection
jointids::Base.OneTo{JointID}
treejointids::Base.OneTo{JointID}
nontreejointids::UnitRange{JointID}
predecessor_and_successor_ids::JointDict{Pair{BodyID, BodyID}}
qranges::JointDict{UnitRange{Int}}
vranges::JointDict{UnitRange{Int}}
constraintranges::IndexDict{JointID, UnitRange{JointID}, UnitRange{Int}}
support_set_masks::BodyDict{JointDict{Bool}} # TODO: use a Matrix-backed type
constraint_jacobian_structure::JointDict{TreePath{RigidBody{M}, Joint{M}}} # TODO: use a Matrix-backed type
q_index_to_joint_id::Vector{JointID}
v_index_to_joint_id::Vector{JointID}
# minimal representation of state
q::SegmentedVector{JointID, X, Base.OneTo{JointID}, Vector{X}} # configurations
v::SegmentedVector{JointID, X, Base.OneTo{JointID}, Vector{X}} # velocities
s::Vector{X} # additional state
# joint-related cache
joint_transforms::JointCacheDict{Transform3D{C}}
joint_twists::JointCacheDict{Twist{C}}
joint_bias_accelerations::JointCacheDict{SpatialAcceleration{C}}
tree_joint_transforms::VectorSegment{Transform3D{C}}
non_tree_joint_transforms::VectorSegment{Transform3D{C}}
#
motion_subspaces::CacheElement{Vector{GeometricJacobian{SMatrix{3, 1, C, 3}}}} # TODO: use CacheIndexDict?
constraint_wrench_subspaces::CacheElement{Vector{WrenchMatrix{SMatrix{3, 1, C, 3}}}} # TODO: use CacheIndexDict?
# body-related cache
transforms_to_root::BodyCacheDict{Transform3D{C}}
twists_wrt_world::BodyCacheDict{Twist{C}}
bias_accelerations_wrt_world::BodyCacheDict{SpatialAcceleration{C}}
inertias::BodyCacheDict{SpatialInertia{C}}
crb_inertias::BodyCacheDict{SpatialInertia{C}}
contact_states::BodyCacheDict{Vector{Vector{DefaultSoftContactState{X}}}} # TODO: consider moving to separate type
function MechanismState{X, M, C, JointCollection}(m::Mechanism{M}, q::Vector{X}, v::Vector{X}, s::Vector{X}) where {X, M, C, JointCollection}
@assert length(q) == num_positions(m)
@assert length(v) == num_velocities(m)
@assert length(s) == num_additional_states(m)
# mechanism layout
nonrootbodies = collect(non_root_bodies(m))
treejoints = JointCollection(tree_joints(m))
nontreejoints = JointCollection(non_tree_joints(m))
lastjointid = isempty(joints(m)) ? JointID(0) : JointID(last(joints(m)))
lasttreejointid = isempty(tree_joints(m)) ? JointID(0) : JointID(last(tree_joints(m)))
jointids = Base.OneTo(lastjointid)
treejointids = Base.OneTo(lasttreejointid)
nontreejointids = lasttreejointid + 1 : lastjointid
predecessor_and_successor_ids = JointDict{Pair{BodyID, BodyID}}(
JointID(j) => (BodyID(predecessor(j, m)) => BodyID(successor(j, m))) for j in joints(m))
support_set = function (b::RigidBody)
JointDict{Bool}(JointID(j) => (j ∈ tree_joints(m) ? j ∈ path(m, b, root_body(m)) : false) for j in joints(m))
end
support_set_masks = BodyDict{JointDict{Bool}}(b => support_set(b) for b in bodies(m))
constraint_jacobian_structure = JointDict{TreePath{RigidBody{M}, Joint{M}}}(
JointID(j) => path(m, predecessor(j, m), successor(j, m)) for j in joints(m))
qsegmented = SegmentedVector(q, tree_joints(m), num_positions)
vsegmented = SegmentedVector(v, tree_joints(m), num_velocities)
qranges = ranges(qsegmented)
vranges = ranges(vsegmented)
constraintranges = let start = 1
rangevec = UnitRange{Int}[start : (start += num_constraints(j)) - 1 for j in non_tree_joints(m)]
IndexDict(nontreejointids, rangevec)
end
q_index_to_joint_id = Vector{JointID}(undef, length(q))
v_index_to_joint_id = Vector{JointID}(undef, length(v))
for jointid in treejointids
for qindex in qranges[jointid]
q_index_to_joint_id[qindex] = jointid
end
for vindex in vranges[jointid]
v_index_to_joint_id[vindex] = jointid
end
end
# joint-related cache
joint_transforms = JointCacheDict{Transform3D{C}}(jointids)
joint_twists = JointCacheDict{Twist{C}}(treejointids)
joint_bias_accelerations = JointCacheDict{SpatialAcceleration{C}}(treejointids)
tree_joint_transforms = view(values(joint_transforms), 1 : Int(lasttreejointid))
non_tree_joint_transforms = view(values(joint_transforms), Int(lasttreejointid) + 1 : Int(lastjointid))
# motion subspaces, constraint wrench subspaces
motion_subspaces = CacheElement(Vector{GeometricJacobian{SMatrix{3, 1, C, 3}}}(undef, num_velocities(m)))
constraint_wrench_subspaces = CacheElement(Vector{WrenchMatrix{SMatrix{3, 1, C, 3}}}(undef, num_constraints(m)))
# body-related cache
bodyids = Base.OneTo(BodyID(last(bodies(m))))
transforms_to_root = BodyCacheDict{Transform3D{C}}(bodyids)
twists_wrt_world = BodyCacheDict{Twist{C}}(bodyids)
bias_accelerations_wrt_world = BodyCacheDict{SpatialAcceleration{C}}(bodyids)
inertias = BodyCacheDict{SpatialInertia{C}}(bodyids)
crb_inertias = BodyCacheDict{SpatialInertia{C}}(bodyids)
# contact. TODO: move out of MechanismState:
contact_states = BodyCacheDict{Vector{Vector{DefaultSoftContactState{X}}}}(
BodyID(b) => Vector{Vector{DefaultSoftContactState{X}}}() for b in bodies(m))
startind = 1
for body in bodies(m), point in contact_points(body)
model = contact_model(point)
n = num_states(model)
push!(contact_states[body], collect(begin
s_part = view(s, startind : startind + n - 1)
contact_state = SoftContactState(model, s_part, root_frame(m))
startind += n
contact_state
end for j = 1 : length(m.environment)))
end
# initialize state-independent cache data for root bodies:
root = root_body(m)
rootframe = default_frame(root)
transforms_to_root[root] = one(Transform3D{C}, rootframe)
twists_wrt_world[root] = zero(Twist{C}, rootframe, rootframe, rootframe)
bias_accelerations_wrt_world[root] = zero(SpatialAcceleration{C}, rootframe, rootframe, rootframe)
inertias[root] = zero(SpatialInertia{C}, rootframe)
new{X, M, C, JointCollection}(
modcount(m), m, nonrootbodies, treejoints, nontreejoints,
jointids, treejointids, nontreejointids,
predecessor_and_successor_ids, qranges, vranges, constraintranges, support_set_masks, constraint_jacobian_structure,
q_index_to_joint_id, v_index_to_joint_id,
qsegmented, vsegmented, s,
joint_transforms, joint_twists, joint_bias_accelerations, tree_joint_transforms, non_tree_joint_transforms,
motion_subspaces, constraint_wrench_subspaces,
transforms_to_root, twists_wrt_world, bias_accelerations_wrt_world, inertias, crb_inertias,
contact_states)
end
function MechanismState{X, M, C}(mechanism::Mechanism{M}, q::Vector{X}, v::Vector{X}, s::Vector{X}) where {X, M, C}
JointCollection = typeof(TypeSortedCollection(joints(mechanism)))
MechanismState{X, M, C, JointCollection}(mechanism, q, v, s)
end
function MechanismState{X, M}(mechanism::Mechanism{M}, q::Vector{X}, v::Vector{X}, s::Vector{X}) where {X, M}
C = promote_type(X, M)
MechanismState{X, M, C}(mechanism, q, v, s)
end
function MechanismState{X}(mechanism::Mechanism{M}) where {X, M}
q = Vector{X}(undef, num_positions(mechanism))
v = Vector{X}(undef, num_velocities(mechanism))
s = Vector{X}(undef, num_additional_states(mechanism))
state = MechanismState{X, M}(mechanism, q, v, s)
zero!(state)
state
end
end
function MechanismState(mechanism::Mechanism{M}, q::Vector{X}, v::Vector{X}, s=zeros(X, num_additional_states(mechanism))) where {X, M}
MechanismState{X, M}(mechanism, q, v, s)
end
MechanismState(mechanism::Mechanism{M}) where {M} = MechanismState{M}(mechanism)
Base.broadcastable(x::MechanismState) = Ref(x)
Base.show(io::IO, ::MechanismState{X, M, C}) where {X, M, C} = print(io, "MechanismState{$X, $M, $C, …}(…)")
modcount(state::MechanismState) = state.modcount
@propagate_inbounds predsucc(id::JointID, state::MechanismState) = state.predecessor_and_successor_ids[id]
@propagate_inbounds successorid(id::JointID, state::MechanismState) = last(state.predecessor_and_successor_ids[id])
"""
$(SIGNATURES)
Return the length of the joint configuration vector ``q``.
"""
num_positions(state::MechanismState) = length(state.q)
"""
$(SIGNATURES)
Return the length of the joint velocity vector ``v``.
"""
num_velocities(state::MechanismState) = length(state.v)
"""
$(SIGNATURES)
Return the length of the vector of additional states ``s`` (currently used
for stateful contact models).
"""
num_additional_states(state::MechanismState) = length(state.s)
state_vector_eltype(state::MechanismState{X, M, C}) where {X, M, C} = X
mechanism_eltype(state::MechanismState{X, M, C}) where {X, M, C} = M
cache_eltype(state::MechanismState{X, M, C}) where {X, M, C} = C
"""
$(SIGNATURES)
Return the part of the configuration vector ``q`` associated with `joint`.
"""
configuration(state::MechanismState, joint::Union{<:Joint, JointID}) = state.q[joint]
"""
$(SIGNATURES)
Return the part of the velocity vector ``v`` associated with `joint`.
"""
velocity(state::MechanismState, joint::Union{<:Joint, JointID}) = state.v[joint]
"""
$(SIGNATURES)
Invalidate all cache variables.
"""
function setdirty!(state::MechanismState)
CustomCollections.setdirty!(state.joint_transforms)
CustomCollections.setdirty!(state.joint_twists)
CustomCollections.setdirty!(state.joint_bias_accelerations)
CustomCollections.setdirty!(state.motion_subspaces)
CustomCollections.setdirty!(state.constraint_wrench_subspaces)
CustomCollections.setdirty!(state.transforms_to_root)
CustomCollections.setdirty!(state.twists_wrt_world)
CustomCollections.setdirty!(state.bias_accelerations_wrt_world)
CustomCollections.setdirty!(state.inertias)
CustomCollections.setdirty!(state.crb_inertias)
nothing
end
"""
$(SIGNATURES)
Reset all contact state variables.
"""
function reset_contact_state!(state::MechanismState)
for states_for_body in values(state.contact_states)
for states_for_point in states_for_body
for contact_state in states_for_point
reset!(contact_state)
end
end
end
end
"""
$(SIGNATURES)
'Zero' the configuration vector ``q``. Invalidates cache variables.
Note that when the `Mechanism` contains e.g. quaternion-parameterized joints,
``q`` may not actually be set to all zeros; the quaternion part of the
configuration vector would be set to identity. The contract is that each of the
joint transforms should be an identity transform.
"""
function zero_configuration!(state::MechanismState)
foreach(state.treejoints, values(segments(state.q))) do joint, qjoint
zero_configuration!(qjoint, joint)
end
reset_contact_state!(state)
setdirty!(state)
end
"""
$(SIGNATURES)
Zero the velocity vector ``v``. Invalidates cache variables.
"""
function zero_velocity!(state::MechanismState)
state.v .= 0
reset_contact_state!(state)
setdirty!(state)
end
"""
$(SIGNATURES)
Zero both the configuration and velocity. Invalidates cache variables.
See [`zero_configuration!`](@ref), [`zero_velocity!`](@ref).
"""
zero!(state::MechanismState) = (zero_configuration!(state); zero_velocity!(state))
"""
$(SIGNATURES)
Randomize the configuration vector ``q``. The distribution depends on
the particular joint types present in the associated `Mechanism`. The resulting
``q`` is guaranteed to be on the `Mechanism`'s configuration manifold.
Invalidates cache variables.
"""
function rand_configuration!(state::MechanismState)
foreach(state.treejoints, values(segments(state.q))) do joint, qjoint
rand_configuration!(qjoint, joint)
end
reset_contact_state!(state)
setdirty!(state)
end
"""
$(SIGNATURES)
Randomize the velocity vector ``v``.
Invalidates cache variables.
"""
function rand_velocity!(state::MechanismState)
rand!(state.v)
reset_contact_state!(state)
setdirty!(state)
end
"""
$(SIGNATURES)
Randomize both the configuration and velocity.
Invalidates cache variables.
"""
Random.rand!(state::MechanismState) = begin rand_configuration!(state); rand_velocity!(state) end
"""
$(SIGNATURES)
Return the configuration vector ``q``.
Note that this returns a reference to the underlying data in `state`. The user
is responsible for calling [`setdirty!`](@ref) after modifying this vector to
ensure that dependent cache variables are invalidated.
"""
configuration(state::MechanismState) = state.q
"""
$(SIGNATURES)
Return the velocity vector ``v``.
Note that this function returns a read-write reference to a field in `state`.
The user is responsible for calling [`setdirty!`](@ref) after modifying this
vector to ensure that dependent cache variables are invalidated.
"""
velocity(state::MechanismState) = state.v
"""
$(SIGNATURES)
Return the vector of additional states ``s``.
"""
additional_state(state::MechanismState) = state.s
for fun in (:num_velocities, :num_positions)
@eval function $fun(p::TreePath{RigidBody{T}, <:Joint{T}} where {T})
mapreduce($fun, +, p; init=0)
end
end
"""
$(SIGNATURES)
Set the part of the configuration vector associated with `joint`.
Invalidates cache variables.
"""
function set_configuration!(state::MechanismState, joint::Joint, config)
set_configuration!(configuration(state, joint), joint, config)
reset_contact_state!(state)
setdirty!(state)
end
"""
$(SIGNATURES)
Set the part of the velocity vector associated with `joint`.
Invalidates cache variables.
"""
function set_velocity!(state::MechanismState, joint::Joint, vel)
set_velocity!(velocity(state, joint), joint, vel)
reset_contact_state!(state)
setdirty!(state)
end
"""
$(SIGNATURES)
Set the configuration vector ``q``. Invalidates cache variables.
"""
function set_configuration!(state::MechanismState, q::AbstractVector)
copyto!(state.q, q)
setdirty!(state)
end
"""
$(SIGNATURES)
Set the velocity vector ``v``. Invalidates cache variables.
"""
function set_velocity!(state::MechanismState, v::AbstractVector)
copyto!(state.v, v)
setdirty!(state)
end
"""
$(SIGNATURES)
Set the vector of additional states ``s``.
"""
function set_additional_state!(state::MechanismState, s::AbstractVector)
copyto!(state.s, s)
# note: setdirty! is currently not needed because no cache variables depend on s
end
"""
$(SIGNATURES)
Copy (minimal representation of) state `src` to state `dest`.
"""
function Base.copyto!(dest::MechanismState, src::MechanismState)
dest.mechanism == src.mechanism || throw(ArgumentError("States are not associated with the same Mechanism."))
@modcountcheck dest src
copyto!(dest.q, src.q)
copyto!(dest.v, src.v)
copyto!(dest.s, src.s)
setdirty!(dest)
dest
end
"""
$(SIGNATURES)
Copy state information in vector `src` (ordered `[q; v; s]`) to state `dest`.
"""
function Base.copyto!(dest::MechanismState, src::AbstractVector)
nq = num_positions(dest)
nv = num_velocities(dest)
ns = num_additional_states(dest)
@boundscheck length(src) == nq + nv + ns || throw(DimensionMismatch())
@inbounds copyto!(parent(dest.q), 1, src, 1, nq)
@inbounds copyto!(parent(dest.v), 1, src, nq + 1, nv)
@inbounds copyto!(dest.s, 1, src, nq + nv + 1, ns)
setdirty!(dest)
dest
end
"""
$(SIGNATURES)
Copy state information in state `dest` to vector `src` (ordered `[q; v; s]`).
"""
function Base.copyto!(dest::AbstractVector, src::MechanismState)
nq = num_positions(src)
nv = num_velocities(src)
ns = num_additional_states(src)
length(dest) == nq + nv + ns || throw(DimensionMismatch())
@inbounds copyto!(dest, 1, src.q, 1, nq)
@inbounds copyto!(dest, nq + 1, src.v, 1, nv)
@inbounds copyto!(dest, nq + nv + 1, src.s, 1, ns)
dest
end
"""
$(SIGNATURES)
Create a `Vector` that represents the same state as `state` (ordered `[q; v; s]`).
"""
function Base.Vector{T}(state::MechanismState) where T
dest = Vector{T}(undef, num_positions(state) + num_velocities(state) + num_additional_states(state))
copyto!(dest, state)
end
Base.Vector(state::MechanismState{X}) where {X} = Vector{X}(state)
Base.Array{T}(state::MechanismState) where {T} = Vector{T}(state)
Base.Array(state::MechanismState{X}) where {X} = Array{X}(state)
Base.convert(::Type{T}, state::MechanismState) where {T<:Array} = T(state)
"""
$(SIGNATURES)
Project the configuration vector ``q`` onto the configuration manifold.
For example:
* for a part of ``q`` corresponding to a revolute joint, this method is a no-op;
* for a part of ``q`` corresponding to a spherical joint that uses a unit quaternion
to parameterize the orientation of its successor with respect to its predecessor,
`normalize_configuration!` will renormalize the quaternion so that it is indeed
of unit length.
!!! warning
This method does not ensure that the configuration or velocity satisfy joint
configuration or velocity limits/bounds.
"""
function normalize_configuration!(state::MechanismState)
foreach(state.treejoints, values(segments(state.q))) do joint, qjoint
normalize_configuration!(qjoint, joint)
end
end
"""
$(SIGNATURES)
Applies the principal_value functions from [Rotations.jl](https://github.com/FugroRoames/Rotations.jl/blob/d080990517f89b56c37962ad53a7fd24bd94b9f7/src/principal_value.jl)
to joint angles. This currently only applies to `SPQuatFloating` joints.
For example:
* for a part of ``q`` corresponding to a revolute joint, this method is a no-op;
* for a part of ``q`` corresponding to a `SPQuatFloating` joint this function applies
`principal_value the orientation.
"""
function principal_value!(state::MechanismState)
foreach(state.treejoints, values(segments(state.q))) do joint, qjoint
principal_value!(qjoint, joint)
end
end
"""
$(SIGNATURES)
Return the range of indices into the joint configuration vector ``q`` corresponding to joint `joint`.
"""
@propagate_inbounds configuration_range(state::MechanismState, joint::Union{<:Joint, JointID}) = state.qranges[joint]
"""
$(SIGNATURES)
Return the range of indices into the joint velocity vector ``v`` corresponding to joint `joint`.
"""
@propagate_inbounds velocity_range(state::MechanismState, joint::Union{<:Joint, JointID}) = state.vranges[joint]
"""
$(SIGNATURES)
Return the `JointID` of the joint associated with the given index into the configuration vector ``q``.
"""
@propagate_inbounds configuration_index_to_joint_id(state::MechanismState, qindex::Integer) = state.q_index_to_joint_id[qindex]
"""
$(SIGNATURES)
Return the `JointID` of the joint associated with the given index into the velocity vector ``v``.
"""
@propagate_inbounds velocity_index_to_joint_id(state::MechanismState, qindex::Integer) = state.v_index_to_joint_id[qindex]
"""
$(SIGNATURES)
Return the range of row indices into the constraint Jacobian corresponding to joint `joint`.
"""
@propagate_inbounds constraint_range(state::MechanismState, joint::Union{<:Joint, JointID}) = state.constraintranges[joint]
"""
$(SIGNATURES)
Return whether `joint` supports `body`, i.e., `joint` is a tree joint on the path between `body` and the root.
"""
@propagate_inbounds function supports(joint::Union{<:Joint, JointID}, body::Union{<:RigidBody, BodyID}, state::MechanismState)
state.support_set_masks[body][joint]
end
## Accessor functions for cached variables
"""
$(SIGNATURES)
Return the joint transform for the given joint, i.e. the transform from
`frame_after(joint)` to `frame_before(joint)`.
"""
@propagate_inbounds function joint_transform(state::MechanismState, joint::Union{<:Joint, JointID}, safe=true)
safe && update_transforms!(state)
state.joint_transforms[joint]
end
"""
$(SIGNATURES)
Return the joint twist for the given joint, i.e. the twist of
`frame_after(joint)` with respect to `frame_before(joint)`, expressed in the
root frame of the mechanism.
"""
@propagate_inbounds function twist(state::MechanismState, joint::Union{<:Joint, JointID}, safe=true)
safe && update_joint_twists!(state)
state.joint_twists[joint]
end
"""
$(SIGNATURES)
Return the bias acceleration across the given joint, i.e. the spatial acceleration
of `frame_after(joint)` with respect to `frame_before(joint)`, expressed in the
root frame of the mechanism when all joint accelerations are zero.
"""
@propagate_inbounds function bias_acceleration(state::MechanismState, joint::Union{<:Joint, JointID}, safe=true)
safe && update_joint_bias_accelerations!(state)
state.joint_bias_accelerations[joint]
end
"""
$(SIGNATURES)
Return the transform from `default_frame(body)` to the root frame of the
mechanism.
"""
@propagate_inbounds function transform_to_root(state::MechanismState, body::Union{<:RigidBody, BodyID}, safe=true)
safe && update_transforms!(state)
state.transforms_to_root[body]
end
"""
$(SIGNATURES)
Return the twist of `default_frame(body)` with respect to the root frame of the
mechanism, expressed in the root frame.
"""
@propagate_inbounds function twist_wrt_world(state::MechanismState, body::Union{<:RigidBody, BodyID}, safe=true)
safe && update_twists_wrt_world!(state)
state.twists_wrt_world[body]
end
"""
$(SIGNATURES)
Return the bias acceleration of the given body with respect to the world,
i.e. the spatial acceleration of `default_frame(body)` with respect to the
root frame of the mechanism, expressed in the root frame, when all joint
accelerations are zero.
"""
@propagate_inbounds function bias_acceleration(state::MechanismState, body::Union{<:RigidBody, BodyID}, safe=true)
safe && update_bias_accelerations_wrt_world!(state)
state.bias_accelerations_wrt_world[body]
end
"""
$(SIGNATURES)
Return the spatial inertia of `body` expressed in the root frame of the
mechanism.
"""
@propagate_inbounds function spatial_inertia(state::MechanismState, body::Union{<:RigidBody, BodyID}, safe=true)
safe && update_spatial_inertias!(state)
state.inertias[body]
end
"""
$(SIGNATURES)
Return the composite rigid body inertia `body` expressed in the root frame of the
mechanism.
"""
@propagate_inbounds function crb_inertia(state::MechanismState, body::Union{<:RigidBody, BodyID}, safe=true)
safe && update_crb_inertias!(state)
state.crb_inertias[body]
end
# Cache variable update functions
@inline update_transforms!(state::MechanismState) = isdirty(state.transforms_to_root) && _update_transforms!(state)
@noinline function _update_transforms!(state::MechanismState)
@modcountcheck state state.mechanism
# update tree joint transforms
qs = values(segments(state.q))
@inbounds map!(joint_transform, state.tree_joint_transforms, state.treejoints, qs)
# update transforms to root
transforms_to_root = state.transforms_to_root
for joint in tree_joints(state.mechanism)
jointid = JointID(joint)
parentid, bodyid = predsucc(jointid, state)
transforms_to_root[bodyid] = transforms_to_root[parentid] * joint_to_predecessor(joint) * state.joint_transforms[jointid]
end
state.transforms_to_root.dirty = false
# update non-tree joint transforms
if !isempty(state.nontreejointids)
broadcast!(state.non_tree_joint_transforms, state, state.nontreejoints) do state, joint
predid, succid = predsucc(JointID(joint), state)
before_to_root = state.transforms_to_root[predid] * joint_to_predecessor(joint)
after_to_root = state.transforms_to_root[succid] * joint_to_successor(joint)
inv(before_to_root) * after_to_root
end
end
state.joint_transforms.dirty = false
nothing
end
@inline function update_joint_twists!(state::MechanismState)
isdirty(state.joint_twists) && _update_joint_twists!(state)
nothing
end
@noinline function _update_joint_twists!(state::MechanismState)
qs = values(segments(state.q))
vs = values(segments(state.v))
@inbounds map!(joint_twist, values(state.joint_twists), state.treejoints, qs, vs)
state.joint_twists.dirty = false
nothing
end
@inline function update_joint_bias_accelerations!(state::MechanismState)
isdirty(state.joint_bias_accelerations) && _update_joint_bias_accelerations!(state)
nothing
end
@noinline function _update_joint_bias_accelerations!(state::MechanismState)
qs = values(segments(state.q))
vs = values(segments(state.v))
@inbounds map!(bias_acceleration, values(state.joint_bias_accelerations), state.treejoints, qs, vs)
state.joint_bias_accelerations.dirty = false
nothing
end
@inline function update_motion_subspaces!(state::MechanismState)
isdirty(state.motion_subspaces) && _update_motion_subspaces!(state)
nothing
end
@inline function _motion_subspace(state::MechanismState, joint::Joint, qjoint::AbstractVector)
jointid = JointID(joint)
bodyid = successorid(jointid, state)
transform(motion_subspace(joint, qjoint), transform_to_root(state, bodyid, false))
end
@noinline function _update_motion_subspaces!(state::MechanismState)
update_transforms!(state)
qs = values(segments(state.q))
foreach_with_extra_args(state, state.treejoints, qs) do state, joint, qjoint
S = _motion_subspace(state, joint, qjoint)
@inbounds vrange = velocity_range(state, joint)
@inbounds for col = Base.OneTo(size(S, 2))
Scol = GeometricJacobian(S.body, S.base, S.frame, SMatrix{3, 1}(S.angular[:, col]), SMatrix{3, 1}(S.linear[:, col]))
vindex = vrange[col]
state.motion_subspaces.data[vindex] = Scol
end
end
state.motion_subspaces.dirty = false
nothing
end
@inline function update_twists_wrt_world!(state::MechanismState)
isdirty(state.twists_wrt_world) && _update_twists_wrt_world!(state)
nothing
end
@noinline function _update_twists_wrt_world!(state::MechanismState)
update_transforms!(state)
update_joint_twists!(state)
twists = state.twists_wrt_world
@inbounds for jointid in state.treejointids
parentbodyid, bodyid = predsucc(jointid, state)
jointtwist = state.joint_twists[jointid]
twists[bodyid] = twists[parentbodyid] + transform(jointtwist, transform_to_root(state, bodyid, false))
end
state.twists_wrt_world.dirty = false
nothing
end
@inline function update_constraint_wrench_subspaces!(state::MechanismState)
isdirty(state.constraint_wrench_subspaces) && _update_constraint_wrench_subspaces!(state)
nothing
end
@inline function _constraint_wrench_subspace(state::MechanismState, joint::Joint)
jointid = JointID(joint)
tf = state.joint_transforms[jointid]
T = constraint_wrench_subspace(joint, tf)
bodyid = successorid(jointid, state)
toroot = state.transforms_to_root[bodyid] * joint_to_successor(joint)
transform(T, toroot)
end
@noinline function _update_constraint_wrench_subspaces!(state::MechanismState)
update_transforms!(state)
foreach_with_extra_args(state, state.nontreejoints) do state, joint
T = _constraint_wrench_subspace(state, joint)
@inbounds crange = constraint_range(state, joint)
@inbounds for col = Base.OneTo(size(T, 2))
Tcol = WrenchMatrix(T.frame, SMatrix{3, 1}(T.angular[:, col]), SMatrix{3, 1}(T.linear[:, col]))
cindex = crange[col]
state.constraint_wrench_subspaces.data[cindex] = Tcol
end
end
state.constraint_wrench_subspaces.dirty = false
nothing
end
@inline function update_bias_accelerations_wrt_world!(state::MechanismState)
isdirty(state.bias_accelerations_wrt_world) && _update_bias_accelerations_wrt_world!(state)
nothing
end
@noinline function _update_bias_accelerations_wrt_world!(state::MechanismState) # TODO: make more efficient
update_transforms!(state)
update_twists_wrt_world!(state)
update_joint_bias_accelerations!(state)
biasaccels = state.bias_accelerations_wrt_world
for jointid in state.treejointids
parentbodyid, bodyid = predsucc(jointid, state)
jointbias = bias_acceleration(state, jointid)
# TODO: awkward way of doing this:
toroot = transform_to_root(state, bodyid, false)
twistwrtworld = transform(twist_wrt_world(state, bodyid), inv(toroot))
jointtwist = twist(state, jointid)
biasaccels[bodyid] = biasaccels[parentbodyid] + transform(jointbias, toroot, twistwrtworld, jointtwist)
end
state.bias_accelerations_wrt_world.dirty = false
nothing
end
@inline function update_spatial_inertias!(state::MechanismState)
isdirty(state.inertias) && _update_spatial_inertias!(state)
nothing
end
@noinline function _update_spatial_inertias!(state::MechanismState)
update_transforms!(state)
mechanism = state.mechanism
inertias = state.inertias
@inbounds for body in state.nonrootbodies
bodyid = BodyID(body)
inertias[bodyid] = transform(spatial_inertia(body), transform_to_root(state, bodyid, false))
end
state.inertias.dirty = false
nothing
end
@inline function update_crb_inertias!(state::MechanismState)
isdirty(state.crb_inertias) && _update_crb_inertias!(state)
nothing
end
@noinline function _update_crb_inertias!(state::MechanismState)
update_spatial_inertias!(state)
mechanism = state.mechanism
crb_inertias = state.crb_inertias
rootbodyid = BodyID(root_body(mechanism))
crb_inertias[rootbodyid] = state.inertias[rootbodyid]
for jointid in state.treejointids
bodyid = successorid(jointid, state)
crb_inertias[bodyid] = state.inertias[bodyid]
end
for jointid in reverse(state.treejointids)# TODO: reverse is kind of expensive
parentbodyid, bodyid = predsucc(jointid, state)
crb_inertias[parentbodyid] += crb_inertias[bodyid]
end
state.crb_inertias.dirty = false
nothing
end
contact_states(state::MechanismState, body::Union{<:RigidBody, BodyID}) = state.contact_states[body]
@propagate_inbounds function newton_euler(state::MechanismState, body::Union{<:RigidBody, BodyID}, accel::SpatialAcceleration, safe=true)
inertia = spatial_inertia(state, body, safe)
twist = twist_wrt_world(state, body, safe)
newton_euler(inertia, accel, twist)
end
@propagate_inbounds function momentum(state::MechanismState, body::Union{<:RigidBody, BodyID}, safe=true)
spatial_inertia(state, body, safe) * twist_wrt_world(state, body, safe)
end
@propagate_inbounds function momentum_rate_bias(state::MechanismState, body::Union{<:RigidBody, BodyID}, safe=true)
newton_euler(state, body, bias_acceleration(state, body, safe), safe)
end
@propagate_inbounds function kinetic_energy(state::MechanismState, body::Union{<:RigidBody, BodyID}, safe=true)
kinetic_energy(spatial_inertia(state, body, safe), twist_wrt_world(state, body, safe))
end
"""
$(SIGNATURES)
Return the gravitational potential energy in the given state, computed as the
negation of the dot product of the gravitational force and the center
of mass expressed in the `Mechanism`'s root frame.
"""
@propagate_inbounds function gravitational_potential_energy(state::MechanismState, body::Union{<:RigidBody, BodyID}, safe=true)
inertia = spatial_inertia(body)
m = inertia.mass
m > 0 || return zero(cache_eltype(state))
com = transform_to_root(state, body, safe) * center_of_mass(inertia)
-m * dot(state.mechanism.gravitational_acceleration, FreeVector3D(com))
end
function configuration_derivative!(q̇::SegmentedVector{JointID}, state::MechanismState)
q̇s = values(segments(q̇))
qs = values(segments(state.q))
vs = values(segments(state.v))
foreach((joint, q̇, q, v) -> velocity_to_configuration_derivative!(q̇, joint, q, v), state.treejoints, q̇s, qs, vs)
end
function configuration_derivative_to_velocity_adjoint!(
fq::SegmentedVector{JointID}, state::MechanismState, fv::SegmentedVector{JointID})
fqs = values(segments(fq))
qs = values(segments(state.q))
fvs = values(segments(fv))
foreach((joint, fq, q, fv) -> configuration_derivative_to_velocity_adjoint!(fq, joint, q, fv), state.treejoints, fqs, qs, fvs)
end
function configuration_derivative(state::MechanismState{X}) where {X}
ret = SegmentedVector(Vector{X}(undef, num_positions(state.mechanism)), tree_joints(state.mechanism), num_positions)
configuration_derivative!(ret, state)
ret
end
function velocity_to_configuration_derivative_jacobian!(J::SegmentedBlockDiagonalMatrix, state::MechanismState)
qs = values(segments(state.q))
foreach(state.treejoints, qs, CustomCollections.blocks(J)) do joint, qjoint, block
copyto!(block, velocity_to_configuration_derivative_jacobian(joint, qjoint))
end
nothing
end
function velocity_to_configuration_derivative_jacobian(state::MechanismState{X, M, C}) where {X, M, C}
q_ranges = values(ranges(configuration(state)))
v_ranges = values(ranges(velocity(state)))
J = SegmentedBlockDiagonalMatrix(zeros(C, num_positions(state), num_velocities(state)), zip(q_ranges, v_ranges))
velocity_to_configuration_derivative_jacobian!(J, state)
J
end
function configuration_derivative_to_velocity_jacobian!(J::SegmentedBlockDiagonalMatrix, state::MechanismState)
qs = values(segments(state.q))
foreach(state.treejoints, qs, CustomCollections.blocks(J)) do joint, qjoint, block
copyto!(block, configuration_derivative_to_velocity_jacobian(joint, qjoint))
end
nothing
end
function configuration_derivative_to_velocity_jacobian(state::MechanismState{X, M, C}) where {X, M, C}
q_ranges = values(ranges(configuration(state)))
v_ranges = values(ranges(velocity(state)))
J = SegmentedBlockDiagonalMatrix(zeros(C, num_velocities(state), num_positions(state)), zip(v_ranges, q_ranges))
configuration_derivative_to_velocity_jacobian!(J, state)
J
end
function transform_to_root(state::MechanismState, frame::CartesianFrame3D, safe=true)
body = body_fixed_frame_to_body(state.mechanism, frame) # FIXME: expensive
tf = transform_to_root(state, body, safe)
if tf.from != frame
tf = tf * body_fixed_frame_definition(state.mechanism, frame) # TODO: consider caching
end
tf
end
@propagate_inbounds function statesum(fun::F, state::MechanismState, itr, init, safe=true) where F
ret = init
for x in itr
ret += fun(state, x, safe)
end
ret
end
@propagate_inbounds function momentum(state::MechanismState, body_itr)
T = cache_eltype(state)
update_twists_wrt_world!(state)
update_spatial_inertias!(state)
statesum(momentum, state, body_itr, zero(Momentum{T}, root_frame(state.mechanism)), false)
end
@propagate_inbounds function momentum_rate_bias(state::MechanismState, body_itr)
T = cache_eltype(state)
update_bias_accelerations_wrt_world!(state)
update_spatial_inertias!(state)
statesum(momentum_rate_bias, state, body_itr, zero(Wrench{T}, root_frame(state.mechanism)), false)
end
@propagate_inbounds function kinetic_energy(state::MechanismState, body_itr)
T = cache_eltype(state)
update_twists_wrt_world!(state)
update_spatial_inertias!(state)
statesum(kinetic_energy, state, body_itr, zero(T), false)
end
@propagate_inbounds function gravitational_potential_energy(state::MechanismState, body_itr)
T = cache_eltype(state)
update_transforms!(state)
statesum(gravitational_potential_energy, state, body_itr, zero(T), false)
end
for fun in (:momentum, :momentum_rate_bias, :kinetic_energy, :gravitational_potential_energy)
@eval $fun(state::MechanismState) = @inbounds return $fun(state, state.nonrootbodies)
end
"""
$(SIGNATURES)
Return the homogeneous transform from `from` to `to`.
"""
function relative_transform(state::MechanismState, from::CartesianFrame3D, to::CartesianFrame3D)
update_transforms!(state)
inv(transform_to_root(state, to, false)) * transform_to_root(state, from, false)
end
"""
$(SIGNATURES)
Return the twist of `body` with respect to `base`, expressed in the
`Mechanism`'s root frame.
"""
function relative_twist(state::MechanismState, body::Union{<:RigidBody, BodyID}, base::Union{<:RigidBody, BodyID})
update_twists_wrt_world!(state)
-twist_wrt_world(state, base, false) + twist_wrt_world(state, body, false)
end
"""
$(SIGNATURES)
Return the twist of `body_frame` with respect to `base_frame`, expressed in the
`Mechanism`'s root frame.
"""
function relative_twist(state::MechanismState, body_frame::CartesianFrame3D, base_frame::CartesianFrame3D)
body = body_fixed_frame_to_body(state.mechanism, body_frame)
base = body_fixed_frame_to_body(state.mechanism, base_frame)
twist = relative_twist(state, body, base)
Twist(body_frame, base_frame, twist.frame, angular(twist), linear(twist))
end
for VectorType in (:Point3D, :FreeVector3D, :Twist, :Momentum, :Wrench)
@eval begin
function transform(state::MechanismState, v::$VectorType, to::CartesianFrame3D)
# TODO: consider transforming in steps, so that computing the relative transform is not necessary
transform(v, relative_transform(state, v.frame, to))
end
end
end
function transform(state::MechanismState, accel::SpatialAcceleration, to::CartesianFrame3D)
old_to_root = transform_to_root(state, accel.frame)
root_to_old = inv(old_to_root)
twist_of_body_wrt_base = transform(relative_twist(state, accel.body, accel.base), root_to_old)
twist_of_old_wrt_new = transform(relative_twist(state, accel.frame, to), root_to_old)
old_to_new = inv(transform_to_root(state, to)) * old_to_root
transform(accel, old_to_new, twist_of_old_wrt_new, twist_of_body_wrt_base)
end
"""
$(SIGNATURES)
Compute local coordinates ``\\phi`` centered around (global) configuration vector
``q_0``, as well as their time derivatives ``\\dot{\\phi}``.
""" # TODO: refer to the method that takes a joint once it's moved to its own Joints module
function local_coordinates!(
ϕ::SegmentedVector{JointID}, ϕd::SegmentedVector{JointID}, state::MechanismState, q0::SegmentedVector{JointID})
ϕs = values(segments(ϕ))
ϕds = values(segments(ϕd))
q0s = values(segments(q0))
qs = values(segments(state.q))
vs = values(segments(state.v))
foreach((joint, ϕ, ϕ̇, q0, q, v) -> local_coordinates!(ϕ, ϕ̇, joint, q0, q, v), state.treejoints, ϕs, ϕds, q0s, qs, vs)
end
"""
$(SIGNATURES)
Convert local coordinates ``\\phi`` centered around ``q_0`` to (global)
configuration vector ``q``.
""" # TODO: refer to the method that takes a joint once it's moved to its own Joints module
function global_coordinates!(state::MechanismState, q0::SegmentedVector{JointID}, ϕ::SegmentedVector{JointID})
qs = values(segments(state.q))
q0s = values(segments(q0))
ϕs = values(segments(ϕ))
foreach((joint, q, q0, ϕ) -> global_coordinates!(q, joint, q0, ϕ), state.treejoints, qs, q0s, ϕs)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 11412 | module OdeIntegrators
using LinearAlgebra
using RigidBodyDynamics
using StaticArrays
using DocStringExtensions
using LoopThrottle
export runge_kutta_4,
MuntheKaasIntegrator,
ButcherTableau,
OdeResultsSink,
RingBufferStorage,
ExpandingStorage,
integrate,
step
"""
$(TYPEDEF)
A [Butcher tableau](https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods#Explicit_Runge.E2.80.93Kutta_methods).
"""
struct ButcherTableau{N, T, L}
a::SMatrix{N, N, T, L}
b::SVector{N, T}
c::SVector{N, T}
explicit::Bool
function ButcherTableau(a::AbstractMatrix{T}, b::AbstractVector{T}) where {T}
N = size(a, 1)
L = N^2
@assert N > 0
@assert size(a, 2) == N
@assert length(b) == N
c = vec(sum(a, dims=2))
explicit = all(triu(a) .== 0)
new{N, T, L}(SMatrix{N, N}(a), SVector{N}(b), SVector{N}(c), explicit)
end
end
num_stages(::ButcherTableau{N}) where {N} = N
isexplicit(tableau::ButcherTableau) = tableau.explicit
"""
$(SIGNATURES)
Return the Butcher tableau for the standard fourth order Runge-Kutta integrator.
"""
function runge_kutta_4(scalar_type::Type{T}) where {T}
a = zeros(T, 4, 4)
a[2, 1] = 1/2
a[3, 2] = 1/2
a[4, 3] = 1
b = T[1/6, 1/3, 1/3, 1/6]
ButcherTableau(a, b)
end
"""
$(TYPEDEF)
Does 'something' with the results of an ODE integration (e.g. storing results,
visualizing, etc.). Subtypes must implement:
* `initialize(sink, state)`: called with the initial state when integration begins.
* `process(sink, t, state)`: called at every integration time step with the current state and time.
"""
abstract type OdeResultsSink end
initialize(::OdeResultsSink, state) = error("concrete subtypes must implement")
process(::OdeResultsSink, t, state) = error("concrete subtypes must implement")
"""
$(TYPEDEF)
An `OdeResultsSink` that stores the state at each integration time step in a
ring buffer.
"""
mutable struct RingBufferStorage{T, Q<:AbstractVector, V<:AbstractVector} <: OdeResultsSink
ts::Vector{T}
qs::Vector{Q}
vs::Vector{V}
last_index::Int64
function RingBufferStorage{T}(state, n) where {T}
Q = typeof(configuration(state))
V = typeof(velocity(state))
ts = Vector{T}(undef, n)
qs = [similar(configuration(state)) for i in 1 : n]
vs = [similar(velocity(state)) for i in 1 : n]
new{T, Q, V}(ts, qs, vs, 0)
end
end
Base.eltype(storage::RingBufferStorage{T}) where {T} = T
Base.length(storage::RingBufferStorage) = length(storage.ts)
function initialize(storage::RingBufferStorage, t, state)
process(storage, t, state)
end
function process(storage::RingBufferStorage, t, state)
index = storage.last_index % length(storage) + 1
storage.ts[index] = t
copyto!(storage.qs[index], configuration(state))
copyto!(storage.vs[index], velocity(state))
storage.last_index = index
nothing
end
"""
$(TYPEDEF)
An `OdeResultsSink` that stores the state at each integration time step in
`Vectors` that may expand.
"""
mutable struct ExpandingStorage{T, Q<:AbstractVector, V<:AbstractVector} <: OdeResultsSink
ts::Vector{T}
qs::Vector{Q}
vs::Vector{V}
function ExpandingStorage{T}(state, n) where {T}
Q = typeof(configuration(state))
V = typeof(velocity(state))
ts = T[]; sizehint!(ts, n)
qs = Q[]; sizehint!(qs, n)
vs = V[]; sizehint!(vs, n)
new{T, Q, V}(ts, qs, vs)
end
end
Base.eltype(storage::ExpandingStorage{T}) where {T} = T
Base.length(storage::ExpandingStorage) = length(storage.ts)
initialize(storage::ExpandingStorage, t, state) = process(storage, t, state)
function process(storage::ExpandingStorage, t, state)
push!(storage.ts, t)
q = similar(configuration(state))
copyto!(q, configuration(state))
push!(storage.qs, q)
v = similar(velocity(state))
copyto!(v, velocity(state))
push!(storage.vs, v)
nothing
end
mutable struct MuntheKaasStageCache{N, T, Q<:AbstractVector, V<:AbstractVector, S<:AbstractVector}
q0::Q # global coordinates
vs::SVector{N, V} # velocity vector for each stage
vds::SVector{N, V} # time derivatives of vs
ϕs::SVector{N, V} # local coordinates around q0 for each stage
ϕds::SVector{N, V} # time derivatives of ϕs
ss::SVector{N, S} # additional state for each stage
sds::SVector{N, S} # time derivatives of ss
ϕstep::V # local coordinates around q0 after complete step
vstep::V # velocity after complete step
sstep::S # additional state after complete step
function MuntheKaasStageCache{N, T}(state) where {N, T}
q0 = similar(configuration(state), T)
vs = SVector{N}((similar(velocity(state), T) for i in 1 : N)...)
vds = SVector{N}((similar(velocity(state), T) for i in 1 : N)...)
ϕs = SVector{N}((similar(velocity(state), T) for i in 1 : N)...)
ϕds = SVector{N}((similar(velocity(state), T) for i in 1 : N)...)
ss = SVector{N}((similar(additional_state(state), T) for i in 1 : N)...)
sds = SVector{N}((similar(additional_state(state), T) for i in 1 : N)...)
ϕstep = similar(velocity(state), T)
vstep = similar(velocity(state), T)
sstep = similar(additional_state(state), T)
new{N, T, typeof(q0), typeof(ϕstep), typeof(sstep)}(q0, vs, vds, ϕs, ϕds, ss, sds, ϕstep, vstep, sstep)
end
end
"""
$(TYPEDEF)
A Lie-group-aware ODE integrator.
`MuntheKaasIntegrator` is used to properly integrate the dynamics of globally
parameterized rigid joints (Duindam, Port-Based Modeling and Control for
Efficient Bipedal Walking Robots, 2006, Definition 2.9). Global parameterizations of e.g. ``SO(3)``
are needed to avoid singularities, but this leads to the problem that the tangent
space no longer has the same dimension as the ambient space of the global parameterization.
A Munthe-Kaas integrator solves this problem by converting back and forth
between local and global coordinates at every integration time step.
The idea is to do the dynamics and compute the stages of the integration scheme
in terms of local coordinates centered around the global parameterization of
the configuration at the end of the previous time step (e.g. exponential coordinates),
combine the stages into a new set of local coordinates as usual for Runge-Kutta methods,
and then convert the local coordinates back to global coordinates.
From [Iserles et al., 'Lie-group methods' (2000)](https://hal.archives-ouvertes.fr/hal-01328729).
Another useful reference is [Park and Chung, 'Geometric Integration on Euclidean Group with Application to Articulated Multibody Systems' (2005)](http://www.ent.mrt.ac.lk/iml/paperbase/TRO%20Collection/TRO/2005/october/7.pdf).
"""
struct MuntheKaasIntegrator{N, T, F, S<:OdeResultsSink, X, L, M<:MuntheKaasStageCache{N, T}}
dynamics!::F # dynamics!(vd, sd, t, state), sets vd (time derivative of v) and sd (time derivative of s) given time t and state
tableau::ButcherTableau{N, T, L}
sink::S
state::X
stages::M
@doc """
$(SIGNATURES)
Create a `MuntheKaasIntegrator` given:
* a callable `dynamics!(vd, t, state)` that updates the joint acceleration vector `vd` at time `t` and in state `state`;
* a [`ButcherTableau`](@ref) `tableau`, specifying the integrator coefficients;
* an [`OdeResultsSink`](@ref) `sink` which processes the results of the integration procedure at each time step.
`state` must be of a type for which the following functions are defined:
* `configuration(state)`, returns the configuration vector in global coordinates;
* `velocity(state)`, returns the velocity vector;
* `additional_state(state)`, returns the vector of additional states;
* `set_velocity!(state, v)`, sets velocity vector to `v`;
* `set_additional_state!(state, s)`, sets vector of additional states to `s`;
* `global_coordinates!(state, q0, ϕ)`, sets global coordinates in state based on local coordinates `ϕ` centered around global coordinates `q0`;
* `local_coordinates!(ϕ, ϕd, state, q0)`, converts state's global configuration `q` and velocity `v` to local coordinates centered around global coordinates `q0`.
""" ->
function MuntheKaasIntegrator(state::X, dynamics!::F, tableau::ButcherTableau{N, T, L}, sink::S) where {N, T, F, S<:OdeResultsSink, X, L}
@assert isexplicit(tableau)
stages = MuntheKaasStageCache{N, T}(state)
new{N, T, F, S, X, L, typeof(stages)}(dynamics!, tableau, sink, state, stages)
end
end
num_stages(::MuntheKaasIntegrator{N}) where {N} = N
Base.eltype(::MuntheKaasIntegrator{N, T}) where {N, T} = T
"""
$(SIGNATURES)
Take a single integration step.
"""
function step(integrator::MuntheKaasIntegrator, t::Real, Δt::Real)
tableau = integrator.tableau
stages = integrator.stages
n = num_stages(integrator)
# Use current configuration as the configuration around which the local coordinates for this step will be centered.
q0, v0, s0 = stages.q0, stages.vstep, stages.sstep
state = integrator.state
q0 .= configuration(state)
v0 .= velocity(state)
s0 .= additional_state(state)
# Compute integrator stages.
for i = 1 : n
# Update local coordinates and velocities
ϕ = stages.ϕs[i]
v = stages.vs[i]
s = stages.ss[i]
ϕ .= 0
v .= v0
s .= s0
for j = 1 : i - 1
aij = tableau.a[i, j]
if aij != zero(aij)
weight = Δt * aij
ϕ .= muladd.(weight, stages.ϕds[j], ϕ)
v .= muladd.(weight, stages.vds[j], v)
s .= muladd.(weight, stages.sds[j], s)
end
end
# Convert from local to global coordinates and set state
# TODO: multiple setdirty! calls when using MechanismState:
global_coordinates!(state, q0, ϕ)
set_velocity!(state, v)
set_additional_state!(state, s)
# Dynamics in global coordinates
vd = stages.vds[i]
sd = stages.sds[i]
integrator.dynamics!(vd, sd, muladd(tableau.c[i], Δt, t), state)
# Convert back to local coordinates
ϕd = stages.ϕds[i] # TODO: ϕ not actually needed, just ϕd!
local_coordinates!(ϕ, ϕd, state, q0)
end
# Combine stages
ϕ = stages.ϕstep
ϕ .= 0
v = stages.vstep # already initialized to v0
s = stages.sstep # already initialized to s0
for i = 1 : n
weight = tableau.b[i] * Δt
ϕ .= muladd.(weight, stages.ϕds[i], ϕ)
v .= muladd.(weight, stages.vds[i], v)
s .= muladd.(weight, stages.sds[i], s)
end
# Convert from local to global coordinates
# TODO: multiple setdirty! calls when using MechanismState:
global_coordinates!(state, q0, ϕ)
set_velocity!(state, v)
set_additional_state!(state, s)
nothing
end
"""
$(SIGNATURES)
Integrate dynamics from the initial state at time ``0`` to `final_time`
using step size `Δt`.
"""
function integrate(integrator::MuntheKaasIntegrator, final_time, Δt; max_realtime_rate::Float64 = Inf)
t = zero(eltype(integrator))
state = integrator.state
initialize(integrator.sink, t, state)
@throttle t while t < final_time
step(integrator, t, Δt)
t += Δt
process(integrator.sink, t, state)
end max_rate=max_realtime_rate min_sleep_time=1/60.
end
end # module
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 4598 | module PDControl
using RigidBodyDynamics.Spatial
using StaticArrays
using Rotations
# functions
export
pd
# gain types
export
PDGains,
FramePDGains,
SE3PDGains
# pd control methods
export
SE3PDMethod
abstract type AbstractPDGains end
group_error(x, xdes) = x - xdes
group_error(x::Rotation, xdes::Rotation) = inv(xdes) * x
group_error(x::Transform3D, xdes::Transform3D) = inv(xdes) * x
pd(gains::AbstractPDGains, x, xdes, ẋ, ẋdes) = pd(gains, group_error(x, xdes), -ẋdes + ẋ)
pd(gains::AbstractPDGains, x, xdes, ẋ, ẋdes, method) = pd(gains, group_error(x, xdes), -ẋdes + ẋ, method)
struct PDGains{K, D} <: AbstractPDGains
k::K
d::D
end
pd(gains::PDGains, e, ė) = -gains.k * e - gains.d * ė
pd(gains::PDGains, e::RotationVec, ė::AbstractVector) = pd(gains, SVector(e.sx, e.sy, e.sz), ė)
pd(gains::PDGains, e::Rotation{3}, ė::AbstractVector) = pd(gains, RotationVec(e), ė)
rotategain(gain::Number, R::Rotation) = gain
rotategain(gain::AbstractMatrix, R::Rotation) = R * gain * R'
function Spatial.transform(gains::PDGains, tf::Transform3D)
R = rotation(tf)
PDGains(rotategain(gains.k, R), rotategain(gains.d, R))
end
# Gains with a frame annotation
struct FramePDGains{K, D} <: AbstractPDGains
frame::CartesianFrame3D
gains::PDGains{K, D}
end
function pd(fgains::FramePDGains, e::FreeVector3D, ė::FreeVector3D)
@framecheck fgains.frame e.frame
@framecheck fgains.frame ė.frame
FreeVector3D(fgains.frame, pd(fgains.gains, e.v, ė.v))
end
function Spatial.transform(fgains::FramePDGains, tf::Transform3D)
@framecheck tf.from fgains.frame
FramePDGains(tf.to, transform(fgains.gains, tf))
end
# PD control on the special Euclidean group
struct SE3PDGains{A<:Union{PDGains, FramePDGains}, L<:Union{PDGains, FramePDGains}} <: AbstractPDGains
angular::A
linear::L
end
function SE3PDGains(frame::CartesianFrame3D, angular::PDGains, linear::PDGains)
SE3PDGains(FramePDGains(frame, angular), FramePDGains(frame, linear))
end
Spatial.angular(gains::SE3PDGains) = gains.angular
Spatial.linear(gains::SE3PDGains) = gains.linear
function Spatial.transform(gains::SE3PDGains, t::Transform3D)
SE3PDGains(transform(gains.angular, t), transform(gains.linear, t))
end
struct SE3PDMethod{T} end
pd(gains::SE3PDGains, e::Transform3D, ė::Twist) = pd(gains, e, ė, SE3PDMethod{:DoubleGeodesic}())
function pd(gains::SE3PDGains, e::Transform3D, ė::Twist, ::SE3PDMethod{:DoubleGeodesic})
# Theorem 12 in Bullo, Murray, "Proportional derivative (PD) control on the Euclidean group", 1995 (4.6 in the Technical Report).
# Note: in Theorem 12, even though the twist and spatial acceleration are expressed in body frame, the gain Kv is expressed in base (or desired) frame,
# since it acts on the translation part of the transform from body frame to base frame (i.e. the definition of body frame expressed in base frame),
# and force Kv * p needs to be rotated back to body frame to match the spatial acceleration in body frame.
# Instead, we express Kv in body frame by performing a similarity transform on Kv: R * Kv * R', where R is the rotation from actual body frame to desired body frame.
# This turns the linear and proportional part of the PD law into R' * R * Kv * R' * p = Kv * R' * p
# Note also that in Theorem 12, the frame in which the orientation gain Kω must be expressed is ambiguous, since R' * log(R) = log(R).
# This explains why the Kω used here is the same as the Kω in Theorem 12.
# Gains should be expressed in actual body frame.
bodyframe = ė.body
@framecheck e.from bodyframe
@framecheck ė.base e.to
@framecheck ė.frame bodyframe
R = rotation(e)
p = translation(e)
ψ = RotationVec(R)
ang = pd(angular(gains), FreeVector3D(bodyframe, ψ.sx, ψ.sy, ψ.sz), FreeVector3D(bodyframe, angular(ė)))
lin = pd(linear(gains), FreeVector3D(bodyframe, R' * p), FreeVector3D(bodyframe, linear(ė)))
SpatialAcceleration(ė.body, ė.base, ang, lin)
end
function pd(gains::SE3PDGains, e::Transform3D, ė::Twist, ::SE3PDMethod{:Linearized})
bodyframe = ė.body
@framecheck e.from bodyframe
@framecheck ė.base e.to
@framecheck ė.frame bodyframe
R = rotation(e)
p = translation(e)
ψ = linearized_rodrigues_vec(R)
ang = pd(angular(gains), FreeVector3D(bodyframe, ψ.sx, ψ.sy, ψ.sz), FreeVector3D(bodyframe, angular(ė)))
lin = pd(linear(gains), FreeVector3D(bodyframe, R' * p), FreeVector3D(bodyframe, linear(ė)))
SpatialAcceleration(ė.body, ė.base, ang, lin)
end
end # module
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 5797 | @indextype BodyID
"""
$(TYPEDEF)
A non-deformable body.
A `RigidBody` has inertia (represented as a [`SpatialInertia`](@ref)),
unless it represents a root (world) body. A `RigidBody` additionally stores
a list of definitions of coordinate systems that are rigidly attached to it.
"""
mutable struct RigidBody{T}
name::String
inertia::Union{SpatialInertia{T}, Nothing}
frame_definitions::Vector{Transform3D{T}}
contact_points::Vector{DefaultContactPoint{T}} # TODO: allow different contact models
id::BodyID
# inertia undefined; can be used for the root of a kinematic tree
function RigidBody{T}(name::String) where {T}
frame = CartesianFrame3D(name)
new{T}(name, nothing, [one(Transform3D{T}, frame)], DefaultContactPoint{T}[], BodyID(-1))
end
# other bodies
function RigidBody(name::String, inertia::SpatialInertia{T}) where {T}
new{T}(name, inertia, [one(Transform3D{T}, inertia.frame)], DefaultContactPoint{T}[], BodyID(-1))
end
end
Base.eltype(::Type{RigidBody{T}}) where {T} = T
Base.eltype(body::RigidBody) = eltype(typeof(body))
RigidBody(inertia::SpatialInertia) = RigidBody(string(inertia.frame), inertia)
Base.print(io::IO, b::RigidBody) = print(io, b.name)
function Base.show(io::IO, b::RigidBody)
if get(io, :compact, false)
print(io, b)
else
print(io, "RigidBody: \"$(string(b))\"")
end
end
BodyID(b::RigidBody) = b.id
Base.convert(::Type{BodyID}, b::RigidBody) = BodyID(b)
@inline RigidBodyDynamics.Graphs.vertex_id_type(::Type{<:RigidBody}) = BodyID
@inline RigidBodyDynamics.Graphs.vertex_id(b::RigidBody) = convert(BodyID, b)
@inline RigidBodyDynamics.Graphs.set_vertex_id!(b::RigidBody, id::BodyID) = (b.id = id)
"""
$(SIGNATURES)
Whether the body has a defined inertia.
"""
has_defined_inertia(b::RigidBody) = b.inertia !== nothing
"""
$(SIGNATURES)
Return the spatial inertia of the body. If the inertia is undefined, calling
this method will result in an error.
"""
spatial_inertia(b::RigidBody{T}) where {T} = b.inertia::SpatialInertia{T}
"""
$(SIGNATURES)
Set the spatial inertia of the body.
"""
function spatial_inertia!(body::RigidBody, inertia::SpatialInertia)
body.inertia = transform(inertia, frame_definition(body, inertia.frame))
end
"""
frame_definitions(body)
Return the list of homogeneous transforms ([`Transform3D`](@ref)s) that define the
coordinate systems attached to `body` with respect to a single common frame
([`default_frame(body)`](@ref)).
"""
frame_definitions(body::RigidBody) = body.frame_definitions
"""
$(SIGNATURES)
Whether `frame` is attached to `body` (i.e. whether it is among
[`frame_definitions(body)`](@ref)).
"""
is_fixed_to_body(body::RigidBody, frame::CartesianFrame3D) = any((t) -> t.from == frame, frame_definitions(body))
"""
$(SIGNATURES)
The [`CartesianFrame3D`](@ref) with respect to which all other frames attached
to `body` are defined.
See [`frame_definitions(body)`](@ref), [`frame_definition(body, frame)`](@ref).
"""
default_frame(body::RigidBody) = body.frame_definitions[1].to # allows standardization on a frame to reduce number of transformations required
"""
$(SIGNATURES)
Return the [`Transform3D`](@ref) defining `frame` (attached to `body`) with
respect to [`default_frame(body)`](@ref).
Throws an error if `frame` is not attached to `body`.
"""
function frame_definition(body::RigidBody, frame::CartesianFrame3D)
for transform in body.frame_definitions
transform.from == frame && return transform
end
error("$frame not found among body fixed frame definitions for $body")
end
"""
$(SIGNATURES)
Return the transform from `CartesianFrame3D` `from` to `to`, both of which are
rigidly attached to `body`.
"""
function fixed_transform(body::RigidBody, from::CartesianFrame3D, to::CartesianFrame3D)
transform = frame_definition(body, from)
if transform.to != to
transform = inv(frame_definition(body, to)) * transform
end
transform
end
"""
$(SIGNATURES)
Add a new frame definition to `body`, represented by a homogeneous transform
from the `CartesianFrame3D` to be added to any other frame that is already
attached to `body`.
"""
function add_frame!(body::RigidBody, transform::Transform3D)
# note: overwrites any existing frame definition
# transform.to needs to be among (transform.from for transform in frame_definitions(body))
definitions = body.frame_definitions
if transform.to != default_frame(body)
transform = frame_definition(body, transform.to) * transform
end
filter!(t -> t.from != transform.from, definitions)
push!(definitions, transform)
transform
end
"""
$(SIGNATURES)
Change the default frame of `body` to `frame` (which should already be among
`body`'s frame definitions).
"""
function change_default_frame!(body::RigidBody, new_default_frame::CartesianFrame3D)
if new_default_frame != default_frame(body)
old_to_new = inv(frame_definition(body, new_default_frame))
map!(tf -> old_to_new * tf, body.frame_definitions, body.frame_definitions)
if has_defined_inertia(body)
body.inertia = transform(spatial_inertia(body), old_to_new)
end
for point in contact_points(body)
point.location = old_to_new * point.location
end
end
end
"""
$(SIGNATURES)
Add a new contact point to the rigid body
"""
function add_contact_point!(body::RigidBody{T}, point::DefaultContactPoint{T}) where {T}
loc = location(point)
tf = fixed_transform(body, loc.frame, default_frame(body))
point.location = tf * loc
push!(body.contact_points, point)
nothing
end
"""
$(SIGNATURES)
Return the contact points attached to the body as an ordered collection.
"""
contact_points(body::RigidBody) = body.contact_points
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 2258 | using RigidBodyDynamics.OdeIntegrators
"""
$(SIGNATURES)
A trivial controller that simply sets the torques to zero.
"""
function zero_torque!(torques::AbstractVector, t, state::MechanismState)
torques .= 0
end
"""
$(SIGNATURES)
Basic `Mechanism` simulation: integrate the state from time ``0`` to `final_time`
starting from the initial state `state0`. Return a `Vector` of times, as well as
`Vector`s of configuration vectors and velocity vectors at these times.
Optionally, a function (or other callable) can be passed in as the third argument (`control!`).
`control!` will be called at each time step of the simulation and allows you to specify joint torques
given the time and the state of the `Mechanism`. It should look like this:
```julia
function control!(torques::AbstractVector, t, state::MechanismState)
rand!(torques) # for example
end
```
The integration time step can be specified using the `Δt` keyword argument (defaults to `1e-4`).
$stabilization_gains_doc
Uses `MuntheKaasIntegrator`. See [`RigidBodyDynamics.OdeIntegrators.MuntheKaasIntegrator`](@ref) for a lower
level interface with more options.
"""
function simulate(state0::MechanismState{X}, final_time, control! = zero_torque!;
Δt = 1e-4, stabilization_gains=default_constraint_stabilization_gains(X)) where X
T = cache_eltype(state0)
result = DynamicsResult{T}(state0.mechanism)
control_torques = similar(velocity(state0))
closed_loop_dynamics! = let result=result, control_torques=control_torques, stabilization_gains=stabilization_gains # https://github.com/JuliaLang/julia/issues/15276
function (v̇::AbstractArray, ṡ::AbstractArray, t, state)
control!(control_torques, t, state)
dynamics!(result, state, control_torques; stabilization_gains=stabilization_gains)
copyto!(v̇, result.v̇)
copyto!(ṡ, result.ṡ)
nothing
end
end
tableau = runge_kutta_4(T)
storage = ExpandingStorage{T}(state0, ceil(Int64, final_time / Δt * 1.001)) # very rough overestimate of number of time steps
integrator = MuntheKaasIntegrator(state0, closed_loop_dynamics!, tableau, storage)
integrate(integrator, final_time, Δt)
storage.ts, storage.qs, storage.vs
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 4376 | # TODO: higher level abstraction once it's as fast
for T in (:GeometricJacobian, :MomentumMatrix)
@eval @inline function set_col!(dest::$T, col::Integer, src::$T)
@framecheck dest.frame src.frame
@boundscheck size(src, 2) == 1 || throw(ArgumentError())
@boundscheck col ∈ Base.OneTo(size(dest, 2)) || throw(DimensionMismatch())
@inbounds begin
start = LinearIndices(dest.angular)[1, col]
dest.angular[start] = src.angular[1]
dest.angular[start + 1] = src.angular[2]
dest.angular[start + 2] = src.angular[3]
dest.linear[start] = src.linear[1]
dest.linear[start + 1] = src.linear[2]
dest.linear[start + 2] = src.linear[3]
end
end
end
## findunique
function findunique(f, A::AbstractArray)
i = findfirst(f, A)
i === nothing && error("No results found.")
findnext(f, A, i + 1) === nothing || error("Multiple results found.")
@inbounds return A[i]
end
# Cached download
const module_tempdir = joinpath(Base.tempdir(), string(nameof(@__MODULE__)))
function cached_download(url::String, local_file_name::String, cache_dir::String = joinpath(module_tempdir, string(hash(url))))
if !ispath(cache_dir)
mkpath(cache_dir)
end
full_cache_path = joinpath(cache_dir, local_file_name)
if !isfile(full_cache_path)
download(url, full_cache_path)
end
full_cache_path
end
## VectorSegment: type of a view of a vector
const VectorSegment{T} = SubArray{T,1,Array{T, 1},Tuple{UnitRange{Int64}},true} # TODO: a bit too specific
function quatnorm(quat::QuatRotation)
w, x, y, z = Rotations.params(quat)
sqrt(w^2 + x^2 + y^2 + z^2)
end
## Modification count stuff
function modcount end
struct ModificationCountMismatch <: Exception
msg::String
end
Base.showerror(io::IO, ex::ModificationCountMismatch) = print(io, "ModificationCountMismatch: $(ex.msg)")
macro modcountcheck(a, b)
quote
modcount($(esc(a))) == modcount($(esc(b))) || modcount_check_fail($(QuoteNode(a)), $(QuoteNode(b)), $(esc(a)), $(esc(b)))
end
end
@noinline function modcount_check_fail(asym, bsym, a, b)
amod = modcount(a)
bmod = modcount(b)
msg = "Modification count of '$(string(asym))' ($amod) does not match modification count of '$(string(bsym))' ($bmod)."
throw(ModificationCountMismatch(msg))
end
# Bounds
"""
$(TYPEDEF)
Bounds is a scalar-like type representing a closed interval from ``lower`` to
``upper``. To indicate that a vector of values falls with some range, use a
``Vector{Bounds{T}}``.
"""
struct Bounds{T}
lower::T
upper::T
function Bounds{T}(lower, upper) where T
@assert lower <= upper
new{T}(lower, upper)
end
Bounds{T}() where {T} = new{T}(typemin(T), typemax(T))
end
Bounds(lower::T1, upper::T2) where {T1, T2} = Bounds{promote_type(T1, T2)}(lower, upper)
upper(b::Bounds) = b.upper
lower(b::Bounds) = b.lower
Base.:(==)(b1::Bounds, b2::Bounds) = b1.lower == b2.lower && b1.upper == b2.upper
Base.:-(b::Bounds) = Bounds(-b.upper, -b.lower)
Base.show(io::IO, b::Bounds) = print(io, "(", lower(b), ", ", upper(b), ")")
Base.convert(::Type{Bounds{T1}}, b::Bounds{T2}) where {T1, T2} = Bounds{T1}(convert(T1, lower(b)), convert(T1, upper(b)))
Base.broadcastable(b::Bounds) = Ref(b)
"""
$(SIGNATURES)
Return the closest value to ``x`` within the interval described by ``b``.
"""
Base.clamp(x, b::Bounds) = clamp(x, b.lower, b.upper)
Base.intersect(b1::Bounds, b2::Bounds) = Bounds(max(b1.lower, b2.lower), min(b1.upper, b2.upper))
# Create a new Int-backed index type, along with necessary methods to support creating ranges
macro indextype(ID)
esc(quote
struct $ID <: Integer
value::Int
end
$ID(id::$ID) = id
Base.hash(i::$ID, h::UInt) = hash(i.value, h)
Base.convert(::Type{Int}, i::$ID) = i.value
Base.Integer(i::$ID) = i.value
Base.Int(i::$ID) = i.value
Base.convert(::Type{$ID}, i::Integer) = $ID(i)
Base.promote_type(::Type{Int}, ::Type{$ID}) = $ID
Base.promote_type(::Type{$ID}, ::Type{Int}) = $ID
Base.:<(x::$ID, y::$ID) = x.value < y.value
Base.:<=(x::$ID, y::$ID) = x.value <= y.value
Base.:-(x::$ID, y::$ID) = x.value - y.value
Base.:+(x::$ID, y::Int) = $ID(x.value + y)
end)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 267 | ## CacheElement
mutable struct CacheElement{T}
data::T
dirty::Bool
CacheElement(data::T) where {T} = new{T}(data, true)
end
@inline setdirty!(element::CacheElement) = (element.dirty = true; nothing)
@inline isdirty(element::CacheElement) = element.dirty
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 454 | ## ConstDict
"""
An immutable `AbstractDict` for which the value is the same, no matter what the key is.
"""
struct ConstDict{K, V} <: AbstractDict{K, V}
val::V
ConstDict{K}(val::V) where {K, V} = new{K, V}(val)
end
Base.getindex(d::ConstDict{K}, key) where K = d.val
Base.show(io::IO, ::MIME"text/plain", d::ConstDict{K}) where {K} = show(io, d)
Base.show(io::IO, d::ConstDict{K}) where {K} = print(io, "$(typeof(d)) with fixed value $(d.val)")
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 488 | ## ConstVector
"""
$(TYPEDEF)
An immutable `AbstractVector` for which all elements are the same, represented
compactly and as a bitstype if the element type is a bitstype.
"""
struct ConstVector{T} <: AbstractVector{T}
val::T
length::Int64
end
Base.size(A::ConstVector) = (A.length, )
@propagate_inbounds Base.getindex(A::ConstVector, i::Int) = (@boundscheck checkbounds(A, i); A.val)
Base.IndexStyle(::Type{<:ConstVector}) = IndexLinear()
Base.unalias(dest, x::ConstVector) = x
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 4211 | ## IndexDicts
abstract type AbstractIndexDict{K, V} <: AbstractDict{K, V} end
makekeys(::Type{UnitRange{K}}, start::K, stop::K) where {K} = start : stop
function makekeys(::Type{Base.OneTo{K}}, start::K, stop::K) where {K}
@boundscheck start === K(1) || error()
Base.OneTo(stop)
end
"""
$(TYPEDEF)
An associative type whose keys are an `AbstractUnitRange`, and whose values are stored in
a `Vector`. `IndexDict` is an ordered associative collection, with the order determined by key range.
The nature of the keys enables very fast lookups and stores.
# Examples
```julia-repl
julia> IndexDict(2 : 4, [4, 5, 6])
RigidBodyDynamics.CustomCollections.IndexDict{Int64,UnitRange{Int64},Int64} with 3 entries:
2 => 4
3 => 5
4 => 6
julia> IndexDict{Int32, UnitRange{Int32}}(i => 3 * i for i in Int32[4, 2, 3])
RigidBodyDynamics.CustomCollections.IndexDict{Int32,UnitRange{Int32},Int64} with 3 entries:
2 => 6
3 => 9
4 => 12
```
"""
struct IndexDict{K, KeyRange<:AbstractUnitRange{K}, V} <: AbstractIndexDict{K, V}
keys::KeyRange
values::Vector{V}
end
Base.broadcastable(x::IndexDict) = Ref(x)
"""
$(TYPEDEF)
Like [`IndexDict`](@ref), but contains an additional `Bool` dirty bit to be used in algorithms involving cached data.
"""
mutable struct CacheIndexDict{K, KeyRange<:AbstractUnitRange{K}, V} <: AbstractIndexDict{K, V}
keys::KeyRange
values::Vector{V}
dirty::Bool
function CacheIndexDict{K, KeyRange, V}(keys::KeyRange, values::Vector{V}) where {K, V, KeyRange<:AbstractUnitRange{K}}
@boundscheck length(keys) == length(values) || error("Mismatch between keys and values.")
new{K, KeyRange, V}(keys, values, true)
end
end
setdirty!(d::CacheIndexDict) = (d.dirty = true; nothing)
isdirty(d::CacheIndexDict) = d.dirty
# Constructors
for IDict in (:IndexDict, :CacheIndexDict)
@eval begin
function $IDict{K, KeyRange, V}(keys::KeyRange) where {K, KeyRange<:AbstractUnitRange{K}, V}
$IDict{K, KeyRange, V}(keys, Vector{V}(undef, length(keys)))
end
function $IDict{K, KeyRange, V}(kv::Vector{Pair{K, V}}) where {K, KeyRange<:AbstractUnitRange{K}, V}
if !issorted(kv, by = first)
sort!(kv; by = first)
end
start, stop = if isempty(kv)
K(1), K(0)
else
first(first(kv)), first(last(kv))
end
keys = makekeys(KeyRange, start, stop)
for i in eachindex(kv)
keys[i] === first(kv[i]) || error()
end
values = map(last, kv)
$IDict{K, KeyRange, V}(keys, values)
end
function $IDict{K, KeyRange}(kv::Vector{Pair{K, V}}) where {K, KeyRange<:AbstractUnitRange{K}, V}
$IDict{K, KeyRange, V}(kv)
end
function $IDict{K, KeyRange, V}(itr) where {K, KeyRange<:AbstractUnitRange{K}, V}
kv = Pair{K, V}[]
for x in itr
push!(kv, convert(K, first(x)) => convert(V, last(x)))
end
$IDict{K, KeyRange, V}(kv)
end
function $IDict{K, KeyRange}(itr) where {K, KeyRange<:AbstractUnitRange{K}}
kv = [convert(K, first(x)) => last(x) for x in itr]
$IDict{K, KeyRange}(kv)
end
end
end
@inline Base.isempty(d::AbstractIndexDict) = isempty(d.values)
@inline Base.length(d::AbstractIndexDict) = length(d.values)
@inline Base.iterate(d::AbstractIndexDict, i = 1) = i > length(d) ? nothing : (d.keys[i] => d.values[i], i + 1)
@inline Base.keys(d::AbstractIndexDict{K}) where {K} = d.keys
@inline Base.values(d::AbstractIndexDict) = d.values
@inline Base.haskey(d::AbstractIndexDict, key) = key ∈ d.keys
@inline keyindex(key::K, keyrange::Base.OneTo{K}) where {K} = Int(key)
@inline keyindex(key::K, keyrange::UnitRange{K}) where {K} = Int(key - first(keyrange) + 1)
@propagate_inbounds Base.getindex(d::AbstractIndexDict{K}, key::K) where {K} = d.values[keyindex(key, d.keys)]
@propagate_inbounds Base.setindex!(d::AbstractIndexDict{K}, value, key::K) where {K} = d.values[keyindex(key, d.keys)] = value
@propagate_inbounds Base.get(d::AbstractIndexDict{K}, key::K, default) where {K} = d[key]
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 277 | ## NullDict
"""
$(TYPEDEF)
An immutable associative type that signifies an empty dictionary and does not
allocate any memory.
"""
struct NullDict{K, V} <: AbstractDict{K, V}
end
Base.haskey(::NullDict, k) = false
Base.length(::NullDict) = 0
Base.iterate(::NullDict) = nothing
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 3824 | const AbstractMatrixBlock{T, M} = SubArray{T,2,M,Tuple{UnitRange{Int},UnitRange{Int}},false}
"""
$(TYPEDEF)
`SegmentedBlockDiagonalMatrix` is an `AbstractMatrix` backed by a parent `AbstractMatrix`, which
additionally stores a sequence of views into the diagonal blocks of the parent matrix. This
type is useful for storing and updating block-diagonal matrices whose block contents
may change but whose overall structure is fixed, such as configuration derivative <-> velocity
jacobians.
"""
struct SegmentedBlockDiagonalMatrix{T, M<:AbstractMatrix{T}} <: AbstractMatrix{T}
parent::M
blocks::Vector{AbstractMatrixBlock{T, M}}
function SegmentedBlockDiagonalMatrix{T, M}(parent::M, block_indices) where {T, M<:AbstractMatrix{T}}
check_contiguous_block_ranges(parent, block_indices)
blocks = collect(view(parent, indices...) for indices in block_indices)
new{T, M}(parent, blocks)
end
end
SegmentedBlockDiagonalMatrix(parent::M, block_indices) where {T, M<:AbstractMatrix{T}} = SegmentedBlockDiagonalMatrix{T, M}(parent, block_indices)
function SegmentedBlockDiagonalMatrix{T}(initializer, rows::Integer, cols::Integer, block_indices) where T
parent = Matrix{T}(initializer, rows, cols)
SegmentedBlockDiagonalMatrix{T}(parent, block_indices)
end
Base.parent(m::SegmentedBlockDiagonalMatrix) = m.parent
Base.size(m::SegmentedBlockDiagonalMatrix) = size(m.parent)
@propagate_inbounds Base.getindex(v::SegmentedBlockDiagonalMatrix, i::Int) = v.parent[i]
@propagate_inbounds Base.setindex!(v::SegmentedBlockDiagonalMatrix, value, i::Int) = v.parent[i] = value
Base.IndexStyle(::Type{<:SegmentedBlockDiagonalMatrix}) = IndexLinear()
blocks(m::SegmentedBlockDiagonalMatrix) = m.blocks
function check_contiguous_block_ranges(parent::AbstractMatrix, block_indices)
if !_is_contiguous_and_diagonal(parent, block_indices)
throw(ArgumentError("The `block_indices` should be a vector of index ranges corresponding to non-overlapping contiguous diagonal blocks"))
end
end
function _is_contiguous_and_diagonal(parent::AbstractMatrix, block_indices)
expected_starts = first.(axes(parent))
for inds in block_indices
if first.(inds) !== expected_starts
return false
end
expected_starts = last.(inds) .+ 1
end
if expected_starts !== last.(axes(parent)) .+ 1
return false
end
return true
end
function LinearAlgebra.mul!(C::Matrix, A::Matrix, B::SegmentedBlockDiagonalMatrix)
# TODO: coordination with BLAS threads
@boundscheck size(C) == (size(A, 1), size(B, 2)) || throw(DimensionMismatch("Output size mismatch."))
A′ = Base.unalias(C, A)
Threads.@threads for block in blocks(B) # allocates 32 bytes (see https://github.com/JuliaLang/julia/issues/29748)
@inbounds begin
Acols, Ccols = parentindices(block)
Aview = uview(A′, :, Acols)
Cview = uview(C, :, Ccols)
if block == I
copyto!(Cview, Aview)
else
mul!(Cview, Aview, block)
end
end
end
return C
end
function LinearAlgebra.mul!(C::Matrix, A::SegmentedBlockDiagonalMatrix, B::Matrix)
# TODO: coordination with BLAS threads
@boundscheck size(C) == (size(A, 1), size(B, 2)) || throw(DimensionMismatch("Output size mismatch."))
B′ = Base.unalias(C, B)
Threads.@threads for block in blocks(A) # allocates 32 bytes (see https://github.com/JuliaLang/julia/issues/29748)
@inbounds begin
Crows, Brows = parentindices(block)
Bview = uview(B, Brows, :)
Cview = uview(C, Crows, :)
if block == I
copyto!(Cview, Bview)
else
mul!(Cview, block, Bview)
end
end
end
return C
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 4403 | ## SegmentedVector
const VectorSegment{T} = SubArray{T,1,Array{T, 1},Tuple{UnitRange{Int}},true} # type of a n:m view into a Vector
"""
$(TYPEDEF)
`SegmentedVector` is an `AbstractVector` backed by another `AbstractVector` (its parent), which additionally stores an [`IndexDict`](@ref)
containing views into the parent. Together, these views cover the parent.
# Examples
```julia-repl
julia> x = [1., 2., 3., 4.]
4-element Array{Float64,1}:
1.0
2.0
3.0
4.0
julia> viewlength(i) = 2
viewlength (generic function with 1 method)
julia> xseg = SegmentedVector{Int}(x, 1 : 2, viewlength)
4-element RigidBodyDynamics.CustomCollections.SegmentedVector{Int64,Float64,Base.OneTo{Int64},Array{Float64,1}}:
1.0
2.0
3.0
4.0
julia> segments(xseg)[1]
2-element SubArray{Float64,1,Array{Float64,1},Tuple{UnitRange{Int64}},true}:
1.0
2.0
julia> yseg = similar(xseg, Int32); yseg .= 1 : 4 # same view ranges, different element type
4-element RigidBodyDynamics.CustomCollections.SegmentedVector{Int64,Int32,Base.OneTo{Int64},Array{Int32,1}}:
1
2
3
4
julia> segments(yseg)[2]
2-element SubArray{Int32,1,Array{Int32,1},Tuple{UnitRange{Int64}},true}:
3
4
```
"""
struct SegmentedVector{K, T, KeyRange<:AbstractRange{K}, P<:AbstractVector{T}} <: AbstractVector{T}
parent::P
segments::IndexDict{K, KeyRange, VectorSegment{T}}
function SegmentedVector{K, T, KeyRange, P}(p::P, segments::IndexDict{K, KeyRange, VectorSegment{T}}) where {K, T, KeyRange<:AbstractRange{K}, P<:AbstractVector{T}}
@boundscheck begin
firstsegment = true
start = 0
l = 0
for segment in values(segments)
parent(segment) === parent(p) || error()
indices = first(parentindices(segment))
if firstsegment
start = first(indices)
firstsegment = false
else
first(indices) === start || error()
end
start = last(indices) + 1
l += length(indices)
end
l == length(p) || error("Segments do not cover input data.")
end
new{K, T, KeyRange, P}(p, segments)
end
end
function SegmentedVector(p::P, segments::IndexDict{K, KeyRange, VectorSegment{T}}) where {K, T, KeyRange<:AbstractRange{K}, P<:AbstractVector{T}}
SegmentedVector{K, T, KeyRange, P}(p, segments)
end
function SegmentedVector{K, T, KeyRange}(parent::P, keys, viewlengthfun) where {K, T, KeyRange<:AbstractRange{K}, P<:AbstractVector{T}}
views = Vector{Pair{K, VectorSegment{T}}}()
start = 1
for key in keys
stop = start[] + viewlengthfun(key) - 1
push!(views, convert(K, key) => view(parent, start : stop))
start = stop + 1
end
SegmentedVector{K, T, KeyRange, P}(parent, IndexDict{K, KeyRange, VectorSegment{T}}(views))
end
function SegmentedVector{K}(parent::P, keys, viewlengthfun) where {K, T, P<:AbstractVector{T}}
SegmentedVector{K, T, Base.OneTo{K}}(parent, keys, viewlengthfun)
end
function SegmentedVector{K, T, KeyRange}(parent::P, ranges::AbstractDict{K, UnitRange{Int}}) where {K, T, KeyRange, P<:AbstractVector{T}}
segs = IndexDict{K, KeyRange, VectorSegment{T}}(keys(ranges), [view(parent, range) for range in values(ranges)])
SegmentedVector{K, T, KeyRange, P}(parent, IndexDict{K, KeyRange, VectorSegment{T}}(segs))
end
Base.size(v::SegmentedVector) = size(v.parent)
@propagate_inbounds Base.getindex(v::SegmentedVector, i::Int) = v.parent[i]
@propagate_inbounds Base.getindex(v::SegmentedVector{K}, key::K) where {K} = v.segments[key] # TODO: deprecate in favor of view?
@propagate_inbounds Base.setindex!(v::SegmentedVector, value, i::Int) = v.parent[i] = value
Base.dataids(x::SegmentedVector) = Base.dataids(x.parent)
@propagate_inbounds Base.view(v::SegmentedVector{K}, key::K) where {K} = v.segments[key]
Base.parent(v::SegmentedVector) = v.parent
segments(v::SegmentedVector) = v.segments
function ranges(v::SegmentedVector{K, <:Any, KeyRange}) where {K, KeyRange}
segments = v.segments
IndexDict{K, KeyRange, UnitRange{Int}}(segments.keys, map(segment -> first(parentindices(segment))::UnitRange{Int}, segments.values))
end
function Base.similar(v::SegmentedVector{K, T, KeyRange}, ::Type{S} = T) where {K, T, KeyRange, S}
SegmentedVector{K, S, KeyRange}(similar(parent(v), S), ranges(v))
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 236 | struct UnorderedPair{T}
a::T
b::T
end
Base.hash(p::UnorderedPair, h::UInt) = hash(p.a, h) + hash(p.b, h)
function Base.:(==)(x::UnorderedPair, y::UnorderedPair)
(x.a == y.a && x.b == y.b) || (x.a == y.b && x.b == y.a)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 708 | module CustomCollections
export
ConstVector,
ConstDict,
NullDict,
CacheElement,
AbstractIndexDict,
IndexDict,
CacheIndexDict,
SegmentedVector,
SegmentedBlockDiagonalMatrix,
UnorderedPair
export
foreach_with_extra_args,
isdirty,
segments,
ranges
using TypeSortedCollections
using DocStringExtensions
using LinearAlgebra
using UnsafeArrays
using Base: @propagate_inbounds
include("foreach_with_extra_args.jl")
include("ConstVector.jl")
include("ConstDict.jl")
include("NullDict.jl")
include("CacheElement.jl")
include("IndexDict.jl")
include("SegmentedVector.jl")
include("SegmentedBlockDiagonalMatrix.jl")
include("UnorderedPair.jl")
end # module
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 1597 | ## TypeSortedCollections addendum
# `foreach_with_extra_args` below is a hack to avoid allocations associated with creating closures over
# heap-allocated variables. Hopefully this will not be necessary in a future version of Julia.
for num_extra_args = 1 : 5
extra_arg_syms = [Symbol("arg", i) for i = 1 : num_extra_args]
@eval begin
@generated function foreach_with_extra_args(f, $(extra_arg_syms...), A1::TypeSortedCollection{<:Any, N}, As::Union{<:TypeSortedCollection{<:Any, N}, AbstractVector}...) where {N}
extra_args = $extra_arg_syms
expr = Expr(:block)
push!(expr.args, :(Base.@_inline_meta)) # required to achieve zero allocation
push!(expr.args, :(leading_tsc = A1))
push!(expr.args, :(@boundscheck TypeSortedCollections.lengths_match(A1, As...) || TypeSortedCollections.lengths_match_fail()))
for i = 1 : N
vali = Val(i)
push!(expr.args, quote
let inds = leading_tsc.indices[$i]
@boundscheck TypeSortedCollections.indices_match($vali, inds, A1, As...) || TypeSortedCollections.indices_match_fail()
@inbounds for j in LinearIndices(inds)
vecindex = inds[j]
f($(extra_args...), TypeSortedCollections._getindex_all($vali, j, vecindex, A1, As...)...)
end
end
end)
end
quote
$expr
nothing
end
end
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 833 | module Graphs
# modules
export
PathDirections
# types
export
DirectedGraph,
SpanningTree,
TreePath,
Edge,
Vertex
# functions
export
vertextype,
edgetype,
vertices,
edges,
source,
target,
out_edges,
in_edges,
out_neighbors,
in_neighbors,
num_vertices,
num_edges,
add_vertex!,
add_edge!,
remove_vertex!,
remove_edge!,
rewire!,
replace_edge!,
reindex!,
root,
edge_to_parent,
edges_to_children,
tree_index,
ancestors,
lowest_common_ancestor,
subtree_vertices,
direction,
directions
using Base.Iterators: flatten
import SparseArrays: sparsevec
include("abstract.jl")
include("directed_graph.jl")
include("spanning_tree.jl")
include("tree_path.jl")
include("edge_vertex_wrappers.jl")
end # module
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 1980 | # Vertex interface
"""
vertex_id(vertex)
Return an identifier of the vertex. The identifier must be of a type that can be converted from and to an Int.
"""
function vertex_id end
"""
set_vertex_id!(vertex, id)
Set the vertex identifier. The identifier must be of a type that can be converted from and to an Int.
"""
function set_vertex_id! end
"""
vertex_id_type(V)
Return the identifier type used by vertex type `V`. The identifier type must be convertible from and to an Int.
"""
vertex_id_type(::Type) = Int # fallback, can be specialized
@inline vertex_index(x) = Int(vertex_id(x))
@inline vertex_index!(x::T, index::Int) where {T} = set_vertex_id!(x, vertex_id_type(T)(index))
# Edge interface
"""
edge_id(edge)
Return an identifier of the edge. The identifier must be of a type that can be converted from and to an Int.
"""
function edge_id end
"""
set_edge_id!(edge, id)
Set the edge identifier. The identifier must be of a type that can be converted from and to an Int.
"""
function set_edge_id! end
"""
edge_id_type(V)
Return the identifier type used by edge type `V`. The identifier type must be convertible from and to an Int.
"""
edge_id_type(::Type) = Int # fallback, can be specialized
@inline edge_index(x) = Int(edge_id(x))
@inline edge_index!(x::T, index::Int) where {T} = set_edge_id!(x, edge_id_type(T)(index))
flip_direction(x::Any) = deepcopy(x)
abstract type AbstractGraph{V, E} end
vertextype(::Type{<:AbstractGraph{V, E}}) where {V, E} = V
vertextype(g::AbstractGraph) = vertextype(typeof(g))
edgetype(::Type{<:AbstractGraph{V, E}}) where {V, E} = E
edgetype(g::AbstractGraph) = edgetype(typeof(g))
num_vertices(g::AbstractGraph) = length(vertices(g))
num_edges(g::AbstractGraph) = length(edges(g))
out_neighbors(vertex::V, g::AbstractGraph{V, E}) where {V, E} = (target(e, g) for e in out_edges(vertex, g))
in_neighbors(vertex::V, g::AbstractGraph{V, E}) where {V, E} = (source(e, g) for e in in_edges(vertex, g))
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 5061 | mutable struct DirectedGraph{V, E} <: AbstractGraph{V, E}
vertices::Vector{V}
edges::Vector{E}
sources::Vector{V}
targets::Vector{V}
inedges::Vector{Vector{E}}
outedges::Vector{Vector{E}}
end
DirectedGraph{V, E}() where {V, E} = DirectedGraph{V, E}(V[], E[], V[], V[], Set{E}[], Set{E}[])
function DirectedGraph(vertexfun::Base.Callable, edgefun::Base.Callable, other::DirectedGraph)
vertices = map(vertexfun, other.vertices)
edges = map(edgefun, other.edges)
vertexmap = Dict(zip(other.vertices, vertices))
edgemap = Dict(zip(other.edges, edges))
sources = [vertexmap[v] for v in other.sources]
targets = [vertexmap[v] for v in other.targets]
inedges = [[edgemap[e] for e in vec] for vec in other.inedges]
outedges = [[edgemap[e] for e in vec] for vec in other.outedges]
DirectedGraph(vertices, edges, sources, targets, inedges, outedges)
end
# AbstractGraph interface
vertices(g::DirectedGraph) = g.vertices
edges(g::DirectedGraph) = g.edges
source(edge, g::DirectedGraph{V, E}) where {V, E} = g.sources[edge_index(edge)]
target(edge, g::DirectedGraph{V, E}) where {V, E} = g.targets[edge_index(edge)]
in_edges(vertex::V, g::DirectedGraph{V, E}) where {V, E} = g.inedges[vertex_index(vertex)]
out_edges(vertex::V, g::DirectedGraph{V, E}) where {V, E} = g.outedges[vertex_index(vertex)]
Base.show(io::IO, ::DirectedGraph{V, E}) where {V, E} = print(io, "DirectedGraph{$V, $E}(…)")
function Base.empty!(g::DirectedGraph)
empty!(g.vertices)
empty!(g.edges)
empty!(g.sources)
empty!(g.targets)
empty!(g.inedges)
empty!(g.outedges)
g
end
function add_vertex!(g::DirectedGraph{V, E}, vertex::V) where {V, E}
@assert vertex ∉ vertices(g)
vertex_index!(vertex, num_vertices(g) + 1)
push!(g.vertices, vertex)
push!(g.outedges, E[])
push!(g.inedges, E[])
g
end
function add_edge!(g::DirectedGraph{V, E}, source::V, target::V, edge::E) where {V, E}
@assert edge ∉ edges(g)
source ∈ vertices(g) || add_vertex!(g, source)
target ∈ vertices(g) || add_vertex!(g, target)
edge_index!(edge, num_edges(g) + 1)
push!(g.edges, edge)
push!(g.sources, source)
push!(g.targets, target)
push!(out_edges(source, g), edge)
push!(in_edges(target, g), edge)
g
end
function remove_vertex!(g::DirectedGraph{V, E}, vertex::V) where {V, E}
disconnected = isempty(in_edges(vertex, g)) && isempty(out_edges(vertex, g))
disconnected || error("Vertex must be disconnected from the rest of the graph before it can be removed.")
index = vertex_index(vertex)
deleteat!(g.vertices, index)
deleteat!(g.inedges, index)
deleteat!(g.outedges, index)
for i = index : num_vertices(g)
vertex_index!(g.vertices[i], i)
end
vertex_index!(vertex, -1)
g
end
function remove_edge!(g::DirectedGraph{V, E}, edge::E) where {V, E}
target_inedges = in_edges(target(edge, g), g)
deleteat!(target_inedges, findfirst(isequal(edge), target_inedges))
source_outedges = out_edges(source(edge, g), g)
deleteat!(source_outedges, findfirst(isequal(edge), source_outedges))
index = edge_index(edge)
deleteat!(g.edges, index)
deleteat!(g.sources, index)
deleteat!(g.targets, index)
for i = index : num_edges(g)
edge_index!(g.edges[i], i)
end
edge_index!(edge, -1)
g
end
function rewire!(g::DirectedGraph{V, E}, edge::E, newsource::V, newtarget::V) where {V, E}
oldsource = source(edge, g)
oldtarget = target(edge, g)
g.sources[edge_index(edge)] = newsource
g.targets[edge_index(edge)] = newtarget
oldtarget_inedges = in_edges(oldtarget, g)
deleteat!(oldtarget_inedges, findfirst(isequal(edge), oldtarget_inedges))
oldsource_outedges = out_edges(oldsource, g)
deleteat!(oldsource_outedges, findfirst(isequal(edge), oldsource_outedges))
push!(out_edges(newsource, g), edge)
push!(in_edges(newtarget, g), edge)
g
end
function replace_edge!(g::DirectedGraph{V, E}, old_edge::E, new_edge::E) where {V, E}
if new_edge !== old_edge
src = source(old_edge, g)
dest = target(old_edge, g)
index = edge_index(old_edge)
edge_index!(new_edge, index)
g.edges[index] = new_edge
out_edge_index = findfirst(isequal(old_edge), out_edges(src, g))
out_edges(src, g)[out_edge_index] = new_edge
in_edge_index = findfirst(isequal(old_edge), in_edges(dest, g))
in_edges(dest, g)[in_edge_index] = new_edge
edge_index!(old_edge, -1)
end
g
end
function reindex!(g::DirectedGraph{V, E}, vertices_in_order, edges_in_order) where {V, E}
@assert isempty(setdiff(vertices(g), vertices_in_order))
@assert isempty(setdiff(edges(g), edges_in_order))
sources = source.(edges_in_order, Ref(g))
targets = target.(edges_in_order, Ref(g))
empty!(g)
for v in vertices_in_order
add_vertex!(g, v)
end
for (source, target, e) in zip(sources, targets, edges_in_order)
add_edge!(g, source, target, e)
end
g
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 599 | # Vertex and Edge types; useful for wrapping an existing type with the edge interface.
# Note that DirectedGraph does not require using these types; just implement the edge interface.
for typename in (:Edge, :Vertex)
getid = Symbol(lowercase(string(typename)) * "_id")
setid = Symbol("set_" * lowercase(string(typename)) * "_id!")
@eval begin
mutable struct $typename{T}
data::T
id::Int64
end
$typename(data) = $typename(data, -1)
$getid(x::$typename) = x.id
$setid(x::$typename, index::Int64) = (x.id = index)
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 6389 | mutable struct SpanningTree{V, E} <: AbstractGraph{V, E}
graph::DirectedGraph{V, E}
root::V
edges::Vector{E}
inedges::Vector{E}
outedges::Vector{Vector{E}}
edge_tree_indices::Vector{Int64} # mapping from edge_index(edge) to index into edges(tree)
end
# AbstractGraph interface
vertices(tree::SpanningTree) = vertices(tree.graph)
edges(tree::SpanningTree) = tree.edges
source(edge, tree::SpanningTree{V, E}) where {V, E} = source(edge, tree.graph) # note: doesn't check that edge is in spanning tree!
target(edge, tree::SpanningTree{V, E}) where {V, E} = target(edge, tree.graph) # note: doesn't check that edge is in spanning tree!
in_edges(vertex::V, tree::SpanningTree{V, E}) where {V, E} = (tree.inedges[vertex_index(vertex)],)
out_edges(vertex::V, tree::SpanningTree{V, E}) where {V, E} = tree.outedges[vertex_index(vertex)]
root(tree::SpanningTree) = tree.root
edge_to_parent(vertex::V, tree::SpanningTree{V, E}) where {V, E} = tree.inedges[vertex_index(vertex)]
edges_to_children(vertex::V, tree::SpanningTree{V, E}) where {V, E} = out_edges(vertex, tree)
tree_index(edge, tree::SpanningTree{V, E}) where {V, E} = tree.edge_tree_indices[edge_index(edge)]
tree_index(vertex::V, tree::SpanningTree{V, E}) where {V, E} = vertex === root(tree) ? 1 : tree_index(edge_to_parent(vertex, tree), tree) + 1
function SpanningTree(g::DirectedGraph{V, E}, root::V, edges::AbstractVector{E}) where {V, E}
n = num_vertices(g)
length(edges) == n - 1 || error("Expected n - 1 edges.")
inedges = Vector{E}(undef, n)
outedges = [E[] for i = 1 : n]
edge_tree_indices = Int64[]
treevertices = V[]
for (i, edge) in enumerate(edges)
parent = source(edge, g)
child = target(edge, g)
isempty(treevertices) && push!(treevertices, parent)
@assert parent ∈ treevertices
inedges[vertex_index(child)] = edge
push!(outedges[vertex_index(parent)], edge)
push!(treevertices, child)
resize!(edge_tree_indices, max(edge_index(edge), length(edge_tree_indices)))
edge_tree_indices[edge_index(edge)] = i
end
SpanningTree(g, root, edges, inedges, outedges, edge_tree_indices)
end
function SpanningTree(g::DirectedGraph{V, E}, root::V, flipped_edge_map::Union{AbstractDict, Nothing} = nothing;
next_edge = first #= breadth first =#) where {V, E}
tree_edges = E[]
tree_vertices = [root]
frontier = E[]
append!(frontier, out_edges(root, g))
append!(frontier, in_edges(root, g))
while !isempty(frontier)
# select a new edge
e = next_edge(frontier)
# remove edges from frontier
flip = source(e, g) ∉ tree_vertices
child = flip ? source(e, g) : target(e, g)
filter!(x -> x ∉ in_edges(child, g), frontier)
filter!(x -> x ∉ out_edges(child, g), frontier)
# flip current edge if necessary
if flip
rewire!(g, e, target(e, g), source(e, g))
newedge = flip_direction(e)
replace_edge!(g, e, newedge)
if flipped_edge_map !== nothing
flipped_edge_map[e] = newedge
end
e = newedge
end
# update tree
push!(tree_edges, e)
push!(tree_vertices, child)
# add new edges to frontier
append!(frontier, x for x in out_edges(child, g) if target(x, g) ∉ tree_vertices)
append!(frontier, x for x in in_edges(child, g) if source(x, g) ∉ tree_vertices)
end
length(tree_vertices) == num_vertices(g) || error("Graph is not connected.")
SpanningTree(g, root, tree_edges)
end
"""
Add an edge and vertex to both the tree and the underlying graph.
"""
function add_edge!(tree::SpanningTree{V, E}, source::V, target::V, edge::E) where {V, E}
@assert target ∉ vertices(tree)
add_edge!(tree.graph, source, target, edge)
push!(tree.edges, edge)
push!(tree.inedges, edge)
push!(tree.outedges, E[])
push!(out_edges(source, tree), edge)
resize!(tree.edge_tree_indices, max(edge_index(edge), length(tree.edge_tree_indices)))
tree.edge_tree_indices[edge_index(edge)] = num_edges(tree)
tree
end
"""
Replace an edge in both the tree and the underlying graph.
"""
function replace_edge!(tree::SpanningTree{V, E}, old_edge::E, new_edge::E) where {V, E}
@assert old_edge ∈ edges(tree)
src = source(old_edge, tree)
dest = target(old_edge, tree)
tree.edges[tree_index(old_edge, tree)] = new_edge
tree.inedges[vertex_index(dest)] = new_edge
out_edge_index = findfirst(isequal(old_edge), out_edges(src, tree))
out_edges(src, tree)[out_edge_index] = new_edge
replace_edge!(tree.graph, old_edge, new_edge)
tree
end
function Base.show(io::IO, tree::SpanningTree, vertex = root(tree), level::Int64 = 0)
for i = 1 : level print(io, " ") end
print(io, "Vertex: ")
show(IOContext(io, :compact => true), vertex)
if vertex == root(tree)
print(io, " (root)")
else
print(io, ", ")
print(io, "Edge: ")
show(IOContext(io, :compact => true), edge_to_parent(vertex, tree))
end
for edge in edges_to_children(vertex, tree)
print(io, "\n")
child = target(edge, tree)
show(io, tree, child, level + 1)
end
end
function ancestors(vertex::V, tree::SpanningTree{V, E}) where {V, E}
ret = [vertex]
while vertex != root(tree)
vertex = source(edge_to_parent(vertex, tree), tree)
push!(ret, vertex)
end
ret
end
function lowest_common_ancestor(v1::V, v2::V, tree::SpanningTree{V, E}) where {V, E}
while v1 != v2
if tree_index(v1, tree) > tree_index(v2, tree)
v1 = source(edge_to_parent(v1, tree), tree)
else
v2 = source(edge_to_parent(v2, tree), tree)
end
end
v1
end
"""
Return a list of vertices in the subtree rooted at `subtree_root`, including `subtree_root` itself.
The list is guaranteed to be topologically sorted.
"""
function subtree_vertices(subtree_root::V, tree::SpanningTree{V, E}) where {V, E}
@assert subtree_root ∈ vertices(tree)
frontier = [subtree_root]
subtree_vertices = V[]
while !isempty(frontier)
parent = pop!(frontier)
push!(subtree_vertices, parent)
for child in out_neighbors(parent, tree)
push!(frontier, child)
end
end
return subtree_vertices
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 2425 | module PathDirections
export PathDirection
@enum PathDirection::Bool begin
up # going towards the root of the tree
down # going away from the root of the tree
end
end
using .PathDirections
struct TreePath{V, E}
source::V
target::V
edges::Vector{E} # in order
directions::Vector{PathDirection}
indexmap::Vector{Int}
end
source(path::TreePath) = path.source
target(path::TreePath) = path.target
@inline Base.findfirst(path::TreePath{<:Any, E}, edge::E) where {E} = path.indexmap[edge_index(edge)] # TODO: remove, use equalto
@inline Base.in(edge::E, path::TreePath{<:Any, E}) where {E} = findfirst(path, edge) != 0 # TODO: findfirst update
@inline directions(path::TreePath) = path.directions
@inline direction(edge::E, path::TreePath{<:Any, E}) where {E} = path.directions[findfirst(path, edge)] # TODO: findfirst update
Base.iterate(path::TreePath) = iterate(path.edges)
Base.iterate(path::TreePath, state) = iterate(path.edges, state)
Base.eltype(path::TreePath) = eltype(path.edges)
Base.length(path::TreePath) = length(path.edges)
function Base.show(io::IO, path::TreePath)
println(io, "Path from $(path.source) to $(path.target):")
for edge in path
directionchar = ifelse(direction(edge, path) == PathDirections.up, '↑', '↓')
print(io, "$directionchar ")
show(IOContext(io, :compact => true), edge)
println(io)
end
end
function TreePath(src::V, target::V, tree::SpanningTree{V, E}) where {V, E}
source_to_lca = E[]
lca_to_target = E[]
source_current = src
target_current = target
while source_current != target_current
if tree_index(source_current, tree) > tree_index(target_current, tree)
edge = edge_to_parent(source_current, tree)
push!(source_to_lca, edge)
source_current = source(edge, tree)
else
edge = edge_to_parent(target_current, tree)
push!(lca_to_target, edge)
target_current = source(edge, tree)
end
end
reverse!(lca_to_target)
edges = collect(E, flatten((source_to_lca, lca_to_target)))
directions = collect(PathDirection, flatten(((PathDirections.up for e in source_to_lca), (PathDirections.down for e in lca_to_target))))
indexmap = Vector(sparsevec(Dict(edge_index(e) => i for (i, e) in enumerate(edges)), num_edges(tree)))
TreePath{V, E}(src, target, edges, directions, indexmap)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 2884 | """
$(TYPEDEF)
The `Fixed` joint type is a degenerate joint type, in the sense that it allows
no motion between its predecessor and successor rigid bodies.
"""
struct Fixed{T} <: JointType{T} end
Base.show(io::IO, jt::Fixed) = print(io, "Fixed joint")
Random.rand(::Type{Fixed{T}}) where {T} = Fixed{T}()
RigidBodyDynamics.flip_direction(jt::Fixed) = deepcopy(jt)
num_positions(::Type{<:Fixed}) = 0
num_velocities(::Type{<:Fixed}) = 0
has_fixed_subspaces(jt::Fixed) = true
isfloating(::Type{<:Fixed}) = false
@inline function joint_transform(jt::Fixed, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
S = promote_eltype(jt, q)
one(Transform3D{S}, frame_after, frame_before)
end
@inline function joint_twist(jt::Fixed, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(jt, q, v)
zero(Twist{S}, frame_after, frame_before, frame_after)
end
@inline function joint_spatial_acceleration(jt::Fixed, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector, vd::AbstractVector)
S = promote_eltype(jt, q, v, vd)
zero(SpatialAcceleration{S}, frame_after, frame_before, frame_after)
end
@inline function motion_subspace(jt::Fixed, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
S = promote_eltype(jt, q)
GeometricJacobian(frame_after, frame_before, frame_after, zero(SMatrix{3, 0, S}), zero(SMatrix{3, 0, S}))
end
@inline function constraint_wrench_subspace(jt::Fixed, joint_transform::Transform3D)
S = promote_eltype(jt, joint_transform)
angular = hcat(one(SMatrix{3, 3, S}), zero(SMatrix{3, 3, S}))
linear = hcat(zero(SMatrix{3, 3, S}), one(SMatrix{3, 3, S}))
WrenchMatrix(joint_transform.from, angular, linear)
end
@inline zero_configuration!(q::AbstractVector, ::Fixed) = nothing
@inline rand_configuration!(q::AbstractVector, ::Fixed) = nothing
@inline function bias_acceleration(jt::Fixed, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(jt, q, v)
zero(SpatialAcceleration{S}, frame_after, frame_before, frame_after)
end
@inline configuration_derivative_to_velocity!(v::AbstractVector, ::Fixed, q::AbstractVector, q̇::AbstractVector) = nothing
@inline velocity_to_configuration_derivative!(q̇::AbstractVector, ::Fixed, q::AbstractVector, v::AbstractVector) = nothing
@inline joint_torque!(τ::AbstractVector, jt::Fixed, q::AbstractVector, joint_wrench::Wrench) = nothing
@inline function velocity_to_configuration_derivative_jacobian(::Fixed{T}, ::AbstractVector) where T
SMatrix{0, 0, T}()
end
@inline function configuration_derivative_to_velocity_jacobian(::Fixed{T}, ::AbstractVector) where T
SMatrix{0, 0, T}()
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 1601 | # TODO: document which methods are needed for a new JointType.
# Default implementations
function flip_direction(jt::JointType{T}) where {T}
error("Flipping direction is not supported for $(typeof(jt))")
end
@propagate_inbounds zero_configuration!(q::AbstractVector, ::JointType) = (q .= 0; nothing)
@propagate_inbounds function local_coordinates!(ϕ::AbstractVector, ϕ̇::AbstractVector,
jt::JointType, q0::AbstractVector, q::AbstractVector, v::AbstractVector)
ϕ .= q .- q0
velocity_to_configuration_derivative!(ϕ̇, jt, q, v)
nothing
end
@propagate_inbounds function global_coordinates!(q::AbstractVector, jt::JointType, q0::AbstractVector, ϕ::AbstractVector)
q .= q0 .+ ϕ
end
@propagate_inbounds function configuration_derivative_to_velocity_adjoint!(out, jt::JointType, q::AbstractVector, f)
out .= f
end
@propagate_inbounds function configuration_derivative_to_velocity!(v::AbstractVector, ::JointType, q::AbstractVector, q̇::AbstractVector)
v .= q̇
nothing
end
@propagate_inbounds function velocity_to_configuration_derivative!(q̇::AbstractVector, ::JointType, q::AbstractVector, v::AbstractVector)
q̇ .= v
nothing
end
normalize_configuration!(q::AbstractVector, ::JointType) = nothing
is_configuration_normalized(::JointType, q::AbstractVector, rtol, atol) = true
principal_value!(q::AbstractVector, ::JointType) = nothing
include("quaternion_floating.jl")
include("spquat_floating.jl")
include("prismatic.jl")
include("revolute.jl")
include("fixed.jl")
include("planar.jl")
include("quaternion_spherical.jl")
include("sin_cos_revolute.jl")
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 6331 | """
$(TYPEDEF)
The `Planar` joint type allows translation along two orthogonal vectors, referred to as ``x`` and ``y``,
as well as rotation about an axis ``z = x \\times y``.
The components of the 3-dimensional configuration vector ``q`` associated with a `Planar` joint are the
``x``- and ``y``-coordinates of the translation, and the angle of rotation ``\\theta`` about ``z``, in that order.
The components of the 3-dimension velocity vector ``v`` associated with a `Planar` joint are the
``x``- and ``y``-coordinates of the linear part of the joint twist, expressed in the frame after the joint,
followed by the ``z``-component of the angular part of this joint twist.
!!! warning
For the `Planar` joint type, ``v \\neq \\dot{q}``! Although the angular parts of ``v`` and ``\\dot{q}``
are the same, their linear parts differ. The linear part of ``v`` is the linear part of ``\\dot{q}``, rotated
to the frame after the joint. This parameterization was chosen to allow the translational component of the
joint transform to be independent of the rotation angle ``\\theta`` (i.e., the rotation is applied **after** the
translation), while still retaining a constant motion subspace expressed in the frame after the joint.
"""
struct Planar{T} <: JointType{T}
x_axis::SVector{3, T}
y_axis::SVector{3, T}
rot_axis::SVector{3, T}
@doc """
$(SIGNATURES)
Construct a new `Planar` joint type with the ``xy``-plane in which translation is allowed defined
by 3-vectors `x` and `y` expressed in the frame before the joint.
""" ->
function Planar{T}(x_axis::AbstractVector, y_axis::AbstractVector) where {T}
x, y = map(axis -> normalize(SVector{3}(axis)), (x_axis, y_axis))
@assert isapprox(x ⋅ y, 0; atol = 100 * eps(T))
new{T}(x, y, x × y)
end
end
Planar(x_axis::AbstractVector, y_axis::AbstractVector) = Planar{promote_eltype(x_axis, y_axis)}(x_axis, y_axis)
Base.show(io::IO, jt::Planar) = print(io, "Planar joint with x-axis $(jt.x_axis) and y-axis $(jt.y_axis)")
function Random.rand(::Type{Planar{T}}) where {T}
x = normalize(randn(SVector{3, T}))
y = normalize(randn(SVector{3, T}))
y = normalize(y - (x ⋅ y) * x)
Planar(x, y)
end
num_positions(::Type{<:Planar}) = 3
num_velocities(::Type{<:Planar}) = 3
has_fixed_subspaces(jt::Planar) = true
isfloating(::Type{<:Planar}) = false
@propagate_inbounds function rand_configuration!(q::AbstractVector, ::Planar)
T = eltype(q)
q[1] = rand() - T(0.5)
q[2] = rand() - T(0.5)
q[3] = randn()
nothing
end
@propagate_inbounds function joint_transform(jt::Planar, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
rot = RotMatrix(AngleAxis(q[3], jt.rot_axis[1], jt.rot_axis[2], jt.rot_axis[3], false))
trans = jt.x_axis * q[1] + jt.y_axis * q[2]
Transform3D(frame_after, frame_before, rot, trans)
end
@propagate_inbounds function joint_twist(jt::Planar, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
angular = jt.rot_axis * v[3]
linear = jt.x_axis * v[1] + jt.y_axis * v[2]
Twist(frame_after, frame_before, frame_after, angular, linear)
end
@propagate_inbounds function joint_spatial_acceleration(jt::Planar, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector, vd::AbstractVector)
S = promote_eltype(jt, q, v, vd)
angular = jt.rot_axis * vd[3]
linear = jt.x_axis * vd[1] + jt.y_axis * vd[2]
SpatialAcceleration{S}(frame_after, frame_before, frame_after, angular, linear)
end
@inline function motion_subspace(jt::Planar, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
S = promote_eltype(jt, q)
angular = hcat(zero(SMatrix{3, 2, S}), jt.rot_axis)
linear = hcat(jt.x_axis, jt.y_axis, zero(SVector{3, S}))
GeometricJacobian(frame_after, frame_before, frame_after, angular, linear)
end
@inline function constraint_wrench_subspace(jt::Planar, joint_transform::Transform3D)
S = promote_eltype(jt, joint_transform)
angular = hcat(zero(SVector{3, S}), jt.x_axis, jt.y_axis)
linear = hcat(jt.rot_axis, zero(SMatrix{3, 2, S}))
WrenchMatrix(joint_transform.from, angular, linear)
end
@inline function bias_acceleration(jt::Planar, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(jt, q, v)
zero(SpatialAcceleration{S}, frame_after, frame_before, frame_after)
end
@propagate_inbounds function joint_torque!(τ::AbstractVector, jt::Planar, q::AbstractVector, joint_wrench::Wrench)
τ[1] = dot(linear(joint_wrench), jt.x_axis)
τ[2] = dot(linear(joint_wrench), jt.y_axis)
τ[3] = dot(angular(joint_wrench), jt.rot_axis)
nothing
end
@propagate_inbounds function configuration_derivative_to_velocity!(v::AbstractVector, jt::Planar, q::AbstractVector, q̇::AbstractVector)
vlinear = RotMatrix(-q[3]) * SVector(q̇[1], q̇[2])
v[1] = vlinear[1]
v[2] = vlinear[2]
v[3] = q̇[3]
nothing
end
@propagate_inbounds function velocity_to_configuration_derivative!(q̇::AbstractVector, jt::Planar, q::AbstractVector, v::AbstractVector)
q̇linear = RotMatrix(q[3]) * SVector(v[1], v[2])
q̇[1] = q̇linear[1]
q̇[2] = q̇linear[2]
q̇[3] = v[3]
nothing
end
@propagate_inbounds function configuration_derivative_to_velocity_adjoint!(out, jt::Planar, q::AbstractVector, f)
outlinear = RotMatrix(q[3]) * SVector(f[1], f[2])
out[1] = outlinear[1]
out[2] = outlinear[2]
out[3] = f[3]
nothing
end
@propagate_inbounds function velocity_to_configuration_derivative_jacobian(::Planar, q::AbstractVector)
# TODO: use SMatrix(RotZ(q[3]) once it's as fast
rot = RotMatrix(q[3])
@inbounds return @SMatrix([rot[1] rot[3] 0;
rot[2] rot[4] 0;
0 0 1])
end
@propagate_inbounds function configuration_derivative_to_velocity_jacobian(::Planar, q::AbstractVector)
# TODO: use SMatrix(RotZ(-q[3]) once it's as fast
rot = RotMatrix(-q[3])
@inbounds return @SMatrix([rot[1] rot[3] 0;
rot[2] rot[4] 0;
0 0 1])
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 3854 | """
$(TYPEDEF)
A `Prismatic` joint type allows translation along a fixed axis.
"""
struct Prismatic{T} <: JointType{T}
axis::SVector{3, T}
rotation_from_z_aligned::RotMatrix3{T}
@doc """
$(SIGNATURES)
Construct a new `Prismatic` joint type, allowing translation along `axis`
(expressed in the frame before the joint).
""" ->
function Prismatic(axis::AbstractVector{T}) where {T}
a = normalize(axis)
new{T}(a, rotation_between(SVector(zero(T), zero(T), one(T)), SVector{3, T}(a)))
end
end
Base.show(io::IO, jt::Prismatic) = print(io, "Prismatic joint with axis $(jt.axis)")
function Random.rand(::Type{Prismatic{T}}) where {T}
axis = normalize(randn(SVector{3, T}))
Prismatic(axis)
end
num_positions(::Type{<:Prismatic}) = 1
num_velocities(::Type{<:Prismatic}) = 1
has_fixed_subspaces(jt::Prismatic) = true
isfloating(::Type{<:Prismatic}) = false
RigidBodyDynamics.flip_direction(jt::Prismatic) = Prismatic(-jt.axis)
@propagate_inbounds function set_configuration!(q::AbstractVector, joint::Joint{<:Any, <:Prismatic}, pos::Number)
@boundscheck check_num_positions(joint, q)
@inbounds q[1] = pos
q
end
@propagate_inbounds function set_velocity!(v::AbstractVector, joint::Joint{<:Any, <:Prismatic}, vel::Number)
@boundscheck check_num_velocities(joint, v)
@inbounds v[1] = vel
v
end
@propagate_inbounds function rand_configuration!(q::AbstractVector, ::Prismatic)
randn!(q)
nothing
end
@inline function bias_acceleration(jt::Prismatic, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(jt, q, v)
zero(SpatialAcceleration{S}, frame_after, frame_before, frame_after)
end
@inline function velocity_to_configuration_derivative_jacobian(jt::Prismatic, q::AbstractVector)
T = promote_eltype(jt, q)
@SMatrix([one(T)])
end
@inline function configuration_derivative_to_velocity_jacobian(jt::Prismatic, q::AbstractVector)
T = promote_eltype(jt, q)
@SMatrix([one(T)])
end
@propagate_inbounds function joint_transform(jt::Prismatic, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
translation = q[1] * jt.axis
Transform3D(frame_after, frame_before, translation)
end
@propagate_inbounds function joint_twist(jt::Prismatic, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
linear = jt.axis * v[1]
Twist(frame_after, frame_before, frame_after, zero(linear), linear)
end
@propagate_inbounds function joint_spatial_acceleration(jt::Prismatic, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector, vd::AbstractVector)
S = promote_eltype(jt, q, v, vd)
linear = convert(SVector{3, S}, jt.axis * vd[1])
SpatialAcceleration(frame_after, frame_before, frame_after, zero(linear), linear)
end
@inline function motion_subspace(jt::Prismatic, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
S = promote_eltype(jt, q)
angular = zero(SMatrix{3, 1, S})
linear = SMatrix{3, 1, S}(jt.axis)
GeometricJacobian(frame_after, frame_before, frame_after, angular, linear)
end
@inline function constraint_wrench_subspace(jt::Prismatic, joint_transform::Transform3D)
S = promote_eltype(jt, joint_transform)
R = convert(RotMatrix3{S}, jt.rotation_from_z_aligned)
Rcols12 = R[:, SVector(1, 2)]
angular = hcat(R, zero(SMatrix{3, 2, S}))
linear = hcat(zero(SMatrix{3, 3, S}), Rcols12)
WrenchMatrix(joint_transform.from, angular, linear)
end
@propagate_inbounds function joint_torque!(τ::AbstractVector, jt::Prismatic, q::AbstractVector, joint_wrench::Wrench)
τ[1] = dot(linear(joint_wrench), jt.axis)
nothing
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 10889 | """
$(TYPEDEF)
A floating joint type that uses a unit quaternion representation for orientation.
Floating joints are 6-degree-of-freedom joints that are in a sense degenerate,
as they impose no constraints on the relative motion between two bodies.
The full, 7-dimensional configuration vector of a `QuaternionFloating` joint
type consists of a unit quaternion representing the orientation that rotates
vectors from the frame 'directly after' the joint to the frame 'directly before'
it, and a 3D position vector representing the origin of the frame after the
joint in the frame before the joint.
The 6-dimensional velocity vector of a `QuaternionFloating` joint is the twist
of the frame after the joint with respect to the frame before it, expressed in
the frame after the joint.
"""
struct QuaternionFloating{T} <: JointType{T} end
Base.show(io::IO, jt::QuaternionFloating) = print(io, "Quaternion floating joint")
Random.rand(::Type{QuaternionFloating{T}}) where {T} = QuaternionFloating{T}()
num_positions(::Type{<:QuaternionFloating}) = 7
num_velocities(::Type{<:QuaternionFloating}) = 6
has_fixed_subspaces(jt::QuaternionFloating) = true
isfloating(::Type{<:QuaternionFloating}) = true
@propagate_inbounds function rotation(jt::QuaternionFloating, q::AbstractVector, normalize::Bool = true)
quat = QuatRotation(q[1], q[2], q[3], q[4], normalize)
quat
end
@propagate_inbounds function set_rotation!(q::AbstractVector, jt::QuaternionFloating, rot::Rotation{3})
T = eltype(rot)
quat = convert(QuatRotation{T}, rot)
w, x, y, z = Rotations.params(quat)
q[1] = w
q[2] = x
q[3] = y
q[4] = z
nothing
end
@propagate_inbounds function set_rotation!(q::AbstractVector, jt::QuaternionFloating, rot::AbstractVector)
q[1] = rot[1]
q[2] = rot[2]
q[3] = rot[3]
q[4] = rot[4]
nothing
end
@propagate_inbounds translation(jt::QuaternionFloating, q::AbstractVector) = SVector(q[5], q[6], q[7])
@propagate_inbounds set_translation!(q::AbstractVector, jt::QuaternionFloating, trans::AbstractVector) = copyto!(q, 5, trans, 1, 3)
@propagate_inbounds angular_velocity(jt::QuaternionFloating, v::AbstractVector) = SVector(v[1], v[2], v[3])
@propagate_inbounds set_angular_velocity!(v::AbstractVector, jt::QuaternionFloating, ω::AbstractVector) = copyto!(v, 1, ω, 1, 3)
@propagate_inbounds linear_velocity(jt::QuaternionFloating, v::AbstractVector) = SVector(v[4], v[5], v[6])
@propagate_inbounds set_linear_velocity!(v::AbstractVector, jt::QuaternionFloating, ν::AbstractVector) = copyto!(v, 4, ν, 1, 3)
@propagate_inbounds function set_configuration!(q::AbstractVector, joint::Joint{<:Any, <:QuaternionFloating}, config::Transform3D)
@boundscheck check_num_positions(joint, q)
@framecheck config.from frame_after(joint)
@framecheck config.to frame_before(joint)
set_rotation!(q, joint_type(joint), rotation(config))
set_translation!(q, joint_type(joint), translation(config))
q
end
@propagate_inbounds function set_velocity!(v::AbstractVector, joint::Joint{<:Any, <:QuaternionFloating}, twist::Twist)
@boundscheck check_num_velocities(joint, v)
@framecheck twist.base frame_before(joint)
@framecheck twist.body frame_after(joint)
@framecheck twist.frame frame_after(joint)
set_angular_velocity!(v, joint_type(joint), angular(twist))
set_linear_velocity!(v, joint_type(joint), linear(twist))
v
end
@propagate_inbounds function joint_transform(jt::QuaternionFloating, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D, q::AbstractVector)
Transform3D(frame_after, frame_before, rotation(jt, q, false), translation(jt, q))
end
@inline function motion_subspace(jt::QuaternionFloating, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
S = promote_eltype(jt, q)
angular = hcat(one(SMatrix{3, 3, S}), zero(SMatrix{3, 3, S}))
linear = hcat(zero(SMatrix{3, 3, S}), one(SMatrix{3, 3, S}))
GeometricJacobian(frame_after, frame_before, frame_after, angular, linear)
end
@inline function constraint_wrench_subspace(jt::QuaternionFloating, joint_transform::Transform3D)
S = promote_eltype(jt, joint_transform)
WrenchMatrix(joint_transform.from, zero(SMatrix{3, 0, S}), zero(SMatrix{3, 0, S}))
end
@inline function bias_acceleration(jt::QuaternionFloating, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(q, v)
zero(SpatialAcceleration{S}, frame_after, frame_before, frame_after)
end
@propagate_inbounds function configuration_derivative_to_velocity!(v::AbstractVector, jt::QuaternionFloating,
q::AbstractVector, q̇::AbstractVector)
quat = rotation(jt, q, false)
quatdot = SVector(q̇[1], q̇[2], q̇[3], q̇[4])
ω = angular_velocity_in_body(quat, quatdot)
posdot = translation(jt, q̇)
linear = inv(quat) * posdot
set_angular_velocity!(v, jt, ω)
set_linear_velocity!(v, jt, linear)
nothing
end
@propagate_inbounds function configuration_derivative_to_velocity_adjoint!(fq, jt::QuaternionFloating, q::AbstractVector, fv)
quatnorm = sqrt(q[1]^2 + q[2]^2 + q[3]^2 + q[4]^2) # TODO: make this nicer
quat = QuatRotation(q[1] / quatnorm, q[2] / quatnorm, q[3] / quatnorm, q[4] / quatnorm, false)
rot = (velocity_jacobian(angular_velocity_in_body, quat)' * angular_velocity(jt, fv)) ./ quatnorm
trans = quat * linear_velocity(jt, fv)
set_rotation!(fq, jt, rot)
set_translation!(fq, jt, trans)
nothing
end
@propagate_inbounds function velocity_to_configuration_derivative!(q̇::AbstractVector, jt::QuaternionFloating,
q::AbstractVector, v::AbstractVector)
quat = rotation(jt, q, false)
ω = angular_velocity(jt, v)
linear = linear_velocity(jt, v)
quatdot = quaternion_derivative(quat, ω)
transdot = quat * linear
set_rotation!(q̇, jt, quatdot)
set_translation!(q̇, jt, transdot)
nothing
end
@propagate_inbounds function velocity_to_configuration_derivative_jacobian(jt::QuaternionFloating, q::AbstractVector)
quat = rotation(jt, q, false)
vj = velocity_jacobian(quaternion_derivative, quat)
R = RotMatrix(quat)
# TODO: use hvcat once it's as fast
@SMatrix(
[vj[1] vj[5] vj[9] 0 0 0;
vj[2] vj[6] vj[10] 0 0 0;
vj[3] vj[7] vj[11] 0 0 0;
vj[4] vj[8] vj[12] 0 0 0;
0 0 0 R[1] R[4] R[7];
0 0 0 R[2] R[5] R[8];
0 0 0 R[3] R[6] R[9]])
end
@propagate_inbounds function configuration_derivative_to_velocity_jacobian(jt::QuaternionFloating, q::AbstractVector)
quat = rotation(jt, q, false)
vj = velocity_jacobian(angular_velocity_in_body, quat)
R_inv = RotMatrix(inv(quat))
# TODO: use hvcat once it's as fast
@SMatrix(
[vj[1] vj[4] vj[7] vj[10] 0 0 0;
vj[2] vj[5] vj[8] vj[11] 0 0 0;
vj[3] vj[6] vj[9] vj[12] 0 0 0;
0 0 0 0 R_inv[1] R_inv[4] R_inv[7];
0 0 0 0 R_inv[2] R_inv[5] R_inv[8];
0 0 0 0 R_inv[3] R_inv[6] R_inv[9]])
end
@propagate_inbounds function zero_configuration!(q::AbstractVector, jt::QuaternionFloating)
T = eltype(q)
set_rotation!(q, jt, one(QuatRotation{T}))
set_translation!(q, jt, zero(SVector{3, T}))
nothing
end
@propagate_inbounds function rand_configuration!(q::AbstractVector, jt::QuaternionFloating)
T = eltype(q)
set_rotation!(q, jt, rand(QuatRotation{T}))
set_translation!(q, jt, rand(SVector{3, T}) .- 0.5)
nothing
end
@propagate_inbounds function joint_twist(jt::QuaternionFloating, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(jt, q, v)
angular = convert(SVector{3, S}, angular_velocity(jt, v))
linear = convert(SVector{3, S}, linear_velocity(jt, v))
Twist(frame_after, frame_before, frame_after, angular, linear)
end
@propagate_inbounds function joint_spatial_acceleration(jt::QuaternionFloating, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector, vd::AbstractVector)
S = promote_eltype(jt, q, v, vd)
angular = convert(SVector{3, S}, angular_velocity(jt, vd))
linear = convert(SVector{3, S}, linear_velocity(jt, vd))
SpatialAcceleration(frame_after, frame_before, frame_after, angular, linear)
end
@propagate_inbounds function joint_torque!(τ::AbstractVector, jt::QuaternionFloating, q::AbstractVector, joint_wrench::Wrench)
set_angular_velocity!(τ, jt, angular(joint_wrench))
set_linear_velocity!(τ, jt, linear(joint_wrench))
nothing
end
# uses exponential coordinates centered around q0
@propagate_inbounds function local_coordinates!(ϕ::AbstractVector, ϕ̇::AbstractVector,
jt::QuaternionFloating, q0::AbstractVector, q::AbstractVector, v::AbstractVector)
# anonymous helper frames # FIXME
frame_before = CartesianFrame3D()
frame0 = CartesianFrame3D()
frame_after = CartesianFrame3D()
quat0 = rotation(jt, q0, false)
quat = rotation(jt, q, false)
p0 = translation(jt, q0)
p = translation(jt, q)
quat0inv = inv(quat0)
δquat = quat0inv * quat
δp = quat0inv * (p - p0)
relative_transform = Transform3D(frame_after, frame0, δquat, δp)
twist = joint_twist(jt, frame_after, frame0, q, v) # (q_0 is assumed not to change)
ξ, ξ̇ = log_with_time_derivative(relative_transform, twist)
copyto!(ϕ, 1, angular(ξ), 1, 3)
copyto!(ϕ, 4, linear(ξ), 1, 3)
copyto!(ϕ̇, 1, angular(ξ̇), 1, 3)
copyto!(ϕ̇, 4, linear(ξ̇), 1, 3)
nothing
end
@propagate_inbounds function global_coordinates!(q::AbstractVector, jt::QuaternionFloating, q0::AbstractVector, ϕ::AbstractVector)
# anonymous helper frames #FIXME
frame_before = CartesianFrame3D()
frame0 = CartesianFrame3D()
frame_after = CartesianFrame3D()
t0 = joint_transform(jt, frame0, frame_before, q0)
ξrot = SVector(ϕ[1], ϕ[2], ϕ[3])
ξtrans = SVector(ϕ[4], ϕ[5], ϕ[6])
ξ = Twist(frame_after, frame0, frame0, ξrot, ξtrans)
relative_transform = exp(ξ)
t = t0 * relative_transform
set_rotation!(q, jt, rotation(t))
set_translation!(q, jt, translation(t))
nothing
end
@propagate_inbounds normalize_configuration!(q::AbstractVector, jt::QuaternionFloating) = set_rotation!(q, jt, rotation(jt, q, true))
@propagate_inbounds function is_configuration_normalized(jt::QuaternionFloating, q::AbstractVector, rtol, atol)
isapprox(quatnorm(rotation(jt, q, false)), one(eltype(q)); rtol = rtol, atol = atol)
end
@propagate_inbounds function principal_value!(q::AbstractVector, jt::QuaternionFloating)
quat = rotation(jt, q, false)
set_rotation!(q, jt, principal_value(quat))
nothing
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 6862 | """
$(TYPEDEF)
The `QuaternionSpherical` joint type allows rotation in any direction. It is an
implementation of a ball-and-socket joint.
The 4-dimensional configuration vector ``q`` associated with a `QuaternionSpherical` joint
is the unit quaternion that describes the orientation of the frame after the joint
with respect to the frame before the joint. In other words, it is the quaternion that
can be used to rotate vectors from the frame after the joint to the frame before the
joint.
The 3-dimensional velocity vector ``v`` associated with a `QuaternionSpherical` joint is
the angular velocity of the frame after the joint with respect to the frame before
the joint, expressed in the frame after the joint (body frame).
"""
struct QuaternionSpherical{T} <: JointType{T} end
Base.show(io::IO, jt::QuaternionSpherical) = print(io, "Quaternion spherical joint")
Random.rand(::Type{QuaternionSpherical{T}}) where {T} = QuaternionSpherical{T}()
num_positions(::Type{<:QuaternionSpherical}) = 4
num_velocities(::Type{<:QuaternionSpherical}) = 3
has_fixed_subspaces(jt::QuaternionSpherical) = true
isfloating(::Type{<:QuaternionSpherical}) = false
@propagate_inbounds function rotation(jt::QuaternionSpherical, q::AbstractVector, normalize::Bool = true)
QuatRotation(q[1], q[2], q[3], q[4], normalize)
end
@propagate_inbounds function set_rotation!(q::AbstractVector, jt::QuaternionSpherical, rot::Rotation{3})
T = eltype(rot)
quat = convert(QuatRotation{T}, rot)
w, x, y, z = Rotations.params(quat)
q[1] = w
q[2] = x
q[3] = y
q[4] = z
nothing
end
@propagate_inbounds function set_configuration!(q::AbstractVector, joint::Joint{<:Any, <:QuaternionSpherical}, rot::Rotation{3})
@boundscheck check_num_positions(joint, q)
@inbounds set_rotation!(q, joint_type(joint), rot)
q
end
@propagate_inbounds function joint_transform(jt::QuaternionSpherical, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D, q::AbstractVector)
quat = rotation(jt, q, false)
Transform3D(frame_after, frame_before, quat)
end
@inline function motion_subspace(jt::QuaternionSpherical, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
S = promote_eltype(jt, q)
angular = one(SMatrix{3, 3, S})
linear = zero(SMatrix{3, 3, S})
GeometricJacobian(frame_after, frame_before, frame_after, angular, linear)
end
@inline function constraint_wrench_subspace(jt::QuaternionSpherical, joint_transform::Transform3D)
S = promote_eltype(jt, joint_transform)
angular = zero(SMatrix{3, 3, S})
linear = one(SMatrix{3, 3, S})
WrenchMatrix(joint_transform.from, angular, linear)
end
@inline function bias_acceleration(jt::QuaternionSpherical, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(jt, q, v)
zero(SpatialAcceleration{S}, frame_after, frame_before, frame_after)
end
@propagate_inbounds function configuration_derivative_to_velocity!(v::AbstractVector, jt::QuaternionSpherical,
q::AbstractVector, q̇::AbstractVector)
quat = rotation(jt, q, false)
quatdot = SVector(q̇[1], q̇[2], q̇[3], q̇[4])
v .= angular_velocity_in_body(quat, quatdot)
nothing
end
@propagate_inbounds function configuration_derivative_to_velocity_adjoint!(fq, jt::QuaternionSpherical, q::AbstractVector, fv)
quatnorm = sqrt(q[1]^2 + q[2]^2 + q[3]^2 + q[4]^2) # TODO: make this nicer
quat = QuatRotation(q[1] / quatnorm, q[2] / quatnorm, q[3] / quatnorm, q[4] / quatnorm, false)
fq .= (velocity_jacobian(angular_velocity_in_body, quat)' * fv) ./ quatnorm
nothing
end
@propagate_inbounds function velocity_to_configuration_derivative!(q̇::AbstractVector, jt::QuaternionSpherical,
q::AbstractVector, v::AbstractVector)
quat = rotation(jt, q, false)
q̇ .= quaternion_derivative(quat, v)
nothing
end
@propagate_inbounds function velocity_to_configuration_derivative_jacobian(jt::QuaternionSpherical, q::AbstractVector)
quat = rotation(jt, q, false)
velocity_jacobian(quaternion_derivative, quat)
end
@propagate_inbounds function configuration_derivative_to_velocity_jacobian(jt::QuaternionSpherical, q::AbstractVector)
quat = rotation(jt, q, false)
velocity_jacobian(angular_velocity_in_body, quat)
end
@propagate_inbounds function zero_configuration!(q::AbstractVector, jt::QuaternionSpherical)
T = eltype(q)
set_rotation!(q, jt, one(QuatRotation{T}))
nothing
end
@propagate_inbounds function rand_configuration!(q::AbstractVector, jt::QuaternionSpherical)
T = eltype(q)
set_rotation!(q, jt, rand(QuatRotation{T}))
nothing
end
@propagate_inbounds function joint_twist(jt::QuaternionSpherical, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(jt, q, v)
angular = SVector{3, S}(v)
linear = zero(SVector{3, S})
Twist(frame_after, frame_before, frame_after, angular, linear)
end
@propagate_inbounds function joint_spatial_acceleration(jt::QuaternionSpherical, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector, vd::AbstractVector)
S = promote_eltype(jt, q, v, vd)
angular = SVector{3, S}(vd)
linear = zero(SVector{3, S})
SpatialAcceleration(frame_after, frame_before, frame_after, angular, linear)
end
@propagate_inbounds function joint_torque!(τ::AbstractVector, jt::QuaternionSpherical, q::AbstractVector, joint_wrench::Wrench)
τ .= angular(joint_wrench)
nothing
end
# uses exponential coordinates centered around q0
@propagate_inbounds function local_coordinates!(ϕ::AbstractVector, ϕ̇::AbstractVector,
jt::QuaternionSpherical, q0::AbstractVector, q::AbstractVector, v::AbstractVector)
quat = inv(rotation(jt, q0, false)) * rotation(jt, q, false)
rv = RotationVec(quat)
ϕstatic = SVector(rv.sx, rv.sy, rv.sz)
ϕ .= ϕstatic
ϕ̇ .= rotation_vector_rate(ϕstatic, v)
nothing
end
@propagate_inbounds function global_coordinates!(q::AbstractVector, jt::QuaternionSpherical, q0::AbstractVector, ϕ::AbstractVector)
quat0 = rotation(jt, q0, false)
quat = quat0 * QuatRotation(RotationVec(ϕ[1], ϕ[2], ϕ[3]))
set_rotation!(q, jt, quat)
nothing
end
@propagate_inbounds normalize_configuration!(q::AbstractVector, jt::QuaternionSpherical) = set_rotation!(q, jt, rotation(jt, q, true))
@propagate_inbounds function is_configuration_normalized(jt::QuaternionSpherical, q::AbstractVector, rtol, atol)
isapprox(quatnorm(rotation(jt, q, false)), one(eltype(q)); rtol = rtol, atol = atol)
end
@propagate_inbounds function principal_value!(q::AbstractVector, jt::QuaternionSpherical)
quat = rotation(jt, q, false)
set_rotation!(q, jt, principal_value(quat))
nothing
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 4138 | """
$(TYPEDEF)
A `Revolute` joint type allows rotation about a fixed axis.
The configuration vector for the `Revolute` joint type simply consists of the angle
of rotation about the specified axis. The velocity vector consists of the angular
rate, and is thus the time derivative of the configuration vector.
"""
struct Revolute{T} <: JointType{T}
axis::SVector{3, T}
rotation_from_z_aligned::RotMatrix3{T}
function Revolute{T}(axis::AbstractVector) where {T}
a = normalize(axis)
new{T}(a, rotation_between(SVector(zero(T), zero(T), one(T)), SVector{3, T}(a)))
end
end
"""
$(SIGNATURES)
Construct a new `Revolute` joint type, allowing rotation about `axis`
(expressed in the frame before the joint).
"""
Revolute(axis::AbstractVector{T}) where {T} = Revolute{T}(axis)
Base.show(io::IO, jt::Revolute) = print(io, "Revolute joint with axis $(jt.axis)")
function Random.rand(::Type{Revolute{T}}) where {T}
axis = normalize(randn(SVector{3, T}))
Revolute(axis)
end
RigidBodyDynamics.flip_direction(jt::Revolute) = Revolute(-jt.axis)
num_positions(::Type{<:Revolute}) = 1
num_velocities(::Type{<:Revolute}) = 1
has_fixed_subspaces(jt::Revolute) = true
isfloating(::Type{<:Revolute}) = false
@propagate_inbounds function set_configuration!(q::AbstractVector, joint::Joint{<:Any, <:Revolute}, θ::Number)
@boundscheck check_num_positions(joint, q)
@inbounds q[1] = θ
q
end
@propagate_inbounds function set_velocity!(v::AbstractVector, joint::Joint{<:Any, <:Revolute}, θ̇::Number)
check_num_velocities(joint, v)
@inbounds v[1] = θ̇
v
end
@propagate_inbounds function rand_configuration!(q::AbstractVector, ::Revolute)
q[1] = randn()
nothing
end
@propagate_inbounds function joint_transform(jt::Revolute, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D, q::AbstractVector)
aa = AngleAxis(q[1], jt.axis[1], jt.axis[2], jt.axis[3], false)
Transform3D(frame_after, frame_before, convert(RotMatrix3{eltype(aa)}, aa))
end
@propagate_inbounds function joint_twist(jt::Revolute, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
angular = jt.axis * v[1]
Twist(frame_after, frame_before, frame_after, angular, zero(angular))
end
@inline function bias_acceleration(jt::Revolute, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(jt, q, v)
zero(SpatialAcceleration{S}, frame_after, frame_before, frame_after)
end
@propagate_inbounds function joint_spatial_acceleration(jt::Revolute, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector, vd::AbstractVector)
S = promote_eltype(jt, q, v, vd)
angular = convert(SVector{3, S}, jt.axis * vd[1])
SpatialAcceleration(frame_after, frame_before, frame_after, angular, zero(angular))
end
@inline function motion_subspace(jt::Revolute, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
S = promote_eltype(jt, q)
angular = SMatrix{3, 1, S}(jt.axis)
linear = zero(SMatrix{3, 1, S})
GeometricJacobian(frame_after, frame_before, frame_after, angular, linear)
end
@inline function constraint_wrench_subspace(jt::Revolute, joint_transform::Transform3D)
S = promote_eltype(jt, joint_transform)
R = convert(RotMatrix3{S}, jt.rotation_from_z_aligned)
Rcols12 = R[:, SVector(1, 2)]
angular = hcat(Rcols12, zero(SMatrix{3, 3, S}))
linear = hcat(zero(SMatrix{3, 2, S}), R)
WrenchMatrix(joint_transform.from, angular, linear)
end
@propagate_inbounds function joint_torque!(τ::AbstractVector, jt::Revolute, q::AbstractVector, joint_wrench::Wrench)
τ[1] = dot(angular(joint_wrench), jt.axis)
nothing
end
@inline function velocity_to_configuration_derivative_jacobian(jt::Revolute, q::AbstractVector)
T = promote_eltype(jt, q)
@SMatrix([one(T)])
end
@inline function configuration_derivative_to_velocity_jacobian(jt::Revolute, q::AbstractVector)
T = promote_eltype(jt, q)
@SMatrix([one(T)])
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 7263 | """
$(TYPEDEF)
A `SinCosRevolute` joint type allows rotation about a fixed axis.
In contrast to the [`Revolute`](@ref) joint type, the configuration vector for the `SinCosRevolute` joint type
consists of the sine and cosine of the angle of rotation about the specified axis (in that order).
The velocity vector for the `SinCosRevolute` joint type is the same as for
the `Revolute` joint type, i.e., the time derivative of the angle about the axis.
"""
struct SinCosRevolute{T} <: JointType{T}
axis::SVector{3, T}
rotation_from_z_aligned::RotMatrix3{T}
function SinCosRevolute{T}(axis::AbstractVector) where {T}
a = normalize(axis)
new{T}(a, rotation_between(SVector(zero(T), zero(T), one(T)), SVector{3, T}(a)))
end
end
"""
$(SIGNATURES)
Construct a new `SinCosRevolute` joint type, allowing rotation about `axis`
(expressed in the frame before the joint).
"""
SinCosRevolute(axis::AbstractVector{T}) where {T} = SinCosRevolute{T}(axis)
Base.show(io::IO, jt::SinCosRevolute) = print(io, "SinCosRevolute joint with axis $(jt.axis)")
function Random.rand(::Type{SinCosRevolute{T}}) where {T}
axis = normalize(randn(SVector{3, T}))
SinCosRevolute(axis)
end
RigidBodyDynamics.flip_direction(jt::SinCosRevolute) = SinCosRevolute(-jt.axis)
num_positions(::Type{<:SinCosRevolute}) = 2
num_velocities(::Type{<:SinCosRevolute}) = 1
has_fixed_subspaces(jt::SinCosRevolute) = true
isfloating(::Type{<:SinCosRevolute}) = false
@propagate_inbounds function set_configuration!(q::AbstractVector, joint::Joint{<:Any, <:SinCosRevolute}, θ::Number)
@boundscheck check_num_positions(joint, q)
s, c = sincos(θ)
@inbounds q[1] = s
@inbounds q[2] = c
q
end
@propagate_inbounds function set_velocity!(v::AbstractVector, joint::Joint{<:Any, <:SinCosRevolute}, θ̇::Number)
@boundscheck check_num_velocities(joint, v)
@inbounds v[1] = θ̇
v
end
@propagate_inbounds function rand_configuration!(q::AbstractVector, jt::SinCosRevolute)
q .= normalize(@SVector(randn(2)))
nothing
end
@propagate_inbounds function zero_configuration!(q::AbstractVector, jt::SinCosRevolute)
T = eltype(q)
q[1] = zero(T)
q[2] = one(T)
nothing
end
@propagate_inbounds function joint_transform(jt::SinCosRevolute, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D, q::AbstractVector)
# from https://github.com/FugroRoames/Rotations.jl/blob/8d77152a76950665302b5a730b420973bb397f41/src/angleaxis_types.jl#L50
T = eltype(q)
axis = jt.axis
s, c = q[1], q[2]
c1 = one(T) - c
c1x2 = c1 * axis[1]^2
c1y2 = c1 * axis[2]^2
c1z2 = c1 * axis[3]^2
c1xy = c1 * axis[1] * axis[2]
c1xz = c1 * axis[1] * axis[3]
c1yz = c1 * axis[2] * axis[3]
sx = s * axis[1]
sy = s * axis[2]
sz = s * axis[3]
# Note that the RotMatrix constructor argument order makes this look transposed:
rot = RotMatrix(
one(T) - c1y2 - c1z2, c1xy + sz, c1xz - sy,
c1xy - sz, one(T) - c1x2 - c1z2, c1yz + sx,
c1xz + sy, c1yz - sx, one(T) - c1x2 - c1y2)
Transform3D(frame_after, frame_before, rot)
end
@propagate_inbounds function joint_twist(jt::SinCosRevolute, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
angular = jt.axis * v[1]
Twist(frame_after, frame_before, frame_after, angular, zero(angular))
end
@inline function bias_acceleration(jt::SinCosRevolute, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(jt, q, v)
zero(SpatialAcceleration{S}, frame_after, frame_before, frame_after)
end
@propagate_inbounds function joint_spatial_acceleration(jt::SinCosRevolute, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector, vd::AbstractVector)
S = promote_eltype(jt, q, v, vd)
angular = convert(SVector{3, S}, jt.axis * vd[1])
SpatialAcceleration(frame_after, frame_before, frame_after, angular, zero(angular))
end
@inline function motion_subspace(jt::SinCosRevolute, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
S = promote_eltype(jt, q)
angular = SMatrix{3, 1, S}(jt.axis)
linear = zero(SMatrix{3, 1, S})
GeometricJacobian(frame_after, frame_before, frame_after, angular, linear)
end
@inline function constraint_wrench_subspace(jt::SinCosRevolute, joint_transform::Transform3D)
S = promote_eltype(jt, joint_transform)
R = convert(RotMatrix3{S}, jt.rotation_from_z_aligned)
Rcols12 = R[:, SVector(1, 2)]
angular = hcat(Rcols12, zero(SMatrix{3, 3, S}))
linear = hcat(zero(SMatrix{3, 2, S}), R)
WrenchMatrix(joint_transform.from, angular, linear)
end
@propagate_inbounds function joint_torque!(τ::AbstractVector, jt::SinCosRevolute, q::AbstractVector, joint_wrench::Wrench)
τ[1] = dot(angular(joint_wrench), jt.axis)
nothing
end
@propagate_inbounds function configuration_derivative_to_velocity!(v::AbstractVector, jt::SinCosRevolute, q::AbstractVector, q̇::AbstractVector)
# q̇ = [c; -s] * v
# [c -s] * [c; -s] = c^2 + s^2 = 1
# v = [c -s] * q̇
s, c = q[1], q[2]
v[1] = c * q̇[1] - s * q̇[2]
nothing
end
@propagate_inbounds function configuration_derivative_to_velocity_jacobian(jt::SinCosRevolute, q::AbstractVector)
s, c = q[1], q[2]
@SMatrix [c -s]
end
@propagate_inbounds function configuration_derivative_to_velocity_adjoint!(fq, jt::SinCosRevolute, q::AbstractVector, fv)
qnorm = sqrt(q[1]^2 + q[2]^2)
qnormalized = @SVector([q[1], q[2]]) / qnorm
fq .= (configuration_derivative_to_velocity_jacobian(jt, qnormalized)' * fv) ./ qnorm
nothing
end
@propagate_inbounds function velocity_to_configuration_derivative!(q̇::AbstractVector, jt::SinCosRevolute, q::AbstractVector, v::AbstractVector)
s, c = q[1], q[2]
q̇[1] = c * v[1]
q̇[2] = -s * v[1]
nothing
end
@propagate_inbounds function velocity_to_configuration_derivative_jacobian(jt::SinCosRevolute, q::AbstractVector)
s, c = q[1], q[2]
@SMatrix [c; -s]
end
# uses exponential coordinates centered around q0 (i.e, the relative joint angle)
@propagate_inbounds function local_coordinates!(ϕ::AbstractVector, ϕd::AbstractVector,
jt::SinCosRevolute, q0::AbstractVector, q::AbstractVector, v::AbstractVector)
# RΔ = R₀ᵀ * R
s0, c0 = q0[1], q0[2]
s, c = q[1], q[2]
sΔ = c0 * s - s0 * c
cΔ = c0 * c + s0 * s
θ = atan(sΔ, cΔ)
ϕ[1] = θ
ϕd[1] = v[1]
nothing
end
@propagate_inbounds function global_coordinates!(q::AbstractVector, jt::SinCosRevolute, q0::AbstractVector, ϕ::AbstractVector)
# R = R₀ * RΔ:
s0, c0 = q0[1], q0[2]
θ = ϕ[1]
sΔ, cΔ = sincos(θ)
s = s0 * cΔ + c0 * sΔ
c = c0 * cΔ - s0 * sΔ
q[1] = s
q[2] = c
nothing
end
@propagate_inbounds function normalize_configuration!(q::AbstractVector, jt::SinCosRevolute)
q ./= sqrt(q[1]^2 + q[2]^2)
q
end
@propagate_inbounds function is_configuration_normalized(jt::SinCosRevolute, q::AbstractVector, rtol, atol)
# TODO: base off of norm squared
qnorm = sqrt(q[1]^2 + q[2]^2)
isapprox(qnorm, one(eltype(q)); rtol = rtol, atol = atol)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 8555 | """
$(TYPEDEF)
A floating joint type that uses a modified Rodrigues parameter (`Rotations.MRP`,
previously known as `Rotations.SPQuat`) representation for orientation.
Floating joints are 6-degree-of-freedom joints that are in a sense degenerate,
as they impose no constraints on the relative motion between two bodies.
The 6-dimensional configuration vector of a `SPQuatFloating` joint
type consists of a SPQuat representing the orientation that rotates
vectors from the frame 'directly after' the joint to the frame 'directly before'
it, and a 3D position vector representing the origin of the frame after the
joint in the frame before the joint.
The 6-dimensional velocity vector of a `SPQuatFloating` joint is the twist
of the frame after the joint with respect to the frame before it, expressed in
the frame after the joint.
"""
struct SPQuatFloating{T} <: JointType{T} end
Base.show(io::IO, jt::SPQuatFloating) = print(io, "SPQuat floating joint")
Random.rand(::Type{SPQuatFloating{T}}) where {T} = SPQuatFloating{T}()
num_positions(::Type{<:SPQuatFloating}) = 6
num_velocities(::Type{<:SPQuatFloating}) = 6
has_fixed_subspaces(jt::SPQuatFloating) = true
isfloating(::Type{<:SPQuatFloating}) = true
@propagate_inbounds function rotation(jt::SPQuatFloating, q::AbstractVector)
ModifiedRodriguesParam(q[1], q[2], q[3])
end
@propagate_inbounds function set_rotation!(q::AbstractVector, jt::SPQuatFloating, rot::Rotation{3})
T = eltype(rot)
spq = convert(ModifiedRodriguesParam{T}, rot)
q[1] = spq.x
q[2] = spq.y
q[3] = spq.z
nothing
end
@propagate_inbounds function set_rotation!(q::AbstractVector, jt::SPQuatFloating, rot::AbstractVector)
q[1] = rot[1]
q[2] = rot[2]
q[3] = rot[3]
nothing
end
@propagate_inbounds translation(jt::SPQuatFloating, q::AbstractVector) = SVector(q[4], q[5], q[6])
@propagate_inbounds set_translation!(q::AbstractVector, jt::SPQuatFloating, trans::AbstractVector) = copyto!(q, 4, trans, 1, 3)
@propagate_inbounds angular_velocity(jt::SPQuatFloating, v::AbstractVector) = SVector(v[1], v[2], v[3])
@propagate_inbounds set_angular_velocity!(v::AbstractVector, jt::SPQuatFloating, ω::AbstractVector) = copyto!(v, 1, ω, 1, 3)
@propagate_inbounds linear_velocity(jt::SPQuatFloating, v::AbstractVector) = SVector(v[4], v[5], v[6])
@propagate_inbounds set_linear_velocity!(v::AbstractVector, jt::SPQuatFloating, ν::AbstractVector) = copyto!(v, 4, ν, 1, 3)
@inline function set_configuration!(q::AbstractVector, joint::Joint{<:Any, <:SPQuatFloating}, config::Transform3D)
@boundscheck check_num_positions(joint, q)
@framecheck config.from frame_after(joint)
@framecheck config.to frame_before(joint)
@inbounds set_rotation!(q, joint_type(joint), rotation(config))
@inbounds set_translation!(q, joint_type(joint), translation(config))
q
end
@propagate_inbounds function set_velocity!(v::AbstractVector, joint::Joint{<:Any, <:SPQuatFloating}, twist::Twist)
@boundscheck check_num_velocities(joint, v)
@framecheck twist.base frame_before(joint)
@framecheck twist.body frame_after(joint)
@framecheck twist.frame frame_after(joint)
@inbounds set_angular_velocity!(v, joint_type(joint), angular(twist))
@inbounds set_linear_velocity!(v, joint_type(joint), linear(twist))
v
end
@propagate_inbounds function joint_transform(jt::SPQuatFloating, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
Transform3D(frame_after, frame_before, rotation(jt, q), translation(jt, q))
end
@inline function motion_subspace(jt::SPQuatFloating, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector)
S = promote_eltype(jt, q)
angular = hcat(one(SMatrix{3, 3, S}), zero(SMatrix{3, 3, S}))
linear = hcat(zero(SMatrix{3, 3, S}), one(SMatrix{3, 3, S}))
GeometricJacobian(frame_after, frame_before, frame_after, angular, linear)
end
@inline function constraint_wrench_subspace(jt::SPQuatFloating, joint_transform::Transform3D)
S = promote_eltype(jt, joint_transform)
WrenchMatrix(joint_transform.from, zero(SMatrix{3, 0, S}), zero(SMatrix{3, 0, S}))
end
@propagate_inbounds function bias_acceleration(jt::SPQuatFloating, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(jt, q, v)
zero(SpatialAcceleration{S}, frame_after, frame_before, frame_after)
end
@propagate_inbounds function configuration_derivative_to_velocity!(v::AbstractVector, jt::SPQuatFloating,
q::AbstractVector, q̇::AbstractVector)
spq = rotation(jt, q)
spqdot = SVector(q̇[1], q̇[2], q̇[3])
ω = angular_velocity_in_body(spq, spqdot)
posdot = translation(jt, q̇)
linear = inv(spq) * posdot
set_angular_velocity!(v, jt, ω)
set_linear_velocity!(v, jt, linear)
nothing
end
@propagate_inbounds function configuration_derivative_to_velocity_adjoint!(fq, jt::SPQuatFloating,
q::AbstractVector, fv)
spq = ModifiedRodriguesParam(q[1], q[2], q[3])
rot = velocity_jacobian(angular_velocity_in_body, spq)' * angular_velocity(jt, fv)
trans = spq * linear_velocity(jt, fv)
set_rotation!(fq, jt, rot)
set_translation!(fq, jt, trans)
nothing
end
@propagate_inbounds function velocity_to_configuration_derivative!(q̇::AbstractVector, jt::SPQuatFloating,
q::AbstractVector, v::AbstractVector)
spq = rotation(jt, q)
ω = angular_velocity(jt, v)
linear = linear_velocity(jt, v)
spqdot = spquat_derivative(spq, ω)
transdot = spq * linear
set_rotation!(q̇, jt, spqdot)
set_translation!(q̇, jt, transdot)
nothing
end
@propagate_inbounds function velocity_to_configuration_derivative_jacobian(jt::SPQuatFloating,
q::AbstractVector)
spq = rotation(jt, q)
vj = velocity_jacobian(spquat_derivative, spq)
R = RotMatrix(spq)
# TODO: use hvcat once it's as fast
@SMatrix(
[vj[1] vj[4] vj[7] 0 0 0;
vj[2] vj[5] vj[8] 0 0 0;
vj[3] vj[6] vj[9] 0 0 0;
0 0 0 R[1] R[4] R[7];
0 0 0 R[2] R[5] R[8];
0 0 0 R[3] R[6] R[9]])
end
@propagate_inbounds function configuration_derivative_to_velocity_jacobian(jt::SPQuatFloating,
q::AbstractVector)
spq = rotation(jt, q)
vj = velocity_jacobian(angular_velocity_in_body, spq)
R_inv = RotMatrix(inv(spq))
# TODO: use hvcat once it's as fast
@SMatrix(
[vj[1] vj[4] vj[7] 0 0 0;
vj[2] vj[5] vj[8] 0 0 0;
vj[3] vj[6] vj[9] 0 0 0;
0 0 0 R_inv[1] R_inv[4] R_inv[7];
0 0 0 R_inv[2] R_inv[5] R_inv[8];
0 0 0 R_inv[3] R_inv[6] R_inv[9]])
end
@propagate_inbounds function zero_configuration!(q::AbstractVector, jt::SPQuatFloating)
T = eltype(q)
set_rotation!(q, jt, one(ModifiedRodriguesParam{T}))
set_translation!(q, jt, zero(SVector{3, T}))
nothing
end
@propagate_inbounds function rand_configuration!(q::AbstractVector, jt::SPQuatFloating)
T = eltype(q)
set_rotation!(q, jt, rand(ModifiedRodriguesParam{T}))
set_translation!(q, jt, rand(SVector{3, T}) .- 0.5)
nothing
end
@propagate_inbounds function joint_twist(jt::SPQuatFloating, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector)
S = promote_eltype(jt, q, v)
angular = convert(SVector{3, S}, angular_velocity(jt, v))
linear = convert(SVector{3, S}, linear_velocity(jt, v))
Twist(frame_after, frame_before, frame_after, angular, linear)
end
@propagate_inbounds function joint_spatial_acceleration(jt::SPQuatFloating, frame_after::CartesianFrame3D, frame_before::CartesianFrame3D,
q::AbstractVector, v::AbstractVector, vd::AbstractVector)
S = promote_eltype(jt, q, v, vd)
angular = convert(SVector{3, S}, angular_velocity(jt, vd))
linear = convert(SVector{3, S}, linear_velocity(jt, vd))
SpatialAcceleration(frame_after, frame_before, frame_after, angular, linear)
end
@propagate_inbounds function joint_torque!(τ::AbstractVector, jt::SPQuatFloating, q::AbstractVector, joint_wrench::Wrench)
set_angular_velocity!(τ, jt, angular(joint_wrench))
set_linear_velocity!(τ, jt, linear(joint_wrench))
nothing
end
@propagate_inbounds function principal_value!(q::AbstractVector, jt::SPQuatFloating)
spq = rotation(jt, q)
set_rotation!(q, jt, principal_value(spq))
nothing
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 1155 | module Spatial
# types
export
CartesianFrame3D,
Transform3D,
FreeVector3D,
Point3D,
GeometricJacobian,
PointJacobian,
Twist,
SpatialAcceleration,
MomentumMatrix, # TODO: consider combining with WrenchMatrix
WrenchMatrix, # TODO: consider combining with MomentumMatrix
Momentum,
Wrench,
SpatialInertia
# functions
export
transform,
rotation,
translation,
angular,
linear,
point_velocity,
point_acceleration,
change_base,
log_with_time_derivative,
center_of_mass,
newton_euler,
torque,
torque!,
kinetic_energy,
rotation_vector_rate,
quaternion_derivative,
spquat_derivative,
angular_velocity_in_body,
velocity_jacobian,
linearized_rodrigues_vec
# macros
export
@framecheck
using LinearAlgebra
using Random
using StaticArrays
using Rotations
using DocStringExtensions
using Base: promote_eltype
include("frame.jl")
include("util.jl")
include("transform3d.jl")
include("threevectors.jl")
include("spatialmotion.jl")
include("spatialforce.jl")
include("motion_force_interaction.jl")
include("common.jl")
end # module
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 2092 | for SpatialVector in (:Twist, :SpatialAcceleration, :Momentum, :Wrench)
@eval begin
# Basics
Base.eltype(::Type{$SpatialVector{T}}) where {T} = T
angular(v::$SpatialVector) = v.angular
linear(v::$SpatialVector) = v.linear
# Construct/convert given another spatial vector
$SpatialVector{T}(v::$SpatialVector{T}) where {T} = v
Base.convert(::Type{V}, v::$SpatialVector) where {V<:$SpatialVector} = V(v)
# Construct/convert to SVector
StaticArrays.SVector{6, T}(v::$SpatialVector) where {T} = convert(SVector{6, T}, [angular(v); linear(v)])
StaticArrays.SVector{6}(v::$SpatialVector{X}) where {X} = SVector{6, X}(v)
StaticArrays.SVector(v::$SpatialVector) = SVector{6}(v)
StaticArrays.SArray(v::$SpatialVector) = SVector(v)
Base.convert(::Type{SA}, v::$SpatialVector) where {SA <: SArray} = SA(v)
function Base.Array(v::$SpatialVector)
Base.depwarn("Array(v) has been deprecated. Please use SVector(v) instead.", :Array)
SVector(v)
end
end
end
for SpatialMatrix in (:GeometricJacobian, :MomentumMatrix, :WrenchMatrix)
@eval begin
# Basics
Base.eltype(::Type{$SpatialMatrix{A}}) where {T, A<:AbstractMatrix{T}} = T
Base.size(m::$SpatialMatrix) = (6, size(angular(m), 2))
Base.size(m::$SpatialMatrix, d) = size(m)[d]
Base.transpose(m::$SpatialMatrix) = Transpose(m)
angular(m::$SpatialMatrix) = m.angular
linear(m::$SpatialMatrix) = m.linear
# Construct/convert given another spatial matrix
$SpatialMatrix(m::$SpatialMatrix{A}) where {A} = SpatialMatrix{A}(m)
Base.convert(::Type{$SpatialMatrix{A}}, m::$SpatialMatrix) where {A} = $SpatialMatrix{A}(m)
Base.convert(::Type{$SpatialMatrix{A}}, m::$SpatialMatrix{A}) where {A} = m
# Construct/convert to Matrix
(::Type{A})(m::$SpatialMatrix) where {A<:Array} = convert(A, [angular(m); linear(m)])
Base.convert(::Type{A}, m::$SpatialMatrix) where {A<:Array} = A(m)
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 2884 | # NOTE: The `next_frame_id' and `frame_names' globals below are a hack, but they
# enable a significant reduction in allocations.
# Storing the names of all CartesianFrame3D objects in this frame_names vector instead
# of in the CartesianFrame3D and having CartesianFrame3D only contain an integer ID
# makes CartesianFrame3D an isbits (pointer free) type.
# This in turn makes it so that a lot of the geometry/dynamics types become isbits
# types, making them stack allocated and allowing all sorts of
# optimizations.
const next_frame_id = Ref(0)
const frame_names = Dict{Int64, String}()
"""
$(TYPEDEF)
A `CartesianFrame3D` identifies a three-dimensional Cartesian coordinate system.
`CartesianFrame3D`s are typically used to annotate the frame in which certain
quantities are expressed.
"""
struct CartesianFrame3D
id::Int64
@doc """
$(SIGNATURES)
Create a `CartesianFrame3D` with the given name.
""" ->
function CartesianFrame3D(name::String)
ret = new(next_frame_id.x)
next_frame_id.x = Base.Checked.checked_add(next_frame_id.x, 1)
frame_names[ret.id] = name
ret
end
@doc """
$(SIGNATURES)
Create an anonymous `CartesianFrame3D`.
""" ->
function CartesianFrame3D()
ret = new(next_frame_id.x)
next_frame_id.x = Base.Checked.checked_add(next_frame_id.x, 1)
ret
end
end
Base.print(io::IO, frame::CartesianFrame3D) = print(io, get(frame_names, frame.id, "anonymous"))
name_and_id(frame::CartesianFrame3D) = "\"$frame\" (id = $(frame.id))"
Base.show(io::IO, frame::CartesianFrame3D) = print(io, "CartesianFrame3D: $(name_and_id(frame))")
Base.in(x::CartesianFrame3D, y::CartesianFrame3D) = x == y
"""
$(SIGNATURES)
Check that `CartesianFrame3D` `f1` is one of `f2s`.
Note that if `f2s` is a `CartesianFrame3D`, then `f1` and `f2s` are simply checked for equality.
Throws an `ArgumentError` if `f1` is not among `f2s` when bounds checks
are enabled. `@framecheck` is a no-op when bounds checks are disabled.
"""
macro framecheck(f1, f2s)
quote
@boundscheck begin
$(esc(f1)) ∉ $(esc(f2s)) && framecheck_fail($(QuoteNode(f1)), $(QuoteNode(f2s)), $(esc(f1)), $(esc(f2s)))
end
end
end
framecheck_string(expr, frame::CartesianFrame3D) = "$expr: $(name_and_id(frame))"
@noinline function framecheck_fail(expr1, expr2, f1::CartesianFrame3D, f2::CartesianFrame3D)
throw(ArgumentError("$(framecheck_string(expr1, f1)) ≠ $(framecheck_string(expr2, f2))"))
end
@noinline function framecheck_fail(expr1, expr2, f1::CartesianFrame3D, f2s)
buf = IOBuffer()
print(buf, '(')
first = true
for f2 in f2s
first || print(buf, ", ")
first = false
print(buf, name_and_id(f2))
end
print(buf, ')')
throw(ArgumentError("$(framecheck_string(expr1, f1)) ∉ $(expr2): $(String(take!(buf)))"))
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 13162 | """
$(TYPEDEF)
A spatial inertia, or inertia matrix, represents the mass distribution of a
rigid body.
A spatial inertia expressed in frame ``i`` is defined as:
```math
I^i =
\\int_{B}\\rho\\left(x\\right)\\left[\\begin{array}{cc}
\\hat{p}^{T}\\left(x\\right)\\hat{p}\\left(x\\right) & \\hat{p}\\left(x\\right)\\\\
\\hat{p}^{T}\\left(x\\right) & I
\\end{array}\\right]dx=\\left[\\begin{array}{cc}
J & \\hat{c}\\\\
\\hat{c}^{T} & mI
\\end{array}\\right]
```
where ``\\rho(x)`` is the density of point ``x``, and ``p(x)`` are the coordinates
of point ``x`` expressed in frame ``i``.
``J`` is the mass moment of inertia, ``m`` is the total mass, and ``c`` is the
'cross part', center of mass position scaled by ``m``.
!!! warning
The `moment` field of a `SpatialInertia` is the moment of inertia **about the origin of its `frame`**,
not about the center of mass.
"""
struct SpatialInertia{T}
frame::CartesianFrame3D
moment::SMatrix{3, 3, T, 9}
cross_part::SVector{3, T} # mass times center of mass
mass::T
@inline function SpatialInertia{T}(frame::CartesianFrame3D, moment::AbstractMatrix, cross_part::AbstractVector, mass) where T
new{T}(frame, moment, cross_part, mass)
end
end
"""
$(SIGNATURES)
Construct a `SpatialInertia` by specifying:
* `frame`: the frame in which the spatial inertia is expressed.
* `moment`: the moment of inertia expressed in `frame` (i.e., in `frame`'s axes and about the origin of `frame`).
* `cross_part`: the center of mass expressed in `frame`, multiplied by the mass.
* `mass`: the total mass.
For more convenient construction of `SpatialInertia`s, consider using the keyword argument constructor instead.
"""
@inline function SpatialInertia(frame::CartesianFrame3D, moment::AbstractMatrix, cross_part::AbstractVector, mass)
T = promote_eltype(moment, cross_part, mass)
SpatialInertia{T}(frame, moment, cross_part, mass)
end
"""
$(SIGNATURES)
Construct a `SpatialInertia` by specifying:
* `frame`: the frame in which the spatial inertia is expressed.
* one of:
* `moment`: the moment of inertia expressed in `frame` (i.e., about the origin of `frame` and in `frame`'s axes).
* `moment_about_com`: the moment of inertia about the center of mass, in `frame`'s axes.
* `com`: the center of mass expressed in `frame`.
* `mass`: the total mass.
The `com` and `mass` keyword arguments are required, as well as exactly one of `moment` and `moment_about_com`
"""
@inline function SpatialInertia(frame::CartesianFrame3D;
moment::Union{AbstractMatrix, Nothing}=nothing,
moment_about_com::Union{AbstractMatrix, Nothing}=nothing,
com::AbstractVector,
mass)
if !((moment isa AbstractMatrix) ⊻ (moment_about_com isa AbstractMatrix))
throw(ArgumentError("Exactly one of `moment` or `moment_about_com` is required."))
end
_com = SVector{3}(com)
if moment !== nothing
_moment = moment
else
_moment = SMatrix{3, 3}(moment_about_com)
_moment -= mass * hat_squared(_com) # parallel axis theorem
end
SpatialInertia(frame, _moment, mass * _com, mass)
end
# SpatialInertia-specific functions
Base.eltype(::Type{SpatialInertia{T}}) where {T} = T
# Construct/convert given another SpatialInertia
SpatialInertia{T}(inertia::SpatialInertia{T}) where {T} = inertia
@inline function SpatialInertia{T}(inertia::SpatialInertia) where {T}
SpatialInertia{T}(inertia.frame,
SMatrix{3, 3, T}(inertia.moment),
SVector{3, T}(inertia.cross_part),
T(inertia.mass))
end
@inline Base.convert(::Type{S}, inertia::SpatialInertia) where {S<:SpatialInertia} = S(inertia)
# Construct/convert to SMatrix
function StaticArrays.SMatrix{6, 6, T, 36}(inertia::SpatialInertia) where {T}
J = SMatrix{3, 3, T}(inertia.moment)
C = hat(SVector{3, T}(inertia.cross_part))
m = T(inertia.mass)
[[J C]; [C' SMatrix{3, 3}(m * I)]]
end
StaticArrays.SMatrix{6, 6, T}(inertia::SpatialInertia) where {T} = SMatrix{6, 6, T, 36}(inertia)
StaticArrays.SMatrix{6, 6}(inertia::SpatialInertia{T}) where {T} = SMatrix{6, 6, T}(inertia)
StaticArrays.SMatrix(inertia::SpatialInertia) = SMatrix{6, 6}(inertia)
StaticArrays.SArray(inertia::SpatialInertia) = SMatrix(inertia)
Base.convert(::Type{A}, inertia::SpatialInertia) where {A<:SArray} = A(inertia)
function Base.convert(::Type{Matrix}, inertia::SpatialInertia)
Base.depwarn("This convert method is deprecated. Please use `Matrix(SMatrix(inertia))` instead or
reconsider whether conversion to Matrix is necessary.", :convert)
Matrix(SMatrix(inertia))
end
function Base.Array(inertia::SpatialInertia)
Base.depwarn("This Array constructor is deprecated. Please use `Matrix(SMatrix(inertia))` instead or
reconsider whether conversion to Matrix is necessary.", :Array)
Matrix(SMatrix(inertia))
end
"""
$(SIGNATURES)
Return the center of mass of the `SpatialInertia` as a [`Point3D`](@ref).
"""
center_of_mass(inertia::SpatialInertia) = Point3D(inertia.frame, inertia.cross_part / inertia.mass)
function Base.show(io::IO, inertia::SpatialInertia)
println(io, "SpatialInertia expressed in $(name_and_id(inertia.frame)):")
println(io, "mass: $(inertia.mass)")
println(io, "center of mass: $(center_of_mass(inertia))")
print(io, "moment of inertia (about origin of $(name_and_id(inertia.frame)):\n$(inertia.moment)")
end
Base.zero(::Type{SpatialInertia{T}}, frame::CartesianFrame3D) where {T} = SpatialInertia(frame, zero(SMatrix{3, 3, T}), zero(SVector{3, T}), zero(T))
Base.zero(inertia::SpatialInertia) = zero(typeof(inertia), inertia.frame)
function Base.isapprox(x::SpatialInertia, y::SpatialInertia; atol = 1e-12)
x.frame == y.frame && isapprox(x.moment, y.moment; atol = atol) && isapprox(x.cross_part, y.cross_part; atol = atol) && isapprox(x.mass, y.mass; atol = atol)
end
@inline function Base.:+(inertia1::SpatialInertia, inertia2::SpatialInertia)
@framecheck(inertia1.frame, inertia2.frame)
SpatialInertia(inertia1.frame,
inertia1.moment + inertia2.moment,
inertia1.cross_part + inertia2.cross_part,
inertia1.mass + inertia2.mass)
end
"""
$(SIGNATURES)
Transform the `SpatialInertia` to a different frame.
"""
@inline function transform(inertia::SpatialInertia, t::Transform3D)
@framecheck(t.from, inertia.frame)
J = inertia.moment
mc = inertia.cross_part
m = inertia.mass
R = rotation(t)
p = translation(t)
Rmc = R * mc
mp = m * p
mcnew = Rmc + mp
X = Rmc * transpose(p)
Y = X + transpose(X) + mp * transpose(p)
Jnew = R * J * transpose(R) - Y + tr(Y) * I
SpatialInertia(t.to, Jnew, mcnew, m)
end
function Random.rand(::Type{<:SpatialInertia{T}}, frame::CartesianFrame3D) where {T}
# Try to generate a random but physical moment of inertia by constructing it from its eigendecomposition.
# Create random principal moments of inertia (about the center of mass).
# Scale the inertias to make the length scale of the equivalent inertial ellipsoid roughly ~1 unit
ixx = rand(T) / 10.
iyy = rand(T) / 10.
# Ensure that the principal moments of inertia obey the triangle inequalities:
# http://www.mathworks.com/help/physmod/sm/mech/vis/about-body-color-and-geometry.html
lb = abs(ixx - iyy)
ub = ixx + iyy
izz = rand(T) * (ub - lb) + lb
# Randomly rotate the principal axes.
R = rand(RotMatrix3{T})
moment_about_com = R * Diagonal(SVector(ixx, iyy, izz)) * R'
SpatialInertia(frame, moment_about_com=moment_about_com, com=rand(SVector{3, T}) .- T(0.5), mass=rand(T))
end
"""
$(SIGNATURES)
Compute the mechanical power associated with a pairing of a wrench and a twist.
"""
LinearAlgebra.dot(w::Wrench, t::Twist) = begin @framecheck(w.frame, t.frame); dot(angular(w), angular(t)) + dot(linear(w), linear(t)) end
LinearAlgebra.dot(t::Twist, w::Wrench) = dot(w, t)
for (ForceSpaceMatrix, ForceSpaceElement) in (:MomentumMatrix => :Momentum, :MomentumMatrix => :Wrench, :WrenchMatrix => :Wrench)
# MomentumMatrix * velocity vector --> Momentum
# MomentumMatrix * acceleration vector --> Wrench
# WrenchMatrix * dimensionless multipliers --> Wrench
@eval function $ForceSpaceElement(mat::$ForceSpaceMatrix, x::AbstractVector)
$ForceSpaceElement(mat.frame, SVector{3}(angular(mat) * x), SVector{3}(linear(mat) * x))
end
end
@inline function Base.:*(inertia::SpatialInertia, twist::Twist)
@framecheck(inertia.frame, twist.frame)
ang, lin = mul_inertia(inertia.moment, inertia.cross_part, inertia.mass, angular(twist), linear(twist))
Momentum(inertia.frame, ang, lin)
end
@inline function Base.:*(inertia::SpatialInertia, jac::GeometricJacobian)
@framecheck(inertia.frame, jac.frame)
Jω = angular(jac)
Jv = linear(jac)
J = inertia.moment
m = inertia.mass
c = inertia.cross_part
ang = J * Jω + colwise(×, c, Jv)
lin = m * Jv - colwise(×, c, Jω)
MomentumMatrix(inertia.frame, ang, lin)
end
"""
$(SIGNATURES)
Apply the Newton-Euler equations to find the external wrench required to
make a body with spatial inertia ``I``, which has twist ``T`` with respect
to an inertial frame, achieve spatial acceleration ``\\dot{T}``.
This wrench is also equal to the rate of change of momentum of the body.
"""
@inline function newton_euler(inertia::SpatialInertia, spatial_accel::SpatialAcceleration, twist::Twist)
I = inertia
T = twist
Ṫ = spatial_accel
body = Ṫ.body
base = Ṫ.base # TODO: should assert that this is an inertial frame somehow
frame = Ṫ.frame
@framecheck(I.frame, frame)
@framecheck(T.body, body)
@framecheck(T.base, base)
@framecheck(T.frame, frame)
ang, lin = mul_inertia(I.moment, I.cross_part, I.mass, angular(Ṫ), linear(Ṫ))
angular_momentum, linear_momentum = mul_inertia(I.moment, I.cross_part, I.mass, angular(T), linear(T))
ang += angular(T) × angular_momentum + linear(T) × linear_momentum
lin += angular(T) × linear_momentum
Wrench(frame, ang, lin)
end
@inline torque!(τ::AbstractVector, jac::GeometricJacobian, wrench::Wrench) = mul!(τ, transpose(jac), wrench)
@inline function torque(jac::GeometricJacobian, wrench::Wrench)
T = promote_eltype(jac, wrench)
τ = Vector{T}(undef, size(jac, 2))
torque!(τ, jac, wrench)
τ
end
for (MatrixType, VectorType) in (:WrenchMatrix => :(Union{Twist, SpatialAcceleration}), :GeometricJacobian => :(Union{Momentum, Wrench}))
@eval begin
@inline function LinearAlgebra.mul!(
dest::AbstractVector{T},
transposed_mat::LinearAlgebra.Transpose{<:Any, <:$MatrixType},
vec::$VectorType) where T
mat = parent(transposed_mat)
@boundscheck length(dest) == size(mat, 2) || throw(DimensionMismatch())
@framecheck mat.frame vec.frame
mat_angular = angular(mat)
mat_linear = linear(mat)
vec_angular = angular(vec)
vec_linear = linear(vec)
@inbounds begin
@simd for row in eachindex(dest)
dest[row] =
mat_angular[1, row] * vec_angular[1] +
mat_angular[2, row] * vec_angular[2] +
mat_angular[3, row] * vec_angular[3]
end
@simd for row in eachindex(dest)
dest[row] +=
mat_linear[1, row] * vec_linear[1] +
mat_linear[2, row] * vec_linear[2] +
mat_linear[3, row] * vec_linear[3]
end
end
dest
end
function Base.:*(transposed_mat::LinearAlgebra.Transpose{<:Any, <:$MatrixType}, vec::$VectorType)
mat = parent(transposed_mat)
@framecheck mat.frame vec.frame
transpose(angular(mat)) * angular(vec) + transpose(linear(mat)) * linear(vec)
end
end
end
for ForceSpaceMatrix in (:MomentumMatrix, :WrenchMatrix)
for (A, B) in ((ForceSpaceMatrix, :GeometricJacobian), (:GeometricJacobian, ForceSpaceMatrix))
@eval begin
function Base.:*(at::LinearAlgebra.Transpose{<:Any, <:$A}, b::$B)
a = parent(at)
@framecheck a.frame b.frame
transpose(angular(a)) * angular(b) + transpose(linear(a)) * linear(b)
end
function Base.:*(a::$A, bt::LinearAlgebra.Transpose{<:Any, <:$B})
b = parent(bt)
@framecheck a.frame b.frame
angular(a) * transpose(angular(b)) + linear(a) * transpose(linear(b))
end
end
end
end
"""
$(SIGNATURES)
Compute the kinetic energy of a body with spatial inertia ``I``, which has
twist ``T`` with respect to an inertial frame.
"""
@inline function kinetic_energy(inertia::SpatialInertia, twist::Twist)
@framecheck(inertia.frame, twist.frame)
# TODO: should assert that twist.base is an inertial frame somehow
ω = angular(twist)
v = linear(twist)
J = inertia.moment
c = inertia.cross_part
m = inertia.mass
(ω ⋅ (J * ω) + v ⋅ (m * v + 2 * (ω × c))) / 2
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 6634 | for ForceSpaceMatrix in (:MomentumMatrix, :WrenchMatrix)
@eval struct $ForceSpaceMatrix{A<:AbstractMatrix}
frame::CartesianFrame3D
angular::A
linear::A
@inline function $ForceSpaceMatrix{A}(frame::CartesianFrame3D, angular::AbstractMatrix, linear::AbstractMatrix) where {A<:AbstractMatrix}
@boundscheck size(angular, 1) == 3 || throw(DimensionMismatch())
@boundscheck size(linear, 1) == 3 || throw(DimensionMismatch())
@boundscheck size(angular, 2) == size(linear, 2) || throw(DimensionMismatch())
new{A}(frame, angular, linear)
end
end
end
"""
$(TYPEDEF)
A momentum matrix maps a joint velocity vector to momentum.
This is a slight generalization of the centroidal momentum matrix
(Orin, Goswami, "Centroidal momentum matrix of a humanoid robot: Structure and properties.")
in that the matrix (and hence the corresponding total momentum) need not be
expressed in a centroidal frame.
"""
MomentumMatrix
for ForceSpaceMatrix in (:MomentumMatrix, :WrenchMatrix)
@eval begin
@inline function $ForceSpaceMatrix(frame::CartesianFrame3D, angular::A, linear::A) where {A<:AbstractMatrix}
$ForceSpaceMatrix{A}(frame, angular, linear)
end
@inline function $ForceSpaceMatrix(frame::CartesianFrame3D, angular::A1, linear::A2) where {A1<:AbstractMatrix, A2<:AbstractMatrix}
$ForceSpaceMatrix(frame, promote(angular, linear)...)
end
@inline function $ForceSpaceMatrix{A}(mat::$ForceSpaceMatrix) where A
$ForceSpaceMatrix(mat.frame, A(angular(mat)), A(linear(mat)))
end
function Base.show(io::IO, m::$ForceSpaceMatrix)
print(io, "$($(string(ForceSpaceMatrix))) expressed in \"$(string(m.frame))\":\n$(Array(m))")
end
@inline function transform(mat::$ForceSpaceMatrix, tf::Transform3D)
@framecheck(mat.frame, tf.from)
R = rotation(tf)
Av = R * linear(mat)
Aω = R * angular(mat) + colwise(×, translation(tf), Av)
$ForceSpaceMatrix(tf.to, Aω, Av)
end
end
end
"""
$(TYPEDEF)
A `Momentum` is the product of a `SpatialInertia` and a `Twist`, i.e.
```math
h^i =
\\left(\\begin{array}{c}
k^{i}\\\\
l^{i}
\\end{array}\\right) =
I^i T^{i, j}_k
```
where ``I^i`` is the spatial inertia of a given body expressed in frame ``i``,
and ``T^{i, j}_k`` is the twist of frame ``k`` (attached to the body) with
respect to inertial frame ``j``, expressed in frame ``i``. ``k^i`` is the
angular momentum and ``l^i`` is the linear momentum.
"""
struct Momentum{T}
frame::CartesianFrame3D
angular::SVector{3, T}
linear::SVector{3, T}
@inline function Momentum{T}(frame::CartesianFrame3D, angular::AbstractVector, linear::AbstractVector) where T
new{T}(frame, angular, linear)
end
end
"""
$(TYPEDEF)
A wrench represents a system of forces.
The wrench ``w^i`` expressed in frame ``i`` is defined as
```math
w^{i} =
\\left(\\begin{array}{c}
\\tau^{i}\\\\
f^{i}
\\end{array}\\right) =
\\sum_{j}\\left(\\begin{array}{c}
r_{j}^{i}\\times f_{j}^{i}\\\\
f_{j}^{i}
\\end{array}\\right)
```
where the ``f_{j}^{i}`` are forces expressed in frame ``i``, exerted at
positions ``r_{j}^{i}``. ``\\tau^i`` is the total torque and ``f^i`` is the
total force.
"""
struct Wrench{T}
frame::CartesianFrame3D
angular::SVector{3, T}
linear::SVector{3, T}
@inline function Wrench{T}(frame::CartesianFrame3D, angular::AbstractVector, linear::AbstractVector) where T
new{T}(frame, angular, linear)
end
end
for ForceSpaceElement in (:Momentum, :Wrench)
@eval begin
# Construct with possibly eltype-heterogeneous inputs
@inline function $ForceSpaceElement(frame::CartesianFrame3D, angular::AbstractVector, linear::AbstractVector)
T = promote_eltype(angular, linear)
$ForceSpaceElement{T}(frame, angular, linear)
end
"""
$(SIGNATURES)
Create a $($(string(ForceSpaceElement))) given the angular and linear
components, which should be expressed in the same frame.
"""
function $ForceSpaceElement(angular::FreeVector3D, linear::FreeVector3D)
@framecheck angular.frame linear.frame
$ForceSpaceElement(angular.frame, angular.v, linear.v)
end
function Base.show(io::IO, f::$ForceSpaceElement)
print(io, "$($(string(ForceSpaceElement))) expressed in \"$(string(f.frame))\":\nangular: $(angular(f)), linear: $(linear(f))")
end
function Base.zero(::Type{$ForceSpaceElement{T}}, frame::CartesianFrame3D) where {T}
$ForceSpaceElement(frame, zero(SVector{3, T}), zero(SVector{3, T}))
end
Base.zero(f::$ForceSpaceElement) = zero(typeof(f), f.frame)
function Random.rand(::Type{$ForceSpaceElement{T}}, frame::CartesianFrame3D) where {T}
$ForceSpaceElement(frame, rand(SVector{3, T}), rand(SVector{3, T}))
end
"""
$(SIGNATURES)
Transform the $($(string(ForceSpaceElement))) to a different frame.
"""
@inline function transform(f::$ForceSpaceElement, tf::Transform3D)
@framecheck(f.frame, tf.from)
rot = rotation(tf)
lin = rot * linear(f)
ang = rot * angular(f) + translation(tf) × lin
$ForceSpaceElement(tf.to, ang, lin)
end
@inline function Base.:+(f1::$ForceSpaceElement, f2::$ForceSpaceElement)
@framecheck(f1.frame, f2.frame)
$ForceSpaceElement(f1.frame, angular(f1) + angular(f2), linear(f1) + linear(f2))
end
@inline function Base.:-(f1::$ForceSpaceElement, f2::$ForceSpaceElement)
@framecheck(f1.frame, f2.frame)
$ForceSpaceElement(f1.frame, angular(f1) - angular(f2), linear(f1) - linear(f2))
end
@inline Base.:-(f::$ForceSpaceElement) = $ForceSpaceElement(f.frame, -angular(f), -linear(f))
function Base.isapprox(x::$ForceSpaceElement, y::$ForceSpaceElement; atol = 1e-12)
x.frame == y.frame && isapprox(angular(x), angular(y), atol = atol) && isapprox(linear(x), linear(y), atol = atol)
end
end
end
# Wrench-specific functions
"""
$(SIGNATURES)
Create a Wrench from a force, ``f``, and the application point of the force, ``r``.
The torque part of the wrench will be computed as ``r \\times f``. The force
and the application point should be expressed in the same frame.
"""
Wrench(application_point::Point3D, force::FreeVector3D) = Wrench(application_point × force, force)
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 14857 | """
$(TYPEDEF)
A geometric Jacobian (also known as basic, or spatial Jacobian) maps a vector
of joint velocities to a twist.
"""
struct GeometricJacobian{A<:AbstractMatrix}
body::CartesianFrame3D
base::CartesianFrame3D
frame::CartesianFrame3D
angular::A
linear::A
@inline function GeometricJacobian{A}(
body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::AbstractMatrix, linear::AbstractMatrix) where A<:AbstractMatrix
@boundscheck size(angular, 1) == 3 || throw(DimensionMismatch())
@boundscheck size(linear, 1) == 3 || throw(DimensionMismatch())
@boundscheck size(angular, 2) == size(linear, 2) || throw(DimensionMismatch())
new{A}(body, base, frame, angular, linear)
end
end
# GeometricJacobian-specific functions
@inline function GeometricJacobian(
body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::A, linear::A) where {A<:AbstractMatrix}
GeometricJacobian{A}(body, base, frame, angular, linear)
end
@inline function GeometricJacobian(
body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::A1, linear::A2) where {A1<:AbstractMatrix, A2<:AbstractMatrix}
GeometricJacobian(body, base, frame, promote(angular, linear)...)
end
@inline function GeometricJacobian{A}(jac::GeometricJacobian) where A
GeometricJacobian(jac.body, jac.base, jac.frame, A(angular(jac)), A(linear(jac)))
end
change_base(jac::GeometricJacobian, base::CartesianFrame3D) = GeometricJacobian(jac.body, base, jac.frame, angular(jac), linear(jac))
Base.:-(jac::GeometricJacobian) = GeometricJacobian(jac.base, jac.body, jac.frame, -angular(jac), -linear(jac))
function Base.show(io::IO, jac::GeometricJacobian)
print(io, "GeometricJacobian: body: \"$(string(jac.body))\", base: \"$(string(jac.base))\", expressed in \"$(string(jac.frame))\":\n$(Array(jac))")
end
"""
$(SIGNATURES)
Transform the `GeometricJacobian` to a different frame.
"""
@inline function transform(jac::GeometricJacobian, tf::Transform3D)
@framecheck(jac.frame, tf.from)
R = rotation(tf)
ang = R * angular(jac)
lin = R * linear(jac) + colwise(×, translation(tf), ang)
GeometricJacobian(jac.body, jac.base, tf.to, ang, lin)
end
struct PointJacobian{M <: AbstractMatrix}
frame::CartesianFrame3D
J::M
end
Base.@deprecate PointJacobian{M}(J::M, frame::CartesianFrame3D) where {M<:AbstractMatrix} PointJacobian(frame, J)
Base.@deprecate PointJacobian(J::AbstractMatrix, frame::CartesianFrame3D) PointJacobian(frame, J)
# Construct/convert to Matrix
(::Type{A})(jac::PointJacobian) where {A<:Array} = A(jac.J)
Base.convert(::Type{A}, jac::PointJacobian) where {A<:Array} = A(jac)
Base.eltype(::Type{PointJacobian{M}}) where {M} = eltype(M)
Base.transpose(jac::PointJacobian) = Transpose(jac)
function point_velocity(jac::PointJacobian, v::AbstractVector)
FreeVector3D(jac.frame, jac.J * v)
end
function LinearAlgebra.mul!(τ::AbstractVector, jac_transpose::Transpose{<:Any, <:PointJacobian}, force::FreeVector3D)
jac = parent(jac_transpose)
@framecheck jac.frame force.frame
mul!(τ, transpose(jac.J), force.v)
end
function Base.:*(jac_transpose::Transpose{<:Any, <:PointJacobian}, force::FreeVector3D)
jac = parent(jac_transpose)
@framecheck jac.frame force.frame
transpose(jac.J) * force.v
end
"""
$(TYPEDEF)
A twist represents the relative angular and linear motion between two bodies.
The twist of frame ``j`` with respect to frame ``i``, expressed in frame ``k``
is defined as
```math
T_{j}^{k,i}=\\left(\\begin{array}{c}
\\omega_{j}^{k,i}\\\\
v_{j}^{k,i}
\\end{array}\\right)\\in\\mathbb{R}^{6}
```
such that
```math
\\left[\\begin{array}{cc}
\\hat{\\omega}_{j}^{k,i} & v_{j}^{k,i}\\\\
0 & 0
\\end{array}\\right]=H_{i}^{k}\\dot{H}_{j}^{i}H_{k}^{j}
```
where ``H^{\\beta}_{\\alpha}`` is the homogeneous transform from frame
``\\alpha`` to frame ``\\beta``, and ``\\hat{x}`` is the ``3 \\times 3`` skew
symmetric matrix that satisfies ``\\hat{x} y = x \\times y`` for all
``y \\in \\mathbb{R}^3``.
Here, ``\\omega_{j}^{k,i}`` is the angular part and ``v_{j}^{k,i}`` is the
linear part. Note that the linear part is not in general the same as the
linear velocity of the origin of frame ``j``.
"""
struct Twist{T}
body::CartesianFrame3D
base::CartesianFrame3D
frame::CartesianFrame3D
angular::SVector{3, T}
linear::SVector{3, T}
@inline function Twist{T}(body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::AbstractVector, linear::AbstractVector) where T
new{T}(body, base, frame, angular, linear)
end
end
"""
$(TYPEDEF)
A spatial acceleration is the time derivative of a twist.
See [`Twist`](@ref).
"""
struct SpatialAcceleration{T}
body::CartesianFrame3D
base::CartesianFrame3D
frame::CartesianFrame3D
angular::SVector{3, T}
linear::SVector{3, T}
@inline function SpatialAcceleration{T}(body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::AbstractVector, linear::AbstractVector) where T
new{T}(body, base, frame, angular, linear)
end
end
for MotionSpaceElement in (:Twist, :SpatialAcceleration)
@eval begin
# Construct with possibly eltype-heterogeneous inputs
@inline function $MotionSpaceElement(body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D,
angular::AbstractVector, linear::AbstractVector)
T = promote_eltype(angular, linear)
$MotionSpaceElement{T}(body, base, frame, angular, linear)
end
# Construct given FreeVector3Ds
function $MotionSpaceElement(body::CartesianFrame3D, base::CartesianFrame3D, angular::FreeVector3D, linear::FreeVector3D)
@framecheck angular.frame linear.frame
$MotionSpaceElement(body, base, angular.frame, angular.v, linear.v)
end
# Construct/convert given another $MotionSpaceElement
function $MotionSpaceElement{T}(m::$MotionSpaceElement) where T
$MotionSpaceElement(m.body, m.base, m.frame, SVector{3, T}(angular(m)), SVector{3, T}(linear(m)))
end
function Base.show(io::IO, m::$MotionSpaceElement)
print(io, "$($(string(MotionSpaceElement))) of \"$(string(m.body))\" w.r.t \"$(string(m.base))\" in \"$(string(m.frame))\":\nangular: $(angular(m)), linear: $(linear(m))")
end
function Base.isapprox(x::$MotionSpaceElement, y::$MotionSpaceElement; atol = 1e-12)
x.body == y.body && x.base == y.base && x.frame == y.frame && isapprox(angular(x), angular(y); atol = atol) && isapprox(linear(x), linear(y); atol = atol)
end
@inline function Base.:+(m1::$MotionSpaceElement, m2::$MotionSpaceElement)
@framecheck(m1.frame, m2.frame)
@boundscheck begin
((m1.body == m2.body && m1.base == m2.base) || m1.body == m2.base) || throw(ArgumentError("frame mismatch"))
end
$MotionSpaceElement(m2.body, m1.base, m1.frame, angular(m1) + angular(m2), linear(m1) + linear(m2))
end
Base.:-(m::$MotionSpaceElement) = $MotionSpaceElement(m.base, m.body, m.frame, -angular(m), -linear(m))
change_base(m::$MotionSpaceElement, base::CartesianFrame3D) = $MotionSpaceElement(m.body, base, m.frame, angular(m), linear(m))
function Base.zero(::Type{$MotionSpaceElement{T}}, body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D) where {T}
$MotionSpaceElement(body, base, frame, zero(SVector{3, T}), zero(SVector{3, T}))
end
Base.zero(m::$MotionSpaceElement) = zero(typeof(m), m.body, m.base, m.frame)
function Random.rand(::Type{$MotionSpaceElement{T}}, body::CartesianFrame3D, base::CartesianFrame3D, frame::CartesianFrame3D) where {T}
$MotionSpaceElement(body, base, frame, rand(SVector{3, T}), rand(SVector{3, T}))
end
# GeometricJacobian * velocity vector --> Twist
# GeometricJacobian * acceleration vector --> SpatialAcceleration
function $MotionSpaceElement(jac::GeometricJacobian, x::AbstractVector)
$MotionSpaceElement(jac.body, jac.base, jac.frame, convert(SVector{3}, angular(jac) * x), convert(SVector{3}, linear(jac) * x))
end
end
end
"""
$(SIGNATURES)
Transform the `Twist` to a different frame.
"""
@inline function transform(twist::Twist, tf::Transform3D)
@framecheck(twist.frame, tf.from)
ang, lin = transform_spatial_motion(angular(twist), linear(twist), rotation(tf), translation(tf))
Twist(twist.body, twist.base, tf.to, ang, lin)
end
# log(::Transform3D) + some extra outputs that make log_with_time_derivative faster
function _log(t::Transform3D)
# Proposition 2.9 in Murray et al, "A mathematical introduction to robotic manipulation."
rot = rotation(t)
p = translation(t)
# Rotational part of local coordinates is simply the rotation vector.
aa = AngleAxis(rot)
θ, axis = rotation_angle(aa), rotation_axis(aa)
ϕrot = θ * axis
# Translational part from Bullo and Murray, "Proportional derivative (PD) control on the Euclidean group.",
# (2.4) and (2.5), which provide a closed form solution of the inverse of the A matrix in proposition 2.9 of Murray et al.
θ_2 = θ / 2
sθ_2, cθ_2 = sincos(θ_2)
θ_squared = θ^2
if abs(rem2pi(θ, RoundNearest)) < eps(typeof(θ))
α = one(θ_2)
ϕtrans = p
else
α = θ_2 * cθ_2 / sθ_2
ϕtrans = p - ϕrot × p / 2 + (1 - α) / θ_squared * ϕrot × (ϕrot × p) # Bullo, Murray, (2.5)
end
ξ = Twist(t.from, t.to, t.to, ϕrot, ϕtrans) # twist in base frame; see section 4.3
ξ, θ, θ_squared, θ_2, sθ_2, cθ_2, α
end
"""
$(SIGNATURES)
Express a homogeneous transform in exponential coordinates centered around the
identity.
"""
function Base.log(t::Transform3D)
first(_log(t))
end
"""
$(SIGNATURES)
Compute exponential coordinates as well as their time derivatives in one shot.
This mainly exists because ForwardDiff won't work at the singularity of `log`.
It is also ~50% faster than ForwardDiff in this case.
"""
function log_with_time_derivative(t::Transform3D, twist::Twist)
# See Bullo and Murray, "Proportional derivative (PD) control on the Euclidean group.", Lemma 4.
# This is truely magic.
# Notation matches Bullo and Murray.
@framecheck(twist.body, t.from)
@framecheck(twist.base, t.to)
@framecheck(twist.frame, twist.body) # required by Lemma 4.
X, θ, θ_squared, θ_over_2, sθ_over_2, cθ_over_2, α = _log(t)
ψ = angular(X)
q = linear(X)
ω = angular(twist)
v = linear(twist)
ψ̇ = ω
q̇ = v
if abs(rem2pi(θ, RoundNearest)) > eps(typeof(θ))
β = θ_over_2^2 / sθ_over_2^2
A = (2 * (1 - α) + (α - β) / 2) / θ_squared
B = ((1 - α) + (α - β) / 2) / θ_squared^2
adψ̇, adq̇ = se3_commutator(ψ, q, ω, v)
ad2ψ̇, ad2q̇ = se3_commutator(ψ, q, adψ̇, adq̇)
ad3ψ̇, ad3q̇ = se3_commutator(ψ, q, ad2ψ̇, ad2q̇)
ad4ψ̇, ad4q̇ = se3_commutator(ψ, q, ad3ψ̇, ad3q̇)
ψ̇ += adψ̇ / 2 + A * ad2ψ̇ + B * ad4ψ̇
q̇ += adq̇ / 2 + A * ad2q̇ + B * ad4q̇
end
Ẋ = SpatialAcceleration(X.body, X.base, X.frame, ψ̇, q̇)
X, Ẋ
end
"""
$(SIGNATURES)
Convert exponential coordinates to a homogeneous transform.
"""
function Base.exp(twist::Twist)
# See Murray et al, "A mathematical introduction to robotic manipulation."
@framecheck(twist.frame, twist.base) # twist in base frame; see section 4.3
ϕrot = angular(twist)
ϕtrans = linear(twist)
θ = norm(ϕrot)
if abs(rem2pi(θ, RoundNearest)) < eps(typeof(θ))
# (2.32)
rot = one(RotMatrix3{typeof(θ)})
trans = ϕtrans
else
# (2.36)
ω = ϕrot / θ
rot = RotMatrix(AngleAxis(θ, ω[1], ω[2], ω[3], false))
v = ϕtrans / θ
trans = ω × v
trans -= rot * trans
trans += ω * dot(ω, v) * θ
end
Transform3D(twist.body, twist.base, rot, trans)
end
@inline function LinearAlgebra.cross(twist1::Twist, twist2::Twist)
@framecheck(twist1.frame, twist2.frame)
ang, lin = se3_commutator(angular(twist1), linear(twist1), angular(twist2), linear(twist2))
SpatialAcceleration(twist2.body, twist2.base, twist2.frame, ang, lin)
end
"""
$(SIGNATURES)
Given the twist ``T_{j}^{k,i}`` of frame ``j`` with respect to frame ``i``, expressed in frame ``k``,
and the location of a point fixed in frame ``j``, also expressed in frame ``k``, compute the velocity
of the point relative to frame ``i``.
"""
function point_velocity(twist::Twist, point::Point3D)
@framecheck twist.frame point.frame
FreeVector3D(twist.frame, angular(twist) × point.v + linear(twist))
end
"""
$(SIGNATURES)
Given the twist ``dot{T}_{j}^{k,i}`` of frame ``j`` with respect to frame ``i``, expressed in frame ``k``
and its time derivative (a spatial acceleration), as well as the location of a point fixed in frame ``j``,
also expressed in frame ``k``, compute the acceleration of the point relative to frame ``i``.
"""
function point_acceleration(twist::Twist, accel::SpatialAcceleration, point::Point3D)
@framecheck twist.base accel.base
@framecheck twist.body accel.body
@framecheck twist.frame accel.frame
FreeVector3D(accel.frame, angular(accel) × point.v + linear(accel) + angular(twist) × point_velocity(twist, point).v)
end
# SpatialAcceleration-specific functions
"""
$(SIGNATURES)
Transform the `SpatialAcceleration` to a different frame.
The transformation rule is obtained by differentiating the transformation rule
for twists.
"""
function transform(accel::SpatialAcceleration, old_to_new::Transform3D, twist_of_current_wrt_new::Twist, twist_of_body_wrt_base::Twist)
# trivial case
accel.frame == old_to_new.to && return accel
# frame checks
@framecheck(old_to_new.from, accel.frame)
@framecheck(twist_of_current_wrt_new.frame, accel.frame)
@framecheck(twist_of_current_wrt_new.body, accel.frame)
@framecheck(twist_of_current_wrt_new.base, old_to_new.to)
@framecheck(twist_of_body_wrt_base.frame, accel.frame)
@framecheck(twist_of_body_wrt_base.body, accel.body)
@framecheck(twist_of_body_wrt_base.base, accel.base)
# 'cross term':
ang, lin = se3_commutator(
angular(twist_of_current_wrt_new), linear(twist_of_current_wrt_new),
angular(twist_of_body_wrt_base), linear(twist_of_body_wrt_base))
# add current acceleration:
ang += angular(accel)
lin += linear(accel)
# transform to new frame
ang, lin = transform_spatial_motion(ang, lin, rotation(old_to_new), translation(old_to_new))
SpatialAcceleration(accel.body, accel.base, old_to_new.to, ang, lin)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 4355 | # Point3D, FreeVector3D. The difference is that a FreeVector3D is only rotated when its frame is changed,
# whereas a Point3D is also translated
for VectorType in (:FreeVector3D, :Point3D)
@eval begin
# TODO: consider storing as a homogeneous vector
struct $VectorType{V<:AbstractVector}
v::V
frame::CartesianFrame3D
@inline function $VectorType(frame::CartesianFrame3D, v::V) where {V}
@boundscheck length(v) == 3 || throw(DimensionMismatch())
new{V}(v, frame)
end
end
$VectorType(::Type{T}, frame::CartesianFrame3D) where {T} = $VectorType(frame, zero(SVector{3, T}))
$VectorType(frame::CartesianFrame3D, x::Number, y::Number, z::Number) = $VectorType(frame, SVector(x, y, z))
Base.convert(::Type{$VectorType{V}}, p::$VectorType{V}) where {V} = p
Base.convert(::Type{$VectorType{V}}, p::$VectorType) where {V} = $VectorType(p.frame, convert(V, p.v))
Base.zero(p::$VectorType) = $VectorType(p.frame, zero(p.v))
Base.:/(p::$VectorType, s::Number) = $VectorType(p.frame, p.v / s)
Base.:*(p::$VectorType, s::Number) = $VectorType(p.frame, p.v * s)
Base.:*(s::Number, p::$VectorType) = $VectorType(p.frame, s * p.v)
Base.:-(p::$VectorType) = $VectorType(p.frame, -p.v)
Random.rand(::Type{$VectorType}, ::Type{T}, frame::CartesianFrame3D) where {T} = $VectorType(frame, rand(SVector{3, T}))
Base.show(io::IO, p::$VectorType) = print(io, "$($(string(VectorType))) in \"$(string(p.frame))\": $(p.v)")
Base.isapprox(x::$VectorType, y::$VectorType; atol::Real = 1e-12) = x.frame == y.frame && isapprox(x.v, y.v; atol = atol)
"""
$(SIGNATURES)
Return `x` transformed to `CartesianFrame3D` `t.from`.
"""
transform(x::$VectorType, t::Transform3D) = t * x
Base.eltype(::Type{$VectorType{V}}) where {V} = eltype(V)
end
end
"""
$(TYPEDEF)
A `Point3D` represents a position in a given coordinate system.
A `Point3D` is a [bound vector](https://en.wikipedia.org/wiki/Euclidean_vector#Overview).
Applying a `Transform3D` to a `Point3D` both rotates and translates the
`Point3D`.
"""
Point3D
"""
$(TYPEDEF)
A `FreeVector3D` represents a [free vector](https://en.wikipedia.org/wiki/Euclidean_vector#Overview).
Examples of free vectors include displacements and velocities of points.
Applying a `Transform3D` to a `FreeVector3D` only rotates the `FreeVector3D`.
"""
FreeVector3D
# Point3D-specific
Base.:-(p1::Point3D, p2::Point3D) = begin @framecheck(p1.frame, p2.frame); FreeVector3D(p1.frame, p1.v - p2.v) end
Base.:*(t::Transform3D, point::Point3D) = begin @framecheck(t.from, point.frame); Point3D(t.to, rotation(t) * point.v + translation(t)) end
Base.:\(t::Transform3D, point::Point3D) = begin @framecheck point.frame t.to; Point3D(t.from, rotation(t) \ (point.v - translation(t))) end
# FreeVector3D-specific
FreeVector3D(p::Point3D) = FreeVector3D(p.frame, p.v)
Base.:-(v1::FreeVector3D, v2::FreeVector3D) = begin @framecheck(v1.frame, v2.frame); FreeVector3D(v1.frame, v1.v - v2.v) end
LinearAlgebra.cross(v1::FreeVector3D, v2::FreeVector3D) = begin @framecheck(v1.frame, v2.frame); FreeVector3D(v1.frame, v1.v × v2.v) end
LinearAlgebra.dot(v1::FreeVector3D, v2::FreeVector3D) = begin @framecheck(v1.frame, v2.frame); v1.v ⋅ v2.v end
Base.:*(t::Transform3D, vector::FreeVector3D) = begin @framecheck(t.from, vector.frame); FreeVector3D(t.to, rotation(t) * vector.v) end
Base.:\(t::Transform3D, point::FreeVector3D) = begin @framecheck point.frame t.to; FreeVector3D(t.from, rotation(t) \ point.v) end
LinearAlgebra.norm(v::FreeVector3D) = norm(v.v)
LinearAlgebra.normalize(v::FreeVector3D, p::Real = 2) = FreeVector3D(v.frame, normalize(v.v, p))
# Mixed Point3D and FreeVector3D
Base.:+(p1::FreeVector3D, p2::FreeVector3D) = begin @framecheck(p1.frame, p2.frame); FreeVector3D(p1.frame, p1.v + p2.v) end
Base.:+(p::Point3D, v::FreeVector3D) = begin @framecheck(p.frame, v.frame); Point3D(p.frame, p.v + v.v) end
Base.:+(v::FreeVector3D, p::Point3D) = p + v
Base.:-(p::Point3D, v::FreeVector3D) = begin @framecheck(p.frame, v.frame); Point3D(p.frame, p.v - v.v) end
LinearAlgebra.cross(p::Point3D, v::FreeVector3D) = begin @framecheck(p.frame, v.frame); FreeVector3D(p.frame, p.v × v.v) end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 3760 | """
$(TYPEDEF)
A homogeneous transformation matrix representing the transformation from one
three-dimensional Cartesian coordinate system to another.
"""
struct Transform3D{T}
mat::SMatrix{4, 4, T, 16}
from::CartesianFrame3D
to::CartesianFrame3D
@inline function Transform3D(from::CartesianFrame3D, to::CartesianFrame3D, mat::AbstractMatrix{T}) where T
new{T}(mat, from, to)
end
end
Base.eltype(::Type{Transform3D{T}}) where {T} = T
@inline function Transform3D(from::CartesianFrame3D, to::CartesianFrame3D, rot::Rotation{3}, trans::SVector{3})
T = promote_eltype(rot, trans)
R = convert(RotMatrix3{T}, rot)
@inbounds mat = @SMatrix [R[1] R[4] R[7] trans[1];
R[2] R[5] R[8] trans[2];
R[3] R[6] R[9] trans[3];
zero(T) zero(T) zero(T) one(T)]
Transform3D(from, to, mat)
end
@inline function Transform3D(from::CartesianFrame3D, to::CartesianFrame3D, rot::Rotation{3, T}) where {T}
R = convert(RotMatrix3{T}, rot)
@inbounds mat = @SMatrix [R[1] R[4] R[7] zero(T);
R[2] R[5] R[8] zero(T);
R[3] R[6] R[9] zero(T);
zero(T) zero(T) zero(T) one(T)]
Transform3D(from, to, mat)
end
@inline function Transform3D(from::CartesianFrame3D, to::CartesianFrame3D, trans::SVector{3, T}) where {T}
@inbounds mat = @SMatrix [one(T) zero(T) zero(T) trans[1];
zero(T) one(T) zero(T) trans[2];
zero(T) zero(T) one(T) trans[3];
zero(T) zero(T) zero(T) one(T)]
Transform3D(from, to, mat)
end
@inline Base.convert(::Type{Transform3D{T}}, t::Transform3D{T}) where {T} = t
@inline Base.convert(::Type{Transform3D{T}}, t::Transform3D) where {T} = Transform3D(t.from, t.to, similar_type(t.mat, T)(t.mat))
@inline rotation(t::Transform3D) = @inbounds return RotMatrix(t.mat[1], t.mat[2], t.mat[3], t.mat[5], t.mat[6], t.mat[7], t.mat[9], t.mat[10], t.mat[11])
@inline translation(t::Transform3D) = @inbounds return SVector(t.mat[13], t.mat[14], t.mat[15])
function Base.show(io::IO, t::Transform3D)
println(io, "Transform3D from \"$(string(t.from))\" to \"$(string(t.to))\":")
angle_axis = AngleAxis(rotation(t))
angle = rotation_angle(angle_axis)
axis = rotation_axis(angle_axis)
print(io, "rotation: $(angle) rad about $(axis), translation: $(translation(t))") # TODO: use fixed Quaternions.jl version once it's updated
end
@inline function Base.:*(t1::Transform3D, t2::Transform3D)
@framecheck(t1.from, t2.to)
mat = t1.mat * t2.mat
Transform3D(t2.from, t1.to, mat)
end
@inline function LinearAlgebra.inv(t::Transform3D)
rotinv = inv(rotation(t))
Transform3D(t.to, t.from, rotinv, -(rotinv * translation(t)))
end
Base.one(::Type{Transform3D{T}}, from::CartesianFrame3D, to::CartesianFrame3D) where {T} =
Transform3D(from, to, one(SMatrix{4, 4, T}))
Base.one(::Type{Transform3D}, from::CartesianFrame3D, to::CartesianFrame3D) = one(Transform3D{Float64}, from, to)
Base.one(::Type{T}, frame::CartesianFrame3D) where {T<:Transform3D} = one(T, frame, frame)
function Random.rand(::Type{Transform3D{T}}, from::CartesianFrame3D, to::CartesianFrame3D) where T
rot = rand(RotMatrix3{T})
trans = rand(SVector{3, T})
Transform3D(from, to, rot, trans)
end
Random.rand(::Type{Transform3D}, from::CartesianFrame3D, to::CartesianFrame3D) = rand(Transform3D{Float64}, from, to)
function Base.isapprox(x::Transform3D, y::Transform3D; atol::Real = 1e-12)
x.from == y.from && x.to == y.to && isapprox(rotation(x), rotation(y), atol = atol) && isapprox(translation(x), translation(y), atol = atol)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 5951 | # Type aliases
using ..RigidBodyDynamics: ModifiedRodriguesParam
## Colwise
# TODO: replace with future mapslices specialization, see https://github.com/JuliaArrays/StaticArrays.jl/pull/99
"""
$(SIGNATURES)
Equivalent to one of
```julia
mapslices(x -> f(a, x), B, dims=1)
mapslices(x -> f(x, b), A, dims=1)
```
but optimized for statically-sized matrices.
"""
function colwise end
colwise(f, a::AbstractVector, B::AbstractMatrix) = mapslices(x -> f(a, x), B, dims=1)
colwise(f, A::AbstractMatrix, b::AbstractVector) = mapslices(x -> f(x, b), A, dims=1)
@inline function colwise(f, a::StaticVector, B::StaticMatrix)
Sa = Size(a)
SB = Size(B)
Sa[1] === SB[1] || throw(DimensionMismatch())
_colwise(f, Val(SB[2]), a, B)
end
@inline function _colwise(f, ::Val{0}, a::StaticVector, B::StaticMatrix)
zero(similar_type(B, promote_eltype(a, B)))
end
@inline function _colwise(f, M::Val, a::StaticVector, B::StaticMatrix)
cols = ntuple(i -> f(a, B[:, i]), M)
hcat(cols...)
end
@inline function colwise(f, A::StaticMatrix, b::StaticVector)
SA = Size(A)
Sb = Size(b)
SA[1] === Sb[1] || throw(DimensionMismatch())
_colwise(f, Val(SA[2]), A, b)
end
@inline function _colwise(f, ::Val{0}, A::StaticMatrix, b::StaticVector)
zero(similar_type(A, promote_eltype(A, b)))
end
@inline function _colwise(f, M::Val, A::StaticMatrix, b::StaticVector)
cols = ntuple(i -> f(A[:, i], b), M)
hcat(cols...)
end
@inline function vector_to_skew_symmetric(v::SVector{3, T}) where {T}
@SMatrix [zero(T) -v[3] v[2];
v[3] zero(T) -v[1];
-v[2] v[1] zero(T)]
end
const hat = vector_to_skew_symmetric
@inline function vector_to_skew_symmetric_squared(a::SVector{3})
a1² = a[1] * a[1]
a2² = a[2] * a[2]
a3² = a[3] * a[3]
b11 = -a2² - a3²
b12 = a[1] * a[2]
b13 = a[1] * a[3]
b22 = -a1² - a3²
b23 = a[2] * a[3]
b33 = -a1² - a2²
@SMatrix [b11 b12 b13;
b12 b22 b23;
b13 b23 b33]
end
const hat_squared = vector_to_skew_symmetric_squared
# The 'Bortz equation'.
# Bortz, John E. "A new mathematical formulation for strapdown inertial navigation."
# IEEE transactions on aerospace and electronic systems 1 (1971): 61-66.
#
# Or, interpreted in a Lie setting:
# d/dt(exp(ϕ(t))) = ̂(dexp(ϕ(t)) * ϕ̇(t)) * exp(ϕ(t)) (where dexp is the 'right trivialized' tangent of the exponential map)
# ̂(dexp(ϕ(t)) * ϕ̇(t)) = d/dt(exp(ϕ(t))) * exp(ϕ(t))⁻¹ (hat form of angular velocity in world frame)
# = ̂(exp(ϕ(t)) ω) (with ω angular velocity in body frame)
# ϕ̇(t) = dexp⁻¹(ϕ(t)) * exp(ϕ(t)) * ω
function rotation_vector_rate(rotation_vector::AbstractVector{T}, angular_velocity_in_body::AbstractVector{T}) where {T}
ϕ = rotation_vector
ω = angular_velocity_in_body
@boundscheck length(ϕ) == 3 || error("ϕ has wrong length")
@boundscheck length(ω) == 3 || error("ω has wrong length")
ϕ̇ = ω + (ϕ × ω) / 2
θ = norm(ϕ)
if θ > eps(typeof(θ))
s, c = sincos(θ)
ϕ̇ += 1 / θ^2 * (1 - (θ * s) / (2 * (1 - c))) * ϕ × (ϕ × ω)
end
ϕ̇
end
@inline function transform_spatial_motion(angular::SVector{3}, linear::SVector{3}, rot::R, trans::SVector{3}) where {R <: Rotation{3}}
angular = rot * angular
linear = rot * linear + trans × angular
angular, linear
end
@inline function mul_inertia(J, c, m, ω, v)
angular = J * ω + c × v
linear = m * v - c × ω
angular, linear
end
# also known as 'spatial motion cross product'
@inline function se3_commutator(xω, xv, yω, yv)
angular = xω × yω
linear = xω × yv + xv × yω
angular, linear
end
function quaternion_derivative end
function spquat_derivative end
function angular_velocity_in_body end
@inline function velocity_jacobian(::typeof(quaternion_derivative), q::QuatRotation)
w, x, y, z = Rotations.params(q)
(@SMatrix [
-x -y -z;
w -z y;
z w -x;
-y x w ]) / 2
end
@inline function velocity_jacobian(::typeof(spquat_derivative), q::ModifiedRodriguesParam)
quat = QuatRotation(q)
dQuat_dW = velocity_jacobian(quaternion_derivative, quat)
dSPQuat_dQuat = Rotations.jacobian(ModifiedRodriguesParam, quat)
dSPQuat_dQuat * dQuat_dW
end
@inline function velocity_jacobian(::typeof(angular_velocity_in_body), q::QuatRotation)
w, x, y, z = Rotations.params(q)
2 * @SMatrix [
-x w z -y;
-y -z w x;
-z y -x w ]
end
@inline function velocity_jacobian(::typeof(angular_velocity_in_body), q::ModifiedRodriguesParam)
quat = QuatRotation(q)
dW_dQuat = velocity_jacobian(angular_velocity_in_body, quat)
dQuat_dSPQuat = Rotations.jacobian(QuatRotation, q)
dW_dQuat * dQuat_dSPQuat
end
@inline function quaternion_derivative(q::QuatRotation, angular_velocity_in_body::AbstractVector)
@boundscheck length(angular_velocity_in_body) == 3 || error("size mismatch")
velocity_jacobian(quaternion_derivative, q) * angular_velocity_in_body
end
@inline function spquat_derivative(q::ModifiedRodriguesParam, angular_velocity_in_body::AbstractVector)
@boundscheck length(angular_velocity_in_body) == 3 || error("size mismatch")
velocity_jacobian(spquat_derivative, q) * angular_velocity_in_body
end
@inline function angular_velocity_in_body(q::QuatRotation, quat_derivative::AbstractVector)
@boundscheck length(quat_derivative) == 4 || error("size mismatch")
velocity_jacobian(angular_velocity_in_body, q) * quat_derivative
end
@inline function angular_velocity_in_body(q::ModifiedRodriguesParam, spq_derivative::AbstractVector)
@boundscheck length(spq_derivative) == 3 || error("size mismatch")
velocity_jacobian(angular_velocity_in_body, q) * spq_derivative
end
function linearized_rodrigues_vec(r::RotMatrix) # TODO: consider moving to Rotations
x = (r[3, 2] - r[2, 3]) / 2
y = (r[1, 3] - r[3, 1]) / 2
z = (r[2, 1] - r[1, 2]) / 2
RotationVec(x, y, z)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 455 | module URDF
using RigidBodyDynamics
using LightXML
using StaticArrays
using Rotations
using DocStringExtensions
using RigidBodyDynamics.Graphs
using RigidBodyDynamics: Bounds, upper, lower
using RigidBodyDynamics: has_loops, joint_to_predecessor
using RigidBodyDynamics: DEFAULT_GRAVITATIONAL_ACCELERATION
using LinearAlgebra: ×
export
default_urdf_joint_types,
parse_urdf,
write_urdf
include("parse.jl")
include("write.jl")
end # module
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 10605 | """
$(SIGNATURES)
Default mapping from URDF joint type name to `JointType` subtype used by [`parse_urdf`](@ref).
"""
function default_urdf_joint_types()
Dict(
"revolute" => Revolute,
"continuous" => Revolute,
"prismatic" => Prismatic,
"floating" => QuaternionFloating,
"fixed" => Fixed,
"planar" => Planar
)
end
function parse_scalar(::Type{T}, e::XMLElement, name::String) where {T}
parse(T, attribute(e, name))
end
function parse_scalar(::Type{T}, e::XMLElement, name::String, default::String) where {T}
parse(T, e == nothing ? default : attribute(e, name))
end
function parse_vector(::Type{T}, e::Union{XMLElement, Nothing}, name::String, default::String) where {T}
usedefault = e == nothing || attribute(e, name) == nothing # TODO: better handling of required attributes
[parse(T, str) for str in split(usedefault ? default : attribute(e, name))]
end
function parse_inertia(::Type{T}, xml_inertia::XMLElement) where {T}
ixx = parse_scalar(T, xml_inertia, "ixx", "0")
ixy = parse_scalar(T, xml_inertia, "ixy", "0")
ixz = parse_scalar(T, xml_inertia, "ixz", "0")
iyy = parse_scalar(T, xml_inertia, "iyy", "0")
iyz = parse_scalar(T, xml_inertia, "iyz", "0")
izz = parse_scalar(T, xml_inertia, "izz", "0")
@SMatrix [ixx ixy ixz; ixy iyy iyz; ixz iyz izz]
end
function parse_pose(::Type{T}, xml_pose::Nothing) where {T}
rot = one(RotMatrix3{T})
trans = zero(SVector{3, T})
rot, trans
end
function parse_pose(::Type{T}, xml_pose::XMLElement) where {T}
rpy = parse_vector(T, xml_pose, "rpy", "0 0 0")
rot = RotMatrix(RotZYX(rpy[3], rpy[2], rpy[1]))
trans = SVector{3}(parse_vector(T, xml_pose, "xyz", "0 0 0"))
rot, trans
end
function parse_joint_type(::Type{T}, xml_joint::XMLElement, joint_types::AbstractDict{String}) where {T}
urdf_joint_type = attribute(xml_joint, "type")
joint_type = joint_types[urdf_joint_type]
if urdf_joint_type == "revolute" || urdf_joint_type == "continuous" || urdf_joint_type == "prismatic"
axis = SVector{3}(parse_vector(T, find_element(xml_joint, "axis"), "xyz", "1 0 0"))
return joint_type(axis)
elseif urdf_joint_type == "floating" || urdf_joint_type == "fixed"
return joint_type{T}()
elseif urdf_joint_type == "planar"
urdf_axis = SVector{3}(parse_vector(T, find_element(xml_joint, "axis"), "xyz", "1 0 0"))
# The URDF spec says that a planar joint allows motion in a
# plane perpendicular to the axis.
R = Rotations.rotation_between(SVector(0, 0, 1), urdf_axis)
x_axis = R * SVector(1, 0, 0)
y_axis = R * SVector(0, 1, 0)
return joint_type(x_axis, y_axis)
else
error("joint type $(urdf_joint_type) not recognized")
end
end
function parse_joint_bounds(jtype::JT, xml_joint::XMLElement) where {T, JT <: JointType{T}}
position_bounds = fill(Bounds{T}(), num_positions(jtype))
velocity_bounds = fill(Bounds{T}(), num_velocities(jtype))
effort_bounds = fill(Bounds{T}(), num_velocities(jtype))
for element in get_elements_by_tagname(xml_joint, "limit")
if has_attribute(element, "lower")
position_bounds .= Bounds.(parse_scalar(T, element, "lower"), upper.(position_bounds))
end
if has_attribute(element, "upper")
position_bounds .= Bounds.(lower.(position_bounds), parse_scalar(T, element, "upper"))
end
if has_attribute(element, "velocity")
v = parse_scalar(T, element, "velocity")
velocity_bounds .= Bounds(-v, v)
end
if has_attribute(element, "effort")
e = parse_scalar(T, element, "effort")
effort_bounds .= Bounds(-e, e)
end
end
position_bounds, velocity_bounds, effort_bounds
end
function parse_joint(::Type{T}, xml_joint::XMLElement, joint_types::AbstractDict{String}) where {T}
name = attribute(xml_joint, "name")
joint_type = parse_joint_type(T, xml_joint, joint_types)
position_bounds, velocity_bounds, effort_bounds = parse_joint_bounds(joint_type, xml_joint)
return Joint(name, joint_type; position_bounds=position_bounds, velocity_bounds=velocity_bounds, effort_bounds=effort_bounds)
end
function parse_inertia(::Type{T}, xml_inertial::XMLElement, frame::CartesianFrame3D) where {T}
urdf_frame = CartesianFrame3D("inertia urdf helper")
moment = parse_inertia(T, find_element(xml_inertial, "inertia"))
com = zero(SVector{3, T})
mass = parse_scalar(T, find_element(xml_inertial, "mass"), "value", "0")
inertia = SpatialInertia(urdf_frame, moment, com, mass)
pose = parse_pose(T, find_element(xml_inertial, "origin"))
transform(inertia, Transform3D(urdf_frame, frame, pose...))
end
function parse_body(::Type{T}, xml_link::XMLElement, frame::CartesianFrame3D = CartesianFrame3D(attribute(xml_link, "name"))) where {T}
xml_inertial = find_element(xml_link, "inertial")
inertia = xml_inertial == nothing ? zero(SpatialInertia{T}, frame) : parse_inertia(T, xml_inertial, frame)
linkname = attribute(xml_link, "name") # TODO: make sure link name is unique
RigidBody(linkname, inertia)
end
function parse_root_link(mechanism::Mechanism{T}, xml_link::XMLElement, root_joint_type::JointType{T}=Fixed{T}()) where {T}
parent = root_body(mechanism)
body = parse_body(T, xml_link)
joint = Joint("$(string(body))_to_world", root_joint_type)
joint_to_parent = one(Transform3D{T}, frame_before(joint), default_frame(parent))
attach!(mechanism, parent, body, joint, joint_pose = joint_to_parent)
end
function parse_joint_and_link(mechanism::Mechanism{T}, xml_parent::XMLElement, xml_child::XMLElement, xml_joint::XMLElement,
joint_types::AbstractDict{String}) where {T}
parentname = attribute(xml_parent, "name")
candidate_parents = collect(filter(b -> string(b) == parentname, non_root_bodies(mechanism))) # skip root (name not parsed from URDF)
length(candidate_parents) == 1 || error("Duplicate name: $(parentname)")
parent = first(candidate_parents)
joint = parse_joint(T, xml_joint, joint_types)
pose = parse_pose(T, find_element(xml_joint, "origin"))
joint_to_parent = Transform3D(frame_before(joint), default_frame(parent), pose...)
body = parse_body(T, xml_child, frame_after(joint))
attach!(mechanism, parent, body, joint, joint_pose = joint_to_parent)
end
"""
$(SIGNATURES)
Create a `Mechanism` by parsing a [URDF](https://wiki.ros.org/urdf/XML/model) file.
Keyword arguments:
* `scalar_type`: the scalar type used to store the `Mechanism`'s kinematic and inertial
properties. Default: `Float64`.
* `floating`: whether to use a floating joint as the root joint. Default: false.
* `joint_types`: dictionary mapping URDF joint type names to `JointType` subtypes.
Default: [`default_urdf_joint_types()`](@ref).
* `root_joint_type`: the `JointType` instance used to connect the parsed `Mechanism` to the world.
Default: an instance of the the joint type corresponding to the `floating` URDF joint type tag
if `floating`, otherwise in an instance of the joint type for the `fixed` URDF joint type tag.
* `remove_fixed_tree_joints`: whether to remove any fixed joints present in the kinematic tree
using [`remove_fixed_tree_joints!`](@ref). Default: `true`.
* `gravity`: gravitational acceleration as a 3-vector expressed in the `Mechanism`'s root frame
Default: `$(DEFAULT_GRAVITATIONAL_ACCELERATION)`.
"""
function parse_urdf(filename::AbstractString;
scalar_type::Type{T}=Float64,
floating::Bool=false,
joint_types::AbstractDict{String}=default_urdf_joint_types(),
root_joint_type::JointType{T}=joint_types[floating ? "floating" : "fixed"]{scalar_type}(),
remove_fixed_tree_joints=true,
gravity::AbstractVector=DEFAULT_GRAVITATIONAL_ACCELERATION,
revolute_joint_type=nothing,
floating_joint_type=nothing) where T
if revolute_joint_type !== nothing || floating_joint_type !== nothing
"""
The `revolute_joint_type` and `floating_joint_type` keyword arguments are no longer supported.
Please use the `joint_types` keyword argument instead.
""" |> error
end
if floating && !isfloating(root_joint_type)
error("Ambiguous input arguments: `floating` specified, but `root_joint_type` is not a floating joint type.")
end
xdoc = parse_file(filename)
xroot = LightXML.root(xdoc)
@assert LightXML.name(xroot) == "robot"
xml_links = get_elements_by_tagname(xroot, "link")
xml_joints = get_elements_by_tagname(xroot, "joint")
# create graph structure of XML elements
graph = DirectedGraph{Vertex{XMLElement}, Edge{XMLElement}}()
vertices = Vertex.(xml_links)
for vertex in vertices
add_vertex!(graph, vertex)
end
name_to_vertex = Dict(attribute(v.data, "name") => v for v in vertices)
for xml_joint in xml_joints
parent = name_to_vertex[attribute(find_element(xml_joint, "parent"), "link")]
child = name_to_vertex[attribute(find_element(xml_joint, "child"), "link")]
add_edge!(graph, parent, child, Edge(xml_joint))
end
# create a spanning tree
roots = collect(filter(v -> isempty(in_edges(v, graph)), vertices))
length(roots) != 1 && error("Can only handle a single root")
tree = SpanningTree(graph, first(roots))
# create mechanism from spanning tree
rootbody = RigidBody{T}("world")
mechanism = Mechanism(rootbody, gravity=gravity)
parse_root_link(mechanism, Graphs.root(tree).data, root_joint_type)
for edge in edges(tree)
parse_joint_and_link(mechanism, source(edge, tree).data, target(edge, tree).data, edge.data, joint_types)
end
if remove_fixed_tree_joints
remove_fixed_tree_joints!(mechanism)
end
mechanism
end
@noinline function parse_urdf(scalar_type::Type, filename::AbstractString)
# TODO: enable deprecation:
# replacement = if scalar_type == Float64
# "parse_urdf(filename, remove_fixed_tree_joints=false)"
# else
# "parse_urdf(filename, scalar_type=$scalar_type, remove_fixed_tree_joints=false)"
# end
# msg = """
# `parse_urdf(scalar_type, filename)` is deprecated, use $replacement instead.
# This is to reproduce the exact same behavior as before.
# You may want to consider leaving `remove_fixed_tree_joints` to its default value (`true`).
# """
# Base.depwarn(msg, :parse_urdf)
parse_urdf(filename; scalar_type=scalar_type, remove_fixed_tree_joints=false)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 6943 | function set_vector_attribute(element::XMLElement, attr::AbstractString, vec::AbstractVector)
set_attribute(element, attr, join(vec, ' '))
end
function to_urdf(body::RigidBody)
xml_link = new_element("link")
set_attribute(xml_link, "name", string(body))
isroot = !has_defined_inertia(body)
if !isroot
xml_inertial = new_child(xml_link, "inertial")
xml_origin = new_child(xml_inertial, "origin")
xml_mass = new_child(xml_inertial, "mass")
xml_inertia = new_child(xml_inertial, "inertia")
inertia = spatial_inertia(body)
if inertia.mass > 0
origin = center_of_mass(inertia)
centroidal = CartesianFrame3D()
to_centroidal_frame = Transform3D(inertia.frame, centroidal, -origin.v)
inertia = transform(inertia, to_centroidal_frame)
@assert center_of_mass(inertia) ≈ Point3D(centroidal, zero(typeof(origin.v)))
else
origin = zero(center_of_mass(inertia))
end
set_vector_attribute(xml_origin, "xyz", origin.v)
set_vector_attribute(xml_origin, "rpy", zero(origin.v))
set_attribute(xml_mass, "value", inertia.mass)
set_attribute(xml_inertia, "ixx", inertia.moment[1, 1])
set_attribute(xml_inertia, "ixy", inertia.moment[1, 2])
set_attribute(xml_inertia, "ixz", inertia.moment[1, 3])
set_attribute(xml_inertia, "iyy", inertia.moment[2, 2])
set_attribute(xml_inertia, "iyz", inertia.moment[2, 3])
set_attribute(xml_inertia, "izz", inertia.moment[3, 3])
end
xml_link
end
function process_joint_type!(xml_joint::XMLElement, joint::Joint)
if isfloating(joint)
# handle this here instead of using dispatch to support user-defined
# floating joint types out of the box
set_attribute(xml_joint, "type", "floating")
else
throw(ArgumentError("Joint type $(typeof(joint_type(joint))) not handled."))
end
xml_joint
end
function process_joint_type!(xml_joint::XMLElement, joint::Joint{<:Any, <:Fixed})
set_attribute(xml_joint, "type", "fixed")
xml_joint
end
function process_joint_type!(xml_joint::XMLElement, joint::Joint{<:Any, <:Planar})
set_attribute(xml_joint, "type", "planar")
jtype = joint_type(joint)
xml_axis = new_child(xml_joint, "axis")
set_vector_attribute(xml_axis, "xyz", jtype.x_axis × jtype.y_axis)
xml_joint
end
function process_joint_type!(xml_joint::XMLElement, joint::Joint{T, JT}) where {T, JT<:Union{Revolute, Prismatic}}
jtype = joint_type(joint)
xml_axis = new_child(xml_joint, "axis")
set_vector_attribute(xml_axis, "xyz", jtype.axis)
qbounds, vbounds, τbounds = position_bounds(joint), velocity_bounds(joint), effort_bounds(joint)
@assert length(qbounds) == length(vbounds) == length(τbounds) == 1
qbound, vbound, τbound = qbounds[1], vbounds[1], τbounds[1]
@assert upper(vbound) == -lower(vbound)
@assert upper(τbound) == -lower(τbound)
realline = Bounds(-typemax(T), typemax(T))
xml_limit = new_child(xml_joint, "limit")
set_position_limits = true
if JT <: Revolute
if qbound == realline
set_attribute(xml_joint, "type", "continuous")
set_position_limits = false # continuous joints don't allow `lower` and `upper`
else
set_attribute(xml_joint, "type", "revolute")
end
else # Prismatic
set_attribute(xml_joint, "type", "prismatic")
end
if set_position_limits
set_attribute(xml_limit, "lower", lower(qbound))
set_attribute(xml_limit, "upper", upper(qbound))
end
set_attribute(xml_limit, "effort", upper(τbound))
set_attribute(xml_limit, "velocity", upper(vbound))
xml_joint
end
function to_urdf(joint::Joint, mechanism::Mechanism)
parent = predecessor(joint, mechanism)
child = successor(joint, mechanism)
to_parent = joint_to_predecessor(joint)
xyz = translation(to_parent)
rpy = RotZYX(rotation(to_parent))
xml_joint = new_element("joint")
set_attribute(xml_joint, "name", string(joint))
xml_parent = new_child(xml_joint, "parent")
set_attribute(xml_parent, "link", string(parent))
xml_child = new_child(xml_joint, "child")
set_attribute(xml_child, "link", string(child))
xml_origin = new_child(xml_joint, "origin")
set_vector_attribute(xml_origin, "xyz", xyz)
set_vector_attribute(xml_origin, "rpy", [rpy.theta3, rpy.theta2, rpy.theta1])
process_joint_type!(xml_joint, joint)
xml_joint
end
function to_urdf(mechanism::Mechanism; robot_name::Union{Nothing, AbstractString}=nothing, include_root::Bool=true)
@assert !has_loops(mechanism)
xdoc = XMLDocument()
xroot = create_root(xdoc, "robot")
if robot_name !== nothing
set_attribute(xroot, "name", robot_name)
end
bodies_to_include = include_root ? bodies(mechanism) : non_root_bodies(mechanism)
for body in bodies(mechanism)
!include_root && isroot(body, mechanism) && continue
add_child(xroot, to_urdf(body))
end
for joint in tree_joints(mechanism)
!include_root && isroot(predecessor(joint, mechanism), mechanism) && continue
add_child(xroot, to_urdf(joint, mechanism))
end
xdoc
end
"""
Serialize a `Mechanism` to the [URDF](https://wiki.ros.org/urdf/XML/model) file format.
Limitations:
* for `<link>` tags, only the `<inertial>` tag is written; there is no support for `<visual>` and `<collision>` tags.
* for `<joint>` tags, only the `<origin>`, `<parent>`, `<child>`, and `<limit>` tags are written. There is no support for the `<calibration>` and `<safety_controller>` tags.
These limitations are simply due to the fact that `Mechanism`s do not store the required information to write these tags.
Keyword arguments:
* `robot_name`: used to set the `name` attribute of the root `<robot>` tag in the URDF. Default: `nothing` (name attribute will not be set).
* `include_root`: whether to include `root_body(mechanism)` in the URDF. If `false`, joints with `root_body(mechanism)` as their predecessor will also be omitted. Default: `true`.
"""
function write_urdf end
const write_urdf_name_kwarg_doc = "Optionally, the `robot_name` keyword argument can be used to specify the robot's name."
"""
$(SIGNATURES)
Write a URDF representation of `mechanism` to the stream `io` (a `Base.IO`).
$write_urdf_name_kwarg_doc
"""
function write_urdf(io::IO, mechanism::Mechanism; robot_name=nothing, include_root=true)
show(io, to_urdf(mechanism; robot_name=robot_name, include_root=include_root))
end
"""
$(SIGNATURES)
Write a URDF representation of `mechanism` to a file.
$write_urdf_name_kwarg_doc
"""
function write_urdf(filename::AbstractString, mechanism::Mechanism; robot_name=nothing, include_root=true)
open(filename, "w") do io
write_urdf(io, mechanism, robot_name=robot_name, include_root=include_root)
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 1133 | using Test
using LinearAlgebra
using Random
using RigidBodyDynamics
using RigidBodyDynamics.Graphs
using RigidBodyDynamics.Contact
using RigidBodyDynamics.PDControl
using Rotations
using StaticArrays
import Base.Iterators: filter
import ForwardDiff
import LightXML
using RigidBodyDynamics: ModifiedRodriguesParam
using BenchmarkTools: @ballocated
include("test_exports.jl")
include("test_graph.jl")
include("test_custom_collections.jl")
include("test_frames.jl")
include("test_spatial.jl")
include("test_contact.jl")
include("test_urdf.jl")
include("test_double_pendulum.jl")
include("test_caches.jl")
include("test_mechanism_algorithms.jl")
include("test_simulate.jl")
include("test_mechanism_modification.jl")
include("test_pd_control.jl")
if VERSION >= v"1.9"
# The notebook tests rely on instantiating specific project manifests.
# Attempting to do so on a version of Julia older than the one used to
# create those manifests can cause errors in `Pkg.instantiate()`.
include("test_notebooks.jl")
@testset "benchmarks" begin
@test begin include("../perf/runbenchmarks.jl"); true end
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 3165 | module TestCaches
using Test
using RigidBodyDynamics
using RigidBodyDynamics.Contact
import Random
function randmech()
rand_tree_mechanism(Float64,
QuaternionFloating{Float64},
[Revolute{Float64} for i = 1 : 5]...,
[Fixed{Float64} for i = 1 : 5]...,
[Prismatic{Float64} for i = 1 : 5]...,
[Planar{Float64} for i = 1 : 5]...,
[SPQuatFloating{Float64} for i = 1:2]...,
[SinCosRevolute{Float64} for i = 1:2]...
)
end
function cachetest(cache, eltypefun)
x64 = @inferred cache[Float64]
@test eltypefun(x64) == Float64
@test cache[Float64] === x64
@test @allocated(cache[Float64]) == 0
x32 = @inferred cache[Float32]
@test eltypefun(x32) == Float32
@test cache[Float32] === x32
@test @allocated(cache[Float32]) == 0
@test cache[Float64] === x64
@test @allocated(cache[Float64]) == 0
end
@testset "caches (nthreads = $(Threads.nthreads()))" begin
@testset "StateCache" begin
Random.seed!(1)
mechanism = randmech()
cache = StateCache(mechanism)
cachetest(cache, RigidBodyDynamics.state_vector_eltype)
end
@testset "DynamicsResultCache" begin
@testset "Basic mechanism" begin
Random.seed!(2)
mechanism = randmech()
cache = DynamicsResultCache(mechanism)
cachetest(cache, result -> eltype(result.v̇))
end
@testset "Mechanism with contact points (Issue #483)" begin
Random.seed!(3)
mechanism = randmech()
contactmodel = SoftContactModel(hunt_crossley_hertz(k = 500e3),
ViscoelasticCoulombModel(0.8, 20e3, 100.))
body = rand(bodies(mechanism))
add_contact_point!(body,
ContactPoint(Point3D(default_frame(body), 0.0, 0.0, 0.0), contactmodel))
cache = DynamicsResultCache(mechanism)
cachetest(cache, result -> eltype(result.v̇))
end
end
@testset "SegmentedVectorCache" begin
Random.seed!(3)
mechanism = randmech()
state = MechanismState(mechanism)
cache = SegmentedVectorCache(RigidBodyDynamics.ranges(velocity(state)))
cachetest(cache, eltype)
end
@testset "StateCache multi-threaded (#548)" begin
N = 2
mechanism = randmech()
state_caches = [StateCache(mechanism) for _ = 1 : N]
qs = let state = MechanismState(mechanism)
[(rand_configuration!(state); copy(configuration(state))) for _ = 1 : N]
end
vs = [rand(num_velocities(mechanism)) for _ = 1 : N]
Threads.@threads for i = 1 : N
state = state_caches[i][Float64]
set_configuration!(state, qs[i])
set_velocity!(state, vs[i])
end
for i = 1 : N
@test configuration(state_caches[i][Float64]) == qs[i]
@test velocity(state_caches[i][Float64]) == vs[i]
end
Threads.@threads for i = 1 : N
@test configuration(state_caches[i][Float64]) == qs[i]
@test velocity(state_caches[i][Float64]) == vs[i]
end
end
end
end # module
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 662 | @testset "contact" begin
@testset "HalfSpace3D" begin
Random.seed!(4)
frame = CartesianFrame3D()
point = Point3D(frame, rand(), rand(), rand())
normal = FreeVector3D(frame, 0., 0., 1.)
halfspace = HalfSpace3D(point, normal)
for i = 1 : 100
x = Point3D(frame, randn(), randn(), randn())
@test point_inside(halfspace, x) == (x.v[3] <= point.v[3])
ϕ, normal = detect_contact(halfspace, x)
@test ϕ == separation(halfspace, x)
@test isapprox(normal.v, ForwardDiff.gradient(xyz -> separation(halfspace, Point3D(frame, xyz)), x.v))
end
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 5762 | using Test
using RigidBodyDynamics
import Random
# A pathologically weird matrix which uses base -1 indexing
# for its first dimension and base 2 indexing for its second
struct NonOneBasedMatrix <: AbstractMatrix{Float64}
m::Int
n::Int
end
Base.size(m::NonOneBasedMatrix) = (m.m, m.n)
Base.axes(m::NonOneBasedMatrix) = ((1:m.m) .- 2, (1:m.n) .+ 1)
@testset "custom collections" begin
@testset "nulldict" begin
nd = RigidBodyDynamics.NullDict{Int, Int}()
@test isempty(nd)
@test length(nd) == 0
for element in nd
@test false # should never be reached, since the nulldict is always empty
end
show(IOBuffer(), nd)
end
@testset "IndexDict" begin
Int32Dict{V} = RigidBodyDynamics.IndexDict{Int32, Base.OneTo{Int32}, V}
dict = Dict(Int32(2) => 4., Int32(1) => 3.)
expected = Int32Dict{Float64}(Base.OneTo(Int32(2)), [3., 4.])
i32dict1 = @inferred Int32Dict(dict)
@test i32dict1 == dict == expected
@test keys(expected) === keys(i32dict1)
@test values(expected) == values(i32dict1)
i32dict2 = @inferred Int32Dict{Float64}(dict)
@test i32dict2 == dict == expected
@test keys(expected) === keys(i32dict2)
@test values(expected) == values(i32dict2)
end
@testset "ConstDict" begin
c = RigidBodyDynamics.ConstDict{Int}(2.0)
@test c[1] == 2.0
@test c[-1] == 2.0
show(IOBuffer(), c)
end
@testset "SegmentedVector" begin
x = [1., 2., 3., 4.]
viewlength = i -> 2
xseg = SegmentedVector{Int}(x, 1 : 2, viewlength)
@test segments(xseg)[1] == [1., 2.]
@test segments(xseg)[2] == [3., 4.]
@test length(segments(xseg)) == 2
yseg = similar(xseg, Int32)
yseg .= 1 : 4
@test segments(yseg)[1] == [1, 2]
@test segments(yseg)[2] == [3, 4]
@test length(segments(yseg)) == 2
xseg2 = SegmentedVector(x, RigidBodyDynamics.IndexDict(Base.OneTo(2), [view(x, 1 : 3), view(x, 4 : 4)]))
@test xseg2 isa SegmentedVector
ranges2 = RigidBodyDynamics.CustomCollections.ranges(xseg2)
@test ranges2[1] == 1 : 3
@test ranges2[2] == 4 : 4
@test xseg2 == xseg
xseg3 = copy(xseg)
@test xseg3 == xseg
@test xseg3 isa SegmentedVector
end
@testset "SegmentedBlockDiagonalMatrix" begin
Random.seed!(5)
A = rand(10, 10)
block_indices = [(1:1, 1:1), # square
(2:4, 2:2), # non-square
(5:4, 3:2), # empty
(5:7, 3:6), # 2x2
(8:10, 7:10)]
RigidBodyDynamics.CustomCollections.check_contiguous_block_ranges(A, block_indices)
S = RigidBodyDynamics.SegmentedBlockDiagonalMatrix(A, block_indices)
for (i, block) in enumerate(block_indices)
@test S[block...] == RigidBodyDynamics.CustomCollections.blocks(S)[i]
end
A .= 0
for block in RigidBodyDynamics.CustomCollections.blocks(S)
Random.rand!(block)
end
@testset "Malformed blocks" begin
@testset "overlap" begin
block_indices = [(1:1, 1:1),
(2:4, 2:3),
(5:4, 3:2),
(5:7, 3:6),
(8:10, 7:10)]
@test_throws ArgumentError RigidBodyDynamics.CustomCollections.check_contiguous_block_ranges(A, block_indices)
end
@testset "out of bounds" begin
block_indices = [(1:1, 0:1),
(2:4, 2:2),
(5:4, 3:2),
(5:7, 3:6),
(8:10, 7:10)]
@test_throws ArgumentError RigidBodyDynamics.CustomCollections.check_contiguous_block_ranges(A, block_indices)
block_indices = [(1:1, 1:1),
(2:4, 2:2),
(5:4, 3:2),
(5:7, 3:6),
(8:12, 7:10)]
@test_throws ArgumentError RigidBodyDynamics.CustomCollections.check_contiguous_block_ranges(A, block_indices)
end
@testset "gap" begin
block_indices = [(1:1, 1:1),
(5:4, 3:2),
(5:7, 3:6),
(8:10, 7:10)]
@test_throws ArgumentError RigidBodyDynamics.CustomCollections.check_contiguous_block_ranges(A, block_indices)
end
end
@testset "Nonstandard indexing" begin
M = NonOneBasedMatrix(5, 5)
block_indices = [(-1:1, 2:3),
(2:3, 4:6)]
RigidBodyDynamics.CustomCollections.check_contiguous_block_ranges(M, block_indices)
end
@testset "mul! specialization" begin
M = rand(20, size(S, 1))
C = M * S
@test C ≈ M * parent(S) atol=1e-15
M = rand(size(S, 2), 20)
C = S * M
@test C ≈ parent(S) * M atol=1e-15
@test_throws DimensionMismatch rand(20, size(S, 1) + 1) * M
@test_throws DimensionMismatch rand(size(A, 2) + 1, 20) * M
end
end
@testset "UnorderedPair" begin
UnorderedPair = RigidBodyDynamics.CustomCollections.UnorderedPair
p1 = UnorderedPair(1, 2)
p2 = UnorderedPair(2, 1)
@test p1 == p2
@test hash(p1) == hash(p2)
@test p1 != UnorderedPair(3, 1)
dict = Dict(p1 => 3)
@test dict[p2] == 3
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 4175 | @testset "double pendulum" begin
Random.seed!(6)
lc1 = -0.5
l1 = -1.
m1 = 1.
I1 = 0.333 # about joint instead of CoM in URDF
lc2 = -1.
l2 = -2.
m2 = 1.
I2 = 1.33 # about joint instead of CoM in URDF
g = -9.81
axis = SVector(0., 1., 0.)
double_pendulum = Mechanism(RigidBody{Float64}("world"); gravity = SVector(0, 0, g))
world = root_body(double_pendulum)
# create first body and attach it to the world via a revolute joint
inertia1 = SpatialInertia(CartesianFrame3D("upper_link"), moment=I1 * axis * axis', com=SVector(0, 0, lc1), mass=m1)
body1 = RigidBody(inertia1)
joint1 = Joint("shoulder", Revolute(axis))
joint1_to_world = one(Transform3D, joint1.frame_before, default_frame(world))
attach!(double_pendulum, world, body1, joint1, joint_pose = joint1_to_world)
inertia2 = SpatialInertia(CartesianFrame3D("lower_link"), moment=I2 * axis * axis', com=SVector(0, 0, lc2), mass=m2)
body2 = RigidBody(inertia2)
joint2 = Joint("elbow", Revolute(axis))
joint2_to_body1 = Transform3D(joint2.frame_before, default_frame(body1), SVector(0, 0, l1))
attach!(double_pendulum, body1, body2, joint2, joint_pose = joint2_to_body1)
@test findbody(double_pendulum, string(body1)) == body1
@test_throws ErrorException findbody(double_pendulum, "bla")
@test findbody(double_pendulum, BodyID(body2)) == body2
@test findjoint(double_pendulum, string(joint2)) == joint2
@test_throws ErrorException findjoint(double_pendulum, "bla")
@test findjoint(double_pendulum, JointID(joint2)) == joint2
x = MechanismState(double_pendulum)
rand!(x)
# from http://underactuated.csail.mit.edu/underactuated.html?chapter=3
q1 = configuration(x, joint1)[1]
q2 = configuration(x, joint2)[1]
v1 = velocity(x, joint1)[1]
v2 = velocity(x, joint2)[1]
c1 = cos(q1)
c2 = cos(q2)
s1 = sin(q1)
s2 = sin(q2)
s12 = sin(q1 + q2)
T1 = 1/2 * I1 * v1^2
T2 = 1/2 * (m2 * l1^2 + I2 + 2 * m2 * l1 * lc2 * c2) * v1^2 + 1/2 * I2 * v2^2 + (I2 + m2 * l1 * lc2 * c2) * v1 * v2
M11 = I1 + I2 + m2 * l1^2 + 2 * m2 * l1 * lc2 * c2
M12 = I2 + m2 * l1 * lc2 * c2
M22 = I2
M = [M11 M12; M12 M22]
C11 = -2 * m2 * l1 * lc2 * s2 * v2
C12 = -m2 * l1 * lc2 * s2 * v2
C21 = m2 * l1 * lc2 * s2 * v1
C22 = 0
C = [C11 C12; C21 C22]
G = [m1 * g * lc1 * s1 + m2 * g * (l1 * s1 + lc2 * s12); m2 * g * lc2 * s12]
v̇ = similar(velocity(x))
rand!(v̇)
τ = inverse_dynamics(x, v̇)
v = velocity(x)
@test isapprox(T1, kinetic_energy(x, body1), atol = 1e-12)
@test isapprox(T2, kinetic_energy(x, body2), atol = 1e-12)
@test isapprox(M, mass_matrix(x), atol = 1e-12)
@test isapprox(τ, M * v̇ + C * v + G, atol = 1e-12)
# compare against URDF
for revolute_joint_type in [Revolute, SinCosRevolute]
double_pendulum_urdf = parse_urdf(joinpath(@__DIR__, "urdf", "Acrobot.urdf"),
remove_fixed_tree_joints=false, joint_types=push!(default_urdf_joint_types(), "revolute" => revolute_joint_type))
x_urdf = MechanismState(double_pendulum_urdf)
for (i, j) in enumerate(joints(double_pendulum))
urdf_joints = collect(joints(double_pendulum_urdf))
index = findfirst(joint -> string(joint) == string(j), urdf_joints)
j_urdf = urdf_joints[index]
set_configuration!(x_urdf, j_urdf, configuration(x, j)[1])
set_velocity!(x_urdf, j_urdf, velocity(x, j))
end
v̇ = similar(velocity(x_urdf))
rand!(v̇)
τ = inverse_dynamics(x_urdf, v̇)
urdf_bodies = collect(bodies(double_pendulum_urdf))
urdf_upper_link = urdf_bodies[findfirst(b -> string(b) == string(body1), urdf_bodies)]
urdf_lower_link = urdf_bodies[findfirst(b -> string(b) == string(body2), urdf_bodies)]
@test isapprox(T1, kinetic_energy(x_urdf, urdf_upper_link), atol = 1e-12)
@test isapprox(T2, kinetic_energy(x_urdf, urdf_lower_link), atol = 1e-12)
@test isapprox(M, mass_matrix(x_urdf), atol = 1e-12)
@test isapprox(τ, M * v̇ + C * v + G, atol = 1e-12)
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 185 | @testset "exports" begin
# Ensure that every exported name is actually defined
for name in names(RigidBodyDynamics)
@test isdefined(RigidBodyDynamics, name)
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 1497 | @testset "frames" begin
Random.seed!(7)
f1name = "1"
f1 = CartesianFrame3D(f1name)
f2 = CartesianFrame3D()
f3 = CartesianFrame3D()
@test string(f1) == f1name
string(f2) # just to make sure it doesn't crash
@test f2 != f3
@boundscheck begin
# only throws when bounds checks are enabled:
@test_throws ArgumentError @framecheck(f1, f2)
@test_throws ArgumentError @framecheck(f2, f3)
@test_throws ArgumentError @framecheck(f2, (f1, f3))
end
@framecheck(f1, f1)
@framecheck(f2, (f2, f3))
t1 = rand(Transform3D, f2, f1)
@test isapprox(t1 * inv(t1), one(Transform3D, f1))
@test isapprox(inv(t1) * t1, one(Transform3D, f2))
@test isapprox(t1 * Point3D(Float64, f2), Point3D(f1, translation(t1)))
p = rand(Point3D, Float64, f2)
v = FreeVector3D(f2, p.v)
@test isapprox(inv(t1) * (t1 * p), p)
@test isapprox(inv(t1) * (t1 * v), v)
@test isapprox(t1 * p - t1 * v, Point3D(f1, translation(t1)))
@test_throws DimensionMismatch Point3D(f2, rand(2))
@test_throws DimensionMismatch Point3D(f2, rand(4))
@test isapprox(transform(p, t1), t1 * p)
@test isapprox(t1 \ (t1 * p), p)
@test isapprox(transform(v, t1), t1 * v)
@test isapprox(t1 \ (t1 * v), v)
@test isapprox(p, Point3D(p.frame, p.v[1], p.v[2], p.v[3]))
@test isapprox(-v, zero(v) - v)
@test isapprox(norm(v), sqrt(dot(v, v)))
show(devnull, t1)
show(devnull, p)
show(devnull, v)
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 15751 | Graphs.flip_direction(edge::Edge{Int32}) = Edge(-edge.data)
@testset "graphs" begin
@testset "disconnected" begin
Random.seed!(8)
graph = DirectedGraph{Vertex{Int64}, Edge{Float64}}()
verts = [Vertex(rand(Int64)) for i = 1 : 10]
for v in verts
add_vertex!(graph, v)
end
@test num_vertices(graph) == length(verts)
@test num_edges(graph) == 0
for v in verts
@test length(in_edges(v, graph)) == 0
@test length(out_edges(v, graph)) == 0
@test length(in_neighbors(v, graph)) == 0
@test length(out_neighbors(v, graph)) == 0
end
@test isempty(setdiff(vertices(graph), verts))
@test isempty(edges(graph))
show(devnull, graph)
end
@testset "tree graph" begin
Random.seed!(9)
graph = DirectedGraph{Vertex{Int64}, Edge{Float64}}()
root = Vertex(rand(Int64))
add_vertex!(graph, root)
nedges = 15
for i = 1 : nedges
parent = rand(vertices(graph))
child = Vertex(rand(Int64))
edge = Edge(rand())
add_edge!(graph, parent, child, edge)
end
@test num_vertices(graph) == nedges + 1
@test num_edges(graph) == nedges
for v in vertices(graph)
if v == root
@test length(in_edges(v, graph)) == 0
@test length(out_edges(v, graph)) > 0
@test length(in_neighbors(v, graph)) == 0
@test length(out_neighbors(v, graph)) > 0
else
@test length(in_edges(v, graph)) == 1
@test length(in_neighbors(v, graph)) == 1
end
end
show(devnull, graph)
end
@testset "remove_vertex!" begin
Random.seed!(10)
graph = DirectedGraph{Vertex{Int64}, Edge{Float64}}()
edge = Edge(rand())
add_edge!(graph, Vertex(rand(Int64)), Vertex(rand(Int64)), edge)
for v in vertices(graph)
@test_throws ErrorException remove_vertex!(graph, v)
end
graph = DirectedGraph{Vertex{Int64}, Edge{Float64}}()
for i = 1 : 100
add_vertex!(graph, Vertex(i))
end
for i = 1 : num_vertices(graph) - 1
add_edge!(graph, rand(vertices(graph)), rand(vertices(graph)), Edge(Float64(i)))
end
original = deepcopy(graph)
vertex = rand(collect(filter(v -> isempty(in_edges(v, graph)) && isempty(out_edges(v, graph)), vertices(graph))))
remove_vertex!(graph, vertex)
@test vertex ∉ vertices(graph)
for v in vertices(graph)
v_orig = vertices(original)[findfirst(v_orig -> v.data == v_orig.data, vertices(original))]
for (e, e_orig) in zip(in_edges(v, graph), in_edges(v_orig, original))
@test e.data == e_orig.data
end
for (e, e_orig) in zip(out_edges(v, graph), out_edges(v_orig, original))
@test e.data == e_orig.data
end
end
end
@testset "remove_edge!" begin
Random.seed!(11)
graph = DirectedGraph{Vertex{Int64}, Edge{Float64}}()
for i = 1 : 100
add_vertex!(graph, Vertex(i))
end
for i = 1 : num_vertices(graph) - 1
add_edge!(graph, rand(vertices(graph)), rand(vertices(graph)), Edge(Float64(i)))
end
original = deepcopy(graph)
edge = rand(edges(graph))
remove_edge!(graph, edge)
@test edge ∉ edges(graph)
@test num_edges(graph) == num_edges(original) - 1
for v in vertices(graph)
@test edge ∉ in_edges(v, graph)
@test edge ∉ out_edges(v, graph)
end
for e in edges(graph)
e_orig = edges(original)[findfirst(e_orig -> e.data == e_orig.data, edges(original))]
@test source(e, graph).data == source(e_orig, original).data
@test target(e, graph).data == target(e_orig, original).data
end
end
@testset "rewire!" begin
Random.seed!(12)
graph = DirectedGraph{Vertex{Int64}, Edge{Float64}}()
for i = 1 : 100
add_vertex!(graph, Vertex(i))
end
for i = 1 : num_vertices(graph) - 1
add_edge!(graph, rand(vertices(graph)), rand(vertices(graph)), Edge(Float64(i)))
end
original = deepcopy(graph)
edge = rand(edges(graph))
oldsource = source(edge, graph)
oldtarget = target(edge, graph)
non_source_vertices = delete!(Set(vertices(graph)), oldsource)
non_target_vertices = delete!(Set(vertices(graph)), oldtarget)
newsource = rand(collect(non_source_vertices))
newtarget = rand(collect(non_target_vertices))
rewire!(graph, edge, newsource, newtarget)
@test source(edge, graph) == newsource
@test target(edge, graph) == newtarget
@test edge ∈ out_edges(newsource, graph)
@test edge ∈ in_edges(newtarget, graph)
@test edge ∉ out_edges(oldsource, graph)
@test edge ∉ in_edges(oldtarget, graph)
@test map(x -> x.data, vertices(original)) == map(x -> x.data, vertices(graph))
for e in filter(e -> e != edge, edges(graph))
e_orig = edges(original)[findfirst(e_orig -> e.data == e_orig.data, edges(original))]
@test source(e, graph).data == source(e_orig, original).data
@test target(e, graph).data == target(e_orig, original).data
end
end
@testset "replace_edge!" begin
Random.seed!(13)
graph = DirectedGraph{Vertex{Int64}, Edge{Float64}}()
for i = 1 : 100
add_vertex!(graph, Vertex(i))
end
for i = 1 : num_vertices(graph) - 1
add_edge!(graph, rand(vertices(graph)), rand(vertices(graph)), Edge(Float64(i)))
end
original = deepcopy(graph)
for i = 1 : 10
old_edge = rand(edges(graph))
src = source(old_edge, graph)
dest = target(old_edge, graph)
new_edge = Edge(NaN)
replace_edge!(graph, old_edge, new_edge)
@test Graphs.edge_index(old_edge) == -1
@test all(map(x -> x.data, vertices(graph)) .== map(x -> x.data, vertices(original)))
@test new_edge ∈ in_edges(dest, graph)
@test old_edge ∉ in_edges(dest, graph)
@test new_edge ∈ out_edges(src, graph)
@test old_edge ∉ out_edges(src, graph)
@test source(new_edge, graph) == src
@test target(new_edge, graph) == dest
@test isnan(new_edge.data)
end
end
@testset "SpanningTree" begin
Random.seed!(14)
rootdata = 0
# graph1: tree grown incrementally
graph1 = DirectedGraph{Vertex{Int64}, Edge{Int32}}()
root1 = Vertex(rootdata)
add_vertex!(graph1, root1)
tree1 = SpanningTree(graph1, root1)
# graph2: tree constructed after graph is built
graph2 = DirectedGraph{Vertex{Int64}, Edge{Int32}}()
root2 = Vertex(rootdata)
add_vertex!(graph2, root2)
nedges = 15
for i = 1 : nedges
parentind = rand(1 : num_vertices(graph1))
childdata = i
edgedata = Int32(i + 3)
add_edge!(tree1, vertices(tree1)[parentind], Vertex(childdata), Edge(edgedata))
add_edge!(graph2, vertices(graph2)[parentind], Vertex(childdata), Edge(edgedata))
end
tree2 = SpanningTree(graph2, root2)
@test all(map(x -> x.data, vertices(tree1)) == map(x -> x.data, vertices(tree2)))
for (v1, v2) in zip(vertices(tree1), vertices(tree2))
if v1 == root(tree1)
@test v2 == root(tree2)
else
@test edge_to_parent(v1, tree1).data == edge_to_parent(v2, tree2).data
outedgedata1 = map(x -> x.data, collect(edges_to_children(v1, tree1)))
outedgedata2 = map(x -> x.data, collect(edges_to_children(v2, tree2)))
@test isempty(setdiff(outedgedata1, outedgedata2))
@test isempty(setdiff(out_edges(v1, graph1), edges_to_children(v1, tree1)))
@test isempty(setdiff(out_edges(v2, graph2), edges_to_children(v2, tree2)))
end
end
tree = tree1
show(devnull, tree)
@test_throws AssertionError add_edge!(tree, rand(vertices(tree)), rand(vertices(tree)), Edge(rand(Int32)))
for src in vertices(tree)
for dest in vertices(tree)
src_ancestors = ancestors(src, tree)
dest_ancestors = ancestors(dest, tree)
lca = lowest_common_ancestor(src, dest, tree)
p = TreePath(src, dest, tree)
show(devnull, p)
@inferred collect(p)
@test source(p) == src
@test target(p) == dest
source_to_lca = collect(edge for edge in p if direction(edge, p) == PathDirections.up)
target_to_lca = reverse!(collect(edge for edge in p if direction(edge, p) == PathDirections.down))
for (v, v_ancestors, pathsegment) in [(src, src_ancestors, source_to_lca); (dest, dest_ancestors, target_to_lca)]
if v == root(tree)
@test tree_index(v, tree) == 1
@test lca == v
@test length(v_ancestors) == 1
@test isempty(pathsegment)
end
for v_ancestor in v_ancestors
@test tree_index(v_ancestor, tree) <= tree_index(v, tree)
end
@test lca ∈ v_ancestors
if v != lca
@test source(last(pathsegment), tree) == lca
end
end
for v in intersect(src_ancestors, dest_ancestors)
@test tree_index(v, tree) <= tree_index(lca, tree)
if v != lca
@test v ∉ (v -> source(v, tree)).(source_to_lca)
@test v ∉ (v -> source(v, tree)).(target_to_lca)
end
end
for v in setdiff(src_ancestors, dest_ancestors)
@test tree_index(v, tree) > tree_index(lca, tree)
end
end
end
for i = 1 : 10
old_edge = rand(edges(tree))
src = source(old_edge, tree)
dest = target(old_edge, tree)
old_id = Graphs.edge_index(old_edge)
# make sure that replacing edge with itself doesn't mess with anything
replace_edge!(tree, old_edge, old_edge)
@test source(old_edge, tree) == src
@test target(old_edge, tree) == dest
@test Graphs.edge_index(old_edge) == old_id
# replace with a new edge
d = Int32(-10 * i)
new_edge = Edge(d)
replace_edge!(tree, old_edge, new_edge)
@test Graphs.edge_index(old_edge) == -1
@test new_edge ∈ in_edges(dest, tree)
@test old_edge ∉ in_edges(dest, tree)
@test new_edge ∈ out_edges(src, tree)
@test old_edge ∉ out_edges(src, tree)
@test source(new_edge, tree) == src
@test target(new_edge, tree) == dest
@test new_edge.data == d
@test edge_to_parent(dest, tree) == new_edge
@test new_edge ∈ edges_to_children(src, tree)
end
original = deepcopy(graph2)
edgemap = Dict(zip(edges(original), edges(graph2)))
newroot = rand(setdiff(vertices(graph2), [root2]))
flipped_edge_map = Dict{Edge{Int32}, Edge{Int32}}()
newtree = SpanningTree(graph2, newroot, flipped_edge_map)
@test !isempty(flipped_edge_map)
for (oldedge, newedge) in edgemap
flipped = haskey(flipped_edge_map, newedge)
if flipped
newedge = flipped_edge_map[newedge]
end
old_source_ind = Graphs.vertex_index(source(oldedge, original))
old_target_ind = Graphs.vertex_index(target(oldedge, original))
new_source_ind = Graphs.vertex_index(source(newedge, graph2))
new_target_ind = Graphs.vertex_index(target(newedge, graph2))
if flipped
@test oldedge.data == -newedge.data
@test new_source_ind == old_target_ind
@test new_target_ind == old_source_ind
else
@test oldedge.data == newedge.data
@test new_source_ind == old_source_ind
@test new_target_ind == old_target_ind
end
end
end
@testset "subtree_vertices" begin
graph = DirectedGraph{Vertex{Int64}, Edge{Int32}}()
root = Vertex(0)
add_vertex!(graph, root)
tree = SpanningTree(graph, root)
for i = 1 : 30
parent = vertices(tree)[rand(1 : num_vertices(graph))]
child = Vertex(i)
edge = Edge(Int32(i + 3))
add_edge!(tree, parent, child, edge)
end
for subtree_root in vertices(tree)
subtree = subtree_vertices(subtree_root, tree)
for vertex in vertices(tree)
@test (vertex ∈ subtree) == (subtree_root ∈ ancestors(vertex, tree))
end
end
end
@testset "reindex!" begin
Random.seed!(15)
graph = DirectedGraph{Vertex{Int64}, Edge{Float64}}()
for i = 1 : 100
add_vertex!(graph, Vertex(i))
end
for i = 1 : num_vertices(graph) - 1
add_edge!(graph, rand(vertices(graph)), rand(vertices(graph)), Edge(Float64(i)))
end
newvertices = shuffle(vertices(graph))
newedges = shuffle(edges(graph))
reindex!(graph, newvertices, newedges)
@test all(vertices(graph) .== newvertices)
@test all(edges(graph) .== newedges)
@test all(Graphs.vertex_index.(vertices(graph)) .== 1 : num_vertices(graph))
@test all(Graphs.edge_index.(edges(graph)) .== 1 : num_edges(graph))
end
@testset "map-like constructor" begin
Random.seed!(16)
graph = DirectedGraph{Vertex{Int32}, Edge{Float32}}()
for i = Int32(1) : Int32(100)
add_vertex!(graph, Vertex(i))
end
for i = 1 : num_vertices(graph) - 1
add_edge!(graph, rand(vertices(graph)), rand(vertices(graph)), Edge(Float32(i)))
end
mappedgraph = DirectedGraph(x -> Vertex(Int64(x.data), x.id), x -> Edge(Float64(x.data), x.id), graph)
@test vertextype(mappedgraph) == Vertex{Int64}
@test edgetype(mappedgraph) == Edge{Float64}
@test all(v1.data == v2.data for (v1, v2) in zip(vertices(graph), vertices(mappedgraph)))
@test all(e1.data == e2.data for (e1, e2) in zip(edges(graph), edges(mappedgraph)))
@test all(source(e1, graph).data == source(e2, mappedgraph).data for (e1, e2) in zip(edges(graph), edges(mappedgraph)))
@test all(target(e1, graph).data == target(e2, mappedgraph).data for (e1, e2) in zip(edges(graph), edges(mappedgraph)))
inedgesmatch(v1, v2) = all(e1.data == e2.data for (e1, e2) in zip(in_edges(v1, graph), in_edges(v2, mappedgraph)))
@test all(inedgesmatch(v1, v2) for (v1, v2) in zip(vertices(graph), vertices(mappedgraph)))
outedgesmatch(v1, v2) = all(e1.data == e2.data for (e1, e2) in zip(out_edges(v1, graph), out_edges(v2, mappedgraph)))
@test all(outedgesmatch(v1, v2) for (v1, v2) in zip(vertices(graph), vertices(mappedgraph)))
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 38475 | function randmech()
rand_tree_mechanism(Float64,
QuaternionFloating{Float64},
[Revolute{Float64} for i = 1 : 5]...,
[Fixed{Float64} for i = 1 : 5]...,
[Prismatic{Float64} for i = 1 : 5]...,
[Planar{Float64} for i = 1 : 5]...,
[SPQuatFloating{Float64} for i = 1:2]...,
[SinCosRevolute{Float64} for i = 1:2]...
)
end
@testset "mechanism algorithms" begin
@testset "show" begin
Random.seed!(17)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
mechanism_with_loops = deepcopy(mechanism)
for i = 1 : 5
pred = rand(bodies(mechanism_with_loops))
succ = rand(bodies(mechanism_with_loops))
joint = Joint("non-tree-$i", Fixed{Float64}())
attach!(mechanism_with_loops, pred, succ, joint)
end
show(devnull, mechanism_with_loops)
for joint in joints(mechanism_with_loops)
show(devnull, joint)
show(IOContext(devnull, :compact => true), joint)
end
for body in bodies(mechanism_with_loops)
show(devnull, body)
show(IOContext(devnull, :compact => true), body)
end
show(devnull, x)
end
@testset "supports" begin
Random.seed!(25)
mechanism = randmech()
mc_mechanism = maximal_coordinates(mechanism)
for m in [mechanism, mc_mechanism]
state = MechanismState(m)
for body in bodies(m)
body_ancestors = RigidBodyDynamics.Graphs.ancestors(body, m.tree)
for joint in tree_joints(m)
@test RigidBodyDynamics.supports(joint, body, state) == (successor(joint, m) ∈ body_ancestors)
end
for joint in non_tree_joints(m)
@test !RigidBodyDynamics.supports(joint, body, state)
end
end
end
end
@testset "basic stuff" begin
Random.seed!(18)
mechanism = randmech()
for joint in joints(mechanism)
@test eltype(joint_type(joint)) == Float64
end
x = MechanismState(mechanism)
rand!(x)
q = vcat([configuration(x, joint) for joint in tree_joints(mechanism)]...)
v = vcat([velocity(x, joint) for joint in tree_joints(mechanism)]...)
@test q == configuration(x)
@test v == velocity(x)
zero_configuration!(x)
set_configuration!(x, q)
@test q == configuration(x)
zero_velocity!(x)
set_velocity!(x, v)
@test v == velocity(x)
qcopy = copy(configuration(x))
zero_configuration!(x)
for joint in joints(mechanism)
set_configuration!(x, joint, qcopy[configuration_range(x, joint)])
end
@test q == configuration(x)
vcopy = copy(velocity(x))
zero_velocity!(x)
for joint in joints(mechanism)
set_velocity!(x, joint, vcopy[velocity_range(x, joint)])
end
@test v == velocity(x)
zero!(x)
copyto!(x, [q; v])
@test q == configuration(x)
@test v == velocity(x)
q2 = rand(num_positions(mechanism))
v2 = rand(num_velocities(mechanism))
q2copy = deepcopy(q2)
v2copy = deepcopy(v2)
x2 = MechanismState(mechanism, q2, v2)
@test parent(configuration(x2)) === q2
@test parent(velocity(x2)) === v2
@test all(configuration(x2) .== q2copy)
@test all(velocity(x2) .== v2copy)
@test @inferred(num_positions(mechanism)) == num_positions(x)
@test @inferred(num_velocities(mechanism)) == num_velocities(x)
for joint in tree_joints(mechanism)
for i in configuration_range(x, joint)
@test RigidBodyDynamics.configuration_index_to_joint_id(x, i) == JointID(joint)
end
for i in velocity_range(x, joint)
@test RigidBodyDynamics.velocity_index_to_joint_id(x, i) == JointID(joint)
end
end
rand!(x)
q = configuration(x)
@test q != qcopy
for joint in tree_joints(mechanism)
q[joint] .= qcopy[joint]
end
@test q == qcopy
end
@testset "copyto! / Vector" begin
Random.seed!(19)
mechanism = randmech()
x1 = MechanismState(mechanism)
rand!(x1)
@test Vector(x1) == [configuration(x1); velocity(x1); additional_state(x1)]
x2 = MechanismState(mechanism)
rand!(x2)
copyto!(x1, x2)
@test Vector(x1) == Vector(x2)
x3 = MechanismState(mechanism)
copyto!(x3, Vector(x2))
@test Vector(x3) == Vector(x2)
@test Vector{Float32}(x1) isa Vector{Float32}
@test Vector{Float32}(x1) ≈ Vector(x1) atol=1e-6
@test Array(x1) == Array{Float64}(x1) == convert(Array, x1) == convert(Array{Float64}, x1)
@test Vector(x1) == Vector{Float64}(x1) == convert(Vector, x1) == convert(Vector{Float64}, x1)
end
@testset "q̇ <-> v" begin
Random.seed!(20)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
q = configuration(x)
q̇ = configuration_derivative(x)
v = velocity(x)
for joint in joints(mechanism)
qjoint = configuration(x, joint)
q̇joint = q̇[configuration_range(x, joint)]
vjoint = velocity(x, joint)
vjoint_from_q̇ = similar(vjoint)
configuration_derivative_to_velocity!(vjoint_from_q̇, joint, qjoint, q̇joint)
@test isapprox(vjoint, vjoint_from_q̇; atol = 1e-12)
end
Jq̇_to_v = RigidBodyDynamics.configuration_derivative_to_velocity_jacobian(x)
Jv_to_q̇ = RigidBodyDynamics.velocity_to_configuration_derivative_jacobian(x)
for i in 1:10
rand!(x)
q = configuration(x)
q̇ = configuration_derivative(x)
v = velocity(x)
RigidBodyDynamics.configuration_derivative_to_velocity_jacobian!(Jq̇_to_v, x)
RigidBodyDynamics.velocity_to_configuration_derivative_jacobian!(Jv_to_q̇, x)
@test Jq̇_to_v * q̇ ≈ v
@test Jv_to_q̇ * v ≈ q̇
@test @allocated(RigidBodyDynamics.configuration_derivative_to_velocity_jacobian!(Jq̇_to_v, x)) == 0
@test @allocated(RigidBodyDynamics.velocity_to_configuration_derivative_jacobian!(Jv_to_q̇, x)) == 0
for joint in joints(mechanism)
qrange = configuration_range(x, joint)
vrange = velocity_range(x, joint)
qj = q[qrange]
q̇j = q̇[qrange]
vj = v[vrange]
Jv_to_q̇_j = RigidBodyDynamics.velocity_to_configuration_derivative_jacobian(joint, qj)
Jq̇_to_v_j = RigidBodyDynamics.configuration_derivative_to_velocity_jacobian(joint, qj)
if num_velocities(joint) > 0
@test Jv_to_q̇_j * vj ≈ q̇j
@test Jq̇_to_v_j * q̇j ≈ vj
else
@test size(Jv_to_q̇_j) == (0, 0)
@test size(Jq̇_to_v_j) == (0, 0)
end
end
end
end
@testset "set_configuration! / set_velocity!" begin
Random.seed!(21)
mechanism = randmech()
x = MechanismState(mechanism)
for joint in joints(mechanism)
qjoint = rand(num_positions(joint))
set_configuration!(x, joint, qjoint)
@test configuration(x, joint) == qjoint
@test configuration(x, joint) !== qjoint
vjoint = rand(num_velocities(joint))
set_velocity!(x, joint, vjoint)
@test velocity(x, joint) == vjoint
@test velocity(x, joint) !== vjoint
if joint_type(joint) isa QuaternionFloating
tf = rand(Transform3D{Float64}, frame_after(joint), frame_before(joint))
set_configuration!(x, joint, tf)
@test RigidBodyDynamics.joint_transform(joint, configuration(x, joint)) ≈ tf atol = 1e-12
# TODO: the frame stuff is kind of awkward here.
twist = RigidBodyDynamics.joint_twist(joint, configuration(x, joint), velocity(x, joint))
twist = rand(Twist{Float64}, frame_after(joint), frame_before(joint), frame_after(joint))
set_velocity!(x, joint, twist)
twist_back = RigidBodyDynamics.joint_twist(joint, configuration(x, joint), velocity(x, joint))
@test twist_back.angular ≈ twist.angular atol = 1e-12
@test twist_back.linear ≈ twist.linear atol = 1e-12
end
if joint_type(joint) isa Revolute || joint_type(joint) isa Prismatic
qj = rand()
set_configuration!(x, joint, qj)
@test configuration(x, joint)[1] == qj
vj = rand()
set_velocity!(x, joint, vj)
@test velocity(x, joint)[1] == vj
end
if joint_type(joint) isa QuaternionSpherical
quat = rand(QuatRotation{Float64})
set_configuration!(x, joint, quat)
tf = RigidBodyDynamics.joint_transform(joint, configuration(x, joint))
@test QuatRotation(rotation(tf)) ≈ quat atol = 1e-12
end
if joint_type(joint) isa SinCosRevolute
qj = rand()
set_configuration!(x, joint, qj)
@test SVector(sincos(qj)) == configuration(x, joint)
vj = rand()
set_velocity!(x, joint, vj)
@test velocity(x, joint)[1] == vj
end
end
end
@testset "normalize_configuration!" begin
Random.seed!(22)
mechanism = randmech()
let x = MechanismState(mechanism) # required to achieve zero allocations
configuration(x) .= 1
for joint in joints(mechanism)
qjoint = configuration(x, joint)
requires_normalization = num_positions(joint) != num_velocities(joint) # TODO: not quite the right thing to check for
@test requires_normalization != RigidBodyDynamics.is_configuration_normalized(joint, qjoint)
end
normalize_configuration!(x)
for joint in joints(mechanism)
@test RigidBodyDynamics.is_configuration_normalized(joint, configuration(x, joint))
end
allocs = @allocated normalize_configuration!(x)
@test allocs == 0
end
end
@testset "joint_torque! / motion_subspace" begin
Random.seed!(23)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
for joint in tree_joints(mechanism)
body = successor(joint, mechanism)
qjoint = configuration(x, joint)
wrench = rand(Wrench{Float64}, frame_after(joint))
τ = Vector{Float64}(undef, num_velocities(joint))
RigidBodyDynamics.joint_torque!(τ, joint, qjoint, wrench)
S = motion_subspace(joint, configuration(x, joint))
@test isapprox(τ, torque(S, wrench))
end
end
@testset "isfloating" begin
Random.seed!(24)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
for joint in joints(mechanism)
num_positions(joint) == 0 && continue # https://github.com/JuliaLang/julia/issues/26578
S = motion_subspace(joint, configuration(x, joint))
@test isfloating(joint) == (rank(Array(S)) == 6)
@test isfloating(joint) == (num_constraints(joint) == 0)
end
end
@testset "geometric_jacobian / relative_twist" begin
Random.seed!(25)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
frame = CartesianFrame3D()
for i = 1 : 100
bs = Set(bodies(mechanism))
body = rand([bs...])
delete!(bs, body)
base = rand([bs...])
p = path(mechanism, base, body)
v = velocity(x)
J = geometric_jacobian(x, p)
T = relative_twist(x, body, base)
@test isapprox(Twist(J, v), T; atol = 1e-12)
J1 = GeometricJacobian(J.body, J.base, J.frame, similar(angular(J)), similar(linear(J)))
geometric_jacobian!(J1, x, p)
@test isapprox(Twist(J1, v), T; atol = 1e-12)
H = rand(Transform3D, root_frame(mechanism), frame)
J2 = GeometricJacobian(J.body, J.base, frame, similar(angular(J)), similar(linear(J)))
if num_velocities(p) > 0
@test_throws ArgumentError geometric_jacobian!(J, x, p, H)
end
geometric_jacobian!(J2, x, p, H)
@test isapprox(Twist(J2, v), transform(T, H); atol = 1e-12)
J3 = GeometricJacobian(J.body, J.base, default_frame(body), similar(angular(J)), similar(linear(J)))
geometric_jacobian!(J3, x, p)
@test isapprox(Twist(J3, v), transform(x, T, default_frame(body)); atol = 1e-12)
end
end
@testset "point jacobian" begin
Random.seed!(26)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
@testset "point expressed in body frame" begin
for i = 1 : 100
bs = Set(bodies(mechanism))
body = rand([bs...])
delete!(bs, body)
base = rand([bs...])
p = path(mechanism, base, body)
point = Point3D(default_frame(body), rand(SVector{3, Float64}))
J_point = point_jacobian(x, p, point)
# Check agreement with GeometricJacobian -> Twist -> point_velocity
J = geometric_jacobian(x, p)
T = Twist(J, velocity(x))
point_in_world = transform(x, point, root_frame(mechanism))
point_velocity_expected = point_velocity(T, point_in_world)
@test point_velocity_expected ≈ transform(x, point_velocity(J_point, velocity(x)), root_frame(mechanism))
# Test that point_velocity give us what Jp * v does
@test transform(x, point_velocity(J_point, velocity(x)), point.frame).v ≈ Array(J_point) * velocity(x)
# Test that in-place updates work too
rand!(x)
if point.frame != default_frame(base)
@test_throws ArgumentError point_jacobian!(J_point, x, p, transform(x, point, default_frame(base)))
end
point_jacobian!(J_point, x, p, point)
@test(@ballocated(point_jacobian!($J_point, $x, $p, $point)) == 0)
J = geometric_jacobian(x, p)
T = Twist(J, velocity(x))
point_in_world = transform(x, point, root_frame(mechanism))
@test point_velocity(T, point_in_world) ≈ transform(x, point_velocity(J_point, velocity(x)), root_frame(mechanism))
# Test Jᵀ * f
f = FreeVector3D(CartesianFrame3D(), rand(), rand(), rand())
τ = similar(velocity(x))
@test_throws ArgumentError mul!(τ, transpose(J_point), f)
f = FreeVector3D(J_point.frame, rand(), rand(), rand())
mul!(τ, transpose(J_point), f)
@test τ == transpose(J_point.J) * f.v
@test τ == transpose(J_point) * f
end
end
@testset "point expressed in world frame" begin
Random.seed!(27)
for i = 1 : 10
bs = Set(bodies(mechanism))
body = rand([bs...])
delete!(bs, body)
base = rand([bs...])
p = path(mechanism, base, body)
point = Point3D(root_frame(mechanism), rand(SVector{3, Float64}))
J_point = point_jacobian(x, p, point)
# Check agreement with GeometricJacobian -> Twist -> point_velocity
J = geometric_jacobian(x, p)
T = Twist(J, velocity(x))
@test point_velocity(T, point) ≈ point_velocity(J_point, velocity(x))
# Test that point_velocity give us what Jp * v does
@test point_velocity(J_point, velocity(x)).v ≈ Array(J_point) * velocity(x)
point_jacobian!(J_point, x, p, point)
end
end
end
@testset "motion_subspace / constraint_wrench_subspace" begin
Random.seed!(28)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
for joint in tree_joints(mechanism)
body = successor(joint, mechanism)
qjoint = configuration(x, joint)
S = motion_subspace(joint, configuration(x, joint))
tf = joint_transform(joint, qjoint)
T = constraint_wrench_subspace(joint, tf)
if 0 < num_constraints(joint) < 6
@test isapprox(angular(T)' * angular(S) + linear(T)' * linear(S), zeros(num_constraints(joint), num_velocities(joint)); atol = 1e-12)
elseif num_constraints(joint) == 0
@test size(T) == (6, 0)
else
@test size(S) == (6, 0)
end
end
end
# TODO: good test, but currently don't want to support joints with variable wrench subspaces:
# @testset "constraint_bias" begin
# for joint in joints(mechanism)
# qjoint = configuration(x, joint)
# vjoint = velocity(x, joint)
# q̇joint = similar(qjoint)
# velocity_to_configuration_derivative!(joint, q̇joint, qjoint, vjoint)
# qjoint_autodiff = ForwardDiff.Dual.(qjoint, q̇joint)
# TAutodiff = constraint_wrench_subspace(joint, qjoint_autodiff)#::RigidBodyDynamics.WrenchSubspace{eltype(qjoint_autodiff)} # TODO
# ang = map(x -> ForwardDiff.partials(x, 1), angular(TAutodiff))
# lin = map(x -> ForwardDiff.partials(x, 1), linear(TAutodiff))
# Ṫ = WrenchMatrix(frame_after(joint), ang, lin)
# joint_twist = transform(x, relative_twist(x, frame_after(joint), frame_before(joint)), frame_after(joint))
# bias = fill(NaN, 6 - num_velocities(joint))
# constraint_bias!(joint, bias, joint_twist)
# @test isapprox(angular(Ṫ)' * angular(joint_twist) + linear(Ṫ)' * linear(joint_twist), bias; atol = 1e-14)
# end
# end
@testset "relative_acceleration" begin
Random.seed!(29)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
result = DynamicsResult(mechanism)
for body in bodies(mechanism)
for base in bodies(mechanism)
v̇ = similar(velocity(x))
rand!(v̇)
spatial_accelerations!(result.accelerations, x, v̇)
Ṫ = relative_acceleration(result, body, base)
q = configuration(x)
v = velocity(x)
q̇ = configuration_derivative(x)
q_autodiff = ForwardDiff.Dual.(q, q̇)
v_autodiff = ForwardDiff.Dual.(v, v̇)
x_autodiff = MechanismState{eltype(q_autodiff)}(mechanism)
set_configuration!(x_autodiff, q_autodiff)
set_velocity!(x_autodiff, v_autodiff)
twist_autodiff = relative_twist(x_autodiff, body, base)
accel_vec = [ForwardDiff.partials(x, 1)::Float64 for x in (SVector(twist_autodiff))]
@test isapprox(SVector(Ṫ), accel_vec; atol = 1e-12)
root = root_body(mechanism)
f = default_frame(body)
Ṫbody = transform(x, relative_acceleration(result, body, root), f)
Ṫbase = transform(x, relative_acceleration(result, base, root), f)
@test isapprox(transform(x, -Ṫbase + Ṫbody, Ṫ.frame), Ṫ; atol = 1e-12)
end
end
end
@testset "motion subspace / twist wrt world" begin
Random.seed!(30)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
for joint in tree_joints(mechanism)
body = successor(joint, mechanism)
parent_body = predecessor(joint, mechanism)
toroot = transform_to_root(x, body)
S = transform(motion_subspace(joint, configuration(x, joint)), toroot)
@test isapprox(relative_twist(x, body, parent_body), Twist(S, velocity(x, joint)); atol = 1e-12)
end
end
@testset "composite rigid body inertias" begin
Random.seed!(31)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
for joint in tree_joints(mechanism)
body = successor(joint, mechanism)
crb = crb_inertia(x, body)
stack = [body]
subtree = typeof(body)[]
while !isempty(stack)
b = pop!(stack)
push!(subtree, b)
for joint in out_joints(b, mechanism)
push!(stack, successor(joint, mechanism))
end
end
@test isapprox(sum((b::RigidBody) -> spatial_inertia(x, b), subtree), crb; atol = 1e-12)
end
end
@testset "momentum_matrix / summing momenta" begin
Random.seed!(32)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
A = momentum_matrix(x)
Amat = Array(A)
for joint in tree_joints(mechanism)
if num_velocities(joint) > 0 # TODO: Base.mapslices can't handle matrices with zero columns
body = successor(joint, mechanism)
Ajoint = Amat[:, velocity_range(x, joint)]
S = transform(motion_subspace(joint, configuration(x, joint)), transform_to_root(x, body))
@test isapprox(Array(crb_inertia(x, body) * S), Ajoint; atol = 1e-12)
end
end
v = velocity(x)
hsum = sum(b -> spatial_inertia(x, b) * twist_wrt_world(x, b), non_root_bodies(mechanism))
@test isapprox(Momentum(A, v), hsum; atol = 1e-12)
A1 = MomentumMatrix(A.frame, similar(angular(A)), similar(linear(A)))
momentum_matrix!(A1, x)
@test isapprox(Momentum(A1, v), hsum; atol = 1e-12)
frame = CartesianFrame3D()
A2 = MomentumMatrix(frame, similar(angular(A)), similar(linear(A)))
H = rand(Transform3D, root_frame(mechanism), frame)
@test_throws ArgumentError momentum_matrix!(A, x, H)
momentum_matrix!(A2, x, H)
@test isapprox(Momentum(A2, v), transform(hsum, H); atol = 1e-12)
body = rand(collect(bodies(mechanism)))
A3 = MomentumMatrix(default_frame(body), similar(angular(A)), similar(linear(A)))
momentum_matrix!(A3, x)
@test isapprox(Momentum(A3, v), transform(x, hsum, default_frame(body)); atol = 1e-12)
end
@testset "mass matrix / kinetic energy" begin
Random.seed!(33)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
Ek = kinetic_energy(x)
M = mass_matrix(x)
v = velocity(x)
@test isapprox(1/2 * dot(v, M * v), Ek; atol = 1e-12)
q = configuration(x)
cache = StateCache(mechanism)
kinetic_energy_fun = function (v)
local x = cache[eltype(v)]
set_configuration!(x, q)
set_velocity!(x, v)
kinetic_energy(x)
end
# FIXME: excessive compilation time
# M2 = similar(M.data)
# NOTE: chunk size 1 necessary after updating to ForwardDiff 0.2 because creating a MechanismState with a max size Dual takes forever...
# see https://github.com/JuliaDiff/ForwardDiff.jl/issues/266
# M2 = ForwardDiff.hessian!(M2, kinetic_energy_fun, v, ForwardDiff.HessianConfig(kinetic_energy_fun, v, ForwardDiff.Chunk{1}()))
# @test isapprox(M2, M; atol = 1e-12)
end
@testset "spatial_inertia!" begin
Random.seed!(34)
mechanism = randmech()
body = rand(collect(non_root_bodies(mechanism)))
newinertia = rand(SpatialInertia{eltype(mechanism)}, spatial_inertia(body).frame)
spatial_inertia!(body, newinertia)
@assert spatial_inertia(body) == newinertia
end
@testset "inverse dynamics / acceleration term" begin
Random.seed!(35)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
M = mass_matrix(x)
function v̇_to_τ(v̇)
inverse_dynamics(x, v̇)
end
M2 = similar(M.data)
v̇ = similar(velocity(x))
v̇ .= 0
ForwardDiff.jacobian!(M2, v̇_to_τ, v̇)
@test isapprox(M2, M; atol = 1e-12)
end
@testset "inverse dynamics / Coriolis term" begin
Random.seed!(36)
mechanism = rand_tree_mechanism(Float64, [[Revolute{Float64} for i = 1 : 10]; [Prismatic{Float64} for i = 1 : 10]]...) # skew symmetry property tested later on doesn't hold when q̇ ≠ v
x = MechanismState{Float64}(mechanism)
rand!(x)
cache = StateCache(mechanism)
function q_to_M(q)
local x = cache[eltype(q)]
set_configuration!(x, q)
zero_velocity!(x)
vec(mass_matrix(x))
end
nv = num_velocities(mechanism)
nq = num_positions(mechanism)
dMdq = zeros(nv * nv, nq)
ForwardDiff.jacobian!(dMdq, q_to_M, configuration(x))
q̇ = velocity(x)
Ṁ = reshape(dMdq * q̇, num_velocities(mechanism), num_velocities(mechanism))
q = configuration(x)
v̇ = similar(velocity(x))
v̇ .= 0
cache = StateCache(mechanism)
function v_to_c(v)
local x = cache[eltype(v)]
set_configuration!(x, q)
set_velocity!(x, v)
inverse_dynamics(x, v̇)
end
C = similar(Ṁ)
ForwardDiff.jacobian!(C, v_to_c, q̇)
C *= 1/2
skew = Ṁ - 2 * C;
@test isapprox(skew + skew', zeros(size(skew)); atol = 1e-12)
end
@testset "inverse dynamics / gravity term" begin
Random.seed!(37)
mechanism = rand_tree_mechanism(Float64, [[Revolute{Float64} for i = 1 : 10]; [Prismatic{Float64} for i = 1 : 10]]...)
x = MechanismState(mechanism)
rand!(x)
v̇ = similar(velocity(x))
v̇ .= 0
zero_velocity!(x)
g = inverse_dynamics(x, v̇)
cache = StateCache(mechanism)
function q_to_potential(q)
local x = cache[eltype(q)]
set_configuration!(x, q)
zero_velocity!(x)
return [gravitational_potential_energy(x)]
end
g2 = similar(g')
ForwardDiff.jacobian!(g2, q_to_potential, configuration(x))
@test isapprox(g2, g'; atol = 1e-12)
end
@testset "momentum matrix" begin
Random.seed!(38)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
q = configuration(x)
q̇ = configuration_derivative(x)
v = velocity(x)
v̇ = similar(velocity(x))
rand!(v̇)
# momentum computed two ways
@test isapprox(Momentum(momentum_matrix(x), v), momentum(x))
# rate of change of momentum computed using autodiff:
q_autodiff = ForwardDiff.Dual.(q, q̇)
v_autodiff = ForwardDiff.Dual.(v, v̇)
x_autodiff = MechanismState{eltype(q_autodiff)}(mechanism)
set_configuration!(x_autodiff, q_autodiff)
set_velocity!(x_autodiff, v_autodiff)
A_autodiff = Array(momentum_matrix(x_autodiff))
A = [ForwardDiff.value(A_autodiff[i, j])::Float64 for i = 1 : size(A_autodiff, 1), j = 1 : size(A_autodiff, 2)]
Ȧ = [ForwardDiff.partials(A_autodiff[i, j], 1)::Float64 for i = 1 : size(A_autodiff, 1), j = 1 : size(A_autodiff, 2)]
ḣArray = A * v̇ + Ȧ * v
# rate of change of momentum computed without autodiff:
ḣ = Wrench(momentum_matrix(x), v̇) + momentum_rate_bias(x)
@test isapprox(ḣArray, SVector(ḣ); atol = 1e-12)
end
@testset "inverse dynamics / external wrenches" begin
# test requires a floating mechanism
Random.seed!(39)
mechanism = rand_floating_tree_mechanism(Float64, fill(Revolute{Float64}, 10)..., fill(Planar{Float64}, 10)..., fill(SinCosRevolute{Float64}, 5)...)
x = MechanismState(mechanism)
rand!(x)
v̇ = similar(velocity(x))
rand!(v̇)
externalwrenches = Dict(BodyID(body) => rand(Wrench{Float64}, root_frame(mechanism)) for body in bodies(mechanism))
τ = inverse_dynamics(x, v̇, externalwrenches)
floatingjoint = first(out_joints(root_body(mechanism), mechanism))
τfloating = τ[velocity_range(x, floatingjoint)]
floatingjointwrench = Wrench(frame_after(floatingjoint), SVector{3}(τfloating[1 : 3]), SVector{3}(τfloating[4 : 6]))
floatingjointwrench = transform(x, floatingjointwrench, root_frame(mechanism))
ḣ = Wrench(momentum_matrix(x), v̇) + momentum_rate_bias(x) # momentum rate of change
gravitational_force = mass(mechanism) * mechanism.gravitational_acceleration
com = center_of_mass(x)
gravitational_wrench = Wrench(gravitational_force.frame, (com × gravitational_force).v, gravitational_force.v)
total_wrench = floatingjointwrench + gravitational_wrench + sum((b) -> transform(x, externalwrenches[BodyID(b)], root_frame(mechanism)), non_root_bodies(mechanism))
@test isapprox(total_wrench, ḣ; atol = 1e-10)
end
@testset "dynamics / inverse dynamics" begin
Random.seed!(40)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
external_torques = rand(num_velocities(mechanism))
externalwrenches = Dict(BodyID(body) => rand(Wrench{Float64}, root_frame(mechanism)) for body in bodies(mechanism))
result = DynamicsResult(mechanism)
dynamics!(result, x, external_torques, externalwrenches)
τ = inverse_dynamics(x, result.v̇, externalwrenches) - external_torques
@test isapprox(τ, zeros(num_velocities(mechanism)); atol = 1e-10)
end
@testset "dynamics_bias / inverse_dynamics" begin
Random.seed!(41)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
externalwrenches = Dict(BodyID(body) => rand(Wrench{Float64}, root_frame(mechanism)) for body in bodies(mechanism))
v̇ = similar(velocity(x))
v̇ .= 0
τ1 = inverse_dynamics(x, v̇, externalwrenches)
τ2 = dynamics_bias(x, externalwrenches)
@test τ1 ≈ τ2
end
@testset "dynamics ode method" begin
Random.seed!(42)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
torques = rand(num_velocities(mechanism))
externalwrenches = Dict(BodyID(body) => rand(Wrench{Float64}, root_frame(mechanism)) for body in bodies(mechanism))
result1 = DynamicsResult(mechanism)
ẋ = similar(Vector(x))
dynamics!(ẋ, result1, x, Vector(x), torques, externalwrenches)
result2 = DynamicsResult(mechanism)
dynamics!(result2, x, torques, externalwrenches)
@test isapprox([configuration_derivative(x); result2.v̇], ẋ)
end
@testset "power flow" begin
Random.seed!(43)
mechanism = randmech()
x = MechanismState(mechanism)
rand!(x)
externalwrenches = Dict(BodyID(body) => rand(Wrench{Float64}, root_frame(mechanism)) for body in bodies(mechanism))
τ = similar(velocity(x))
rand!(τ)
result = DynamicsResult(mechanism)
dynamics!(result, x, τ, externalwrenches)
q = configuration(x)
q̇ = configuration_derivative(x)
v = velocity(x)
v̇ = result.v̇
power = τ ⋅ v + sum(body -> externalwrenches[BodyID(body)] ⋅ twist_wrt_world(x, body), non_root_bodies(mechanism))
q_autodiff = ForwardDiff.Dual.(q, q̇)
v_autodiff = ForwardDiff.Dual.(v, v̇)
x_autodiff = MechanismState{eltype(q_autodiff)}(mechanism)
set_configuration!(x_autodiff, q_autodiff)
set_velocity!(x_autodiff, v_autodiff)
energy_autodiff = gravitational_potential_energy(x_autodiff) + kinetic_energy(x_autodiff)
energy_derivative = ForwardDiff.partials(energy_autodiff)[1]
@test isapprox(power, energy_derivative, atol = 1e-10)
end
@testset "local / global coordinates" begin
Random.seed!(44)
mechanism = randmech()
state = MechanismState(mechanism)
rand!(state)
for joint in joints(mechanism)
# back and forth between local and global
ϕ = Vector{Float64}(undef, num_velocities(joint))
ϕ̇ = Vector{Float64}(undef, num_velocities(joint))
q0 = Vector{Float64}(undef, num_positions(joint))
q = configuration(state, joint)
v = velocity(state, joint)
rand_configuration!(q0, joint)
local_coordinates!(ϕ, ϕ̇, joint, q0, q, v)
q_back = Vector{Float64}(undef, num_positions(joint))
global_coordinates!(q_back, joint, q0, ϕ)
principal_value!(q_back, joint)
let expected = copy(q)
principal_value!(expected, joint)
@test isapprox(q_back, expected)
end
# compare ϕ̇ to autodiff
q̇ = Vector{Float64}(undef, num_positions(joint))
velocity_to_configuration_derivative!(q̇, joint, q, v)
v̇ = rand(num_velocities(joint))
q_autodiff = ForwardDiff.Dual.(q, q̇)
v_autodiff = ForwardDiff.Dual.(v, v̇)
q0_autodiff = ForwardDiff.Dual.(q0, zeros(length(q0)))
T = eltype(q_autodiff)
ϕ_autodiff = Vector{T}(undef, length(ϕ))
ϕ̇_autodiff = Vector{T}(undef, length(ϕ̇))
local_coordinates!(ϕ_autodiff, ϕ̇_autodiff, joint, q0_autodiff, q_autodiff, v_autodiff)
ϕ̇_from_autodiff = [ForwardDiff.partials(x)[1] for x in ϕ_autodiff]
@test isapprox(ϕ̇, ϕ̇_from_autodiff)
# local coordinates should be zero when q = q0
# Definition 2.9 in Duindam, "Port-Based Modeling and Control for Efficient Bipedal Walking Robots"
copyto!(q, q0)
local_coordinates!(ϕ, ϕ̇, joint, q0, q, v)
@test isapprox(ϕ, zeros(num_velocities(joint)); atol = 1e-15)
end
end
@testset "configuration_derivative_to_velocity_adjoint!" begin
Random.seed!(45)
mechanism = randmech()
x = MechanismState(mechanism)
configuration(x) .= rand(num_positions(x)) # needs to work for configuration vectors that do not satisfy the state constraints as well
fv = similar(velocity(x))
rand!(fv)
fq = similar(configuration(x))
rand!(fq)
configuration_derivative_to_velocity_adjoint!(fq, x, fv)
@test dot(fv, velocity(x)) ≈ dot(fq, configuration_derivative(x))
end
@testset "joint bounds" begin
@test @inferred(RigidBodyDynamics.Bounds{Float64}()).lower == -Inf
@test @inferred(RigidBodyDynamics.Bounds{Float64}()).upper == Inf
@test @inferred(RigidBodyDynamics.Bounds(-1, 2.0)).lower == -1
@test @inferred(RigidBodyDynamics.Bounds(-1, 2.0)).upper == 2
@test isa(RigidBodyDynamics.Bounds(-1, 1.0).lower, Float64)
@test isa(RigidBodyDynamics.Bounds(-1, 1.0).upper, Float64)
@test @inferred(clamp(1.5, RigidBodyDynamics.Bounds(-1, 1))) == RigidBodyDynamics.upper(RigidBodyDynamics.Bounds(-1, 1))
@test @inferred(clamp(-3, RigidBodyDynamics.Bounds(-2, 1))) == RigidBodyDynamics.lower(RigidBodyDynamics.Bounds(-2, 1))
@test @inferred(clamp(0, RigidBodyDynamics.Bounds(-1, 1))) == 0
@test @inferred(intersect(RigidBodyDynamics.Bounds(-1, 1), RigidBodyDynamics.Bounds(-0.5, 2.0))) == RigidBodyDynamics.Bounds(-0.5, 1.0)
@test @inferred(convert(RigidBodyDynamics.Bounds{Float64}, RigidBodyDynamics.Bounds(1, 2))) == RigidBodyDynamics.Bounds{Float64}(1.0, 2.0)
end
@testset "issue #330" begin
Random.seed!(46)
mechanism = rand_tree_mechanism(Revolute{Float64})
f330(x::AbstractArray{T}) where {T} = begin
result = DynamicsResult{T}(mechanism)
1.
end
@test ForwardDiff.hessian(f330, [1.]) == zeros(1, 1)
end
@testset "principal_value!" begin
Random.seed!(47)
state_orig = MechanismState(randmech())
Random.rand!(state_orig)
for joint_k = tree_joints(state_orig.mechanism)
joint_type_k = joint_type(joint_k)
if isa(joint_type_k, SPQuatFloating)
RigidBodyDynamics.set_rotation!(state_orig.q[joint_k], joint_type_k, ModifiedRodriguesParam(QuatRotation(-0.5, randn(), randn(), randn())))
end
end
setdirty!(state_orig)
state_prin = deepcopy(state_orig)
principal_value!(state_prin)
for joint_k = tree_joints(state_orig.mechanism)
joint_type_k = joint_type(joint_k)
q_orig = state_orig.q[joint_k]
q_prin = state_prin.q[joint_k]
if joint_type_k isa SPQuatFloating
rot_orig = rotation(joint_type_k, q_orig)
rot_prin = rotation(joint_type_k, q_prin)
@test isapprox(rot_orig, rot_prin)
@test (rot_prin.x^2 + rot_prin.y^2 + rot_prin.z^2) < (1.0 + 1.0e-14)
@test (1.0 + 1.0e-14) < (rot_orig.x^2 + rot_orig.y^2 + rot_orig.z^2)
elseif joint_type_k isa QuaternionFloating || joint_type_k isa QuaternionSpherical
rot_orig = rotation(joint_type_k, q_orig)
rot_prin = rotation(joint_type_k, q_prin)
w, x, y, z = Rotations.params(rot_prin)
@test isapprox(rot_orig, rot_prin)
@test w > 0
else
@test q_orig == q_prin
end
if joint_type_k isa QuaternionFloating
@test translation(joint_type_k, q_orig) === translation(joint_type_k, q_prin)
end
end
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 20442 | @testset "mechanism modification" begin
@testset "flip_direction" begin
Bounds = RigidBodyDynamics.Bounds
jointname = "joint1"
axis = [1.0, 0.0, 0.0]
for JT in [Revolute, Prismatic]
jointtype = JT(axis)
posbounds = [Bounds(1., 2.)]
velbounds = [Bounds(3., 4.)]
effbounds = [Bounds(5., 6.)]
joint = Joint(jointname, jointtype, position_bounds = posbounds, velocity_bounds = velbounds, effort_bounds = effbounds)
flipped = RigidBodyDynamics.Graphs.flip_direction(joint)
@test flipped.name == joint.name
@test joint_type(flipped) == JT(.-axis)
@test flipped.position_bounds == [Bounds(-2., -1.)]
@test flipped.velocity_bounds == [Bounds(-4., -3.)]
@test flipped.effort_bounds == [Bounds(-6., -5.)]
end
end
@testset "attach!" begin
Random.seed!(47)
body0 = RigidBody{Float64}("root")
mechanism = Mechanism(body0)
joint1 = Joint("joint1", rand(Revolute{Float64}))
joint1_pose = rand(Transform3D{Float64}, frame_before(joint1), default_frame(body0))
body1 = RigidBody(rand(SpatialInertia{Float64}, frame_after(joint1)))
joint2 = Joint("joint2", QuaternionFloating{Float64}())
joint2_pose = rand(Transform3D{Float64}, frame_before(joint2), default_frame(body1))
body2 = RigidBody(rand(SpatialInertia{Float64}, CartesianFrame3D("2")))
# can't attach if predecessor is not among bodies of mechanism
@test_throws AssertionError attach!(mechanism, body1, body2, joint2, joint_pose = joint2_pose)
# attach body1
attach!(mechanism, body0, body1, joint1, joint_pose = joint1_pose)
@test length(bodies(mechanism)) == 2
@test body1 ∈ bodies(mechanism)
@test length(joints(mechanism)) == 1
@test joint1 ∈ joints(mechanism)
@test isapprox(fixed_transform(mechanism, frame_before(joint1), joint1_pose.to), joint1_pose)
# can't use the same joint twice
@test_throws AssertionError attach!(mechanism, body0, body1, joint1, joint_pose = joint1_pose)
# attach body2
attach!(mechanism, body1, body2, joint2, joint_pose = joint2_pose)
@test length(bodies(mechanism)) == 3
@test body2 ∈ bodies(mechanism)
@test length(joints(mechanism)) == 2
@test joint2 ∈ joints(mechanism)
@test isapprox(fixed_transform(mechanism, frame_before(joint2), joint2_pose.to), joint2_pose)
end
@testset "attach! mechanism" begin
Random.seed!(48)
mechanism = randmech()
nq = num_positions(mechanism)
nv = num_velocities(mechanism)
mechanism2 = rand_tree_mechanism(Float64, [QuaternionFloating{Float64}; [Revolute{Float64} for i = 1 : 5]; QuaternionSpherical{Float64}; Planar{Float64}; [Prismatic{Float64} for i = 1 : 5]]...)
additional_frames = Dict{CartesianFrame3D, RigidBody{Float64}}()
for body in bodies(mechanism2)
for i = 1 : 5
frame = CartesianFrame3D("frame_$i")
tf = rand(Transform3D, frame, default_frame(body))
add_frame!(body, tf)
additional_frames[frame] = body
end
end
parent_body = rand(collect(bodies(mechanism)))
attach!(mechanism, parent_body, mechanism2)
@test num_positions(mechanism) == nq + num_positions(mechanism2)
@test num_velocities(mechanism) == nv + num_velocities(mechanism2)
# make sure all of the frame definitions got copied over
for frame in keys(additional_frames)
body = additional_frames[frame]
if body == root_body(mechanism2)
body = parent_body
end
@test RigidBodyDynamics.is_fixed_to_body(body, frame)
end
state = MechanismState(mechanism) # issue 63
rand!(state)
M = mass_matrix(state)
# independent acrobots in the same configuration
# make sure mass matrix is block diagonal, and that blocks on diagonal are the same
urdf = joinpath(@__DIR__, "urdf", "Acrobot.urdf")
double_acrobot = parse_urdf(urdf)
acrobot2 = parse_urdf(urdf)
xsingle = MechanismState(acrobot2)
rand!(xsingle)
qsingle = configuration(xsingle)
nq_single = length(qsingle)
parent_body = root_body(double_acrobot)
attach!(double_acrobot, parent_body, acrobot2)
x = MechanismState(double_acrobot)
set_configuration!(x, [qsingle; qsingle])
H = mass_matrix(x)
H11 = H[1 : nq_single, 1 : nq_single]
H12 = H[1 : nq_single, nq_single + 1 : end]
H21 = H[nq_single + 1 : end, 1 : nq_single]
H22 = H[nq_single + 1 : end, nq_single + 1 : end]
@test isapprox(H11, H22)
@test isapprox(H12, zero(H12))
@test isapprox(H21, zero(H21))
end
@testset "remove fixed joints" begin
Random.seed!(49)
joint_types = [QuaternionFloating{Float64}; [Revolute{Float64} for i = 1 : 10]; QuaternionSpherical{Float64}; Planar{Float64}; [Fixed{Float64} for i = 1 : 10]; [SinCosRevolute{Float64} for i = 1 : 5]]
shuffle!(joint_types)
mechanism = rand_tree_mechanism(Float64, joint_types...)
normal_model = RigidBodyDynamics.Contact.hunt_crossley_hertz()
tangential_model = RigidBodyDynamics.Contact.ViscoelasticCoulombModel(0.8, 20e3, 100.)
contact_model = RigidBodyDynamics.Contact.SoftContactModel(normal_model, tangential_model)
num_contact_points = 0
for body in bodies(mechanism)
for i in 1 : rand(1 : 3)
contact_point = ContactPoint(Point3D(default_frame(body), rand(), rand(), rand()), contact_model)
add_contact_point!(body, contact_point)
num_contact_points += 1
end
end
state = MechanismState(mechanism)
rand!(state)
q = configuration(state)
M = mass_matrix(state)
nonfixedjoints = collect(filter(j -> !(joint_type(j) isa Fixed), tree_joints(mechanism)))
remove_fixed_tree_joints!(mechanism)
@test sum(body -> length(contact_points(body)), bodies(mechanism)) == num_contact_points
@test tree_joints(mechanism) == nonfixedjoints
state_no_fixed_joints = MechanismState(mechanism)
set_configuration!(state_no_fixed_joints, q)
M_no_fixed_joints = mass_matrix(state_no_fixed_joints)
@test isapprox(M_no_fixed_joints, M, atol = 1e-12)
end
@testset "replace joint" begin
Random.seed!(50)
joint_types = [QuaternionFloating{Float64}; [Revolute{Float64} for i = 1 : 10]; QuaternionSpherical{Float64}; Planar{Float64}; [Fixed{Float64} for i = 1 : 10]; [SinCosRevolute{Float64} for i = 1 : 5]]
shuffle!(joint_types)
mechanism = rand_tree_mechanism(Float64, joint_types...)
for m in [mechanism; maximal_coordinates(mechanism)]
for i = 1 : 10
oldjoint = rand(joints(mechanism))
newjoint = Joint("new", frame_before(oldjoint), frame_after(oldjoint), Fixed{Float64}())
replace_joint!(mechanism, oldjoint, newjoint)
@test newjoint ∈ joints(mechanism)
@test oldjoint ∉ joints(mechanism)
end
end
end
@testset "submechanism" begin
Random.seed!(51)
for testnum = 1 : 100
# joint_types = [QuaternionFloating{Float64}; [Revolute{Float64} for i = 1 : 10]; QuaternionSpherical{Float64}; Planar{Float64}; [Fixed{Float64} for i = 1 : 10]] # FIXME: use this
joint_types = [Revolute{Float64} for i = 1 : 4]
shuffle!(joint_types)
mechanism = rand_tree_mechanism(Float64, joint_types...)
state = MechanismState(mechanism)
rand!(state)
M = mass_matrix(state)
submechanism_root = rand(collect(bodies(mechanism)))
bodymap = Dict{RigidBody{Float64}, RigidBody{Float64}}()
jointmap = Dict{Joint{Float64}, Joint{Float64}}()
mechanism_part = submechanism(mechanism, submechanism_root; bodymap=bodymap, jointmap=jointmap)
@test root_body(mechanism_part) == bodymap[submechanism_root]
@test mechanism.gravitational_acceleration.v == mechanism_part.gravitational_acceleration.v
substate = MechanismState(mechanism_part)
for (oldjoint, newjoint) in jointmap
set_configuration!(substate, newjoint, configuration(state, oldjoint))
set_velocity!(substate, newjoint, velocity(state, oldjoint))
end
Msub = mass_matrix(substate)
if num_velocities(mechanism_part) > 0
indices = vcat([velocity_range(state, joint) for joint in tree_joints(mechanism) if joint ∈ keys(jointmap)]...)
@test isapprox(M[indices, indices], Msub, atol = 1e-10)
end
end
end
@testset "reattach" begin
Random.seed!(52)
for testnum = 1 : 10
# create random floating mechanism with flippable joints
joint_types = [[Prismatic{Float64} for i = 1 : 10]; [Revolute{Float64} for i = 1 : 10]; [Fixed{Float64} for i = 1 : 10]; [SinCosRevolute{Float64} for i = 1 : 5]]
shuffle!(joint_types)
mechanism1 = rand_floating_tree_mechanism(Float64, joint_types...)
# random state
x1 = MechanismState(mechanism1)
rand!(x1)
# copy and set up mapping from bodies and joints of mechanism1 to those of mechanism2
bodies1 = collect(bodies(mechanism1))
joints1 = collect(joints(mechanism1))
(bodies2, joints2, mechanism2) = deepcopy((bodies1, joints1, mechanism1))
bodymap = Dict(zip(bodies1, bodies2))
jointmap = Dict(zip(joints1, joints2))
# find world, floating joint, floating body of mechanism1, and determine a new floating body
world = root_body(mechanism1)
floatingjoint = first(out_joints(world, mechanism1))
floatingbody = successor(floatingjoint, mechanism1)
newfloatingbody = rand(collect(non_root_bodies(mechanism1)))
# reroot mechanism2
newfloatingjoint = Joint("new_floating", QuaternionFloating{Float64}())
joint_to_world = one(Transform3D, frame_before(newfloatingjoint), default_frame(world))
body_to_joint = one(Transform3D, default_frame(newfloatingbody), frame_after(newfloatingjoint))
attach!(mechanism2, bodymap[world], bodymap[newfloatingbody], newfloatingjoint, joint_pose = joint_to_world, successor_pose = body_to_joint)
flipped_joint_map = Dict()
remove_joint!(mechanism2, jointmap[floatingjoint]; flipped_joint_map = flipped_joint_map)
# mimic the same state for the rerooted mechanism
# copy non-floating joint configurations and velocities
x2 = MechanismState(mechanism2)
for (joint1, joint2) in jointmap
if joint1 != floatingjoint
joint2_rerooted = get(flipped_joint_map, joint2, joint2)
set_configuration!(x2, joint2_rerooted, configuration(x1, joint1))
set_velocity!(x2, joint2_rerooted, velocity(x1, joint1))
end
end
# set configuration and velocity of new floating joint
newfloatingjoint_transform = inv(joint_to_world) * relative_transform(x1, body_to_joint.from, joint_to_world.to) * inv(body_to_joint)
set_configuration!(x2, newfloatingjoint, newfloatingjoint_transform)
newfloatingjoint_twist = transform(x1, relative_twist(x1, newfloatingbody, world), body_to_joint.from)
newfloatingjoint_twist = transform(newfloatingjoint_twist, body_to_joint)
newfloatingjoint_twist = Twist(body_to_joint.to, joint_to_world.from, newfloatingjoint_twist.frame, angular(newfloatingjoint_twist), linear(newfloatingjoint_twist))
set_velocity!(velocity(x2, newfloatingjoint), newfloatingjoint, newfloatingjoint_twist)
# do dynamics and compute spatial accelerations
result1 = DynamicsResult(mechanism1)
dynamics!(result1, x1)
spatial_accelerations!(result1, x1)
result2 = DynamicsResult(mechanism2)
dynamics!(result2, x2)
spatial_accelerations!(result2, x2)
# make sure that joint accelerations for non-floating joints are the same
for (joint1, joint2) in jointmap
if joint1 != floatingjoint
joint2_rerooted = get(flipped_joint_map, joint2, joint2)
v̇1 = view(result1.v̇, velocity_range(x1, joint1))
v̇2 = view(result2.v̇, velocity_range(x2, joint2_rerooted))
@test isapprox(v̇1, v̇2)
end
end
# make sure that body spatial accelerations are the same
for (body1, body2) in bodymap
accel1 = relative_acceleration(result1, body1, world)
accel2 = relative_acceleration(result2, body2, bodymap[world])
@test isapprox(angular(accel1), angular(accel2))
@test isapprox(linear(accel1), linear(accel2))
end
end # for
end # reattach
@testset "maximal coordinates" begin
Random.seed!(53)
# create random tree mechanism and equivalent mechanism in maximal coordinates
joint_types = [QuaternionFloating{Float64}; [Revolute{Float64} for i = 1 : 10]; QuaternionSpherical{Float64}; Planar{Float64}; [Fixed{Float64} for i = 1 : 10]; [SinCosRevolute{Float64} for i = 1 : 5]]
tree_mechanism = rand_tree_mechanism(Float64, joint_types...)
bodymap = Dict{RigidBody{Float64}, RigidBody{Float64}}()
jointmap = Dict{Joint{Float64}, Joint{Float64}}()
mc_mechanism = maximal_coordinates(tree_mechanism; bodymap=bodymap, jointmap=jointmap)
newfloatingjoints = filter(isfloating, tree_joints(mc_mechanism))
# randomize state of tree mechanism
tree_state = MechanismState(tree_mechanism)
rand!(tree_state)
# put maximal coordinate system in state that is equivalent to tree mechanism state
mc_state = MechanismState(mc_mechanism)
for oldbody in non_root_bodies(tree_mechanism)
newbody = bodymap[oldbody]
joint = joint_to_parent(newbody, mc_mechanism)
tf = relative_transform(tree_state, frame_after(joint), frame_before(joint))
set_configuration!(configuration(mc_state, joint), joint, tf)
twist = transform(relative_twist(tree_state, frame_after(joint), frame_before(joint)), inv(tf))
set_velocity!(mc_state, joint, twist)
end
setdirty!(mc_state)
# do dynamics and compute spatial accelerations
tree_dynamics_result = DynamicsResult(tree_mechanism);
dynamics!(tree_dynamics_result, tree_state)
spatial_accelerations!(tree_dynamics_result, tree_state)
mc_dynamics_result = DynamicsResult(mc_mechanism);
dynamics!(mc_dynamics_result, mc_state)
spatial_accelerations!(mc_dynamics_result, mc_state)
# compare spatial accelerations of bodies
for (treebody, mcbody) in bodymap
tree_accel = relative_acceleration(tree_dynamics_result, treebody, root_body(tree_mechanism))
mc_accel = relative_acceleration(mc_dynamics_result, mcbody, root_body(mc_mechanism))
@test isapprox(tree_accel, mc_accel; atol = 1e-10)
end
end # maximal coordinates
@testset "generic scalar dynamics" begin # TODO: move to a better place
Random.seed!(54)
joint_types = [QuaternionFloating{Float64}; [Revolute{Float64} for i = 1 : 10]; QuaternionSpherical{Float64}; Planar{Float64}; [Fixed{Float64} for i = 1 : 10]; [SinCosRevolute{Float64} for i = 1 : 5]]
mechanism = rand_tree_mechanism(Float64, joint_types...);
for m in [mechanism, maximal_coordinates(mechanism)]
state_float64 = MechanismState(m)
rand!(state_float64)
NullDual = typeof(ForwardDiff.Dual(0., ()))
state_dual = MechanismState{NullDual}(m)
configuration(state_dual) .= configuration(state_float64)
velocity(state_dual) .= velocity(state_float64)
dynamics_result_float64 = DynamicsResult(m)
dynamics!(dynamics_result_float64, state_float64)
dynamics_result_dual = DynamicsResult{NullDual}(m)
dynamics!(dynamics_result_dual, state_dual)
@test isapprox(dynamics_result_float64.v̇, dynamics_result_dual.v̇; atol = 1e-3)
@test isapprox(dynamics_result_float64.λ, dynamics_result_dual.λ; atol = 1e-3)
end
end
@testset "modcount" begin
Random.seed!(55)
joint_types = [QuaternionFloating{Float64}; [Revolute{Float64} for i = 1 : 10]; QuaternionSpherical{Float64}; Planar{Float64}; [Fixed{Float64} for i = 1 : 10]; [SinCosRevolute{Float64} for i = 1 : 5]]
mechanism = rand_tree_mechanism(Float64, joint_types...);
state = MechanismState(mechanism)
attach!(mechanism, root_body(mechanism), RigidBody(rand(SpatialInertia{Float64}, CartesianFrame3D())), Joint("bla", QuaternionFloating{Float64}()))
@test_throws RigidBodyDynamics.ModificationCountMismatch mass_matrix(state)
state2 = MechanismState(mechanism)
mass_matrix(state2) # make sure this doesn't throw
@test_throws RigidBodyDynamics.ModificationCountMismatch mass_matrix(state) # make sure this still throws
try
mass_matrix(state)
catch e
showerror(devnull, e)
end
end
@testset "remove_subtree! - tree mechanism" begin
mechanism = parse_urdf(joinpath(@__DIR__, "urdf", "atlas.urdf"), floating=true)
@test_throws AssertionError remove_subtree!(mechanism, root_body(mechanism))
original_joints = copy(joints(mechanism))
# Behead.
num_bodies = length(bodies(mechanism))
num_joints = length(joints(mechanism))
head = findbody(mechanism, "head")
neck_joint = joint_to_parent(head, mechanism)
remove_subtree!(mechanism, head)
@test length(bodies(mechanism)) == num_bodies - 1
@test length(joints(mechanism)) == num_joints - 1
@test head ∉ bodies(mechanism)
@test neck_joint ∉ joints(mechanism)
# Lop off an arm.
num_bodies = length(bodies(mechanism))
num_joints = length(joints(mechanism))
r_clav = findbody(mechanism, "r_clav")
r_hand = findbody(mechanism, "r_hand")
r_arm = path(mechanism, r_clav, r_hand)
arm_joints = collect(r_arm)
arm_bodies = [r_clav; map(joint -> successor(joint, mechanism), arm_joints)]
remove_subtree!(mechanism, r_clav)
@test length(joints(mechanism)) == num_joints - length(arm_joints) - 1
@test length(bodies(mechanism)) == num_bodies - length(arm_bodies)
@test isempty(intersect(arm_joints, joints(mechanism)))
@test isempty(intersect(arm_bodies, bodies(mechanism)))
@test issorted(joints(mechanism), by=joint ->findfirst(isequal(joint), original_joints))
end
@testset "remove_subtree! - maximal coordinates" begin
original = parse_urdf(joinpath(@__DIR__, "urdf", "atlas.urdf"), floating=true)
mechanism = maximal_coordinates(original)
num_bodies = length(bodies(mechanism))
num_joints = length(joints(mechanism))
@test_throws AssertionError remove_subtree!(mechanism, findbody(original, "head")) # body not in tree
head = findbody(mechanism, "head")
head_joints = copy(in_joints(head, mechanism))
@test length(head_joints) == 2 # floating joint + neck loop joint
remove_subtree!(mechanism, head)
@test length(joints(mechanism)) == num_joints - length(head_joints)
@test length(bodies(mechanism)) == num_bodies - 1
for joint in head_joints
@test joint ∉ joints(mechanism)
end
@test head ∉ bodies(mechanism)
end
end # mechanism modification
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 1177 | let
num_notebooks_tested = 0
notebookdir = joinpath(@__DIR__, "..", "examples")
excludedirs = [".ipynb_checkpoints"]
excludefiles = String[]
push!(excludefiles, "6. Symbolics.ipynb") # Disabled until https://github.com/JuliaGeometry/Quaternions.jl/issues/123 is solved.
# push!(excludefiles, "7. Rigorous error bounds using IntervalArithmetic.ipynb") # Manifest used for 1.1 doesn't work for 1.0.
for (root, dir, files) in walkdir(notebookdir)
basename(root) in excludedirs && continue
for file in files
file in excludefiles && continue
name, ext = splitext(file)
lowercase(ext) == ".ipynb" || continue
path = joinpath(root, file)
@eval module $(gensym()) # Each notebook is run in its own module.
using Test
using NBInclude
@testset "Notebook: $($name)" begin
# Note: use #NBSKIP in a cell to skip it during tests.
@nbinclude($path; regex = r"^((?!\#NBSKIP).)*$"s)
end
end # module
num_notebooks_tested += 1
end
end
@test num_notebooks_tested > 0
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 5130 | @testset "pd" begin
@testset "scalar" begin
@test pd(PDGains(1, 2), 3, 4) == -11
end
@testset "vector" begin
gains = PDGains(1, 2)
e = [3; 4; 5]
ė = [6; 7; 8]
@test pd(gains, e, ė) == ((e, ė) -> pd(gains, e, ė)).(e, ė)
end
@testset "specifying desireds" begin
gains = PDGains(5, 6)
x = SVector(1, 2)
ẋ = SVector(5, 6)
@test pd(gains, x, ẋ) == pd(gains, x, zero(x), ẋ, zero(ẋ))
end
@testset "x-axis rotation" begin
Random.seed!(56)
gains = PDGains(2, 3)
e = RotX(rand())
ė = rand() * SVector(1, 0, 0)
@test pd(gains, e, ė)[1] ≈ pd(gains, e.theta, ė[1])
end
@testset "orientation control" begin
Random.seed!(57)
mechanism = rand_floating_tree_mechanism(Float64) # single floating body
joint = first(tree_joints(mechanism))
body = successor(joint, mechanism)
base = root_body(mechanism)
state = MechanismState(mechanism)
rand!(state)
Rdes = rand(RotMatrix{3})
ωdes = zero(SVector{3})
gains = PDGains(100, 20)
v̇des = similar(velocity(state))
control_dynamics_result = DynamicsResult(mechanism)
function control!(torques::SegmentedVector, t, state::MechanismState)
H = transform_to_root(state, body)
T = transform(twist_wrt_world(state, body), inv(H))
R = rotation(H)
ω = T.angular
ωddes = pd(gains, R, Rdes, ω, ωdes)
v̇desjoint = v̇des[joint]
v̇desjoint .= SVector([ωddes; zero(ωddes)])
wrenches = control_dynamics_result.jointwrenches
accelerations = control_dynamics_result.accelerations
inverse_dynamics!(torques, wrenches, accelerations, state, v̇des)
end
final_time = 3.
simulate(state, final_time, control!; Δt = 1e-3)
H = transform_to_root(state, body)
T = transform(twist_wrt_world(state, body), inv(H))
R = rotation(H)
ω = T.angular
@test isapprox(R * Rdes', one(typeof(Rdes)); atol = 1e-8)
@test isapprox(ω, zero(ω); atol = 1e-8)
end
@testset "pose control" begin
Random.seed!(58)
mechanism = rand_floating_tree_mechanism(Float64) # single floating body
joint = first(tree_joints(mechanism))
body = successor(joint, mechanism)
base = root_body(mechanism)
baseframe = default_frame(base)
desiredframe = CartesianFrame3D("desired")
actualframe = frame_after(joint)
state = MechanismState(mechanism)
rand!(state)
xdes = rand(Transform3D, desiredframe, baseframe)
vdes = zero(Twist{Float64}, desiredframe, baseframe, actualframe)
v̇des = similar(velocity(state))
gains = SE3PDGains(baseframe, PDGains(100 * one(SMatrix{3, 3}), 20), PDGains(100., 20.)) # world-fixed gains
control_dynamics_result = DynamicsResult(mechanism)
function control!(torques::SegmentedVector, t, state::MechanismState)
x = transform_to_root(state, body)
invx = inv(x)
v = transform(twist_wrt_world(state, body), invx)
v̇desjoint = v̇des[joint]
v̇desjoint .= SVector(pd(transform(gains, invx), x, xdes, v, vdes))
wrenches = control_dynamics_result.jointwrenches
accelerations = control_dynamics_result.accelerations
inverse_dynamics!(torques, wrenches, accelerations, state, v̇des)
end
final_time = 3.
simulate(state, final_time, control!; Δt = 1e-3)
x = transform_to_root(state, body)
v = transform(twist_wrt_world(state, body), inv(x))
@test isapprox(x, xdes * one(Transform3D, actualframe, desiredframe), atol = 1e-6)
@test isapprox(v, vdes + zero(Twist{Float64}, actualframe, desiredframe, actualframe), atol = 1e-6)
end
@testset "linearized SE(3) control" begin
Random.seed!(59)
for i = 1 : 100
randpsd3() = (x = rand(SMatrix{3, 3}); x' * x)
baseframe = CartesianFrame3D("base")
bodyframe = CartesianFrame3D("body")
gains = SE3PDGains(bodyframe, PDGains(randpsd3(), randpsd3()), PDGains(randpsd3(), randpsd3()))
xdes = rand(Transform3D{Float64}, bodyframe, baseframe)
Tdes = rand(Twist{Float64}, bodyframe, baseframe, bodyframe)
ϵ = 1e-2
x = xdes * Transform3D(bodyframe, bodyframe, AngleAxis(ϵ, randn(), randn(), randn()), ϵ * randn(SVector{3}))
T = rand(Twist{Float64}, bodyframe, baseframe, bodyframe)
accel_nonlin = pd(gains, x, xdes, T, Tdes)
accel_lin = pd(gains, x, xdes, T, Tdes, SE3PDMethod{:Linearized}())
@test isapprox(accel_nonlin, accel_lin; atol = 1e-6)
T = Tdes
accel_nonlin = pd(gains, x, xdes, T, Tdes)
accel_lin = pd(gains, x, xdes, T, Tdes, SE3PDMethod{:Linearized}())
@test isapprox(accel_nonlin, accel_lin; atol = 1e-6)
end
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 11910 | @testset "simulation" begin
@testset "simulate" begin
Random.seed!(60)
# use simulate function (Munthe-Kaas integrator)
acrobot = parse_urdf(joinpath(@__DIR__, "urdf", "Acrobot.urdf"), remove_fixed_tree_joints=false)
x = MechanismState(acrobot)
rand!(x)
total_energy_before = gravitational_potential_energy(x) + kinetic_energy(x)
times, qs, vs = simulate(x, 0.1; Δt = 1e-2)
set_configuration!(x, qs[end])
set_velocity!(x, vs[end])
total_energy_after = gravitational_potential_energy(x) + kinetic_energy(x)
@test isapprox(total_energy_after, total_energy_before, atol = 1e-3)
total_energy_before = gravitational_potential_energy(x) + kinetic_energy(x)
result = DynamicsResult(acrobot)
# use RingBufferStorage
using RigidBodyDynamics.OdeIntegrators
passive_dynamics! = (vd::AbstractArray, sd::AbstractArray, t, state) -> begin
dynamics!(result, state)
copyto!(vd, result.v̇)
copyto!(sd, result.ṡ)
nothing
end
storage = RingBufferStorage{Float64}(x, 3)
integrator = MuntheKaasIntegrator(x, passive_dynamics!, runge_kutta_4(Float64), storage)
integrate(integrator, 0.1, 1e-2, max_realtime_rate = 2.0)
set_configuration!(x, storage.qs[storage.last_index])
set_velocity!(x, storage.vs[storage.last_index])
@test isapprox(gravitational_potential_energy(x) + kinetic_energy(x), total_energy_before, atol = 1e-3)
end
@testset "elastic ball drop" begin
# Drop a single rigid body with a contact point at the center of mass
# onto the floor with a conservative contact model. Check energy
# balances and bounce heights.
Random.seed!(61)
world = RigidBody{Float64}("world")
mechanism = Mechanism(world)
bodyframe = CartesianFrame3D()
body = RigidBody("body", rand(SpatialInertia{Float64}, bodyframe))
floatingjoint = Joint("floating", QuaternionFloating{Float64}())
attach!(mechanism, world, body, floatingjoint)
com = center_of_mass(spatial_inertia(body))
model = SoftContactModel(hunt_crossley_hertz(; α = 0.), ViscoelasticCoulombModel(0.5, 1e3, 1e3))
contactpoint = ContactPoint(com, model)
add_contact_point!(body, contactpoint)
point = Point3D(root_frame(mechanism), zero(SVector{3}))
normal = FreeVector3D(root_frame(mechanism), 0., 0., 1.)
halfspace = HalfSpace3D(point, normal)
add_environment_primitive!(mechanism, halfspace)
state = MechanismState(mechanism)
z0 = 0.05
zero!(state)
tf = transform_to_root(state, body)
tf = Transform3D(frame_after(floatingjoint), frame_before(floatingjoint), rotation(tf), SVector(1., 2., z0 - com.v[3]))
set_configuration!(state, floatingjoint, tf)
energy0 = gravitational_potential_energy(state)
com_world = transform_to_root(state, body) * com
ts, qs, vs = simulate(state, 0.5; Δt = 1e-3)
currentsign = 0.
switches = 0
for (t, q, v) in zip(ts, qs, vs)
set_configuration!(state, q)
set_velocity!(state, v)
twist = twist_wrt_world(state, body)
com_world = transform_to_root(state, body) * com
velocity = point_velocity(twist, com_world)
z = com_world.v[3]
penetration = max(-z, zero(z))
n = model.normal.n
elastic_potential_energy = model.normal.k * penetration^(n + 1) / (n + 1)
energy = elastic_potential_energy + kinetic_energy(state) + gravitational_potential_energy(state)
@test isapprox(energy0, energy; atol = 1e-2)
newsign = sign(velocity.v[3])
(newsign != currentsign) && (switches += 1)
currentsign = newsign
end
@test switches > 3
end
@testset "inclined plane" begin
θ = 0.5 # plane angle
μcrit = tan(θ) # μ > μcrit should show sticking behavior, μ < μcrit should show sliding behavior
# set up point mass + inclined plane
world = RigidBody{Float64}("world")
mechanism = Mechanism(world)
floatingjoint = Joint("floating", QuaternionFloating{Float64}())
body = RigidBody("body", SpatialInertia(CartesianFrame3D("inertia"), SMatrix{3, 3}(1.0I), zero(SVector{3}), 2.))
attach!(mechanism, world, body, floatingjoint)
worldframe = root_frame(mechanism)
inclinedplane = HalfSpace3D(Point3D(worldframe, zero(SVector{3})), FreeVector3D(worldframe, sin(θ), 0., cos(θ)))
add_environment_primitive!(mechanism, inclinedplane)
irrelevantplane = HalfSpace3D(Point3D(worldframe, 0., 0., -100.), FreeVector3D(worldframe, 0., 0., 1.)) # #211
add_environment_primitive!(mechanism, irrelevantplane)
# simulate inclined plane friction experiments
normalmodel = hunt_crossley_hertz(k = 50e3; α = 1.)
contactlocation = Point3D(default_frame(body), 0., 0., 0.)
for μ in (μcrit + 1e-2, μcrit - 1e-2)
frictionmodel = ViscoelasticCoulombModel(μ, 50e3, 1e4)
m, b = deepcopy((mechanism, body))
add_contact_point!(b, ContactPoint(contactlocation, SoftContactModel(normalmodel, frictionmodel)))
state = MechanismState(m)
simulate(state, 1., Δt = 1e-3) # settle into steady state
x1 = transform(state, contactlocation, worldframe)
simulate(state, 0.5, Δt = 1e-3)
x2 = transform(state, contactlocation, worldframe)
if μ > μcrit # should stick
@test isapprox(x1, x2, atol = 1e-4)
else # should slip
@test !isapprox(x1, x2, atol = 5e-2)
end
end
end
@testset "four-bar linkage" begin
# gravitational acceleration
g = -9.81
# link lengths
l_0 = 1.10
l_1 = 0.5
l_2 = 1.20
l_3 = 0.75
# link masses
m_1 = 0.5
m_2 = 1.0
m_3 = 0.75
# link center of mass offsets from the preceding joint axes
c_1 = 0.25
c_2 = 0.60
c_3 = 0.375
# moments of inertia about the center of mass of each link
I_1 = 0.333
I_2 = 0.537
I_3 = 0.4
# scalar type
T = Float64
# Rotation axis: negative y-axis
axis = SVector(zero(T), -one(T), zero(T))
world = RigidBody{T}("world")
mechanism = Mechanism(world; gravity = SVector(0., 0., g))
rootframe = root_frame(mechanism)
# link1 and joint1
joint1 = Joint("joint1", Revolute(axis))
inertia1 = SpatialInertia(CartesianFrame3D("inertia1_centroidal"), moment=I_1*axis*axis', com=zero(SVector{3, T}), mass=m_1)
link1 = RigidBody(inertia1)
before_joint1_to_world = one(Transform3D, frame_before(joint1), default_frame(world))
c1_to_joint = Transform3D(inertia1.frame, frame_after(joint1), SVector(c_1, 0, 0))
attach!(mechanism, world, link1, joint1, joint_pose = before_joint1_to_world, successor_pose = c1_to_joint)
# link2 and joint2
joint2 = Joint("joint2", Revolute(axis))
inertia2 = SpatialInertia(CartesianFrame3D("inertia2_centroidal"), moment=I_2*axis*axis', com=zero(SVector{3, T}), mass=m_2)
link2 = RigidBody(inertia2)
before_joint2_to_after_joint1 = Transform3D(frame_before(joint2), frame_after(joint1), SVector(l_1, 0., 0.))
c2_to_joint = Transform3D(inertia2.frame, frame_after(joint2), SVector(c_2, 0, 0))
attach!(mechanism, link1, link2, joint2, joint_pose = before_joint2_to_after_joint1, successor_pose = c2_to_joint)
# link3 and joint3
joint3 = Joint("joint3", Revolute(axis))
inertia3 = SpatialInertia(CartesianFrame3D("inertia3_centroidal"), moment=I_3*axis*axis', com=zero(SVector{3, T}), mass=m_3)
link3 = RigidBody(inertia3)
before_joint3_to_world = Transform3D(frame_before(joint3), default_frame(world), SVector(l_0, 0., 0.))
c3_to_joint = Transform3D(inertia3.frame, frame_after(joint3), SVector(c_3, 0, 0))
attach!(mechanism, world, link3, joint3, joint_pose = before_joint3_to_world, successor_pose = c3_to_joint)
# loop joint between link2 and link3
joint4 = Joint("joint4", Revolute(axis))
before_joint4_to_joint2 = Transform3D(frame_before(joint4), frame_after(joint2), SVector(l_2, 0., 0.))
joint3_to_after_joint4 = Transform3D(frame_after(joint3), frame_after(joint4), SVector(-l_3, 0., 0.))
attach!(mechanism, link2, link3, joint4, joint_pose = before_joint4_to_joint2, successor_pose = joint3_to_after_joint4)
# initial state
set_initial_state! = function (state::MechanismState)
# found through nonlinear optimization. Slightly inaccurate.
set_configuration!(state, joint1, 1.6707963267948966) # θ
set_configuration!(state, joint2, -1.4591054166649482) # γ
set_configuration!(state, joint3, 1.5397303602625536) # ϕ
set_velocity!(state, joint1, 0.5)
set_velocity!(state, joint2, -0.47295)
set_velocity!(state, joint3, 0.341)
end
# no stabilization
state = MechanismState(mechanism)
set_initial_state!(state)
zero_velocity!(state)
energy0 = gravitational_potential_energy(state)
ts, qs, vs = simulate(state, 1., Δt = 1e-3, stabilization_gains=nothing)
@test kinetic_energy(state) ≉ 0 atol=1e-2
energy1 = gravitational_potential_energy(state) + kinetic_energy(state)
@test energy0 ≈ energy1 atol=1e-8
@test transform(state, Point3D(Float64, frame_before(joint4)), rootframe) ≈
transform(state, Point3D(Float64, frame_after(joint4)), rootframe) atol=1e-10 # no significant separation after a short simulation
# with default stabilization: start with some separation
set_initial_state!(state)
set_configuration!(state, joint1, 1.7)
@test transform(state, Point3D(Float64, frame_before(joint4)), rootframe) ≉
transform(state, Point3D(Float64, frame_after(joint4)), rootframe) atol=1e-2 # significant separation initially
simulate(state, 15., Δt = 1e-3)
@test transform(state, Point3D(Float64, frame_before(joint4)), rootframe) ≈
transform(state, Point3D(Float64, frame_after(joint4)), rootframe) atol=1e-5 # reduced separation after 15 seconds
energy15 = gravitational_potential_energy(state) + kinetic_energy(state)
simulate(state, 10, Δt = 1e-3)
energy20 = gravitational_potential_energy(state) + kinetic_energy(state)
@test energy20 ≈ energy15 atol=1e-5 # stabilization doesn't significantly affect energy after converging
end
@testset "Ball joint pendulum" begin
# Issue #617
translation = [0.3, 0, 0]
world = RigidBody{Float64}("world")
pendulum = Mechanism(world; gravity=[0., 0., -9.81])
center_of_mass = [0, 0, 0.2]
q0 = [cos(pi/8), sin(pi/8), 0.0, 0.0]
joint1 = Joint("joint1", QuaternionSpherical{Float64}())
inertia1 = SpatialInertia(frame_after(joint1), com=center_of_mass, moment_about_com=diagm([1.,1.,1.]), mass=1.)
link1 = RigidBody("link1", inertia1)
before_joint1_to_world = Transform3D(frame_before(joint1), default_frame(world), one(RotMatrix{3}), SVector{3}(translation))
attach!(pendulum, world, link1, joint1, joint_pose=before_joint1_to_world)
state = MechanismState(pendulum)
set_configuration!(state, joint1, q0)
ts, qs, vs = simulate(state, 1., Δt=0.001)
@test all(all(!isnan, q) for q in qs)
@test all(all(!isnan, v) for v in vs)
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 15793 | function Ad(H::Transform3D)
hat = RigidBodyDynamics.Spatial.hat
p_hat = hat(translation(H))
[[rotation(H) zero(SMatrix{3, 3, eltype(H)})]; [p_hat * rotation(H) rotation(H)]]
end
@testset "spatial" begin
f1 = CartesianFrame3D("1")
f2 = CartesianFrame3D("2")
f3 = CartesianFrame3D("3")
f4 = CartesianFrame3D("4")
@testset "rotation vector rate" begin
Random.seed!(62)
hat = RigidBodyDynamics.Spatial.hat
rotation_vector_rate = RigidBodyDynamics.Spatial.rotation_vector_rate
for ϕ in (rand(SVector{3}), zero(SVector{3})) # exponential coordinates (rotation vector)
ω = rand(SVector{3}) # angular velocity in body frame
R = RotMatrix(RotationVec(ϕ...))
Ṙ = R * hat(ω)
ϕ̇ = rotation_vector_rate(ϕ, ω)
Θ = norm(ϕ)
if Θ > eps(Θ)
ϕ_autodiff = ForwardDiff.Dual.(ϕ, ϕ̇)
R_autodiff = RotMatrix(RotationVec(ϕ_autodiff...))
Ṙ_from_autodiff = map(x -> ForwardDiff.partials(x)[1], R_autodiff)
@test isapprox(Ṙ_from_autodiff, Ṙ)
else
@test isapprox(ϕ̇, ω) # limit case; hard to test using autodiff because of division by zero
end
end
end
@testset "colwise" begin
colwise = RigidBodyDynamics.Spatial.colwise
v = @SVector [2, 4, 6]
M = @SMatrix [1 2 3; 4 5 6; 7 8 9]
T = eltype(v)
vcross = @SMatrix [zero(T) -v[3] v[2];
v[3] zero(T) -v[1];
-v[2] v[1] zero(T)]
@test vcross * M == colwise(×, v, M)
@test colwise(×, M, v) == -colwise(×, v, M)
@test colwise(+, M, v) == broadcast(+, M, v)
v2 = @SVector [1, 2, 3, 4]
@test_throws DimensionMismatch colwise(+, M, v2)
end
@testset "show" begin
Random.seed!(63)
show(devnull, rand(SpatialInertia{Float64}, f1))
show(devnull, rand(Twist{Float64}, f2, f1, f3))
show(devnull, rand(SpatialAcceleration{Float64}, f2, f1, f3))
show(devnull, rand(Wrench{Float64}, f2))
show(devnull, rand(Momentum{Float64}, f2))
n = 5
show(devnull, GeometricJacobian(f2, f1, f3, rand(SMatrix{3, n}), rand(SMatrix{3, n})))
show(devnull, MomentumMatrix(f2, rand(SMatrix{3, n}), rand(SMatrix{3, n})))
show(devnull, WrenchMatrix(f2, rand(SMatrix{3, n}), rand(SMatrix{3, n})))
end
@testset "spatial inertia" begin
Random.seed!(64)
I2 = rand(SpatialInertia{Float64}, f2)
H21 = rand(Transform3D, f2, f1)
I1 = transform(I2, H21)
I3 = rand(SpatialInertia{Float64}, f2)
@test I2.mass == I1.mass
@test isapprox(SMatrix(I1), Ad(inv(H21))' * SMatrix(I2) * Ad(inv(H21)); atol = 1e-12)
@test isapprox(I2, transform(I1, inv(H21)))
@test isapprox(SMatrix(I2) + SMatrix(I3), SMatrix(I2 + I3); atol = 1e-12)
if VERSION >= v"1.8"
# Inferred as `SpatialInertia{Any}` on Julia 1.6 and 1.7
@inferred transform(zero(SpatialInertia{Float32}, f1), one(Transform3D, f1))
end
@test I2 + zero(I2) == I2
# Test that the constructor works with dynamic arrays (which are
# converted to static arrays internally)
I4 = @inferred(SpatialInertia(f2, Matrix(1.0I, 3, 3), zeros(3), 1.0))
# Ensure that the kwarg constructor matches the positional argument constructor.
inertia = rand(SpatialInertia{Float64}, f1)
centroidal = CartesianFrame3D("centroidal")
to_centroidal = Transform3D(f1, centroidal, -center_of_mass(inertia).v)
inertia_centroidal = transform(inertia, to_centroidal)
@test inertia_centroidal.frame == centroidal
@test center_of_mass(inertia_centroidal) ≈ Point3D(Float64, centroidal) atol=1e-12
inertia_back = SpatialInertia(inertia.frame, moment_about_com=inertia_centroidal.moment, com=center_of_mass(inertia).v, mass=inertia.mass)
@test inertia ≈ inertia_back atol=1e-12
end
@testset "twist" begin
Random.seed!(65)
T1 = rand(Twist{Float64}, f2, f1, f3)
T2 = rand(Twist{Float64}, f3, f2, f3)
T3 = T1 + T2
H31 = rand(Transform3D, f3, f1)
@test T3.body == T2.body
@test T3.base == T1.base
@test T3.frame == f3
# @test isapprox(T2 + T1, T3) # used to be allowed, but makes code slower; just switch T1 and T2 around
@test_throws ArgumentError T1 + rand(Twist{Float64}, f3, f2, f4) # wrong frame
@test_throws ArgumentError T1 + rand(Twist{Float64}, f3, f4, f3) # wrong base
@test isapprox(SVector(transform(T1, H31)), Ad(H31) * SVector(T1))
@test T3 + zero(T3) == T3
# 2.17 in Duindam:
f0 = CartesianFrame3D("0")
fi = CartesianFrame3D("i")
Qi = Point3D(fi, rand(SVector{3}))
H = rand(Transform3D, fi, f0)
T0 = log(H)
Q0 = H * Qi
Q̇0 = point_velocity(T0, Q0)
f = t -> Array((exp(Twist(T0.body, T0.base, T0.frame, t * angular(T0), t * linear(T0))) * Qi).v)
Q̇0check = ForwardDiff.derivative(f, 1.)
@test isapprox(Q̇0.v, Q̇0check)
end
@testset "wrench" begin
Random.seed!(66)
W = rand(Wrench{Float64}, f2)
H21 = rand(Transform3D, f2, f1)
@test isapprox(SVector(transform(W, H21)), Ad(inv(H21))' * SVector(W))
@test_throws ArgumentError transform(W, inv(H21)) # wrong frame
@test W + zero(W) == W
point2 = Point3D(f2, zero(SVector{3}))
force2 = FreeVector3D(f2, rand(SVector{3}))
W2 = Wrench(point2, force2)
@test isapprox(angular(W2), zero(SVector{3}))
@test isapprox(linear(W2), force2.v)
@test W2.frame == force2.frame
point1 = H21 * point2
force1 = H21 * force2
W1 = Wrench(point1, force1)
@test W1.frame == f1
@test isapprox(W1, transform(W2, H21))
@test_throws ArgumentError Wrench(point1, force2) # wrong frame
@testset "wrench constructed from plain Vectors" begin
point1 = Point3D(f1, [1., 0., 0.])
force1 = FreeVector3D(f1, [0, 1, 0])
w = @inferred(Wrench(point1, force1))
@test isa(w, Wrench{Float64})
end
end
@testset "momentum" begin
Random.seed!(67)
T = rand(Twist{Float64}, f2, f1, f2)
I = rand(SpatialInertia{Float64}, f2)
T2 = rand(Twist{Float64}, f2, f1, f1)
H21 = rand(Transform3D, f2, f1)
h = I * T
@test isapprox(SMatrix(I) * SVector(T), SVector(h); atol = 1e-12)
@test_throws ArgumentError I * T2 # wrong frame
@test isapprox(transform(I, H21) * transform(T, H21), transform(h, H21))
@test isapprox(SVector(transform(h, H21)), Ad(inv(H21))' * SVector(h))
@test_throws ArgumentError transform(h, inv(H21)) # wrong frame
@test h + zero(h) == h
end
@testset "geometric jacobian, power" begin
Random.seed!(68)
n = 14
J = GeometricJacobian(f2, f1, f3, rand(SMatrix{3, n}), rand(SMatrix{3, n}))
v = rand(size(J, 2))
W = rand(Wrench{Float64}, f3)
T = Twist(J, v)
H = rand(Transform3D, f3, f1)
τ = torque(J, W)
@test J.body == T.body
@test J.base == T.base
@test J.frame == T.frame
@test isapprox(Twist(transform(J, H), v), transform(T, H))
@test isapprox(dot(Array(τ), v), dot(T, W); atol = 1e-12) # power equality
@test_throws ArgumentError dot(transform(T, H), W)
@test_throws ArgumentError torque(transform(J, H), W)
Jmutable = GeometricJacobian(f2, f1, f3, rand(3, n), rand(3, n))
@test isapprox(Twist(transform(Jmutable, H), v), transform(Twist(Jmutable, v), H))
end
@testset "mul! with transpose(mat)" begin
Random.seed!(69)
mat = WrenchMatrix(f1, rand(SMatrix{3, 4}), rand(SMatrix{3, 4}))
vec = rand(SpatialAcceleration{Float64}, f2, f3, f1)
k = fill(NaN, size(mat, 2))
mul!(k, transpose(mat), vec)
@test isapprox(k, angular(mat)' * angular(vec) + linear(mat)' * linear(vec), atol = 1e-14)
@test isapprox(k, transpose(mat) * vec, atol = 1e-14)
end
@testset "momentum matrix" begin
Random.seed!(70)
n = 13
A = MomentumMatrix(f3, rand(SMatrix{3, n}), rand(SMatrix{3, n}))
v = rand(size(A, 2))
h = Momentum(A, v)
H = rand(Transform3D, f3, f1)
@test h.frame == A.frame
@test isapprox(Momentum(transform(A, H), v), transform(h, H))
end
@testset "spatial acceleration" begin
Random.seed!(71)
I = rand(SpatialInertia{Float64}, f2)
Ṫ = rand(SpatialAcceleration{Float64}, f2, f1, f2)
T = rand(Twist{Float64}, f2, f1, f2)
W = newton_euler(I, Ṫ, T)
H = rand(Transform3D, f2, f1)
@test isapprox(transform(newton_euler(transform(I, H), transform(Ṫ, H, T, T), transform(T, H)), inv(H)), W)
@test Ṫ + zero(Ṫ) == Ṫ
end
@testset "point_velocity, point_acceleration" begin
body = CartesianFrame3D("body")
base = CartesianFrame3D("base")
frame = CartesianFrame3D("some other frame") # yes, the math does check out if this is different from the other two; ṗ will just be rotated to this frame
T = rand(Twist{Float64}, body, base, frame)
Ṫ = rand(SpatialAcceleration{Float64}, body, base, frame)
p = Point3D(frame, rand(SVector{3}))
ṗ = point_velocity(T, p)
p̈ = point_acceleration(T, Ṫ, p)
@test p̈.frame == frame
p_dual = Point3D(p.frame, ForwardDiff.Dual.(p.v, ṗ.v))
T_dual = Twist(T.body, T.base, T.frame, ForwardDiff.Dual.(angular(T), angular(Ṫ)), ForwardDiff.Dual.(linear(T), linear(Ṫ)))
ṗ_dual = point_velocity(T_dual, p_dual)
p̈_check = FreeVector3D(ṗ_dual.frame, map(x -> ForwardDiff.partials(x, 1), ṗ_dual.v))
@test p̈ ≈ p̈_check atol=1e-12
end
@testset "kinetic energy" begin
Random.seed!(72)
I = rand(SpatialInertia{Float64}, f2)
T = rand(Twist{Float64}, f2, f1, f2)
H = rand(Transform3D, f2, f1)
Ek = kinetic_energy(I, T)
@test isapprox((1//2 * SVector(T)' * SMatrix(I) * SVector(T))[1], Ek; atol = 1e-12)
@test isapprox(kinetic_energy(transform(I, H), transform(T, H)), Ek; atol = 1e-12)
end
@testset "log / exp" begin
Random.seed!(74) # TODO: https://github.com/JuliaRobotics/RigidBodyDynamics.jl/issues/135
hat = RigidBodyDynamics.Spatial.hat
for θ in [LinRange(0., 10 * eps(), 100);
LinRange(0., π - eps(), 100)]
# have magnitude of parts of twist be bounded by θ to check for numerical issues
ϕrot = normalize(rand(SVector{3})) * θ * 2 * (rand() - 0.5)
ϕtrans = normalize(rand(SVector{3})) * θ * 2 * (rand() - 0.5)
ξ = Twist{Float64}(f2, f1, f1, ϕrot, ϕtrans)
H = exp(ξ)
@test isapprox(ξ, log(H))
ξhat = [hat(ϕrot) ϕtrans]
ξhat = [ξhat; zeros(1, 4)]
H_mat = [rotation(H) translation(H)]
H_mat = [H_mat; zeros(1, 3) 1.]
@test isapprox(exp(ξhat), H_mat)
end
# test without rotation but with nonzero translation:
ξ = Twist{Float64}(f2, f1, f1, zero(SVector{3}), rand(SVector{3}))
H = exp(ξ)
@test isapprox(ξ, log(H))
# test rotation for θ > π
for θ in [LinRange(π - 10 * eps(), π + 10 * eps(), 100);
LinRange(π, 6 * π, 100)]
ω = normalize(rand(SVector{3}))
ξ1 = Twist(f2, f1, f1, ω * θ, zero(SVector{3}))
ξ2 = Twist(f2, f1, f1, ω * mod(θ, 2 * π), zero(SVector{3}))
@test isapprox(exp(ξ1), exp(ξ2))
end
# derivative
for θ in LinRange(1e-3, π - 1e-3, 100) # autodiff doesn't work close to the identity rotation
hat = RigidBodyDynamics.Spatial.hat
ξ = Twist{Float64}(f2, f1, f1, θ * normalize(rand(SVector{3})), θ * normalize(rand(SVector{3})))
H = exp(ξ)
T = Twist{Float64}(f2, f1, f2, rand(SVector{3}), rand(SVector{3}))
ξ2, ξ̇ = RigidBodyDynamics.log_with_time_derivative(H, T)
@test isapprox(ξ, ξ2)
# autodiff log. Need time derivative of transform in ForwardDiff form, so need to basically v_to_qdot for quaternion floating joint
rotdot = rotation(H) * hat(angular(T))
transdot = rotation(H) * linear(T)
trans_autodiff = @SVector [ForwardDiff.Dual(translation(H)[i], transdot[i]) for i in 1 : 3]
rot_autodiff = RotMatrix(@SMatrix [ForwardDiff.Dual(rotation(H)[i, j], rotdot[i, j]) for i in 1 : 3, j in 1 : 3])
H_autodiff = Transform3D(H.from, H.to, rot_autodiff, trans_autodiff)
ξ_autodiff = log(H_autodiff)
ξ̇rot_from_autodiff = @SVector [ForwardDiff.partials(angular(ξ_autodiff)[i])[1] for i in 1 : 3]
ξ̇trans_from_autodiff = @SVector [ForwardDiff.partials(linear(ξ_autodiff)[i])[1] for i in 1 : 3]
ξ̇_from_autodiff = SpatialAcceleration(ξ.body, ξ.base, ξ.frame, ξ̇rot_from_autodiff, ξ̇trans_from_autodiff)
@test isapprox(ξ̇, ξ̇_from_autodiff)
end
end
@testset "RotationVec linearization" begin
Random.seed!(75)
ϵ = 1e-3
for i = 1 : 100
e = RotMatrix(AngleAxis(ϵ, randn(), randn(), randn()))
rv = RotationVec(e)
rv_lin = linearized_rodrigues_vec(e)
lin_error = AngleAxis(rv \ rv_lin)
@test rotation_angle(lin_error) ≈ 0 atol = 1e-8
end
end
@testset "Conversions to vector/matrix" begin
f = CartesianFrame3D()
angular = [1, 2, 3]
linear = [4, 5, 6]
twist = Twist(f, f, f, angular, linear)
svec = SVector(angular..., linear...)
twist64 = Twist(f, f, f, Float64.(angular), Float64.(linear))
svec64 = SVector{6, Float64}(svec)
@test twist isa Twist{Int}
@test Twist{Float64}(twist) === twist64
@test convert(Twist{Float64}, twist) === twist64
@test SVector{6, Float64}(twist) === svec64
@test convert(SVector{6, Float64}, twist) === svec64
@test SVector{6}(twist) === svec
@test convert(SVector{6}, twist) === svec
@test SArray(twist) === svec
@test convert(SArray, twist) === svec
moment = [1 2 3;
2 4 5;
3 5 6]
crosspart = [7, 8, 9]
mass = 10
inertia = SpatialInertia(f, moment, crosspart, mass)
inertia64 = SpatialInertia(f, Float64.(moment), Float64.(crosspart), Float64(mass))
mat = SMatrix(inertia) # already tested above
mat64 = SMatrix{6, 6, Float64}(mat)
@test inertia isa SpatialInertia{Int}
@test SpatialInertia{Float64}(inertia) === inertia64
@test convert(SpatialInertia{Float64}, inertia) === inertia64
@test SMatrix{6, 6}(inertia) === mat
@test convert(SMatrix{6, 6}, inertia) === mat
@test SMatrix{6, 6, Float64}(inertia) === mat64
@test convert(SMatrix{6, 6, Float64}, inertia) === mat64
@test SMatrix(inertia64) === mat64
@test convert(SMatrix, inertia64) === mat64
J = GeometricJacobian(f, f, f, rand(1:10, 3, 4), rand(1:10, 3, 4))
@test convert(Array, J) == Array(J) == Matrix(J) == [J.angular; J.linear]
@test convert(Array{Float64}, J) == Array{Float64}(J) == Matrix{Float64}(J) == Float64[J.angular; J.linear]
@test Matrix(J) == [J.angular; J.linear]
@test Matrix(J) == [J.angular; J.linear]
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 9866 | @testset "URDF parse" begin
@testset "joint bounds" begin
acrobot = parse_urdf(joinpath(@__DIR__, "urdf", "Acrobot.urdf"), remove_fixed_tree_joints=false)
@test position_bounds(findjoint(acrobot, "shoulder")) == [RigidBodyDynamics.Bounds(-Inf, Inf)]
@test velocity_bounds(findjoint(acrobot, "shoulder")) == [RigidBodyDynamics.Bounds(-Inf, Inf)]
@test effort_bounds(findjoint(acrobot, "shoulder")) == [RigidBodyDynamics.Bounds(-Inf, Inf)]
@test position_bounds(findjoint(acrobot, "elbow")) == [RigidBodyDynamics.Bounds(-Inf, Inf)]
@test velocity_bounds(findjoint(acrobot, "elbow")) == [RigidBodyDynamics.Bounds(-Inf, Inf)]
@test effort_bounds(findjoint(acrobot, "elbow")) == [RigidBodyDynamics.Bounds(-Inf, Inf)]
acrobot_with_limits = parse_urdf(joinpath(@__DIR__, "urdf", "Acrobot_with_limits.urdf"), remove_fixed_tree_joints=false)
@test position_bounds(findjoint(acrobot_with_limits, "shoulder")) == [RigidBodyDynamics.Bounds(-6.28, 6.28)]
@test velocity_bounds(findjoint(acrobot_with_limits, "shoulder")) == [RigidBodyDynamics.Bounds(-10, 10)]
@test effort_bounds(findjoint(acrobot_with_limits, "shoulder")) == [RigidBodyDynamics.Bounds(0, 0)]
@test position_bounds(findjoint(acrobot_with_limits, "elbow")) == [RigidBodyDynamics.Bounds(-6.28, 6.28)]
@test velocity_bounds(findjoint(acrobot_with_limits, "elbow")) == [RigidBodyDynamics.Bounds(-10, 10)]
@test effort_bounds(findjoint(acrobot_with_limits, "elbow")) == [RigidBodyDynamics.Bounds(-5, 5)]
end
@testset "planar joints" begin
robot = parse_urdf(joinpath(@__DIR__, "urdf", "planar_slider.urdf"), remove_fixed_tree_joints=false)
# the first joint is the fixed joint between the world and the base link
jt = joint_type(joints(robot)[1])
@test jt isa Fixed
# the 2nd joint is planar with <axis xyz="1 0 0"/>
jt = joint_type(joints(robot)[2])
@test jt isa Planar
@test jt.x_axis ≈ SVector(0, 0, -1)
@test jt.y_axis ≈ SVector(0, 1, 0)
# the 3rd joint is planar with <axis xyz="0 1 0"/>
jt = joint_type(joints(robot)[3])
@test jt isa Planar
@test jt.x_axis ≈ SVector(1, 0, 0)
@test jt.y_axis ≈ SVector(0, 0, -1)
# the 4th joint is planar with <axis xyz="0 0 1"/>
jt = joint_type(joints(robot)[4])
@test jt isa Planar
@test jt.x_axis ≈ SVector(1, 0, 0)
@test jt.y_axis ≈ SVector(0, 1, 0)
end
@testset "rotation handling" begin
# https://github.com/JuliaRobotics/RigidBodyDynamics.jl/issues/429
xml = """
<origin rpy="0 0 0"/>
"""
xpose = LightXML.root(LightXML.parse_string(xml))
rot, trans = RigidBodyDynamics.parse_pose(Float64, xpose)
@test rot ≈ SDiagonal(1, 1, 1)
@test trans ≈ SVector(0, 0, 0)
xml = """
<origin rpy="0.3 0 0"/>
"""
xpose = LightXML.root(LightXML.parse_string(xml))
rot, trans = RigidBodyDynamics.parse_pose(Float64, xpose)
@test rot ≈ RotMatrix(RotX(0.3))
@test trans ≈ SVector(0, 0, 0)
xml = """
<origin rpy="0 0.2 0"/>
"""
xpose = LightXML.root(LightXML.parse_string(xml))
rot, trans = RigidBodyDynamics.parse_pose(Float64, xpose)
@test rot ≈ RotMatrix(RotY(0.2))
@test trans ≈ SVector(0, 0, 0)
xml = """
<origin rpy="0 0 0.1"/>
"""
xpose = LightXML.root(LightXML.parse_string(xml))
rot, trans = RigidBodyDynamics.parse_pose(Float64, xpose)
@test rot ≈ RotMatrix(RotZ(0.1))
@test trans ≈ SVector(0, 0, 0)
# Comparison against ROS's tf.transformations.quaternion_from_euler
xml = """
<origin rpy="1 2 3"/>
"""
xpose = LightXML.root(LightXML.parse_string(xml))
rot, trans = RigidBodyDynamics.parse_pose(Float64, xpose)
@test rot ≈ [0.41198225 -0.83373765 -0.36763046;
-0.05872664 -0.42691762 0.90238159;
-0.90929743 -0.35017549 -0.2248451] atol=1e-7
@test rot ≈ RotZ(3) * RotY(2) * RotX(1)
@test trans ≈ SVector(0, 0, 0)
# Comparison against ROS's tf.transformations.quaternion_from_euler
xml = """
<origin rpy="0.5 0.1 0.2"/>
"""
xpose = LightXML.root(LightXML.parse_string(xml))
rot, trans = RigidBodyDynamics.parse_pose(Float64, xpose)
@test rot ≈ [0.97517033 -0.12744012 0.18111281;
0.19767681 0.86959819 -0.45246312;
-0.09983342 0.47703041 0.8731983] atol=1e-7
@test rot ≈ RotZ(0.2) * RotY(0.1) * RotX(0.5)
@test trans ≈ SVector(0, 0, 0)
end
end
function test_inverse_dynamics_match(mechanism1::Mechanism, mechanism2::Mechanism; atol::Real=0, rtol::Real=atol>0 ? 0 : √eps)
state1 = MechanismState(mechanism1)
v̇_vec = rand(num_velocities(mechanism1))
rand!(state1)
v̇1 = copyto!(similar(velocity(state1)), v̇_vec)
τ1 = inverse_dynamics(state1, v̇1)
state2 = MechanismState(mechanism2)
copyto!(state2, Vector(state1))
v̇2 = copyto!(similar(velocity(state2)), v̇_vec)
τ2 = inverse_dynamics(state2, v̇2)
@test τ1 ≈ τ2 rtol=rtol atol=atol
end
function test_kinematic_graph_layout_match(mechanism1::Mechanism, mechanism2::Mechanism)
for (j1, j2) in zip(joints(mechanism1), joints(mechanism2))
@test string(j1) == string(j2)
@test string(predecessor(j1, mechanism1)) == string(predecessor(j2, mechanism2))
@test string(successor(j1, mechanism1)) == string(successor(j2, mechanism2))
@test joint_type(j1) == joint_type(j2)
end
end
function test_urdf_serialize_deserialize(mechanism1::Mechanism; remove_fixed_tree_joints::Bool)
state1 = MechanismState(mechanism1)
mktempdir() do dir
urdf2 = joinpath(dir, "test.urdf")
write_urdf(urdf2, mechanism1, robot_name="test")
mechanism2 = parse_urdf(urdf2, remove_fixed_tree_joints=remove_fixed_tree_joints)
test_inverse_dynamics_match(mechanism1, mechanism2, atol=1e-10)
for joint1 in tree_joints(mechanism1)
if remove_fixed_tree_joints && joint_type(joint1) isa Fixed
continue
else
joint2 = findjoint(mechanism2, string(joint1))
@test position_bounds(joint1) == position_bounds(joint2)
@test velocity_bounds(joint1) == velocity_bounds(joint2)
@test effort_bounds(joint1) == effort_bounds(joint2)
end
end
end
end
@testset "URDF write" begin
@testset "Basics" begin
Random.seed!(124)
urdfdir = joinpath(@__DIR__, "urdf")
for basename in readdir(urdfdir)
last(splitext(basename)) == ".urdf" || continue
urdf = joinpath(urdfdir, basename)
for floating in (true, false)
for remove_fixed_joints_before in (true, false)
mechanism = parse_urdf(urdf, remove_fixed_tree_joints=remove_fixed_joints_before, floating=floating)
for remove_fixed_joints_after in (true, false)
test_urdf_serialize_deserialize(mechanism, remove_fixed_tree_joints=remove_fixed_joints_after)
end
end
end
end
end
@testset "include_root" begin
Random.seed!(1245)
urdfdir = joinpath(@__DIR__, "urdf")
for basename in readdir(urdfdir)
last(splitext(basename)) == ".urdf" || continue
urdf = joinpath(urdfdir, basename)
unmodified_mechanism = parse_urdf(urdf, remove_fixed_tree_joints=false)
floating_mechanism = parse_urdf(urdf, remove_fixed_tree_joints=false, floating=true)
# Write unmodified mechanism to URDF using `include_root=false`, then parse
# using the default `Fixed` joint type as the root joint type. Ensure we get
# the same kinematic tree.
mktempdir() do dir
urdf2 = joinpath(dir, "test.urdf")
write_urdf(urdf2, unmodified_mechanism, include_root=false)
unmodified_mechanism_back = parse_urdf(urdf2, remove_fixed_tree_joints=false)
test_kinematic_graph_layout_match(unmodified_mechanism, unmodified_mechanism_back)
test_inverse_dynamics_match(unmodified_mechanism, unmodified_mechanism_back, atol=1e-10)
end
# Write floating-base mechanism to URDF using `include_root=true` (default), then parse
# using the default `Fixed` joint type as the root joint type:
mktempdir() do dir
urdf2 = joinpath(dir, "test.urdf")
write_urdf(urdf2, floating_mechanism)
floating_mechanism_back = parse_urdf(urdf2)
# Note: floating_mechanism_back has an extra fixed joint at the root, compared to floating_mechanism,
# but is dynamically equivalent.
test_inverse_dynamics_match(floating_mechanism, floating_mechanism_back, atol=1e-10)
end
# Write floating-base mechanism to URDF using `include_root=false`, then parse and compare
# to unmodified mechanism:
mktempdir() do dir
urdf2 = joinpath(dir, "test.urdf")
write_urdf(urdf2, floating_mechanism, include_root=false)
unmodified_mechanism_back = parse_urdf(urdf2, remove_fixed_tree_joints=false)
test_kinematic_graph_layout_match(unmodified_mechanism, unmodified_mechanism_back)
test_inverse_dynamics_match(unmodified_mechanism, unmodified_mechanism_back, atol=1e-10)
end
end
end
end
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 4375 | # RigidBodyDynamics.jl
[](https://github.com/JuliaRobotics/RigidBodyDynamics.jl/actions?query=workflow%3ACI)
[](https://codecov.io/github/JuliaRobotics/RigidBodyDynamics.jl?branch=master)
[](https://JuliaRobotics.github.io/RigidBodyDynamics.jl/dev)
[](https://JuliaRobotics.github.io/RigidBodyDynamics.jl/stable)
RigidBodyDynamics.jl is a rigid body dynamics library in pure Julia. It aims to be **user friendly** and [**performant**](https://github.com/JuliaRobotics/RigidBodyDynamics.jl/blob/master/docs/src/benchmarks.md), but also **generic** in the sense that the algorithms can be called with inputs of any (suitable) scalar types. This means that if fast numeric dynamics evaluations are required, a user can supply `Float64` or `Float32` inputs. However, if symbolic quantities are desired for analysis purposes, they can be obtained by calling the algorithms with e.g. [`SymPy.Sym`](https://github.com/JuliaPy/SymPy.jl) inputs. If gradients are required, e.g. the [`ForwardDiff.Dual`](https://github.com/JuliaDiff/ForwardDiff.jl) type, which implements forward-mode [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), can be used.
See the [latest stable documentation](https://JuliaRobotics.github.io/RigidBodyDynamics.jl/stable) for a list of features, installation instructions, and a quick-start guide. Installation should only take a couple of minutes, including installing Julia itself. The documentation includes various usage examples, starting with a [quickstart guide](http://www.juliarobotics.org/RigidBodyDynamics.jl/dev/generated/1.%20Quickstart%20-%20double%20pendulum/1.%20Quickstart%20-%20double%20pendulum/). These examples are also runnable locally as Jupyter notebooks; see [the readme in the examples directory](https://github.com/JuliaRobotics/RigidBodyDynamics.jl/blob/master/examples/README.md) for instructions.
## Related packages
RigidBodyDynamics.jl is part of the [JuliaRobotics GitHub organization](http://www.juliarobotics.org/).
Packages built on top of RigidBodyDynamics.jl include:
* [RigidBodySim.jl](https://github.com/JuliaRobotics/RigidBodySim.jl) - simulator built on top of RigidBodyDynamics.jl.
* [MeshCatMechanisms.jl](https://github.com/JuliaRobotics/MeshCatMechanisms.jl) - 3D visualization of articulated mechanisms using MeshCat.jl (built on top of [three.js](https://threejs.org/)) and RigidBodyDynamics.jl.
* [RigidBodyTreeInspector.jl](https://github.com/rdeits/RigidBodyTreeInspector.jl) - 3D visualization of RigidBodyDynamics.jl `Mechanism`s using [Director](https://github.com/RobotLocomotion/director).
* [MotionCaptureJointCalibration.jl](https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl) - kinematic calibration for robots using motion capture data, built on top of RigidBodyDynamics.jl
* [QPControl.jl](https://github.com/tkoolen/QPControl.jl) - quadratic-programming-based robot controllers implemented using RigidBodyDynamics.jl.
* [StrandbeestRobot.jl](https://github.com/rdeits/StrandbeestRobot.jl) - simulations of a 12-legged parallel walking mechanism inspired by Theo Jansens's [Strandbeest](https://www.strandbeest.com/) using RigidBodyDynamics.jl.
## Talks / publications
* May 20, 2019: paper at ICRA 2019: [Julia for robotics: simulation and real-time control in a
high-level programming language](https://www.researchgate.net/publication/331983442_Julia_for_robotics_simulation_and_real-time_control_in_a_high-level_programming_language).
* August 10, 2018: Robin Deits gave [a talk](https://www.youtube.com/watch?v=dmWQtI3DFFo) at JuliaCon 2018 demonstrating RigidBodyDynamics.jl and related packages.
* August 23, 2017: a video of a JuliaCon 2017 talk given by Robin Deits and Twan Koolen on using Julia for robotics [has been uploaded](https://www.youtube.com/watch?v=gPYc77M90Qg). It includes a brief demo of RigidBodyDynamics.jl and RigidBodyTreeInspector.jl. Note that RigidBodyDynamics.jl performance has significantly improved since this talk. The margins of the slides have unfortunately been cut off somewhat in the video.
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 675 | Release checklist:
* [ ] check REQUIRE files
* [ ] Run tests from previous released version against master. Ensure that there are reasonable deprecation messages, etc.
* Run tests for registered dependencies:
* [ ] MechanismGeometries
* [ ] MeshCatMechanisms
* [ ] RigidBodyTreeInspector
* [ ] MotionCaptureJointCalibration (Interact problem though)
* [ ] RigidBodySim
* [ ] ValkyrieRobot
* [ ] AtlasRobot
* Run tests for unregistered dependencies:
* [ ] LCPSim
* [ ] HumanoidLCMSim
* [ ] Ensure that docs are up to date and that they build properly
* [ ] Update benchmark results, if relevant
* [ ] Write release notes
* [ ] Use Attobot to set up release
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 276 | # Algorithms
## Index
```@index
Pages = ["algorithms.md"]
Order = [:type, :function]
```
## The `DynamicsResult` type
```@docs
DynamicsResult
```
## Functions
```@autodocs
Modules = [RigidBodyDynamics]
Order = [:function]
Pages = ["mechanism_algorithms.jl"]
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 2637 | # Benchmarks
To attain maximal performance, it is recommended to pass `-O3`, `--check-bounds=no` as command line flags to `julia`. As of Julia 1.1, maximizing performance for the `dynamics!` algorithm requires either setting the number of BLAS threads to 1 (`using LinearAlgebra; BLAS.set_num_threads(1)`) if using OpenBLAS (the default), or compiling Julia with MKL. See [this issue](https://github.com/JuliaRobotics/RigidBodyDynamics.jl/issues/500) for more information.
Run `perf/runbenchmarks.jl` to see benchmark results for the Atlas robot (v5). Results below are for the following scenarios:
1. Compute the joint-space mass matrix.
2. Compute both the mass matrix and a geometric Jacobian from the left hand to the right foot.
3. Do inverse dynamics.
4. Do forward dynamics.
Note that results on CI builds are **not at all** representative because of code coverage. Results on a reasonably fast laptop at commit [870bea6](https://github.com/JuliaRobotics/RigidBodyDynamics.jl/commit/870bea668d5b11ce0555fa0552592d2c3cb15c54):
Output of `versioninfo()`:
```
Julia Version 1.5.3
Commit 788b2c77c1 (2020-11-09 13:37 UTC)
Platform Info:
OS: macOS (x86_64-apple-darwin18.7.0)
CPU: Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-9.0.1 (ORCJIT, skylake)
```
Note that this is a different machine than the one that was used for earlier benchmarks.
Mass matrix:
```
memory estimate: 0 bytes
allocs estimate: 0
--------------
minimum time: 4.415 μs (0.00% GC)
median time: 4.579 μs (0.00% GC)
mean time: 4.916 μs (0.00% GC)
maximum time: 19.794 μs (0.00% GC)
```
Mass matrix and Jacobian from left hand to right foot:
```
memory estimate: 0 bytes
allocs estimate: 0
--------------
minimum time: 4.860 μs (0.00% GC)
median time: 4.982 μs (0.00% GC)
mean time: 5.399 μs (0.00% GC)
maximum time: 24.712 μs (0.00% GC)
```
Note the low additional cost of computing a Jacobian when the mass matrix is already computed. This is because RigidBodyDynamics.jl caches intermediate computation results.
Inverse dynamics:
```
memory estimate: 0 bytes
allocs estimate: 0
--------------
minimum time: 4.256 μs (0.00% GC)
median time: 4.541 μs (0.00% GC)
mean time: 4.831 μs (0.00% GC)
maximum time: 21.625 μs (0.00% GC)
```
Forward dynamics:
```
memory estimate: 0 bytes
allocs estimate: 0
--------------
minimum time: 13.600 μs (0.00% GC)
median time: 14.419 μs (0.00% GC)
mean time: 16.071 μs (0.00% GC)
maximum time: 55.328 μs (0.00% GC)
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 81 | # `StateCache`
```@docs
StateCache
DynamicsResultCache
SegmentedVectorCache
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 256 | # Custom collection types
## Index
```@index
Pages = ["customcollections.md"]
Order = [:type, :function]
```
## Types
```@autodocs
Modules = [RigidBodyDynamics.CustomCollections]
Order = [:type, :function]
Pages = ["custom_collections.jl"]
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 4006 | # RigidBodyDynamics
RigidBodyDynamics implements various rigid body dynamics and kinematics algorithms.
## Design features
Some of the key design features of this package are:
* pure Julia implementation, enabling seamless support for e.g. automatic differentiation using [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) and symbolic dynamics using [SymPy.jl](https://github.com/JuliaPy/SymPy.jl).
* easy creation and modification of general rigid body mechanisms.
* basic parsing of and writing to the [URDF](http://wiki.ros.org/urdf) file format.
* extensive checks that verify that coordinate systems match before computation, with the goal of making reference frame mistakes impossible
* flexible caching of intermediate results to prevent doing double work
* fairly small codebase and few dependencies
* singularity-free rotation parameterizations
## Functionality
Current functionality of RigidBodyDynamics.jl includes:
* kinematics/transforming points and free vectors from one coordinate system to another
* transforming wrenches, momenta (spatial force vectors) and twists and their derivatives (spatial motion vectors) from one coordinate system to another
* relative twists/spatial accelerations between bodies
* kinetic/potential energy
* center of mass
* geometric/basic/spatial Jacobians
* momentum
* momentum matrix
* momentum rate bias (= momentum matrix time derivative multiplied by joint velocity vector)
* mass matrix (composite rigid body algorithm)
* inverse dynamics (recursive Newton-Euler)
* dynamics
* simulation, either using an off-the-shelf ODE integrator or using an included custom Munthe-Kaas integrator that properly handles second-order ODEs defined on a manifold.
Closed-loop systems (parallel mechanisms) are supported, with optional Baumgarte stabilization of the loop joint constraints. Support for contact is very limited (possibly subject to major changes in the future), implemented using penalty methods.
## Installation
### Installing Julia
Download links and more detailed instructions are available on the [Julia website](http://julialang.org/). The latest version of RigidBodyDynamics.jl requires Julia 0.7, but we recommend downloading 1.0 (the latest stable Julia release at the time of writing). Version 0.7 of RigidBodyDynamics.jl is the last to support Julia 0.6.
!!! warning
Do **not** use `apt-get` or `brew` to install Julia, as the versions provided by these package managers tend to be out of date.
### Installing RigidBodyDynamics
To install the latest tagged release of RigidBodyDynamics, start Julia and enter `Pkg` mode by pressing `]`. Then simply run
```julia
add RigidBodyDynamics
```
To use the latest master version and work on the bleeding edge (generally, not recommended), instead run
```julia
add RigidBodyDynamics#master
```
A third option is to clone the repository (to the directory printed by `julia -e 'import Pkg; println(Pkg.devdir())'`):
```julia
dev RigidBodyDynamics
```
## About
This library was inspired by [IHMCRoboticsToolkit](https://bitbucket.org/ihmcrobotics/ihmc-open-robotics-software) and by [Drake](http://drake.mit.edu).
Most of the nomenclature used and algorithms implemented by this package stem
from the following resources:
* Murray, Richard M., et al. *A mathematical introduction to robotic manipulation*. CRC press, 1994.
* Featherstone, Roy. *Rigid body dynamics algorithms*. Springer, 2008.
* Duindam, Vincent. *Port-based modeling and control for efficient bipedal walking robots*. Diss. University of Twente, 2006.
## Contents
```@contents
Pages = [
"spatial.md",
"joints.md",
"rigidbody.md",
"mechanism.md",
"mechanismstate.md",
"algorithms.md",
"caches.md",
"simulation.md",
"urdf.md",
"benchmarks.md"]
Depth = 2
```
## Citing this library
```bibtex
@misc{rigidbodydynamicsjl,
author = "Twan Koolen and contributors",
title = "RigidBodyDynamics.jl",
year = 2016,
url = "https://github.com/JuliaRobotics/RigidBodyDynamics.jl"
}
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 750 | # Joints
## Index
```@index
Pages = ["joints.md"]
Order = [:type, :function]
```
## The `Joint` type
```@docs
Joint
```
## Functions
```@autodocs
Modules = [RigidBodyDynamics]
Order = [:function]
Pages = ["joint.jl"]
```
## `JointType`s
```@docs
JointType
```
### Fixed
```@docs
Fixed
```
### Revolute
```@docs
Revolute
Revolute(axis)
```
### Prismatic
```@docs
Prismatic
Prismatic(axis)
```
### Planar
```@docs
Planar
Planar{T}(x_axis::AbstractVector, y_axis::AbstractVector) where {T}
```
### QuaternionSpherical
```@docs
QuaternionSpherical
```
### QuaternionFloating
```@docs
QuaternionFloating
```
### SPQuatFloating
```@docs
SPQuatFloating
```
### SinCosRevolute
```@docs
SinCosRevolute
SinCosRevolute(axis)
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 555 | # Mechanisms
## Index
```@index
Pages = ["mechanism.md"]
Order = [:type, :function]
```
## The `Mechanism` type
```@docs
Mechanism
```
## [Creating and modifying `Mechanism`s](@id mechanism_create)
See also [URDF parsing and writing](@ref) for URDF file format support.
```@docs
Mechanism(root_body; gravity)
```
```@autodocs
Modules = [RigidBodyDynamics]
Order = [:function]
Pages = ["mechanism_modification.jl"]
```
## Basic functionality
```@autodocs
Modules = [RigidBodyDynamics]
Order = [:function]
Pages = ["mechanism.jl"]
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 279 | # MechanismState
## Index
```@index
Pages = ["mechanismstate.md"]
Order = [:type, :function]
```
## The `MechanismState` type
```@docs
MechanismState
```
## Functions
```@autodocs
Modules = [RigidBodyDynamics]
Order = [:function]
Pages = ["mechanism_state.jl"]
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 257 | # Rigid bodies
## Index
```@index
Pages = ["rigidbody.md"]
Order = [:type, :function]
```
## The `RigidBody` type
```@docs
RigidBody
```
## Functions
```@autodocs
Modules = [RigidBodyDynamics]
Order = [:function]
Pages = ["rigid_body.jl"]
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 528 | # Simulation
## Index
```@index
Pages = ["simulation.md"]
Order = [:type, :function]
```
## Basic simulation
```@docs
simulate
```
## Lower level ODE integration interface
```@docs
MuntheKaasIntegrator
MuntheKaasIntegrator(state::X, dynamics!::F, tableau::ButcherTableau{N, T, L}, sink::S) where {N, T, F, S<:OdeResultsSink, X, L}
ButcherTableau
OdeResultsSink
RingBufferStorage
ExpandingStorage
```
```@autodocs
Modules = [RigidBodyDynamics.OdeIntegrators]
Order = [:function]
Pages = ["ode_integrators.jl"]
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 751 | # Spatial vector algebra
## Index
```@index
Pages = ["spatial.md"]
Order = [:type, :function, :macro]
```
## Types
### Coordinate frames
```@docs
CartesianFrame3D
CartesianFrame3D(::String)
CartesianFrame3D()
```
### Transforms
```@docs
Transform3D
```
### Points, free vectors
```@docs
Point3D
FreeVector3D
```
### Inertias
```@docs
SpatialInertia
```
### Twists, spatial accelerations
```@docs
Twist
SpatialAcceleration
```
### Momenta, wrenches
```@docs
Momentum
Wrench
```
### Geometric Jacobians
```@docs
GeometricJacobian
```
### Momentum matrices
```@docs
MomentumMatrix
```
## The `@framecheck` macro
```@docs
@framecheck
```
## Functions
```@autodocs
Modules = [RigidBodyDynamics.Spatial]
Order = [:function]
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 88 | # URDF parsing and writing
```@docs
default_urdf_joint_types
parse_urdf
write_urdf
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | docs | 862 | # RigidBodyDynamics.jl examples
This directory contains various RigidBodyDynamics.jl usage examples.
The `.jl` files in each subdirectory are meant to be processed using [Literate.jl](https://github.com/fredrikekre/Literate.jl).
During the documentation build process, the `.jl` files are converted to markdown
files that end up in the package documentation.
You can also generate Jupyter notebooks and run them locally by performing the following steps:
1. [install RigidBodyDynamics.jl](http://www.juliarobotics.org/RigidBodyDynamics.jl/stable/#Installation-1)
2. [install IJulia](https://github.com/JuliaLang/IJulia.jl) (`add` it to the default project)
3. in the Julia REPL, run
```
using Pkg
Pkg.build("RigidBodyDynamics")
using IJulia, RigidBodyDynamics
notebook(dir=joinpath(dirname(pathof(RigidBodyDynamics)), "..", "examples"))
```
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
|
[
"MIT"
] | 0.4.7 | 1e03704320016415ef5dcc2c54edc3f20ee37bca | code | 551 | # -----------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# -----------------------------------------------------------------
module DataScienceTraitsCategoricalArraysExt
using DataScienceTraits
using CategoricalArrays
DataScienceTraits.scitype(::Type{<:CategoricalValue}) = DataScienceTraits.Categorical
DataScienceTraits.elscitype(::Type{<:CategoricalArray}) = DataScienceTraits.Categorical
DataScienceTraits.isordered(array::CategoricalArray) = isordered(array)
end
| DataScienceTraits | https://github.com/JuliaML/DataScienceTraits.jl.git |
|
[
"MIT"
] | 0.4.7 | 1e03704320016415ef5dcc2c54edc3f20ee37bca | code | 361 | # -----------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# -----------------------------------------------------------------
module DataScienceTraitsCoDaExt
using DataScienceTraits
using CoDa
DataScienceTraits.scitype(::Type{<:Composition}) = DataScienceTraits.Compositional
end
| DataScienceTraits | https://github.com/JuliaML/DataScienceTraits.jl.git |
|
[
"MIT"
] | 0.4.7 | 1e03704320016415ef5dcc2c54edc3f20ee37bca | code | 365 | # -----------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# -----------------------------------------------------------------
module DataScienceTraitsColorTypesExt
using DataScienceTraits
using ColorTypes
DataScienceTraits.scitype(::Type{<:Colorant}) = DataScienceTraits.Colorful
end
| DataScienceTraits | https://github.com/JuliaML/DataScienceTraits.jl.git |
|
[
"MIT"
] | 0.4.7 | 1e03704320016415ef5dcc2c54edc3f20ee37bca | code | 395 | # -----------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# -----------------------------------------------------------------
module DataScienceTraitsDistributionsExt
using DataScienceTraits
using Distributions: Distribution
DataScienceTraits.scitype(::Type{<:Distribution}) = DataScienceTraits.Distributional
end
| DataScienceTraits | https://github.com/JuliaML/DataScienceTraits.jl.git |
|
[
"MIT"
] | 0.4.7 | 1e03704320016415ef5dcc2c54edc3f20ee37bca | code | 753 | # -----------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# -----------------------------------------------------------------
module DataScienceTraitsDynamicQuantitiesExt
using DataScienceTraits
using DynamicQuantities: AbstractQuantity, Quantity
DataScienceTraits.scitype(::Type{<:AbstractQuantity{T}}) where {T} = scitype(T)
DataScienceTraits.sciconvert(::Type{DataScienceTraits.Continuous}, x::AbstractQuantity{<:Integer}) = float(x)
DataScienceTraits.sciconvert(::Type{DataScienceTraits.Categorical}, x::AbstractQuantity{<:Number}) = convert(Quantity{Int}, x)
DataScienceTraits.sciconvert(::Type{DataScienceTraits.Categorical}, x::AbstractQuantity{<:Integer}) = x
end
| DataScienceTraits | https://github.com/JuliaML/DataScienceTraits.jl.git |
|
[
"MIT"
] | 0.4.7 | 1e03704320016415ef5dcc2c54edc3f20ee37bca | code | 369 | # -----------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# -----------------------------------------------------------------
module DataScienceTraitsMeshesExt
using DataScienceTraits
using Meshes: Geometry
DataScienceTraits.scitype(::Type{<:Geometry}) = DataScienceTraits.Geometrical
end | DataScienceTraits | https://github.com/JuliaML/DataScienceTraits.jl.git |
|
[
"MIT"
] | 0.4.7 | 1e03704320016415ef5dcc2c54edc3f20ee37bca | code | 733 | # -----------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# -----------------------------------------------------------------
module DataScienceTraitsUnitfulExt
using DataScienceTraits
using Unitful: AbstractQuantity, Quantity
DataScienceTraits.scitype(::Type{<:AbstractQuantity{T}}) where {T} = scitype(T)
DataScienceTraits.sciconvert(::Type{DataScienceTraits.Continuous}, x::AbstractQuantity{<:Integer}) = float(x)
DataScienceTraits.sciconvert(::Type{DataScienceTraits.Categorical}, x::AbstractQuantity{<:Number}) = convert(Quantity{Int}, x)
DataScienceTraits.sciconvert(::Type{DataScienceTraits.Categorical}, x::AbstractQuantity{<:Integer}) = x
end
| DataScienceTraits | https://github.com/JuliaML/DataScienceTraits.jl.git |
|
[
"MIT"
] | 0.4.7 | 1e03704320016415ef5dcc2c54edc3f20ee37bca | code | 3684 | # -----------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# -----------------------------------------------------------------
module DataScienceTraits
using Dates: TimeType
"""
SciType
Parent type of all scientific types.
"""
abstract type SciType end
"""
Continuous
Scientific type of continuous variables.
"""
abstract type Continuous <: SciType end
"""
Categorical
Scientific type of categorical (a.k.a. discrete) variables.
"""
abstract type Categorical <: SciType end
"""
Colorful
Scientific type of colorful data (see Colors.jl).
"""
abstract type Colorful <: SciType end
"""
Compositional
Scientific type of compositional data (see CoDa.jl).
"""
abstract type Compositional <: SciType end
"""
Distributional
Scientific type of distributional data (see Distributions.jl)
"""
abstract type Distributional <: SciType end
"""
Geometrical
Scientific type of geometrical data (see Meshes.jl)
"""
abstract type Geometrical <: SciType end
"""
Tensorial
Scientific type of tensorial data (e.g. Vector, Matrix)
"""
abstract type Tensorial <: SciType end
"""
Temporal
Scientific type of temporal data (e.g. Date, Time, DateTime).
"""
abstract type Temporal <: SciType end
"""
Unknown
Scientific type used as a fallback in the `scitype` trait function.
"""
abstract type Unknown <: SciType end
"""
scitype(x) -> SciType
scitype(T::Type) -> SciType
Return the scientific type of object `x` of type `T`.
"""
function scitype end
"""
elscitype(itr) -> SciType
elscitype(I::Type) -> SciType
Return the scientific type of the elements of iterator `itr`
of type `I`.
"""
function elscitype end
"""
sciconvert(S::Type{<:SciType}, x)
Convert the scientific type of object `x` to `S`.
"""
function sciconvert end
#-----------
# FALLBACKS
#-----------
scitype(x) = scitype(typeof(x))
elscitype(itr) = elscitype(typeof(itr))
elscitype(::Type{T}) where {T} = scitype(eltype(T))
function sciconvert(::Type{S}, x::T) where {S<:SciType,T}
if !(scitype(T) <: S)
context = :compact => true
throw(ArgumentError("cannot convert $(repr(x; context)) to $(repr(S; context))"))
end
x
end
#-----------------
# IMPLEMENTATIONS
#-----------------
scitype(::Type) = Unknown
scitype(::Type{Union{}}) = Unknown
scitype(::Type{Missing}) = Unknown
scitype(::Type{<:Number}) = Continuous
scitype(::Type{<:Integer}) = Categorical
scitype(::Type{<:AbstractChar}) = Categorical
scitype(::Type{<:AbstractString}) = Categorical
scitype(::Type{<:AbstractArray}) = Tensorial
scitype(::Type{<:TimeType}) = Temporal
scitype(::Type{Union{T,Missing}}) where {T} = scitype(T)
sciconvert(::Type{Continuous}, x::Integer) = float(x)
sciconvert(::Type{Categorical}, x::Symbol) = string(x)
sciconvert(::Type{Categorical}, x::Number) = convert(Int, x)
sciconvert(::Type{Categorical}, x::Integer) = x
#-----------
# UTILITIES
#-----------
"""
coerce(S::Type{<:SciType}, itr)
Convert the scientific type of elements of the iterable `itr` to `S`, ignoring missing values.
"""
coerce(::Type{S}, itr) where {S<:SciType} = map(x -> ismissing(x) ? missing : sciconvert(S, x), itr)
"""
isordered(itr)
Checks whether the categorical variables of the iterable `itr` are ordered.
"""
function isordered(itr)
if !(elscitype(itr) <: Categorical)
throw(ArgumentError("iterable elements are not categorical"))
end
false
end
#---------
# EXPORTS
#---------
export
# functions
scitype,
elscitype,
# types
Continuous,
Categorical,
Colorful,
Compositional,
Distributional,
Geometrical,
Tensorial,
Temporal,
Unknown
end
| DataScienceTraits | https://github.com/JuliaML/DataScienceTraits.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.