licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.4.1 | 792c195909ca5dfff5685305b6fa0aa16c3d1041 | docs | 952 | # Public Interface
Documentation of `LongwaveModePropagator.jl`'s exported structs and functions.
**Contents**
- [Basic Functions](@ref)
- [Mode Finder](@ref)
- [EigenAngle](@ref)
- [Geophysics](@ref)
- [Samplers](@ref)
- [Emitters](@ref)
- [Waveguides](@ref)
- [IO](@ref)
### Basic Functions
```@docs
propagate
LMPParams
```
### Mode Finder
```@docs
findmodes
PhysicalModeEquation
setea
IntegrationParams
```
### EigenAngle
```@docs
EigenAngle
attenuation
phasevelocity
referencetoground
```
### Geophysics
```@docs
BField
Species
Ground
GROUND
waitprofile
electroncollisionfrequency
ioncollisionfrequency
```
### Samplers
```@docs
Sampler
GroundSampler
Fields
Receiver
```
### Emitters
```@docs
Frequency
Transmitter
Dipole
VerticalDipole
HorizontalDipole
inclination
azimuth
```
### Waveguides
```@docs
HomogeneousWaveguide
SegmentedWaveguide
```
### IO
```@docs
ExponentialInput
TableInput
BatchInput
BasicOutput
BatchOutput
```
| LongwaveModePropagator | https://github.com/fgasdia/LongwaveModePropagator.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 1134 | using Documenter, RayTracer
makedocs(
modules = [RayTracer],
doctest = true,
sitename = "RayTracer",
authors = "Avik Pal",
format = Documenter.HTML(
prettyurls = get(ENV, "CI", nothing) == "true",
assets = ["assets/raytracer.css"],
),
pages = [
"Home" => "index.md",
"Getting Started" => [
"Introduction to Rendering" => "getting_started/teapot_rendering.md",
"Inverse Lighting" => "getting_started/inverse_lighting.md",
"Optimizing using Optim.jl" => "getting_started/optim_compatibility.md",
],
"API Documentation" => [
"General Utilities" => "api/utilities.md",
"Differentiation" => "api/differentiation.md",
"Scene Configuration" => "api/scene.md",
"Renderers" => "api/renderers.md",
"Optimization" => "api/optimization.md",
"Acceleration Structures" => "api/accelerators.md",
],
],
)
deploydocs(
repo = "github.com/avik-pal/RayTracer.jl.git"
)
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 4601 | # # Inverse Lighting Tutorial
#
# In this tutorial we shall explore the inverse lighting problem.
# Here, we shall try to reconstruct a target image by optimizing
# the parameters of the light source (using gradients).
using RayTracer, Images, Zygote, Flux, Statistics
# ## Configuring the Scene
#
# Reduce the screen_size if the optimization is taking a bit long
screen_size = (w = 300, h = 300)
# Now we shall load the scene using [`load_obj`](@ref) function. For
# this we need the [`obj`](https://en.wikipedia.org/wiki/Wavefront_.obj_file)
# and [`mtl`](https://en.wikipedia.org/wiki/Wavefront_.obj_file#Material_template_library)
# files. They can be downloaded using the following commands:
#
# ```
# wget https://raw.githubusercontent.com/tejank10/Duckietown.jl/master/src/meshes/tree.obj
# wget https://raw.githubusercontent.com/tejank10/Duckietown.jl/master/src/meshes/tree.mtl
# ```
scene = load_obj("./tree.obj")
# Let us set up the [`Camera`](@ref). For a more detailed understanding of
# the rendering process look into [Introduction to rendering using RayTracer.jl](@ref).
cam = Camera(
lookfrom = Vec3(0.0f0, 6.0f0, -10.0f0),
lookat = Vec3(0.0f0, 2.0f0, 0.0f0),
vup = Vec3(0.0f0, 1.0f0, 0.0f0),
vfov = 45.0f0,
focus = 0.5f0,
width = screen_size.w,
height = screen_size.h
)
origin, direction = get_primary_rays(cam)
# We should define a few convenience functions. Since we are going to calculate
# the gradients only wrt to `light` we have it as an argument to the function. Having
# `scene` as an additional parameters simply allows us to test our method for other
# meshes without having to run `Zygote.refresh()` repeatedly.
function render(light, scene)
packed_image = raytrace(origin, direction, scene, light, origin, 2)
array_image = reshape(hcat(packed_image.x, packed_image.y, packed_image.z),
(screen_size.w, screen_size.h, 3, 1))
return array_image
end
showimg(img) = colorview(RGB, permutedims(img[:,:,:,1], (3,2,1)))
# ## [Ground Truth Image](@id inv_light)
#
# For this tutorial we shall use the [`PointLight`](@ref) source.
# We define the ground truth lighting source and the rendered image. We
# will later assume that we have no information about this lighting
# condition and try to reconstruct the image.
light_gt = PointLight(
color = Vec3(1.0f0, 1.0f0, 1.0f0),
intensity = 20000.0f0,
position = Vec3(1.0f0, 10.0f0, -50.0f0)
)
target_img = render(light_gt, scene)
# The presence of [`zeroonenorm`](@ref) is very important here. It rescales the
# values in the image to 0 to 1. If we don't perform this step `Images` will
# clamp the values while generating the image in RGB format.
showimg(zeroonenorm(target_img))
# ```@raw html
# <p align="center">
# <img width=300 height=300 src="../../assets/inv_light_original.png">
# </p>
# ```
# ## Initial Guess of Lighting Parameters
#
# We shall make some arbitrary guess of the lighting parameters (intensity and
# position) and try to get back the image in [Ground Truth Image](@ref inv_light)
light_guess = PointLight(
color = Vec3(1.0f0, 1.0f0, 1.0f0),
intensity = 1.0f0,
position = Vec3(-1.0f0, -10.0f0, -50.0f0)
)
showimg(zeroonenorm(render(light_guess, scene)))
# ```@raw html
# <p align="center">
# <img width=300 height=300 src="../../assets/inv_light_initial.png">
# </p>
# ```
# We shall store the images in `results_inv_lighting` directory
mkpath("results_inv_lighting")
save("./results_inv_lighting/inv_light_original.png",
showimg(zeroonenorm(render(light_gt, scene))))
save("./results_inv_lighting/inv_light_initial.png",
showimg(zeroonenorm(render(light_guess, scene))))
# ## Optimization Loop
#
# We will use the ADAM optimizer from Flux. (Try experimenting with other
# optimizers as well). We can also use frameworks like Optim.jl for optimization.
# We will show how to do it in a future tutorial
opt = ADAM(1.0)
for i in 1:401
loss, back_fn = Zygote._pullback(light_guess) do L
sum((render(L, scene) .- target_img) .^ 2)
end
@show loss
gs = back_fn(1.0f0)
update!(opt, light_guess.intensity, gs[2].intensity)
update!(opt, light_guess.position, gs[2].position)
if i % 5 == 1
save("./results_inv_lighting/iteration_$i.png",
showimg(zeroonenorm(render(light_guess, scene))))
end
end
# If we generate a `gif` for the optimization process it will look similar to this
# ```@raw html
# <p align="center">
# <img width=300 height=300 src="../../assets/inv_lighting.gif">
# </p>
# ```
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 3932 | # # Optimizing Scene Parameters using Optim.jl
#
# In this tutorial we will explore the exact same problem as demonstrated
# in [Inverse Lighting Tutorial](@ref) but this time we will use the
# Optimization Package [Optim.jl](https://julianlsolvers.github.io/Optim.jl/stable/).
# I would recommend going through a few of the
# [tutorials on Optim](https://julianlsolvers.github.io/Optim.jl/stable/#user/minimization/#_top)
# before starting this one.
#
# If you have already read the previous tutorial, you can safely skip to
# [Writing the Optimization Loop using Optim](@ref). The part previous to this
# is same as the previous tutorial.
using RayTracer, Images, Zygote, Flux, Statistics, Optim
# ## Script for setting up the Scene
screen_size = (w = 64, h = 64)
scene = load_obj("./tree.obj")
cam = Camera(
Vec3(0.0f0, 6.0f0, -10.0f0),
Vec3(0.0f0, 2.0f0, 0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
45.0f0,
0.5f0,
screen_size...
)
origin, direction = get_primary_rays(cam)
function render(light, scene)
packed_image = raytrace(origin, direction, scene, light, origin, 2)
array_image = reshape(hcat(packed_image.x, packed_image.y, packed_image.z),
(screen_size.w, screen_size.h, 3, 1))
return array_image
end
showimg(img) = colorview(RGB, permutedims(img[:,:,:,1], (3,2,1)))
light_gt = PointLight(
Vec3(1.0f0, 1.0f0, 1.0f0),
20000.0f0,
Vec3(1.0f0, 10.0f0, -50.0f0)
)
target_img = render(light_gt, scene)
showimg(zeroonenorm(render(light_gt, scene)))
light_guess = PointLight(
Vec3(1.0f0, 1.0f0, 1.0f0),
1.0f0,
Vec3(-1.0f0, -10.0f0, -50.0f0)
)
showimg(zeroonenorm(render(light_guess, scene)))
# ## Writing the Optimization Loop using Optim
#
# Since, there is no direct support of Optim (unlike for Flux) in RayTracer
# the interface might seem a bit ugly. This is mainly due to the way the
# two optimization packages work. Flux allows inplace operation and ideally
# even RayTracer prefers that. But Optim requires us to give the parameters
# as an `AbstractArray`.
#
# Firstly, we shall extract the parameters, using the [`RayTracer.get_params`](@ref)
# function, we want to optimize.
initial_parameters = RayTracer.get_params(light_guess)[end-3:end]
# Since the input to the `loss_function` is an abstract array we need to
# convert it into a form that the RayTracer understands. For this we
# shall use the [`RayTracer.set_params!`](@ref) function which will modify the
# parameters inplace.
#
# In this function we simply compute the loss values and print it for our
# reference
function loss_function(θ::AbstractArray)
light_optim = deepcopy(light_guess)
RayTracer.set_params!(light_optim.intensity, θ[1:1])
RayTracer.set_params!(light_optim.position, θ[2:end])
loss = sum((render(light_optim, scene) .- target_img) .^ 2)
@show loss
return loss
end
# RayTracer uses Zygote's Reverse Mode AD for computing the derivatives.
# However, the default in Optim is ForwardDiff. Hence, we need to override
# that by giving our own gradient function.
function ∇loss_function!(G, θ::AbstractArray)
light_optim = deepcopy(light_guess)
RayTracer.set_params!(light_optim.intensity, θ[1:1])
RayTracer.set_params!(light_optim.position, θ[2:end])
gs = gradient(light_optim) do L
sum((render(L, scene) .- target_img) .^ 2)
end
G .= RayTracer.get_params(gs[1])[end-3:end]
end
# Now we simply call the `optimize` function with `LBFGS` optimizer.
res = optimize(loss_function, ∇loss_function!, initial_parameters, LBFGS())
@show res.minimizer
# It might be interesting to note that convergence using LBFGS was much faster (only
# 252 iterations) compared to ADAM (401 iterations).
# If we generate a `gif` for the optimization process it will look similar to this
# ```@raw html
# <p align="center">
# <img width=300 height=300 src="../../assets/inv_lighting_optim.gif">
# </p>
# ```
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 2086 | using RayTracer, Images, BenchmarkTools, ArgParse
function render(scene, screen_size, gillum)
cam = Camera(
Vec3(0.5f0, 0.2f0, -0.5f0),
Vec3(0.0f0, 0.1f0, 0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
45.0f0,
1.0f0,
screen_size...
)
origin, direction = get_primary_rays(cam)
light = PointLight(
Vec3(1.0f0, 1.0f0, 1.0f0),
2.0f8,
Vec3(10.0f0, 10.0f0, 5.0f0)
)
image_packed = raytrace(
origin,
direction,
scene,
light,
origin,
gillum
)
return zeroonenorm(
reshape(hcat(image_packed.x, image_packed.y, image_packed.z),
(3, screen_size...)))
end
function parse_commandline()
s = ArgParseSettings()
@add_arg_table s begin
"--mesh_path", "-m"
help = "path to the mesh being rendered"
arg_type = String
required = true
"--global_illumination", "-g"
help = "Activate global illumination (>= 2 for no)"
arg_type = Int
default = 2
end
return parse_args(s)
end
function main()
parsed_args = parse_commandline()
println("Running Benchmarks for Mesh:\n
1. Path to the Mesh - $(parsed_args["mesh_path"])\n
2. Global Illumination - $(parsed_args["global_illumination"])")
println("The benchmarking time involves the following:\n
1. Instantiating the Camera\n
2. Rendering\n
3. Reshaping and Normalizing the Image")
for screen_size in [(32, 32), (64, 64), (128, 128), (512, 512), (1024, 1024)]
@info "Screen Size --> $screen_size"
scene = load_obj(parsed_args["mesh_path"])
print("Time without BVH --> ")
@btime render($scene, $screen_size, $(parsed_args["global_illumination"]))
bvh = BoundingVolumeHierarchy(scene)
print("Time with BVH --> ")
@btime render($bvh, $screen_size, $(parsed_args["global_illumination"]))
end
println("Benchmarking Completed")
end
main()
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 4392 | # # Introduction to rendering using RayTracer.jl
#
# In this example we will render the famous UTAH Teapot model.
# We will go through the entire rendering API. We will load
# an obj file for the scene. This needs to be downloaded manually.
#
# Run this code in your terminal to get the file:
# `wget https://raw.githubusercontent.com/McNopper/OpenGL/master/Binaries/teapot.obj`
# If you are using REPL mode you need the `ImageView.jl` package
using RayTracer, Images #, ImageView
# ## General Attributes of the Scene
#
# Specify the dimensions of the image we want to generate.
# `screen_size` is never passed into the RayTracer directly so it
# need not be a named tuple.
screen_size = (w = 256, h = 256)
# Load the teapot object from an `obj` file. We can also specify
# the scene using primitive objects directly but that becomes a
# bit involved when there are complicated objects in the scene.
scene = load_obj("teapot.obj")
# We shall define a convenience function for rendering and saving
# the images.
# For understanding the parameters passed to the individual functions
# look into the documentations of [`get_primary_rays`](@ref), [`raytrace`](@ref)
# and [`get_image`](@ref)
function generate_render_and_save(cam, light, filename)
#src # Get the primary rays for the camera
origin, direction = get_primary_rays(cam)
#src # Render the scene
color = raytrace(origin, direction, scene, light, origin, 2)
#src # This will reshape `color` into the proper dimensions and return
#src # an RGB image
img = get_image(color, screen_size...)
#src # Display the image
#src # For REPL mode change this to `imshow(img)`
display(img)
#src # Save the generated image
save(filename, img)
end
# ## Understanding the Light and Camera API
#
# ### DistantLight
#
# In this example we will be using the [`DistantLight`](@ref). This king of lighting
# is useful when we want to render a scene in which all parts of the scene
# receive the same intensity of light.
#
# For the DistantLight we need to provide three attributes:
# * Color - Color of the Light Rays. Must be a Vec3 Object
# * Intensity - Intensity of the Light
# * Direction - The direction of light rays. Again this needs to be a Vec3 Object
#
# ### Camera
#
# We use a perspective view [`Camera`](@ref) Model in RayTracer. Let us look into the
# arguments we need to pass into the Camera constructor.
#
# * LookFrom - The position of the Camera
# * LookAt - The point in 3D space where the Camera is pointing
# * vup - The UP vector of the world (typically Vec3(0.0, 1.0, 0.0), i.e. the y-axis)
# * vfov - Field of View of the Camera
# * Focus - The focal length of the Camera
# * Width - Width of the output image
# * Height - Height of the output image
# ## Rendering Different Views of the Teapot
#
# Now that we know what each argument means let us render the teapot
#
# ### TOP VIEW Render
light = DistantLight(
Vec3(1.0f0),
100.0f0,
Vec3(0.0f0, 1.0f0, 0.0f0)
)
cam = Camera(
Vec3(1.0f0, 10.0f0, -1.0f0),
Vec3(0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
45.0f0,
1.0f0,
screen_size...
)
generate_render_and_save(cam, light, "teapot_top.jpg")
# ```@raw html
# <p align="center">
# <img width=256 height=256 src="../../assets/teapot_top.jpg">
# </p>
# ```
# ### SIDE VIEW Render
light = DistantLight(
Vec3(1.0f0),
100.0f0,
Vec3(1.0f0, 1.0f0, -1.0f0)
)
cam = Camera(
Vec3(1.0f0, 2.0f0, -10.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
45.0f0,
1.0f0,
screen_size...
)
generate_render_and_save(cam, light, "teapot_side.jpg")
# ```@raw html
# <p align="center">
# <img width=256 height=256 src="../../assets/teapot_side.jpg">
# </p>
# ```
# ### FRONT VIEW Render
light = DistantLight(
Vec3(1.0f0),
100.0f0,
Vec3(1.0f0, 1.0f0, 0.0f0)
)
cam = Camera(
Vec3(10.0f0, 2.0f0, 0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
45.0f0,
1.0f0,
screen_size...
)
generate_render_and_save(cam, light, "teapot_front.jpg")
# ```@raw html
# <p align="center">
# <img width=256 height=256 src="../../assets/teapot_front.jpg">
# </p>
# ```
# ## Next Steps
#
# * Try Rendering complex environments with RayTracer
# * Look into the other examples in `examples/`
# * Read about inverse rendering and see the examples on that
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 591 | module RayTracer
using Zygote, Flux, Images, Distributed, Statistics
import Base.show
using Compat
import Compat.isnothing
# Rendering Utilities
include("utils.jl")
include("light.jl")
include("materials.jl")
include("objects.jl")
include("camera.jl")
include("optimize.jl")
# Acceleration Structures
include("bvh.jl")
# Renderers
include("renderers/blinnphong.jl")
include("renderers/rasterizer.jl")
include("renderers/accelerated_raytracer.jl")
# Image Utilities
include("imutils.jl")
# Differentiable Rendering
include("gradients/zygote.jl")
include("gradients/numerical.jl")
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 7469 | export BoundingVolumeHierarchy
"""
AccelerationStructure
Base Type for all Acceleration Structures. These can be used to speed up
rendering by a significant amount. The main design behind an acceleration
structure should be such that it can be used as a simple replacement for
a vector of [`Object`](@ref)s.
"""
abstract type AccelerationStructure end
"""
BVHNode
A node in the graph created from the scene list using [`BoundingVolumeHierarchy`](@ref).
### Fields:
* `x_min` - Minimum x-value for the bounding box
* `x_max` - Maximum x-value for the bounding box
* `y_min` - Minimum y-value for the bounding box
* `y_max` - Maximum y-value for the bounding box
* `z_min` - Minimum z-value for the bounding box
* `z_max` - Maximum z-value for the bounding box
* `index_start` - Starting triangle in the scene list
* `index_end` - Last triangle in the scene list
* `left_child` - Can be `nothing` or another [`BVHNode`](@ref)
* `right_child` - Can be `nothing` or another [`BVHNode`](@ref)
"""
struct BVHNode{T}
x_min::T
x_max::T
y_min::T
y_max::T
z_min::T
z_max::T
index_start::Int
index_end::Int
left_child::Union{Nothing, BVHNode}
right_child::Union{Nothing, BVHNode}
end
"""
BoundingVolumeHierarchy
An [`AccelerationStructure`](@ref) which constructs bounding boxes around
groups of triangles to speed up intersection checking. A detailed description
of ths technique is present [here](https://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure/bounding-volume-hierarchy-BVH-part1).
### Fields:
* `scene_list` - The scene list passed into the BVH constructor but in
sorted order
* `root_node` - Root [`BVHNode`](@ref)
### Constructors:
* `BoundingVolumeHierarchy(scene::Vector)`
"""
struct BoundingVolumeHierarchy{T, S} <: AccelerationStructure
scene_list::Vector{T}
root_node::BVHNode{S}
end
const BVH = BoundingVolumeHierarchy
function BoundingVolumeHierarchy(scene::Vector)
x_min, x_max = extrema(hcat([[s.v1.x[], s.v2.x[], s.v3.x[]] for s in scene]...))
y_min, y_max = extrema(hcat([[s.v1.y[], s.v2.y[], s.v3.y[]] for s in scene]...))
z_min, z_max = extrema(hcat([[s.v1.z[], s.v2.z[], s.v3.z[]] for s in scene]...))
longest_direction = getindex([:x, :y, :z],
argmax([x_max - x_min, y_max - y_min, z_max - z_min]))
centroids = map(t -> (t.v1 + t.v2 + t.v3) / 3, scene)
centroid_dict = IdDict{eltype(scene), Vec3}()
for (s, c) in zip(scene, centroids)
centroid_dict[s] = c
end
scene = sort(scene, by = x -> getproperty(centroid_dict[x], longest_direction)[])
search_space = map(x -> getproperty(x, longest_direction)[], centroids)
split_value = median(search_space)
split_index = searchsortedfirst(search_space, split_value)
if split_index - 1 == length(scene) || split_index == 1
bvhnode = BVHNode(x_min, x_max, y_min, y_max, z_min, z_max, 1, length(scene),
nothing, nothing)
else
left_child, sc = BVHNode(scene[1:split_index - 1], 1, centroid_dict)
scene[1:split_index - 1] .= sc
right_child, sc = BVHNode(scene[split_index:end], split_index, centroid_dict)
scene[split_index:end] .= sc
bvhnode = BVHNode(x_min, x_max, y_min, y_max, z_min, z_max, 1, length(scene),
left_child, right_child)
end
return BoundingVolumeHierarchy(scene, bvhnode)
end
function BVHNode(scene, index, centroid_dict)
length(scene) == 0 && return (nothing, scene)
x_min, x_max = extrema(hcat([[s.v1.x[], s.v2.x[], s.v3.x[]] for s in scene]...))
y_min, y_max = extrema(hcat([[s.v1.y[], s.v2.y[], s.v3.y[]] for s in scene]...))
z_min, z_max = extrema(hcat([[s.v1.z[], s.v2.z[], s.v3.z[]] for s in scene]...))
if length(scene) <= 100
return BVHNode(x_min, x_max, y_min, y_max, z_min, z_max, index, index + length(scene) -1,
nothing, nothing), scene
end
longest_direction = getindex([:x, :y, :z],
argmax([x_max - x_min, y_max - y_min, z_max - z_min]))
scene = sort(scene, by = x -> getproperty(centroid_dict[x], longest_direction)[])
centroids = [centroid_dict[s] for s in scene]
search_space = map(x -> getproperty(x, longest_direction)[], centroids)
split_value = median(search_space)
split_index = searchsortedfirst(search_space, split_value)
if split_index - 1 == length(scene) || split_index == 1
return BVHNode(x_min, x_max, y_min, y_max, z_min, z_max, index, index + length(scene) - 1,
nothing, nothing), scene
end
left_child, sc = BVHNode(scene[1:split_index - 1], index, centroid_dict)
scene[1:split_index - 1] .= sc
right_child, sc = BVHNode(scene[split_index:end], index + split_index - 1, centroid_dict)
scene[split_index:end] .= sc
bvhnode = BVHNode(x_min, x_max, y_min, y_max, z_min, z_max, index, index + length(scene) - 1,
left_child, right_child)
return bvhnode, scene
end
bvh_depth(bvh::BoundingVolumeHierarchy) = bvh_depth(bvh.root_node)
bvh_depth(bvh::BVHNode) = 1 + max(bvh_depth(bvh.left_child), bvh_depth(bvh.right_child))
bvh_depth(::Nothing) = 0
isleafnode(bvh::BVHNode) = isnothing(bvh.left_child) && isnothing(bvh.right_child)
function intersection_check(bvh::BVHNode, origin, direction)
function check_intersection_ray(dir_x, dir_y, dir_z,
ori_x, ori_y, ori_z)
a, b = dir_x < 0 ? (bvh.x_max, bvh.x_min) : (bvh.x_min, bvh.x_max)
tmin = (a - ori_x) / dir_x
tmax = (b - ori_x) / dir_x
a, b = dir_y < 0 ? (bvh.y_max, bvh.y_min) : (bvh.y_min, bvh.y_max)
tymin = (a - ori_y) / dir_y
tymax = (b - ori_y) / dir_y
(tmin > tymax || tymin > tmax) && return false
tmin = max(tmin, tymin)
tmax = min(tmax, tymax)
a, b = dir_z < 0 ? (bvh.z_max, bvh.z_min) : (bvh.z_min, bvh.z_max)
tzmin = (a - ori_z) / dir_z
tzmax = (b - ori_z) / dir_z
(tmin > tzmax || tzmin > tmax) && return false
return true
end
return broadcast(check_intersection_ray, direction.x, direction.y,
direction.z, origin.x, origin.y, origin.z)
end
intersect(bvh::BoundingVolumeHierarchy, origin, direction) =
intersect(bvh.root_node, bvh, origin, direction)
function intersect(bvh::BVHNode, bvh_structure::BoundingVolumeHierarchy,
origin, direction)
hit = intersection_check(bvh, origin, direction)
dir_rays = extract(hit, direction)
ori_rays = extract(hit, origin)
if isleafnode(bvh)
t_values = IdDict{Triangle, Vector}(
map(x -> (x, intersect(x, ori_rays, dir_rays)),
bvh_structure.scene_list[bvh.index_start:bvh.index_end]))
else
t_values = intersect(bvh.left_child, bvh_structure, ori_rays, dir_rays)
# We do not need to check the ones which have already intersected but let's
# keep the code simple for now
# if !isnothing(bvh.right_child)
merge!(t_values, intersect(bvh.right_child, bvh_structure, ori_rays, dir_rays))
# end
end
for k in keys(t_values)
t_values[k] = place(t_values[k], hit, Inf)
end
return t_values
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 5304 | export Camera, get_primary_rays
# ------ #
# Camera #
# ------ #
"""
FixedCameraParams
The Parameters of the [`Camera`](@ref) which should not be updated in inverse rendering
are wrapped into this object.
### Fields:
* `vup` - Stores the World UP Vector (In most cases this is the Y-Axis Vec3(0.0, 1.0, 0.0))
* `width` - Width of the image to be rendered
* `height` - Height of the image to be rendered
"""
struct FixedCameraParams{T} <: FixedParams
vup::Vec3{T}
width::Int
height::Int
end
Base.show(io::IO, fcp::FixedCameraParams) =
print(io, " Fixed Parameters:\n World UP - ", fcp.vup,
"\n Screen Dimensions - ", fcp.height, " × ", fcp.width)
Base.zero(fcp::FixedCameraParams) = FixedCameraParams(zero(fcp.vup), zero(fcp.width),
zero(fcp.height))
"""
Camera
The Perspective View Camera Model
### Fields:
* `lookfrom` - Position of the Camera in 3D World Space
* `lookat` - Point in the 3D World Space where the Camera is Pointing
* `vfov` - Field of View of the Camera
* `focus` - The focal length of the Camera
* `fixedparams` - An instance of [`FixedCameraParams`](@ref)
### Available Constructors:
* `Camera(;lookfrom = Vec3(0.0f0), lookat = Vec3(0.0f0),
vup = Vec3(0.0f0, 1.0f0, 0.0f0), vfov = 90.0f0,
focus = 1.0f0, width = 128, height = 128)`
* `Camera(lookfrom::Vec3{T}, lookat::Vec3{T}, vup::Vec3{T}, vfov::R,
focus::R, width::Int, height::Int) where {T<:AbstractArray, R<:Real}`
"""
struct Camera{T}
lookfrom::Vec3{T}
lookat::Vec3{T}
vfov::T
focus::T
fixedparams::FixedCameraParams{T}
end
Base.show(io::IO, cam::Camera) =
print(io, "CAMERA Configuration:\n Lookfrom - ", cam.lookfrom,
"\n Lookat - ", cam.lookat, "\n Field of View - ", cam.vfov[],
"\n Focus - ", cam.focus[], "\n", cam.fixedparams)
@diffops Camera
Camera(;lookfrom = Vec3(0.0f0), lookat = Vec3(0.0f0),
vup = Vec3(0.0f0, 1.0f0, 0.0f0), vfov = 90.0f0,
focus = 1.0f0, width = 128, height = 128) =
Camera(lookfrom, lookat, vup, vfov, focus, width, height)
function Camera(lookfrom::Vec3{T}, lookat::Vec3{T}, vup::Vec3{T}, vfov::R,
focus::R, width::Int, height::Int) where {T<:AbstractArray, R<:Real}
fixedparams = FixedCameraParams(vup, width, height)
return Camera(lookfrom, lookat, [vfov], [focus], fixedparams)
end
"""
get_primary_rays(c::Camera)
Takes the configuration of the camera and returns the origin and the direction
of the primary rays.
"""
function get_primary_rays(c::Camera)
width = c.fixedparams.width
height = c.fixedparams.height
vup = c.fixedparams.vup
vfov = c.vfov[]
focus = c.focus[]
aspect_ratio = width / height
half_height = tan(deg2rad(vfov / 2))
half_width = typeof(half_height)(aspect_ratio * half_height)
origin = c.lookfrom
w = normalize(c.lookfrom - c.lookat)
u = normalize(cross(vup, w))
v = normalize(cross(w, u))
# Lower Left Corner
llc = origin - half_width * focus * u - half_height * focus * v - w
hori = 2 * half_width * focus * u
vert = 2 * half_height * focus * v
s = repeat((collect(0:(width - 1)) .+ 0.5f0) ./ width, outer = height)
t = repeat((collect((height - 1):-1:0) .+ 0.5f0) ./ height, inner = width)
direction = normalize(llc + s * hori + t * vert - origin)
return (origin, direction)
end
"""
get_transformation_matrix(c::Camera)
Returns the `camera_to_world` transformation matrix. This is used for transforming
the coordinates of a Point in 3D Camera Space to 3D World Space using the
[`camera2world`](@ref) function.
"""
function get_transformation_matrix(c::Camera{T}) where {T}
forward = normalize(c.lookfrom - c.lookat)
right = normalize(cross(c.fixedparams.vup, forward))
up = normalize(cross(forward, right))
return [ right.x[] right.y[] right.z[] zero(eltype(T));
up.x[] up.y[] up.z[] zero(eltype(T));
forward.x[] forward.y[] forward.z[] zero(eltype(T));
c.lookfrom.x[] c.lookfrom.y[] c.lookfrom.z[] one(eltype(T))]
end
"""
compute_screen_coordinates(c::Camera, film_aperture::Tuple,
inch_to_mm::Real = 25.4)
Computes the coordinates of the 4 corners of the screen and returns
`top`, `right`, `bottom`, and `left`.
"""
function compute_screen_coordinates(c::Camera, film_aperture::Tuple,
inch_to_mm::Real = 25.4)
width = c.fixedparams.width
height = c.fixedparams.height
vfov = c.vfov[]
focus = c.focus[]
film_aspect_ratio = film_aperture[1] / film_aperture[2]
device_aspect_ratio = width / height
top = ((film_aperture[2] * inch_to_mm / 2) / focus)
right = ((film_aperture[1] * inch_to_mm / 2) / focus)
xscale = 1
yscale = 1
if film_aspect_ratio > device_aspect_ratio
xscale = device_aspect_ratio / film_aspect_ratio
else
yscale = film_aspect_ratio / device_aspect_ratio
end
right *= xscale
top *= yscale
bottom = -top
left = -right
return top, right, bottom, left
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 1227 | export get_image, zeroonenorm
using Zygote: @adjoint
# ---------- #
# Processing #
# ---------- #
"""
get_image(image, width, height)
Reshapes and normalizes a Vec3 color format to the RGB format of Images
for easy loading, saving and visualization.
### Arguments:
* `image` - The rendered image in flattened Vec3 format
(i.e., the output of the raytrace, rasterize, etc.)
* `width` - Width of the output image
* `height` - Height of the output image
"""
function get_image(im::Vec3{T}, width, height) where {T}
low = eltype(T)(0)
high = eltype(T)(1)
color_r = reshape(im.x, width, height)
color_g = reshape(im.y, width, height)
color_b = reshape(im.z, width, height)
im_arr = zeroonenorm(permutedims(reshape(hcat(color_r, color_g, color_b), (width, height, 3)), (3, 2, 1)))
return colorview(RGB, im_arr)
end
"""
zeroonenorm(x::AbstractArray)
Normalizes the elements of the array to values between `0` and `1`.
!!! note
This function exists because the version of Zygote we use returns
incorrect gradient for `1/maximum(x)` function. This has been fixed
on the latest release of Zygote.
"""
zeroonenorm(x) = (x .- minimum(x)) ./ (maximum(x) - minimum(x))
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 4638 | export PointLight, DistantLight
# ----- #
# Light #
# ----- #
"""
Light
All objects emitting light should be a subtype of this. To add a custom light
source, two only two functions need to be defined.
* `get_direction(l::MyCustomLightSource, pt::Vec3)` - `pt` is the point receiving the
light from this source
* `get_intensity(l::MyCustomLightSource, pt::Vec3, dist::Array)` - `dist` is the array
representing the distance
of the point from the light
source
"""
abstract type Light end
"""
get_shading_info(l::Light, pt::Vec3)
Returns the `direction` of light incident from the light source onto that
Point and the intensity of that light ray. It computes these by internally
calling the `get_direction` and `get_intensity` functions and hence this
function never has to be modified for any `Light` subtype.
### Arguments:
* `l` - The Object of the [`Light`](@ref) subtype
* `pt` - The Point in 3D Space for which the shading information is queried
"""
function get_shading_info(l::Light, pt::Vec3)
dir = get_direction(l, pt)
dist = sqrt.(l2norm(dir))
intensity = get_intensity(l, pt, dist)
return normalize(dir), intensity
end
"""
get_direction(l::Light, pt::Vec3)
Returns the direction of light incident from the light source to `pt`.
"""
function get_direction(l::Light, pt::Vec3) end
"""
get_intensity(l::Light, pt::Vec3, dist::Array)
Computed the intensity of the light ray incident at `pt`.
"""
function get_intensity(l::Light, pt::Vec3, dist::AbstractArray) end
# --------------- #
# - Point Light - #
# --------------- #
"""
PointLight
A source of light which emits light rays from a point in 3D space. The
intensity for this light source diminishes as inverse square of the distance
from the point.
### Fields:
* `color` - Color of the Light Rays emitted from the source.
* `intensity` - Intensity of the Light Source. This decreases as ``\\frac{1}{r^2}``
where ``r`` is the distance of the point from the light source.
* `position` - Location of the light source in 3D world space.
### Available Constructors:
* `PointLight(;color = Vec3(1.0f0), intensity::Real = 100.0f0, position = Vec3(0.0f0))`
* `PointLight(color, intensity::Real, position)`
"""
struct PointLight{T<:AbstractArray} <: Light
color::Vec3{T}
intensity::T
position::Vec3{T}
end
PointLight(;color = Vec3(1.0f0), intensity::Real = 100.0f0, position = Vec3(0.0f0)) =
PointLight(color, intensity, position)
PointLight(c, i::Real, p) = PointLight(clamp(c, 0.0f0, 1.0f0), [i], p)
show(io::IO, pl::PointLight) =
print(io, "Point Light\n Color - ", pl.color, "\n Intensity - ",
pl.intensity[], "\n Position - ", pl.position)
@diffops PointLight
get_direction(p::PointLight, pt::Vec3) = p.position - pt
get_intensity(p::PointLight, pt::Vec3, dist::AbstractArray) =
p.intensity[] * p.color / (4 .* (eltype(p.color.x))(π) .* (dist .^ 2))
# ----------------- #
# - Distant Light - #
# ----------------- #
"""
DistantLight
A source of light that is present at infinity as such the rays from it are
in a constant direction. The intensity for this light source always remains
constant. This is extremely useful when we are trying to render a large scene
like a city.
### Fields:
* `color` - Color of the Light Rays emitted from the Source.
* `intensity` - Intensity of the Light Source.
* `direction` - Direction of the Light Rays emitted by the Source.
### Available Constructors:
* `DistantLight(;color = Vec3(1.0f0), intensity::Real = 1.0f0,
direction = Vec3(0.0f0, 1.0f0, 0.0f0))`
* `DistantLight(color, intensity::Real, direction)`
"""
struct DistantLight{T<:AbstractArray} <: Light
color::Vec3{T}
intensity::T
direction::Vec3{T} # Must be normalized
end
DistantLight(;color = Vec3(1.0f0), intensity::Real = 1.0f0,
direction = Vec3(0.0f0, 1.0f0, 0.0f0)) =
DistantLight(color, intensity, direction)
DistantLight(c, i::Real, d) = DistantLight(clamp(c, 0.0f0, 1.0f0), [i], normalize(d))
show(io::IO, dl::DistantLight) =
print(io, "Distant Light\n Color - ", dl.color, "\n Intensity - ",
dl.intensity[], "\n Direction - ", dl.direction)
@diffops DistantLight
get_direction(d::DistantLight, pt::Vec3) = d.direction
get_intensity(d::DistantLight, pt::Vec3, dist::AbstractArray) = d.intensity[]
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 8486 | export Material
# --------- #
# Materials #
# --------- #
"""
Material
This Type stores information about the material of an [`Object`](@ref).
We compute the color of a point by dispatching on the type of the material.
That is why we store `nothing` when a particular field is absent.
!!! note
`texture_*` and `uv_coordinates` fields are applicable only if the
object used is a [`Triangle`](@ref). If any of the texture fields are
present, `uv_coordinates` must be present.
### Fields:
* `color_ambient` - The Ambient Color of the Material.
* `color_diffuse` - The Diffuse Color of the Material.
* `color_specular` - The Specular Color of the Material.
* `specular_exponent` - Specular Exponent of the Material.
* `reflection` - The reflection coefficient of the material.
* `texture_ambient` - Stores the ambient texture image (if present) in Vec3 format.
* `texture_diffuse` - Stores the diffuse texture image (if present) in Vec3 format.
* `texture_specular` - Stores the specular texture image (if present) in VEc3 format.
* `uv_coordinates` - The uv coordinates are stored as a vector (of length 3) of tuples.
### Available Constructors
```
Material(;color_ambient = Vec3(1.0f0), color_diffuse = Vec3(1.0f0),
color_specular = Vec3(1.0f0), specular_exponent::Real = 50.0f0,
reflection::Real = 0.5f0, texture_ambient = nothing,
texture_diffuse = nothing, texture_specular = nothing,
uv_coordinates = nothing)
```
"""
struct Material{T<:AbstractArray, R<:AbstractVector, U<:Union{Vec3, Nothing},
V<:Union{Vec3, Nothing}, W<:Union{Vec3, Nothing},
S<:Union{Vector, Nothing}}
# Color Information
color_ambient::Vec3{T}
color_diffuse::Vec3{T}
color_specular::Vec3{T}
# Surface Properties
specular_exponent::R
reflection::R
# Texture Information
texture_ambient::U
texture_diffuse::V
texture_specular::W
# UV coordinates (relevant only for triangles)
uv_coordinates::S
end
Material(;color_ambient = Vec3(1.0f0), color_diffuse = Vec3(1.0f0),
color_specular = Vec3(1.0f0), specular_exponent::Real = 50.0f0,
reflection::Real = 0.5f0, texture_ambient = nothing,
texture_diffuse = nothing, texture_specular = nothing,
uv_coordinates = nothing) =
Material(color_ambient, color_diffuse, color_specular, [specular_exponent],
[reflection], texture_ambient, texture_diffuse, texture_specular,
uv_coordinates)
@diffops Material
function Base.zero(m::Material)
texture_ambient = isnothing(m.texture_ambient) ? nothing : zero(m.texture_ambient)
texture_diffuse = isnothing(m.texture_diffuse) ? nothing : zero(m.texture_diffuse)
texture_specular = isnothing(m.texture_specular) ? nothing : zero(m.texture_specular)
uv_coordinates = isnothing(m.uv_coordinates) ? nothing : zero.(m.uv_coordinates)
return Material(zero(m.color_ambient), zero(m.color_diffuse), zero(m.color_specular),
zero(m.specular_exponent), zero(m.reflection), texture_ambient,
texture_diffuse, texture_specular, uv_coordinates)
end
"""
get_color(m::Material, pt::Vec3, ::Val{T}, obj::Object)
Returns the color at the point `pt`. We use `T` and the type of the Material `m`
for efficiently dispatching to the right function. The right function is determined
by the presence/absence of the texture field. The possible values of `T` are
`:ambient`, `:diffuse`, and `:specular`.
"""
get_color(m::Material{T, R, Nothing, V, W, S}, pt::Vec3,
::Val{:ambient}, obj) where {T<:AbstractArray, R<:AbstractVector,
V<:Union{Vec3, Nothing}, W<:Union{Vec3, Nothing},
S<:Union{Vector, Nothing}} =
m.color_ambient
get_color(m::Material{T, R, U, Nothing, W, S}, pt::Vec3,
::Val{:diffuse}, obj) where {T<:AbstractArray, R<:AbstractVector,
U<:Union{Vec3, Nothing}, W<:Union{Vec3, Nothing},
S<:Union{Vector, Nothing}} =
m.color_diffuse
get_color(m::Material{T, R, U, V, Nothing, S}, pt::Vec3,
::Val{:specular}, obj) where {T<:AbstractArray, R<:AbstractVector,
U<:Union{Vec3, Nothing}, V<:Union{Vec3, Nothing},
S<:Union{Vector, Nothing}} =
m.color_specular
# This function is only available for triangles. Maybe I should put a
# type constraint
# The three functions are present only for type inference. Ideally Julia
# should figure it out not sure why it is not the case.
function get_color(m::Material, pt::Vec3, ::Val{:ambient}, obj)
v1v2 = obj.v2 - obj.v1
v1v3 = obj.v3 - obj.v1
normal = cross(v1v2, v1v3)
denom = l2norm(normal)
edge2 = obj.v3 - obj.v2
vp2 = pt - obj.v2
u_bary = dot(normal, cross(edge2, vp2)) ./ denom
edge3 = obj.v1 - obj.v3
vp3 = pt - obj.v3
v_bary = dot(normal, cross(edge3, vp3)) ./ denom
w_bary = 1 .- u_bary .- v_bary
u = u_bary .* m.uv_coordinates[1][1] .+
v_bary .* m.uv_coordinates[2][1] .+
w_bary .* m.uv_coordinates[3][1]
v = u_bary .* m.uv_coordinates[1][2] .+
v_bary .* m.uv_coordinates[2][2] .+
w_bary .* m.uv_coordinates[3][2]
# which_texture, which_color = infer_index(f)
image = Zygote.literal_getproperty(m, Val(:texture_ambient))
width, height = size(image)
x_val = mod1.((Int.(ceil.(u .* width)) .- 1), width)
y_val = mod1.((Int.(ceil.(v .* height)) .- 1), height)
# Zygote doesn't like me using a splat operation here :'(
img = image[x_val .+ (y_val .- 1) .* stride(image.x, 2)]
return Zygote.literal_getproperty(m, Val(:color_ambient)) * Vec3(img.x, img.y, img.z)
end
function get_color(m::Material, pt::Vec3, ::Val{:diffuse}, obj)
v1v2 = obj.v2 - obj.v1
v1v3 = obj.v3 - obj.v1
normal = cross(v1v2, v1v3)
denom = l2norm(normal)
edge2 = obj.v3 - obj.v2
vp2 = pt - obj.v2
u_bary = dot(normal, cross(edge2, vp2)) ./ denom
edge3 = obj.v1 - obj.v3
vp3 = pt - obj.v3
v_bary = dot(normal, cross(edge3, vp3)) ./ denom
w_bary = 1 .- u_bary .- v_bary
u = u_bary .* m.uv_coordinates[1][1] .+
v_bary .* m.uv_coordinates[2][1] .+
w_bary .* m.uv_coordinates[3][1]
v = u_bary .* m.uv_coordinates[1][2] .+
v_bary .* m.uv_coordinates[2][2] .+
w_bary .* m.uv_coordinates[3][2]
# which_texture, which_color = infer_index(f)
image = Zygote.literal_getproperty(m, Val(:texture_diffuse))
width, height = size(image)
x_val = mod1.((Int.(ceil.(u .* width)) .- 1), width)
y_val = mod1.((Int.(ceil.(v .* height)) .- 1), height)
# Zygote doesn't like me using a splat operation here :'(
img = image[x_val .+ (y_val .- 1) .* stride(image.x, 2)]
return Zygote.literal_getproperty(m, Val(:color_diffuse)) * Vec3(img.x, img.y, img.z)
end
function get_color(m::Material, pt::Vec3, ::Val{:specular}, obj)
v1v2 = obj.v2 - obj.v1
v1v3 = obj.v3 - obj.v1
normal = cross(v1v2, v1v3)
denom = l2norm(normal)
edge2 = obj.v3 - obj.v2
vp2 = pt - obj.v2
u_bary = dot(normal, cross(edge2, vp2)) ./ denom
edge3 = obj.v1 - obj.v3
vp3 = pt - obj.v3
v_bary = dot(normal, cross(edge3, vp3)) ./ denom
w_bary = 1 .- u_bary .- v_bary
u = u_bary .* m.uv_coordinates[1][1] .+
v_bary .* m.uv_coordinates[2][1] .+
w_bary .* m.uv_coordinates[3][1]
v = u_bary .* m.uv_coordinates[1][2] .+
v_bary .* m.uv_coordinates[2][2] .+
w_bary .* m.uv_coordinates[3][2]
# which_texture, which_color = infer_index(f)
image = Zygote.literal_getproperty(m, Val(:texture_specular))
width, height = size(image)
x_val = mod1.((Int.(ceil.(u .* width)) .- 1), width)
y_val = mod1.((Int.(ceil.(v .* height)) .- 1), height)
# Zygote doesn't like me using a splat operation here :'(
img = image[x_val .+ (y_val .- 1) .* stride(image.x, 2)]
return Zygote.literal_getproperty(m, Val(:color_specular)) * Vec3(img.x, img.y, img.z)
end
"""
specular_exponent(m::Material)
Returns the `specular_exponent` of the Material `m`.
"""
specular_exponent(m::Material) = m.specular_exponent[]
"""
reflection(m::Material)
Returns the `reflection coefficient` of the Material `m`.
"""
reflection(m::Material) = m.reflection[]
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 1639 | # ------- #
# Objects #
# ------- #
"""
Object
All primitive objects must be a subtype of this. Currently there are
two primitive objects present, [`Triangle`](@ref) and [`Sphere`](@ref).
To add support for custom primitive type, two functions need to be
defined - [`intersect`](@ref) and [`get_normal`](@ref).
"""
abstract type Object end
"""
get_color(obj::Object, pt::Vec3, sym::Val)
Computes the color at the point `pt` of the Object `obj` by dispatching
to the correct `get_color(obj.material, pt, sym, obj)` method.
"""
get_color(obj::Object, pt::Vec3, sym::Val) =
get_color(obj.material, pt, sym, obj)
"""
specular_exponent(obj::Object)
Returns the `specular_exponent` of the material of the Object.
"""
specular_exponent(obj::Object) = specular_exponent(obj.material)
"""
reflection(obj::Object)
Returns the `reflection coefficient` of the material of the Object.
"""
reflection(obj::Object) = reflection(obj.material)
"""
intersect(obj::Object, origin, direction)
Computes the intersection of the light ray with the object.
This function returns the ``t`` value where
``intersection\\_point = origin + t \\times direction``. In case
the ray does not intersect with the object `Inf` is returned.
"""
function intersect(obj::Object, origin, direction) end
"""
get_normal(obj::Object, pt, direction)
Returns the normal at the Point `pt` of the Object `obj`.
"""
function get_normal(obj::Object, pt, direction) end
# ----------- #
# - Imports - #
# ----------- #
include("objects/sphere.jl")
include("objects/triangle.jl")
include("objects/polygon_mesh.jl")
include("objects/obj_parser.jl")
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 1026 | import Flux.Optimise.apply!
export update!
# ---------- #
# Optimisers #
# ---------- #
"""
update!(opt, x, Δ)
Provides an interface to use all of the Optimizers provided by Flux.
The type of `x` can be anything as long as the operations defined by
`@diffops` are available for it. By default all the differentiable
types inside the Package can be used with it.
The type of `Δ` must be same as that of `x`. This prevent silent
type conversion of `x` which can significantly slow doen the raytracer.
### Example:
```julia
julia> opt = ADAM()
julia> gs = gradient(loss_function, θ)
julia> update!(opt, θ, gs[1])
```
"""
function update!(opt, x::AbstractArray, Δ::AbstractArray)
x .-= apply!(opt, x, Δ)
return x
end
update!(opt, x::T, Δ::T) where {T<:Real} = (update!(opt, [x], [Δ]))[]
update!(opt, x::FixedParams, Δ::FixedParams) = x
update!(opt, x, Δ::Nothing) = x
function update!(opt, x::T, Δ::T) where {T}
map(i -> update!(opt, getfield(x, i), getfield(Δ, i)), fieldnames(T))
return x
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 10798 | import Base: +, *, -, /, %, intersect, minimum, maximum, size, getindex
export Vec3, rgb, clip01
# -------- #
# Vector 3 #
# -------- #
"""
Vec3
This is the central type for RayTracer. All of the other types are defined building
upon this.
All the fields of the Vec3 instance contains `Array`s. This ensures that we can collect
the gradients w.r.t the fields using the `Params` API of Zygote.
### Fields:
* `x`
* `y`
* `z`
The types of `x`, `y`, and `z` must match. Also, if scalar input is given to the
constructor it will be cnverted into a 1-element Vector.
### Defined Operations for Vec3:
* `+`, `-`, `*` -- These operations will be broadcasted even though there is no explicit
mention of broadcasting.
* `dot`
* `l2norm`
* `cross`
* `clamp`
* `zero`
* `similar`
* `one`
* `maximum`
* `minimum`
* `normalize`
* `size`
* `getindex` -- This returns a named tuple
"""
struct Vec3{T<:AbstractArray}
x::T
y::T
z::T
function Vec3(x::T, y::T, z::T) where {T<:AbstractArray}
@assert size(x) == size(y) == size(z)
new{T}(x, y, z)
end
function Vec3(x::T1, y::T2, z::T3) where {T1<:AbstractArray, T2<:AbstractArray, T3<:AbstractArray}
# Yes, I know it is a terrible hack but Zygote.FillArray was pissing me off.
T = eltype(x) <: Real ? eltype(x) : eltype(y) <: Real ? eltype(y) : eltype(z)
@warn "Converting the type to $(T) by default" maxlog=1
@assert size(x) == size(y) == size(z)
new{AbstractArray{T, ndims(x)}}(T.(x), T.(y), T.(z))
end
end
Vec3(a::T) where {T<:Real} = Vec3([a], [a], [a])
Vec3(a::T) where {T<:AbstractArray} = Vec3(copy(a), copy(a), copy(a))
Vec3(a::T, b::T, c::T) where {T<:Real} = Vec3([a], [b], [c])
function show(io::IO, v::Vec3)
l = prod(size(v))
if l == 1
print(io, "x = ", v.x[], ", y = ", v.y[], ", z = ", v.z[])
elseif l <= 5
print(io, "Vec3 Object\n Length = ", l, "\n x = ", v.x,
"\n y = ", v.y, "\n z = ", v.z)
else
print(io, "Vec3 Object\n Length = ", l, "\n x = ", v.x[1:5],
"...\n y = ", v.y[1:5], "...\n z = ", v.z[1:5], "...")
end
end
for op in (:+, :*, :-)
@eval begin
@inline function $(op)(a::Vec3, b::Vec3)
return Vec3(broadcast($(op), a.x, b.x),
broadcast($(op), a.y, b.y),
broadcast($(op), a.z, b.z))
end
end
end
for op in (:+, :*, :-, :/, :%)
@eval begin
@inline function $(op)(a::Vec3, b)
return Vec3(broadcast($(op), a.x, b),
broadcast($(op), a.y, b),
broadcast($(op), a.z, b))
end
@inline function $(op)(b, a::Vec3)
return Vec3(broadcast($(op), a.x, b),
broadcast($(op), a.y, b),
broadcast($(op), a.z, b))
end
end
end
@inline -(a::Vec3) = Vec3(-a.x, -a.y, -a.z)
@inline dot(a::Vec3, b::Vec3) = a.x .* b.x .+ a.y .* b.y .+ a.z .* b.z
@inline l2norm(a::Vec3) = dot(a, a)
@inline function normalize(a::Vec3)
l2 = l2norm(a)
l2 = map(x -> x == 0 ? typeof(x)(1) : x, l2)
return (a / sqrt.(l2))
end
@inline cross(a::Vec3{T}, b::Vec3{T}) where {T} =
Vec3(a.y .* b.z .- a.z .* b.y, a.z .* b.x .- a.x .* b.z,
a.x .* b.y .- a.y .* b.x)
@inline maximum(v::Vec3) = max(maximum(v.x), maximum(v.y), maximum(v.z))
@inline minimum(v::Vec3) = min(minimum(v.x), minimum(v.y), minimum(v.z))
@inline size(v::Vec3) = size(v.x)
@inline getindex(v::Vec3, idx...) = (x = v.x[idx...], y = v.y[idx...], z = v.z[idx...])
"""
place(a::Vec3, cond)
place(a::Array, cond, val = 0)
Constructs a new `Vec3` or `Array` depending on the type of `a` with array length equal
to that of `cond` filled with zeros (or val). Then it fills the positions corresponding
to the `true` values of `cond` with the values in `a`.
The length of each array in `a` must be equal to the number of `true` values in the
`cond` array.
### Example:
```jldoctest utils
julia> using RayTracer;
julia> a = Vec3(1, 2, 3)
x = 1, y = 2, z = 3
julia> cond = [1, 2, 3] .> 2
3-element BitArray{1}:
0
0
1
julia> RayTracer.place(a, cond)
Vec3 Object
Length = 3
x = [0, 0, 1]
y = [0, 0, 2]
z = [0, 0, 3]
```
"""
function place(a::Vec3, cond)
r = Vec3(zeros(eltype(a.x), size(cond)...),
zeros(eltype(a.y), size(cond)...),
zeros(eltype(a.z), size(cond)...))
r.x[cond] .= a.x
r.y[cond] .= a.y
r.z[cond] .= a.z
return r
end
function place(a::Array, cond, val = 0)
r = fill(eltype(a)(val), size(cond)...)
r[cond] .= a
return r
end
"""
place_idx!(a::Vec3, b::Vec3, idx)
Number of `true`s in `idx` must be equal to the number of elements in `b`.
This function involves mutation of arrays. Since the version of Zygote we
use does not support mutation we specify a custom adjoint for this function.
### Arguments:
* `a` - The contents of this `Vec3` will be updated
* `b` - The contents of `b` are copied into `a`
* `idx` - The indices of `a` which are updated. This is a BitArray with
length of `idx` being equal to `a.x`
"""
function place_idx!(a::Vec3, b::Vec3, idx)
a.x[idx] .= b.x
a.y[idx] .= b.y
a.z[idx] .= b.z
return a
end
Base.clamp(v::Vec3, lo, hi) = Vec3(clamp.(v.x, lo, hi), clamp.(v.y, lo, hi), clamp.(v.z, lo, hi))
for f in (:zero, :similar, :one)
@eval begin
Base.$(f)(v::Vec3) = Vec3($(f)(v.x), $(f)(v.y), $(f)(v.z))
end
end
# ----- #
# Color #
# ----- #
"""
`rgb` is an alias for `Vec3`. It makes more sense to use this while defining colors.
"""
rgb = Vec3
# ----- #
# Utils #
# ----- #
"""
extract(cond, x<:Number)
extract(cond, x<:AbstractArray)
extract(cond, x::Vec3)
Extracts the elements of `x` (in case it is an array) for which the indices corresponding to the `cond`
are `true`.
!!! note
`extract` has a performance penalty when used on GPUs.
### Example:
```jldoctest utils
julia> using RayTracer;
julia> a = [1.0, 2.0, 3.0, 4.0]
4-element Array{Float64,1}:
1.0
2.0
3.0
4.0
julia> cond = a .< 2.5
4-element BitArray{1}:
1
1
0
0
julia> RayTracer.extract(cond, a)
2-element Array{Float64,1}:
1.0
2.0
```
"""
@inline extract(cond, x::T) where {T<:Number} = x
@inline extract(cond, x::T) where {T<:AbstractArray} = x[cond]
extract(cond, a::Vec3) = length(a.x) == 1 ? Vec3(a.x, a.y, a.z) : Vec3(extract(cond, a.x),
extract(cond, a.y),
extract(cond, a.z))
"""
bigmul(x)
Returns the output same as `typemax`. However, in case gradients are computed, it will return
the gradient to be `0` instead of `nothing` as in case of typemax.
"""
@inline bigmul(x) = typemax(x)
"""
camera2world(point::Vec3, camera_to_world::Matrix)
Converts a `point` in 3D Camera Space to the 3D World Space. To obtain
the `camera_to_world` matrix use the [`get_transformation_matrix`](@ref) function.
"""
function camera2world(point::Vec3, camera_to_world)
result = camera2world([point.x point.y point.z], camera_to_world)
return Vec3(result[:, 1], result[:, 2], result[:, 3])
end
camera2world(point::Array, camera_to_world) = point * camera_to_world[1:3, 1:3] .+ camera_to_world[4, 1:3]'
"""
world2camera(point::Vec3, world_to_camera::Matrix)
Converts a `point` in 3D World Space to the 3D Camera Space. To obtain
the `world_to_camera` matrix take the `inv` of the output from the
[`get_transformation_matrix`](@ref) function.
"""
function world2camera(point::Vec3, world_to_camera)
result = world2camera([point.x point.y point.z], world_to_camera)
return Vec3(result[:, 1], result[:, 2], result[:, 3])
end
world2camera(point::Array, world_to_camera) = point * world_to_camera[1:3, 1:3] .+ world_to_camera[4, 1:3]'
# ----------------- #
# - Helper Macros - #
# ----------------- #
"""
@diffops MyType::DataType
Generates functions for performing gradient based optimizations on this custom type.
5 functions are generated.
1. `x::MyType + y::MyType` -- For Gradient Accumulation
2. `x::MyType - y::MyType` -- For Gradient Based Updates
3. `x::MyType * η<:Real` -- For Multiplication of the Learning Rate with Gradient
4. `η<:Real * x::MyType` -- For Multiplication of the Learning Rate with Gradient
5. `x::MyType * y::MyType` -- Just for the sake of completeness.
Most of these functions do not make semantic sense. For example, adding 2 `PointLight`
instances do not make sense but in case both of them are gradients, it makes perfect
sense to accumulate them in a third `PointLight` instance.
"""
macro diffops(a)
quote
# Addition for gradient accumulation
function $(esc(:+))(x::$(esc(a)), y::$(esc(a)))
return $(esc(a))([(isnothing(getfield(x, i)) || isnothing(getfield(y, i))) ? nothing :
getfield(x, i) + getfield(y, i) for i in fieldnames($(esc(a)))]...)
end
# Subtraction for gradient updates
function $(esc(:-))(x::$(esc(a)), y::$(esc(a)))
return $(esc(a))([(isnothing(getfield(x, i)) || isnothing(getfield(y, i))) ? nothing :
getfield(x, i) - getfield(y, i) for i in fieldnames($(esc(a)))]...)
end
# Multiply for learning rate and misc ops
function $(esc(:*))(x::T, y::$(esc(a))) where {T<:Real}
return $(esc(a))([isnothing(getfield(y, i)) ? nothing :
x * getfield(y, i) for i in fieldnames($(esc(a)))]...)
end
function $(esc(:*))(x::$(esc(a)), y::T) where {T<:Real}
return $(esc(a))([isnothing(getfield(x, i)) ? nothing :
getfield(x, i) * y for i in fieldnames($(esc(a)))]...)
end
function $(esc(:*))(x::$(esc(a)), y::$(esc(a)))
return $(esc(a))([(isnothing(getfield(x, i)) || isnothing(getfield(y, i))) ? nothing :
getfield(x, i) * getfield(y, i) for i in fieldnames($(esc(a)))]...)
end
end
end
# ---------------- #
# Fixed Parameters #
# ---------------- #
"""
FixedParams
Any subtype of FixedParams is not optimized using the `update!` API. For example,
we don't want the screen size to be altered while inverse rendering, this is
ensured by wrapping those parameters in a subtype of FixedParams.
"""
abstract type FixedParams; end
for op in (:+, :*, :-, :/, :%)
@eval begin
@inline $(op)(a::FixedParams, b::FixedParams) = a
@inline $(op)(a::FixedParams, b) = a
@inline $(op)(a, b::FixedParams) = b
end
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 5228 | export numderiv
# --------------------- #
# Numerical Derivatives #
# --------------------- #
"""
ngradient(f, xs::AbstractArray...)
Computes the numerical gradients of `f` w.r.t `xs`. The function `f` must return
a scalar value for this to work. This function is not meant for general usage as
the value of the parameter `δ` has been tuned for this package specifically.
Also, it should be noted that these gradients are highly unstable and should be
used only for confirming the values obtained through other methods. For meaningful
results be sure to use `Float64` as `Float32` is too numerically unstable.
"""
function ngradient(f, xs::AbstractArray...)
grads = zero.(xs)
for (x, Δ) in zip(xs, grads), i in 1:length(x)
δ = 1.0e-11
tmp = x[i]
x[i] = tmp - δ/2
y1 = f(xs...)
x[i] = tmp + δ/2
y2 = f(xs...)
x[i] = tmp
Δ[i] = (y2 - y1)/δ
end
return grads
end
# ---------- #
# Parameters #
# ---------- #
"""
get_params(x)
Get the parameters from a struct that can be tuned. The output is in
the form of an array.
### Example:
```jldoctest
julia> using RayTracer;
julia> scene = Triangle(Vec3(-1.9f0, 1.6f0, 1.0f0), Vec3(1.0f0, 1.0f0, 0.0f0), Vec3(-0.5f0, -1.0f0, 0.0f0),
Material())
Triangle Object:
Vertex 1 - x = -1.9, y = 1.6, z = 1.0
Vertex 2 - x = 1.0, y = 1.0, z = 0.0
Vertex 3 - x = -0.5, y = -1.0, z = 0.0
Material{Array{Float32,1},Array{Float32,1},Nothing,Nothing,Nothing,Nothing}(x = 1.0, y = 1.0, z = 1.0, x = 1.0, y = 1.0, z = 1.0, x = 1.0, y = 1.0, z = 1.0, Float32[50.0], Float32[0.5], nothing, nothing, nothing, nothing)
julia> RayTracer.get_params(scene)
20-element Array{Float32,1}:
-1.9
1.6
1.0
1.0
1.0
0.0
-0.5
-1.0
0.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
50.0
0.5
```
"""
get_params(x::T, typehelp = Float32) where {T<:AbstractArray} = x
get_params(x::T, typehelp = Float32) where {T<:Real} = [x]
get_params(::Nothing, typehelp = Float32) = typehelp[]
get_params(x::T, typehelp = Float32) where {T} =
foldl((a, b) -> [a; b], [map(i -> get_params(getfield(x, i), typehelp),
fieldnames(T))...])
"""
set_params!(x, y::AbstractArray)
Sets the tunable parameters of the struct `x`. The index of the last element
set into the struct is returned as output. This may be used to confirm that
the size of the input array was as expected.
### Example:
```jldoctest
julia> using RayTracer;
julia> scene = Triangle(Vec3(-1.9f0, 1.6f0, 1.0f0), Vec3(1.0f0, 1.0f0, 0.0f0), Vec3(-0.5f0, -1.0f0, 0.0f0),
Material())
Triangle Object:
Vertex 1 - x = -1.9, y = 1.6, z = 1.0
Vertex 2 - x = 1.0, y = 1.0, z = 0.0
Vertex 3 - x = -0.5, y = -1.0, z = 0.0
Material{Array{Float32,1},Array{Float32,1},Nothing,Nothing,Nothing,Nothing}(x = 1.0, y = 1.0, z = 1.0, x = 1.0, y = 1.0, z = 1.0, x = 1.0, y = 1.0, z = 1.0, Float32[50.0], Float32[0.5], nothing, nothing, nothing, nothing)
julia> new_params = collect(1.0f0:20.0f0)
20-element Array{Float32,1}:
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
julia> RayTracer.set_params!(scene, new_params);
julia> scene
Triangle Object:
Vertex 1 - x = 1.0, y = 2.0, z = 3.0
Vertex 2 - x = 4.0, y = 5.0, z = 6.0
Vertex 3 - x = 7.0, y = 8.0, z = 9.0
Material{Array{Float32,1},Array{Float32,1},Nothing,Nothing,Nothing,Nothing}(x = 10.0, y = 11.0, z = 12.0, x = 13.0, y = 14.0, z = 15.0, x = 16.0, y = 17.0, z = 18.0, Float32[19.0], Float32[20.0], nothing, nothing, nothing, nothing)
```
"""
function set_params!(x::AbstractArray, y::AbstractArray)
l = length(x)
x .= y[1:l]
return l
end
# FIXME: This update strategy fails for real parameters. Will need to deal with
# this later. But currently I am not much concered about these parameters.
set_params!(x::T, y::AbstractArray) where {T<:Real} = set_params!([x], y)
function set_params!(x, y::AbstractArray)
start = 1
for i in 1:nfields(x)
isnothing(getfield(x, i)) && continue
start += set_params!(getfield(x, i), y[start:end])
end
return start - 1
end
# ------------------------- #
# Numerical Differentiation #
# ------------------------- #
"""
numderiv(f, θ)
numderiv(f, θ::AbstractArray)
numderiv(f, θ::Real)
Compute the numerical derivates wrt one of the scene parameters.
The parameter passed cannot be enclosed in an Array, thus making
this not a general method for differentiation.
!!! note
This is not a generalized method for getting the gradients.
For that please use Zygote. However, this can be used to
debug you model, incase you feel the gradients obtained by
other methods is sketchy.
"""
function numderiv(f, θ)
arr = get_params(θ)
function modified_f(x::AbstractArray)
θ₂ = deepcopy(θ)
set_params!(θ₂, x)
return f(θ₂)
end
grads = ngradient(modified_f, arr)[1]
grad_θ = deepcopy(θ)
set_params!(grad_θ, grads)
return grad_θ
end
numderiv(f, θ::AbstractArray) = ngradient(f, θ)
numderiv(f, θ::Real) = ngradient(f, [θ])
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 17204 | import Base.getproperty
import Base.findmin
import Base.findmax
import Base.push!
using Zygote: @adjoint, @nograd
import Zygote.literal_getproperty
# ---- #
# Vec3 #
# ---- #
# Hack to avoid nothing in the gradient due to typemax
@adjoint bigmul(x::T) where {T} = bigmul(x), Δ -> (zero(T),)
@adjoint Vec3(a, b, c) = Vec3(a, b, c), Δ -> (Δ.x, Δ.y, Δ.z)
@adjoint literal_getproperty(v::Vec3, ::Val{:x}) =
getproperty(v, :x), Δ -> (Vec3(Δ, zero(v.y), zero(v.z)), nothing)
@adjoint literal_getproperty(v::Vec3, ::Val{:y}) =
getproperty(v, :y), Δ -> (Vec3(zero(v.x), Δ, zero(v.z)), nothing)
@adjoint literal_getproperty(v::Vec3, ::Val{:z}) =
getproperty(v, :z), Δ -> (Vec3(zero(v.x), zero(v.y), Δ), nothing)
@adjoint function dot(a::Vec3, b::Vec3)
dot(a, b), Δ -> begin
Δ = map(x -> isnothing(x) ? zero(eltype(a.x)) : x, Δ)
t1 = Δ * b
t2 = Δ * a
if length(a.x) != length(t1.x)
t1 = Vec3(sum(t1.x), sum(t1.y), sum(t1.z))
end
if length(b.x) != length(t2.x)
t2 = Vec3(sum(t2.x), sum(t2.y), sum(t2.z))
end
return (t1, t2)
end
end
# The purpose of this adjoint is to ensure type inference works
# in the backward pass
@adjoint function cross(a::Vec3{T}, b::Vec3{T}) where {T}
cross(a, b), Δ -> begin
∇a = zero(a)
∇b = zero(b)
x = (Δ.z .* b.y) .- (Δ.y .* b.z)
y = (Δ.x .* b.z) .- (Δ.z .* b.x)
z = (Δ.y .* b.x) .- (Δ.x .* b.y)
if length(a.x) == 1
∇a.x .= sum(x)
∇a.y .= sum(y)
∇a.z .= sum(z)
else
∇a.x .= x
∇a.y .= y
∇a.z .= z
end
x = (Δ.y .* a.z) .- (Δ.z .* a.y)
y = (Δ.z .* a.x) .- (Δ.x .* a.z)
z = (Δ.x .* a.y) .- (Δ.y .* a.x)
if length(b.x) == 1
∇b.x .= sum(x)
∇b.y .= sum(y)
∇b.z .= sum(z)
else
∇b.x .= x
∇b.y .= y
∇b.z .= z
end
return (∇a, ∇b)
end
end
@adjoint place(a::Vec3, cond) = place(a, cond), Δ -> (Vec3(Δ.x[cond], Δ.y[cond], Δ.z[cond]), nothing)
@adjoint place(a::Array, cond) = place(a, cond), Δ -> (Δ[cond], nothing)
@adjoint place_idx!(a::Vec3, b::Vec3, idx) = place_idx!(a, b, idx), Δ -> (zero(Δ), Vec3(Δ[idx]...), nothing)
# ----- #
# Light #
# ----- #
# -------------- #
# - PointLight - #
# -------------- #
@adjoint PointLight(color::Vec3, intensity, pos::Vec3) =
PointLight(color, intensity, pos), Δ -> (Δ.color, Δ.intensity, Δ.position)
@adjoint literal_getproperty(p::PointLight, ::Val{:color}) =
getproperty(p, :color), Δ -> (PointLight(Δ, zero(p.intensity), zero(p.position)), nothing)
@adjoint literal_getproperty(p::PointLight, ::Val{:intensity}) =
getproperty(p, :intensity), Δ -> (PointLight(zero(p.color), Δ, zero(p.position)), nothing)
@adjoint literal_getproperty(p::PointLight, ::Val{:position}) =
getproperty(p, :position), Δ -> (PointLight(zero(p.color), zero(p.intensity), Δ), nothing)
# ---------------- #
# - DistantLight - #
# ---------------- #
@adjoint DistantLight(color::Vec3, intensity, direction::Vec3) =
DistantLight(color, intensity, direction), Δ -> (Δ.color, Δ.intensity, Δ.direction)
@adjoint literal_getproperty(d::DistantLight, ::Val{:color}) =
getproperty(d, :color), Δ -> (DistantLight(Δ, zero(d.intensity), zero(d.direction)), nothing)
@adjoint literal_getproperty(d::DistantLight, ::Val{:intensity}) =
getproperty(d, :intensity), Δ -> (DistantLight(zero(d.color), Δ, zero(d.direction)), nothing)
@adjoint literal_getproperty(d::DistantLight, ::Val{:direction}) =
getproperty(d, :direction), Δ -> (DistantLight(zero(d.color), zero(d.intensity), Δ), nothing)
# -------- #
# Material #
# -------- #
@adjoint Material(color_ambient, color_diffuse, color_specular, specular_exponent,
reflection, texture_ambient, texture_diffuse, texture_specular,
uv_coordinates) =
Material(color_ambient, color_diffuse, color_specular, specular_exponent, reflection,
texture_ambient, texture_diffuse, texture_specular, uv_coordinates),
Δ -> (Δ.color_ambient, Δ.color_diffuse, Δ.color_specular, Δ.specular_exponent,
Δ.reflection, Δ.texture_ambient, Δ.texture_diffuse, Δ.texture_specular,
Δ.uv_coordinates)
@adjoint literal_getproperty(m::Material, ::Val{:color_ambient}) =
getproperty(m, :color_ambient), Δ -> (Material(Δ, zero(m.color_diffuse), zero(m.color_specular),
zero(m.specular_exponent), zero(m.reflection),
isnothing(m.texture_ambient) ? nothing : zero(m.texture_ambient),
isnothing(m.texture_diffuse) ? nothing : zero(m.texture_diffuse),
isnothing(m.texture_specular) ? nothing : zero(m.texture_specular),
isnothing(m.uv_coordinates) ? nothing : zero.(m.uv_coordinates)),
nothing)
@adjoint literal_getproperty(m::Material, ::Val{:color_diffuse}) =
getproperty(m, :color_diffuse), Δ -> (Material(zero(m.color_ambient), Δ, zero(m.color_specular),
zero(m.specular_exponent), zero(m.reflection),
isnothing(m.texture_ambient) ? nothing : zero(m.texture_ambient),
isnothing(m.texture_diffuse) ? nothing : zero(m.texture_diffuse),
isnothing(m.texture_specular) ? nothing : zero(m.texture_specular),
isnothing(m.uv_coordinates) ? nothing : zero.(m.uv_coordinates)),
nothing)
@adjoint literal_getproperty(m::Material, ::Val{:color_specular}) =
getproperty(m, :color_specular), Δ -> (Material(zero(m.color_ambient), zero(m.color_diffuse), Δ,
zero(m.specular_exponent), zero(m.reflection),
isnothing(m.texture_ambient) ? nothing : zero(m.texture_ambient),
isnothing(m.texture_diffuse) ? nothing : zero(m.texture_diffuse),
isnothing(m.texture_specular) ? nothing : zero(m.texture_specular),
isnothing(m.uv_coordinates) ? nothing : zero.(m.uv_coordinates)),
nothing)
@adjoint literal_getproperty(m::Material, ::Val{:specular_exponent}) =
getproperty(m, :specular_exponent), Δ -> (Material(zero(m.color_ambient), zero(m.color_diffuse),
zero(m.color_specular), real.(Δ), zero(m.reflection),
isnothing(m.texture_ambient) ? nothing : zero(m.texture_ambient),
isnothing(m.texture_diffuse) ? nothing : zero(m.texture_diffuse),
isnothing(m.texture_specular) ? nothing : zero(m.texture_specular),
isnothing(m.uv_coordinates) ? nothing : zero.(m.uv_coordinates)),
nothing)
@adjoint literal_getproperty(m::Material, ::Val{:reflection}) =
getproperty(m, :reflection), Δ -> (Material(zero(m.color_ambient), zero(m.color_diffuse),
zero(m.color_specular), zero(m.specular_exponent), Δ,
isnothing(m.texture_ambient) ? nothing : zero(m.texture_ambient),
isnothing(m.texture_diffuse) ? nothing : zero(m.texture_diffuse),
isnothing(m.texture_specular) ? nothing : zero(m.texture_specular),
isnothing(m.uv_coordinates) ? nothing : zero.(m.uv_coordinates)),
nothing)
@adjoint literal_getproperty(m::Material, ::Val{:texture_ambient}) =
getproperty(m, :texture_ambient), Δ -> (Material(zero(m.color_ambient), zero(m.color_diffuse),
zero(m.color_specular), zero(m.specular_exponent),
zero(m.reflection), Δ,
isnothing(m.texture_diffuse) ? nothing : zero(m.texture_diffuse),
isnothing(m.texture_specular) ? nothing : zero(m.texture_specular),
isnothing(m.uv_coordinates) ? nothing : zero.(m.uv_coordinates)),
nothing)
@adjoint literal_getproperty(m::Material, ::Val{:texture_diffuse}) =
getproperty(m, :texture_diffuse), Δ -> (Material(zero(m.color_ambient), zero(m.color_diffuse),
zero(m.color_specular), zero(m.specular_exponent),
zero(m.reflection),
isnothing(m.texture_ambient) ? nothing : zero(m.texture_ambient), Δ,
isnothing(m.texture_specular) ? nothing : zero(m.texture_specular),
isnothing(m.uv_coordinates) ? nothing : zero.(m.uv_coordinates)),
nothing)
@adjoint literal_getproperty(m::Material, ::Val{:texture_specular}) =
getproperty(m, :texture_specular), Δ -> (Material(zero(m.color_ambient), zero(m.color_diffuse),
zero(m.color_specular), zero(m.specular_exponent),
zero(m.reflection),
isnothing(m.texture_ambient) ? nothing : zero(m.texture_ambient),
isnothing(m.texture_diffuse) ? nothing : zero(m.texture_diffuse), Δ,
isnothing(m.uv_coordinates) ? nothing : zero.(m.uv_coordinates)),
nothing)
@adjoint literal_getproperty(m::Material, ::Val{:uv_coordinates}) =
getproperty(m, :uv_coordinates), Δ -> (Material(zero(m.color_ambient), zero(m.color_diffuse),
zero(m.color_specular), zero(m.specular_exponent),
zero(m.reflection),
isnothing(m.texture_ambient) ? nothing : zero(m.texture_ambient),
isnothing(m.texture_diffuse) ? nothing : zero(m.texture_diffuse),
isnothing(m.texture_specular) ? nothing : zero(m.texture_specular),
Δ),
nothing)
# ------- #
# Objects #
# ------- #
# ---------- #
# - Sphere - #
# ---------- #
@adjoint Sphere(center, radius, material::Material) =
Sphere(center, radius, material), Δ -> (Δ.sphere, Δ.radius, Δ.material)
@adjoint literal_getproperty(s::Sphere, ::Val{:center}) =
getproperty(s, :center), Δ -> (Sphere(Δ, zero(s.radius), zero(s.material)), nothing)
@adjoint literal_getproperty(s::Sphere, ::Val{:radius}) =
getproperty(s, :radius), Δ -> (Sphere(zero(s.center), Δ, zero(s.material)), nothing)
@adjoint literal_getproperty(s::Sphere, ::Val{:material}) =
getproperty(s, :material), Δ -> (Sphere(zero(s.center), zero(s.radius), Δ), nothing)
# ------------ #
# - Triangle - #
# ------------ #
@adjoint Triangle(v1, v2, v3, material::Material) =
Triangle(v1, v2, v3, material), Δ -> (Δ.v1, Δ.v2, Δ.v3, Δ.material)
@adjoint literal_getproperty(t::Triangle, ::Val{:v1}) =
getproperty(t, :v1), Δ -> (Triangle(Δ, zero(t.v2), zero(t.v3), zero(t.material)), nothing)
@adjoint literal_getproperty(t::Triangle, ::Val{:v2}) =
getproperty(t, :v2), Δ -> (Triangle(zero(t.v1), Δ, zero(t.v3), zero(t.material)), nothing)
@adjoint literal_getproperty(t::Triangle, ::Val{:v3}) =
getproperty(t, :v3), Δ -> (Triangle(zero(t.v1), zero(t.v2), Δ, zero(t.material)), nothing)
@adjoint literal_getproperty(t::Triangle, ::Val{:material}) =
getproperty(t, :material), Δ -> (Triangle(zero(t.v1), zero(t.v2), zero(t.v3), Δ), nothing)
# ---------------- #
# - TriangleMesh - #
# ---------------- #
#=
@adjoint TriangleMesh(tm, mat, ftmp) =
TriangleMesh(tm, mat, ftmp), Δ -> (Δ.triangulated_mesh, Δ.material, Δ.ftmp)
@adjoint function literal_getproperty(t::TriangleMesh, ::Val{:triangulated_mesh})
tm = getproperty(t, :triangulated_mesh)
z = eltype(tm[1].v1.x)
mat = Material(PlainColor(rgb(z)), z)
return tm, Δ -> (TriangleMesh(Δ, mat, FixedTriangleMeshParams(IdDict(), [Vec3(z)])), nothing)
end
@adjoint function literal_getproperty(t::TriangleMesh, ::Val{:material})
mat = getproperty(t, :material)
z = eltype(t.triangulated_mesh[1].v1.x)
tm = [Triangle([Vec3(z)]...) for _ in 1:length(t.triangulated_mesh)]
return mat, Δ -> (TriangleMesh(tm, Δ, FixedTriangleMeshParams(IdDict(), [Vec3(z)])), nothing)
end
@adjoint function literal_getproperty(t::TriangleMesh, ::Val{:ftmp})
z = eltype(t.triangulated_mesh[1].v1.x)
mat = Material(PlainColor(rgb(z)), z)
tm = [Triangle([Vec3(z)]...) for _ in 1:length(t.triangulated_mesh)]
return getproperty(t, :ftmp), Δ -> (TriangleMesh(tm, mat, Δ), nothing)
end
@adjoint FixedTriangleMeshParams(isect, n) =
FixedTriangleMeshParams(isect, n), Δ -> (Δ.isect, Δ.n)
# The gradients for this params are never used so fill them with anything as long
# as they are consistent with the types
@adjoint literal_getproperty(ftmp::FixedTriangleMeshParams, ::Val{f}) where {f} =
getproperty(ftmp, f), Δ -> (FixedTriangleMeshParams(IdDict(), ftmp.normals[1:1]))
=#
# ------ #
# Camera #
# ------ #
@adjoint Camera(lf, la, vfov, focus, fp) =
Camera(lf, la, vfov, focus, fp), Δ -> (Δ.lookfrom, Δ.lookat, Δ.vfov,
Δ.focus, Δ.fixedparams)
@adjoint literal_getproperty(c::Camera, ::Val{:lookfrom}) =
getproperty(c, :lookfrom), Δ -> (Camera(Δ, zero(c.lookat), zero(c.vfov), zero(c.focus),
zero(c.fixedparams)), nothing)
@adjoint literal_getproperty(c::Camera, ::Val{:lookat}) =
getproperty(c, :lookat), Δ -> (Camera(zero(c.lookfrom), Δ, zero(c.vfov), zero(c.focus),
zero(c.fixedparams)), nothing)
@adjoint literal_getproperty(c::Camera, ::Val{:vfov}) =
getproperty(c, :vfov), Δ -> (Camera(zero(c.lookfrom), zero(c.lookat), Δ, zero(c.focus),
zero(c.fixedparams)), nothing)
@adjoint literal_getproperty(c::Camera, ::Val{:focus}) =
getproperty(c, :focus), Δ -> (Camera(zero(c.lookfrom), zero(c.lookat), zero(c.vfov), Δ,
zero(c.fixedparams)), nothing)
@adjoint literal_getproperty(c::Camera, ::Val{:fixedparams}) =
getproperty(c, :fixedparams), Δ -> (Camera(zero(c.lookfrom), zero(c.lookat), zero(c.vfov),
zero(c.focus), Δ), nothing)
@adjoint FixedCameraParams(vup, w, h) =
FixedCameraParams(vup, w, h), Δ -> (Δ.vup, Δ.width, Δ.height)
@adjoint literal_getproperty(fcp::FixedCameraParams, ::Val{f}) where {f} =
getproperty(fcp, f), Δ -> (zero(fcp), nothing)
# ------- #
# ImUtils #
# ------- #
@adjoint function zeroonenorm(x)
mini, indmin = findmin(x)
maxi, indmax = findmax(x)
res = (x .- mini) ./ (maxi - mini)
function ∇zeroonenorm(Δ)
∇x = similar(x)
fill!(∇x, 1 / (maxi - mini))
res1 = (x .- maxi) ./ (maxi - mini)^2
∇x[indmin] = sum(res1) - minimum(res1)
res2 = - res ./ (maxi - mini)
∇x[indmax] = sum(res2) - minimum(res2)
return (∇x .* Δ, )
end
return res, ∇zeroonenorm
end
# ----------------- #
# General Functions #
# ----------------- #
for func in (:findmin, :findmax)
@eval begin
@adjoint function $(func)(xs::AbstractArray; dims = :)
y = $(func)(xs, dims = dims)
function dfunc(Δ)
res = zero(xs)
res[y[2]] .= Δ[1]
return (res, nothing)
end
return y, dfunc
end
end
end
@adjoint reducehcat(x) = reduce(hcat, x), Δ -> ([Δ[:, i] for i in 1:length(x)], )
@adjoint push!(arr, val) = push!(arr, val), Δ -> (Δ[1:end-1], Δ[end])
@nograd fill
@nograd function update_index!(arr, i, j, val)
arr[i, j] = val
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 8698 | export load_obj
# ------------------------- #
# - Parse OBJ & MTL Files - #
# ------------------------- #
"""
triangulate_faces(vertices::Vector, texture_coordinates::Vector,
faces::Vector, material_map::Dict)
Triangulates the `faces` and converts it into valid [`Triangle`](@ref) objects.
!!! warning
Avoid using this function in itself. It is designed to be used internally
by the [`load_obj`](@ref) function.
"""
function triangulate_faces(vertices::Vector, texture_coordinates::Vector,
faces::Vector, material_map::Dict)
scene = Vector{Triangle}()
for face in faces
for i in 2:(length(face[1]) - 1)
if isnothing(face[2])
uv_coordinates = nothing
else
uv_coordinates = [[texture_coordinates[face[2][1]]...],
[texture_coordinates[face[2][i]]...],
[texture_coordinates[face[2][i + 1]]...]]
end
mat = Material(;uv_coordinates = uv_coordinates,
material_map[face[3]]...)
push!(scene, Triangle(deepcopy(vertices[face[1][1]]),
deepcopy(vertices[face[1][i]]),
deepcopy(vertices[face[1][i + 1]]),
mat))
end
end
try
scene_stable = Vector{typeof(scene[1])}()
for s in scene
push!(scene_stable, s)
end
return scene_stable
catch e
# If all the triangles are not of the same type return the non-infered
# version of the scene. In this case type inference for `raytrace` will
# also fail
@warn "Could not convert the triangles to the same type. Type inference for raytrace will fail"
return scene
end
end
"""
parse_mtllib!(file, material_map, outtype)
Parses `.mtl` file and creates a map from the material name to
[`Material`](@ref) objects.
Not all fields of the `mtl` file are parsed. We only parse :
`newmtl`, `Ka`, `Kd`, `Ks`, `Ns`, `d`, `Tr`, `map_Kd`, `map_Ks`,
and `map_Ka`.
"""
function parse_mtllib!(file, material_map, outtype)
color_diffuse = Vec3(outtype(1.0f0))
color_ambient = Vec3(outtype(1.0f0))
color_specular = Vec3(outtype(1.0f0))
specular_exponent = outtype(50.0f0)
reflection = outtype(0.5f0)
texture_ambient = nothing
texture_diffuse = nothing
texture_specular = nothing
last_mat = "RayTracer Default"
if isnothing(file)
material_map[last_mat] = (color_diffuse = color_diffuse,
color_ambient = color_ambient,
color_specular = color_specular,
specular_exponent = specular_exponent,
reflection = reflection,
texture_ambient = texture_ambient,
texture_diffuse = texture_diffuse,
texture_specular = texture_specular)
return nothing
end
for line in eachline(file)
wrds = split(line)
isempty(wrds) && continue
if wrds[1] == "newmtl"
material_map[last_mat] = (color_diffuse = color_diffuse,
color_ambient = color_ambient,
color_specular = color_specular,
specular_exponent = specular_exponent,
reflection = reflection,
texture_ambient = texture_ambient,
texture_diffuse = texture_diffuse,
texture_specular = texture_specular)
last_mat = wrds[2]
# In case any of these values are not defined for the material
# we shall use the default values
color_diffuse = Vec3(outtype(1.0f0))
color_ambient = Vec3(outtype(1.0f0))
color_specular = Vec3(outtype(1.0f0))
specular_exponent = outtype(50.0f0)
reflection = outtype(0.5f0)
texture_ambient = nothing
texture_diffuse = nothing
texture_specular = nothing
elseif wrds[1] == "Ka"
color_ambient = Vec3(parse.(outtype, wrds[2:4])...)
elseif wrds[1] == "Kd"
color_diffuse = Vec3(parse.(outtype, wrds[2:4])...)
elseif wrds[1] == "Ks"
color_specular = Vec3(parse.(outtype, wrds[2:4])...)
elseif wrds[1] == "Ns"
specular_exponent = parse(outtype, wrds[2])
elseif wrds[1] == "d"
reflection = parse(outtype, wrds[2])
elseif wrds[1] == "Tr"
reflection = 1 - parse(outtype, wrds[2])
elseif wrds[1] == "map_Ka"
texture_file = "$(rsplit(file, '/', limit = 2)[1])/$(wrds[2])"
texture_ambient = Vec3([outtype.(permutedims(channelview(load(texture_file)),
(3, 2, 1)))[:,end:-1:1,i]
for i in 1:3]...)
elseif wrds[1] == "map_Kd"
texture_file = "$(rsplit(file, '/', limit = 2)[1])/$(wrds[2])"
texture_diffuse = Vec3([outtype.(permutedims(channelview(load(texture_file)),
(3, 2, 1)))[:,end:-1:1,i]
for i in 1:3]...)
elseif wrds[1] == "map_Ks"
texture_file = "$(rsplit(file, '/', limit = 2)[1])/$(wrds[2])"
texture_specular = Vec3([outtype.(permutedims(channelview(load(texture_file)),
(3, 2, 1)))[:,end:-1:1,i]
for i in 1:3]...)
end
end
material_map[last_mat] = (color_diffuse = color_diffuse,
color_ambient = color_ambient,
color_specular = color_specular,
specular_exponent = specular_exponent,
texture_ambient = texture_ambient,
texture_diffuse = texture_diffuse,
texture_specular = texture_specular)
return nothing
end
"""
load_obj(file; outtype = Float32)
Parser for `obj` file. It returns a set of Triangles that make up the scene.
Only the following things are parsed as of now: `v`, `vt`, `vn`, `f`, `usemtl`
and `mtllib`.
"""
function load_obj(file; outtype = Float32)
vertices = Vector{Vec3{Vector{outtype}}}()
texture_coordinates = Vector{Tuple}()
normals = Vector{Vec3{Vector{outtype}}}()
faces = Vector{Tuple{Vector{Int}, Union{Vector{Int}, Nothing}, String}}()
material_map = Dict{String, Union{NamedTuple, Nothing}}()
last_mat = "RayTracer Default"
mtllib = nothing
for line in eachline(file)
wrds = split(line)
isempty(wrds) && continue
if wrds[1] == "v" # Vertices
push!(vertices, Vec3(parse.(outtype, wrds[2:4])...))
elseif wrds[1] == "vt" # Texture Coordinates
push!(texture_coordinates, tuple(parse.(outtype, wrds[2:3])...))
elseif wrds[1] == "vn" # Normal
push!(normals, Vec3(parse.(outtype, wrds[2:4])...))
elseif wrds[1] == "f" # Faces
# Currently we shall only be concerned with the vertices of the face
# and safely throw away vertex normal information
fstwrd = split(wrds[2], '/')
texture_c = isempty(fstwrd[2]) ? nothing : [parse(Int, fstwrd[2])]
@assert length(fstwrd) == 3 "Incorrect number of /'s in the obj file"
push!(faces, ([parse(Int, fstwrd[1])], texture_c, last_mat))
for wrd in wrds[3:end]
splitwrd = split(wrd, '/')
@assert length(splitwrd) == 3 "Incorrect number of /'s in the obj file"
push!(faces[end][1], parse(Int, splitwrd[1]))
!isnothing(texture_c) && push!(faces[end][2], parse(Int, splitwrd[2]))
end
elseif wrds[1] == "usemtl" # Key for parsing mtllib file
last_mat = wrds[2]
material_map[last_mat] = nothing
elseif wrds[1] == "mtllib" # Material file
mtllib = "$(rsplit(file, '/', limit = 2)[1])/$(wrds[2])"
end
end
if !isnothing(mtllib)
parse_mtllib!(mtllib, material_map, outtype)
else
parse_mtllib!(nothing, material_map, outtype)
end
return triangulate_faces(vertices, texture_coordinates, faces, material_map)
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 2024 | # ----------------- #
# - Triangle Mesh - #
# ----------------- #
# The idea behind this special object is to implement acceleration structures over it
# We shall not be supporting inverse rendering the exact coordinates for now.
# This is not difficult. We have to store the vertices and the faces and at every
# intersect call recompute everything, so we prefer to avoid this extra computation
# for now.
# The `intersections` store point to index of triangle mapping for getting the normals
struct FixedTriangleMeshParams{V} <: FixedParams
intersections::IdDict
normals::Vector{Vec3{V}}
end
struct TriangleMesh{V, P, Q, R, S, T, U} <: Object
triangulated_mesh::Vector{Triangle{V, P, Q, R, S, T, U}}
material::Material{P, Q, R, S, T, U}
ftmp::FixedTriangleMeshParams{V}
end
function construct_outer_normals(t::Vector{Triangle})
centroid = sum(map(x -> (x.v1 + x.v2 + x.v3) / 3, t)) / length(t)
return map(x -> get_normal(x, Vec3(0.0f0), x.v1 - centroid), t)
end
@diffops TriangleMesh
TriangleMesh(scene::Vector{Triangle}, mat::Material) =
TriangleMesh(scene, mat, FixedTriangleMeshParams(IdDict(),
construct_outer_normals(scene)))
function intersect(t::TriangleMesh, origin, direction)
distances = map(s -> intersect(s, origin, direction), t.triangulated_mesh)
dist_reshaped = hcat(distances...)
nearest = map(idx -> begin
val, index = findmin(dist_reshaped[idx, :], dims = 1)
t.ftmp.intersections[direction[idx]] = index
return val
end,
1:(size(dist_reshaped, 1)))
return nearest
end
function get_normal(t::TriangleMesh, pt, dir)
normal = zero(pt)
for idx in 1:size(dir)[1]
n = t.ftmp.normals[t.ftmp.intersections[dir[idx]]]
normal.x[idx] = n.x[1]
normal.y[idx] = n.y[1]
normal.z[idx] = n.z[1]
end
return normal
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 1309 | export Sphere
# ---------- #
# - Sphere - #
# ---------- #
"""
Sphere
Sphere is a primitive object.
### Fields:
* `center` - Center of the Sphere in 3D world space
* `radius` - Radius of the Sphere
* `material` - Material of the Sphere
"""
struct Sphere{C, P, Q, R, S, T, U} <: Object
center::Vec3{C}
radius::C
material::Material{P, Q, R, S, T, U}
end
show(io::IO, s::Sphere) =
print(io, "Sphere Object:\n Center - ", s.center, "\n Radius - ", s.radius[],
"\n ", s.material)
@diffops Sphere
function intersect(s::Sphere, origin, direction)
b = dot(direction, origin - s.center) # direction is a vec3 with array
c = l2norm(s.center) .+ l2norm(origin) .- 2 .* dot(s.center, origin) .- (s.radius .^ 2)
disc = (b .^ 2) .- c
function get_intersections(x, y)
t = bigmul(x + y) # Hack to split the 0.0 gradient to both. Otherwise one gets nothing
if y > 0
sqrty = sqrt(y)
z1 = -x - sqrty
z2 = -x + sqrty
if z1 <= 0 && z2 > 0
t = z2
elseif z1 > 0
t = z1
end
end
return t
end
result = broadcast(get_intersections, b, disc)
return result
end
get_normal(s::Sphere, pt, dir) = normalize(pt - s.center)
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 2086 | export Triangle
# ------------ #
# - Triangle - #
# ------------ #
"""
Triangle
Triangle is a primitive object. Any complex object can be represented as a mesh
of Triangles.
### Fields:
* `v1` - Vertex 1
* `v2` - Vertex 2
* `v3` - Vertex 3
* `material` - Material of the Triangle
"""
struct Triangle{V, P, Q, R, S, T, U} <: Object
v1::Vec3{V}
v2::Vec3{V}
v3::Vec3{V}
material::Material{P, Q, R, S, T, U}
end
show(io::IO, t::Triangle) =
print(io, "Triangle Object:\n Vertex 1 - ", t.v1, "\n Vertex 2 - ", t.v2,
"\n Vertex 3 - ", t.v3, "\n ", t.material)
@diffops Triangle
get_intersections_triangle(a, b, c, d) =
(a > 0 && b > 0 && c > 0 && d > 0) ? a : bigmul(a)
Zygote.@adjoint function get_intersections_triangle(a::T, b::T, c::T, d::T) where {T}
res = get_intersections_triangle(a, b, c, d)
function ∇get_intersections_triangle(Δ)
if a > 0 && b > 0 && c > 0 && d > 0
return (Δ, T(0), T(0), T(0))
else
return (T(0), T(0), T(0), T(0))
end
end
return res, ∇get_intersections_triangle
end
function intersect(t::Triangle, origin, direction)
normal = normalize(cross(t.v2 - t.v1, t.v3 - t.v1))
h = (-dot(normal, origin) .+ dot(normal, t.v1)) ./ dot(normal, direction)
pt = origin + direction * h
edge1 = t.v2 - t.v1
edge2 = t.v3 - t.v2
edge3 = t.v1 - t.v3
c₁ = pt - t.v1
c₂ = pt - t.v2
c₃ = pt - t.v3
val1 = dot(normal, cross(edge1, c₁))
val2 = dot(normal, cross(edge2, c₂))
val3 = dot(normal, cross(edge3, c₃))
result = broadcast(get_intersections_triangle, h, val1, val2, val3)
return result
end
function get_normal(t::Triangle, pt, dir)
# normal not expanded
normal_nexp = normalize(cross(t.v2 - t.v1, t.v3 - t.v1))
direction = -sign.(dot(normal_nexp, dir))
normal = Vec3(repeat(normal_nexp.x, inner = size(pt.x)),
repeat(normal_nexp.y, inner = size(pt.y)),
repeat(normal_nexp.z, inner = size(pt.z)))
return normal * direction
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 2244 | function raytrace(origin::Vec3, direction::Vec3, scene::BoundingVolumeHierarchy,
lgt::Light, eye_pos::Vec3, bounce::Int = 0)
distances = intersect(scene, origin, direction)
dist_reshaped = reducehcat([values(distances)...])
nearest = map(idx -> minimum(dist_reshaped[idx, :]), 1:size(dist_reshaped, 1))
h = .!isinf.(nearest)
color = Vec3(0.0f0)
for s in scene.scene_list
!haskey(distances, s) && continue
d = distances[s]
hit = map((x, y, z) -> ifelse(y == z, x, zero(x)), h, d, nearest)
if any(hit)
dc = extract(hit, d)
originc = extract(hit, origin)
dirc = extract(hit, direction)
cc = light(s, originc, dirc, dc, lgt, eye_pos, scene, bounce)
color += place(cc, hit)
end
end
return color
end
function light(s::Object, origin, direction, dist, lgt::Light, eye_pos,
scene::BoundingVolumeHierarchy, bounce)
pt = origin + direction * dist
normal = get_normal(s, pt, direction)
dir_light, intensity = get_shading_info(lgt, pt)
dir_origin = normalize(eye_pos - pt)
nudged = pt + normal * 0.0001f0 # Nudged to miss itself
# Shadow
light_distances = intersect(scene, nudged, dir_light)
seelight = fseelight(s, light_distances)
# Ambient
color = get_color(s, pt, Val(:ambient))
# Lambert Shading (diffuse)
visibility = max.(dot(normal, dir_light), 0.0f0)
color += ((get_color(s, pt, Val(:diffuse)) * intensity) * visibility) * seelight
# Reflection
if bounce < 2
rayD = normalize(direction - normal * 2.0f0 * dot(direction, normal))
color += raytrace(nudged, rayD, scene, lgt, eye_pos, bounce + 1) * reflection(s)
end
# Blinn-Phong shading (specular)
phong = dot(normal, normalize(dir_light + dir_origin))
color += (get_color(s, pt, Val(:specular)) *
(clamp.(phong, 0.0f0, 1.0f0) .^ specular_exponent(s))) * seelight
return color
end
function fseelight(t::Triangle, light_distances)
ldist = reducehcat([values(light_distances)...])
seelight = map(idx -> minimum(ldist[idx, :]) == light_distances[t][idx], 1:size(ldist, 1))
return seelight
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 5481 | export raytrace
# ----------------- #
# Blinn Phong Model #
# ----------------- #
"""
light(s::Object, origin, direction, dist, lgt::Light, eye_pos, scene, obj_num, bounce)
Implements the Blinn Phong rendering algorithm. This function is merely for
internal usage and should in no case be called by the user. This function is
quite general and supports user defined **Objects**. For support of custom
Objects have a look at the examples.
!!! warning
Don't try to use this function by itself. But if you are a person who likes
to ignore warnings look into the way [`raytrace`](@ref) calls this.
"""
function light(s::Object, origin, direction, dist, lgt::Light, eye_pos,
scene, obj_num, bounce)
pt = origin + direction * dist
normal = get_normal(s, pt, direction)
dir_light, intensity = get_shading_info(lgt, pt)
dir_origin = normalize(eye_pos - pt)
nudged = pt + normal * 0.0001f0 # Nudged to miss itself
# Shadow
light_distances = map(x -> intersect(x, nudged, dir_light), scene)
seelight = fseelight(obj_num, light_distances)
# Ambient
color = get_color(s, pt, Val(:ambient))
# Lambert Shading (diffuse)
visibility = max.(dot(normal, dir_light), 0.0f0)
color += ((get_color(s, pt, Val(:diffuse)) * intensity) * visibility) * seelight
# Reflection
if bounce < 2
rayD = normalize(direction - normal * 2.0f0 * dot(direction, normal))
color += raytrace(nudged, rayD, scene, lgt, eye_pos, bounce + 1) * reflection(s)
end
# Blinn-Phong shading (specular)
phong = dot(normal, normalize(dir_light + dir_origin))
color += (get_color(s, pt, Val(:specular)) *
(clamp.(phong, 0.0f0, 1.0f0) .^ specular_exponent(s))) * seelight
return color
end
"""
raytrace(origin::Vec3, direction::Vec3, scene::Vector, lgt::Light,
eye_pos::Vec3, bounce::Int)
raytrace(origin::Vec3, direction::Vec3, scene, lgt::Vector{Light},
eye_pos::Vec3, bounce::Int)
raytrace(origin::Vec3, direction::Vec3, scene::BoundingVolumeHierarchy,
lgt::Light, eye_pos::Vec3, bounce::Int)
raytrace(;origin = nothing, direction = nothing, scene = nothing,
light_source = nothing, global_illumination = false)
Computes the color contribution to every pixel by tracing every single ray.
Internally it calls the `light` function which implements Blinn Phong Rendering
and adds up the color contribution for each object.
The `eye_pos` is simply the `origin` when called by the user. However, the origin
keeps changing across the recursive calls to this function and hence it is
necessary to keep track of the `eye_pos` separately.
The `bounce` parameter allows the configuration of global illumination. To turn off
global illumination set the `bounce` parameter to `>= 2`. As expected rendering is
much faster if global illumination is off but at the same time is much less photorealistic.
!!! note
The support for multiple lights is primitive as we loop over the lights.
Even though it is done in a parallel fashion, it is not the best way to
do so. Nevertheless it exists just for the sake of experimentation.
!!! note
None of the parameters (except global_illumination) in the keyword argument version of
[`raytrace`](@ref) is optional. It is just present for convenience.
"""
raytrace(;origin = nothing, direction = nothing, scene = nothing,
light_source = nothing, global_illumination = false) =
raytrace(origin, direction, scene, light_source, origin, global_illumination ? 0 : 2)
function raytrace(origin::Vec3, direction::Vec3, scene::Vector,
lgt::Light, eye_pos::Vec3, bounce::Int = 0)
distances = map(x -> intersect(x, origin, direction), scene)
dist_reshaped = reducehcat(distances)
nearest = map(idx -> minimum(dist_reshaped[idx, :]), 1:size(dist_reshaped, 1))
h = .!isinf.(nearest)
color = Vec3(0.0f0)
for (c, (s, d)) in enumerate(zip(scene, distances))
hit = map((x, y, z) -> ifelse(y == z, x, zero(x)), h, d, nearest)
if any(hit)
dc = extract(hit, d)
originc = extract(hit, origin)
dirc = extract(hit, direction)
cc = light(s, originc, dirc, dc, lgt, eye_pos, scene, c, bounce)
color += place(cc, hit)
end
end
return color
end
# FIXME: This is a temporary solution. Long term solution is to support
# a light vector in the `light` function itself.
function raytrace(origin::Vec3, direction::Vec3, scene,
lgt::Vector{L}, eye_pos::Vec3, bounce::Int = 0) where {L<:Light}
colors = pmap(x -> raytrace(origin, direction, scene, x, eye_pos, bounce), lgt)
return sum(colors)
end
# ------------------------ #
# General Helper Functions #
# ------------------------ #
"""
fseelight(n::Int, light_distances)
Checks if the ``n^{th}`` object in the scene list can see the light source.
"""
function fseelight(n, light_distances)
ldist = reducehcat(light_distances)
seelight = map(idx -> minimum(ldist[idx, :]) == ldist[idx,n], 1:size(ldist, 1))
return seelight
end
# fseelight(n, light_distances) = map((x...) -> min(x...) == x[n], light_distances...)
"""
reducehcat(x)
This is simply `reduce(hcat(x))`. The version of Zygote we are currently using
can't differentiate through this function. So we define a custom adjoint for this.
"""
reducehcat(x) = reduce(hcat, x)
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 7128 | export rasterize
# --------- #
# Constants #
# --------- #
const film_aperture = (0.980f0, 0.735f0)
# --------- #
# Utilities #
# --------- #
"""
edge_function(pt1::Vec3, pt2::Vec3, point::Vec3)
Checks on which side of the line formed by `pt1` and `pt2` does
`point` lie.
"""
edge_function(pt1::Vec3, pt2::Vec3, point::Vec3) = edge_function_vector(pt1, pt2, point)[]
"""
edge_function_vector(pt1::Vec3, pt2::Vec3, point::Vec3)
Vectoried form of the [`edge_function`](@ref)
"""
edge_function_vector(pt1::Vec3, pt2::Vec3, point::Vec3) =
((point.x .- pt1.x) .* (pt2.y - pt1.y) .- (point.y .- pt1.y) .* (pt2.x .- pt1.x))
"""
convert2raster(vertex_world::Vec3, world_to_camera, left::Real, right::Real,
top::Real, bottom::Real, width::Int, height::Int)
convert2raster(vertex_camera::Vec3{T}, left::Real, right::Real, top::Real, bottom::Real,
width::Int, height::Int) where {T}
Converts a Point in 3D world space to the 3D raster space. The conversion is done by the
following steps:
```math
V_{camera} = World2CameraTransform(V_{world})
```
```math
V_{screen_x} = -\\frac{V_{camera_x}}{V_{camera_z}}
```
```math
V_{screen_y} = -\\frac{V_{camera_y}}{V_{camera_z}}
```
```math
V_{NDC_x} = \\frac{2 \\times V_{screen_x} - right - left}{right - left}
```
```math
V_{NDC_y} = \\frac{2 \\times V_{screen_y} - top - bottom}{top - bottom}
```
```math
V_{raster_x} = \\frac{V_{NDC_x} + 1}{2 \\times width}
```
```math
V_{raster_y} = \\frac{1 - V_{NDC_y}}{2 \\times height}
```
```math
V_{raster_z} = - V_{camera_z}
```
"""
function convert2raster(vertex_world::Vec3, world_to_camera, left::Real, right::Real,
top::Real, bottom::Real, width::Int, height::Int)
vertex_camera = world2camera(vertex_world, world_to_camera)
return convert2raster(vertex_camera, left, right, top, bottom, width, height)
end
function convert2raster(vertex_camera::Vec3{T}, left::Real, right::Real, top::Real, bottom::Real,
width::Int, height::Int) where {T}
outtype = eltype(T)
vertex_screen = (x = vertex_camera.x[] / -vertex_camera.z[],
y = vertex_camera.y[] / -vertex_camera.z[])
vertex_NDC = (x = outtype((2 * vertex_screen.x - right - left) / (right - left)),
y = outtype((2 * vertex_screen.y - top - bottom) / (top - bottom)))
vertex_raster = Vec3([(vertex_NDC.x + 1) / 2 * outtype(width)],
[(1 - vertex_NDC.y) / 2 * outtype(height)],
-vertex_camera.z)
return vertex_raster
end
# ---------- #
# Rasterizer #
# ---------- #
"""
rasterize(cam::Camera, scene::Vector)
rasterize(cam::Camera, scene::Vector, camera_to_world,
world_to_camera, top, right, bottom, left)
Implements the raterization algorithm. This is extremely fast when compared
to the [`raytrace`](@ref) function. However, the image generated is much less
photorealistic with no lighting effects.
"""
function rasterize(cam::Camera, scene::Vector)
top, right, bottom, left = compute_screen_coordinates(cam, film_aperture)
camera_to_world = get_transformation_matrix(cam)
world_to_camera = inv(camera_to_world)
return rasterize(cam, scene, camera_to_world, world_to_camera, top,
right, bottom, left)
end
function rasterize(cam::Camera{T}, scene::Vector, camera_to_world,
world_to_camera, top, right, bottom, left) where {T}
width = cam.fixedparams.width
height = cam.fixedparams.height
frame_buffer = Vec3(zeros(eltype(T), width * height))
depth_buffer = fill(eltype(T)(Inf), width, height)
for triangle in scene
v1_camera = world2camera(triangle.v1, world_to_camera)
v2_camera = world2camera(triangle.v2, world_to_camera)
v3_camera = world2camera(triangle.v3, world_to_camera)
normal = normalize(cross(v2_camera - v1_camera, v3_camera - v1_camera))
v1_raster = convert2raster(v1_camera, left, right, top, bottom, width, height)
v2_raster = convert2raster(v2_camera, left, right, top, bottom, width, height)
v3_raster = convert2raster(v3_camera, left, right, top, bottom, width, height)
# Bounding Box
xmin, xmax = extrema([v1_raster.x[], v2_raster.x[], v3_raster.x[]])
ymin, ymax = extrema([v1_raster.y[], v2_raster.y[], v3_raster.y[]])
(xmin > width || xmax < 1 || ymin > height || ymax < 1) && continue
area = edge_function(v1_raster, v2_raster, v3_raster)
# Loop over only the covered pixels
x₁ = max( 1, Int(ceil(xmin)))
x₂ = min( width, Int(ceil(xmax)))
y₁ = max( 1, Int(ceil(ymin)))
y₂ = min(height, Int(ceil(ymax)))
y = y₁:y₂
x = x₁:x₂
y_space = repeat(collect(y), inner = length(x))
x_space = repeat(collect(x), outer = length(y))
w1_arr = Float32[]
w2_arr = Float32[]
w3_arr = Float32[]
depth = Float32[]
x_arr = Int[]
y_arr = Int[]
y_vec = y_space .+ 0.5f0
x_vec = x_space .+ 0.5f0
pixel = Vec3(x_vec, y_vec, zeros(eltype(x_vec), length(x) * length(y)))
w1 = edge_function_vector(v2_raster, v3_raster, pixel)
w2 = edge_function_vector(v3_raster, v1_raster, pixel)
w3 = edge_function_vector(v1_raster, v2_raster, pixel)
for (w1_val, w2_val, w3_val, x_val, y_val) in zip(w1, w2, w3, x_space, y_space)
if w1_val >= 0 && w2_val >= 0 && w3_val >= 0
w1_val = w1_val / area
w2_val = w2_val / area
w3_val = w3_val / area
depth_val = 1 / (w1_val / v1_raster.z[] + w2_val / v2_raster.z[] +
w3_val / v3_raster.z[])
if depth_val < depth_buffer[x_val, y_val]
update_index!(depth_buffer, x_val, y_val, depth_val)
push!(w1_arr, w1_val)
push!(w2_arr, w2_val)
push!(w3_arr, w3_val)
push!(depth, depth_val)
push!(x_arr, x_val)
push!(y_arr, y_val)
end
end
end
length(w1_arr) == 0 && continue
px = (v1_camera.x[] / -v1_camera.z[]) .* w1_arr .+
(v2_camera.x[] / -v2_camera.z[]) .* w2_arr .+
(v3_camera.x[] / -v3_camera.z[]) .* w3_arr
py = (v1_camera.y[] / -v1_camera.z[]) .* w1_arr .+
(v2_camera.y[] / -v2_camera.z[]) .* w2_arr .+
(v3_camera.y[] / -v3_camera.z[]) .* w3_arr
# Passing these gradients as 1.0f0 is incorrect
pt = Zygote.hook(Δ -> Vec3([1.0f0 for _ in pt.x]),
camera2world(Vec3(px, py, ones(Float32, length(px)) * -1) * depth,
camera_to_world))
col = get_color(triangle, pt, Val(:diffuse))
idx = x_arr .+ (y_arr .- 1) .* height
frame_buffer = place_idx!(frame_buffer, col, idx)
end
return frame_buffer
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 2656 | using Zygote
using RayTracer: get_params, set_params!
function loss_fn(θ, color)
rendered_color = raytrace(origin, direction, θ, light, eye_pos, 0)
loss = sum(abs2.(rendered_color.x .- color.x) .+
abs2.(rendered_color.y .- color.y) .+
abs2.(rendered_color.z .- color.z))
return loss
end
# Define the Scene Parameters
screen_size = (w = 400, h = 300)
light = PointLight(
Vec3(1.0),
1000.0,
Vec3(0.15, 0.5, -110.5)
)
eye_pos = Vec3(0.0, 0.0, -5.0)
cam = Camera(eye_pos, Vec3(0.0), Vec3(0.0, 1.0, 0.0), 45.0, 1.0, screen_size...)
origin, direction = get_primary_rays(cam);
@testset "Triangle" begin
scene = [
Triangle(Vec3(-1.7, 1.0, 0.0), Vec3(1.0, 1.0, 0.0), Vec3(1.0, -1.0, 0.0),
Material(color_ambient = Vec3(1.0),
color_diffuse = Vec3(1.0),
color_specular = Vec3(1.0),
specular_exponent = 50.0,
reflection = 1.0))
]
scene_new = [
Triangle(Vec3(-1.9, 1.3, 0.1), Vec3(1.2, 1.1, 0.3), Vec3(0.8, -1.2, -0.15),
Material(color_ambient = Vec3(1.0),
color_diffuse = Vec3(1.0),
color_specular = Vec3(1.0),
specular_exponent = 50.0,
reflection = 1.0))
]
color = raytrace(origin, direction, scene, light, eye_pos, 0)
zygote_grads = get_params(gradient(x -> loss_fn(x, color), scene_new)[1][1])
numerical_grads = get_params(numderiv(x -> loss_fn([x], color), scene_new[1]))
@test isapprox(numerical_grads, zygote_grads, rtol = 1.0e-3)
end
@testset "Sphere" begin
scene = [
Sphere(Vec3(-1.7, 1.0, 0.0), [0.6],
Material(color_ambient = Vec3(1.0),
color_diffuse = Vec3(1.0),
color_specular = Vec3(1.0),
specular_exponent = 50.0,
reflection = 1.0))
]
scene_new = [
Sphere(Vec3(-1.9, 1.3, 0.1), [0.9],
Material(color_ambient = Vec3(1.0),
color_diffuse = Vec3(1.0),
color_specular = Vec3(1.0),
specular_exponent = 50.0,
reflection = 1.0))
]
color = raytrace(origin, direction, scene, light, eye_pos, 0)
zygote_grads = get_params(gradient(x -> loss_fn(x, color), scene_new)[1][1])
numerical_grads = get_params(numderiv(x -> loss_fn([x], color), scene_new[1]))
@test isapprox(numerical_grads[1:4], zygote_grads[1:4], rtol = 1.0e-3)
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 688 | screen_size = (w = 512, h = 512)
cam = Camera(
Vec3(0.5f0, 0.2f0, -0.5f0),
Vec3(0.0f0, 0.1f0, 0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
45.0f0,
0.5f0,
screen_size...
)
light = PointLight(
Vec3(1.0f0), 2.0f8,
Vec3(10.0f0, 10.0f0, 5.0f0)
)
origin, direction = get_primary_rays(cam)
@testset "Image Texture" begin
scene = load_obj("./meshes/sign_yield.obj")
@test_nowarn raytrace(origin, direction, scene, light, origin, 0)
end
@testset "Plain Color Texture" begin
scene = load_obj("./meshes/tree.obj")
@test_nowarn raytrace(origin, direction, scene, light, origin, 0)
@inferred raytrace(origin, direction, scene, light, origin, 0)
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 234 | using RayTracer, Test
@testset "Rendering" begin
include("utils.jl")
include("mesh_render.jl")
end
@testset "Differentiable Ray Tracing" begin
@testset "Gradient Checks" begin
include("gradcheck.jl")
end
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | code | 2329 | @testset "Basic Vec3 Functionality" begin
# Check the constructors
a = Vec3(1.0)
@test a.x[] == 1.0 && a.y[] == 1.0 && a.z[] == 1.0
a = Vec3([1.0, 1.0])
@test a.x == [1.0, 1.0] && a.y == [1.0, 1.0] && a.z == [1.0, 1.0]
# Operators +, -, * | Both Vec3
for op in (:+, :-, :*)
len = rand(1:25)
a1 = rand(len)
b1 = rand(len)
c1 = rand(len)
a2 = rand(len)
b2 = rand(len)
c2 = rand(len)
vec3_1 = Vec3(a1, b1, c1)
vec3_2 = Vec3(a2, b2, c2)
res = @eval $(op)($vec3_1, $vec3_2)
res_x = @eval broadcast($(op), $a1, $a2)
res_y = @eval broadcast($(op), $b1, $b2)
res_z = @eval broadcast($(op), $c1, $c2)
@test res.x == res_x && res.y == res_y && res.z == res_z
end
# Operators +, -, *, /, % | Only 1 Vec3
for op in (:+, :-, :*, :/, :%)
len = rand(1:25)
a = rand(len)
b = rand(len)
c = rand(len)
num = rand()
vec3_1 = Vec3(a, b, c)
res1 = @eval $(op)($vec3_1, $num)
res1_x = @eval broadcast($(op), $a, $num)
res1_y = @eval broadcast($(op), $b, $num)
res1_z = @eval broadcast($(op), $c, $num)
@test res1.x == res1_x && res1.y == res1_y && res1.z == res1_z
res2 = @eval $(op)($num, $vec3_1)
res2_x = @eval broadcast($(op), $a, $num)
res2_y = @eval broadcast($(op), $b, $num)
res2_z = @eval broadcast($(op), $c, $num)
@test res2.x == res2_x && res2.y == res2_y && res2.z == res2_z
end
# Other Operators
a_vec = Vec3(1.0, 2.0, 3.0)
b_vec = Vec3(4.0, 5.0, 6.0)
neg_a_vec = - a_vec
cross_prod = RayTracer.cross(a_vec, b_vec)
b_clamped = clamp(b_vec, 4.5, 5.5)
@test neg_a_vec.x[] == -1.0 && neg_a_vec.y[] == -2.0 && neg_a_vec.z[] == -3.0
@test RayTracer.dot(a_vec, b_vec)[] == 32.0
@test RayTracer.l2norm(a_vec)[] == 14.0
@test RayTracer.l2norm(RayTracer.normalize(a_vec))[] == 1.0
@test maximum(a_vec) == 3.0
@test minimum(a_vec) == 1.0
@test size(a_vec) == (1,)
@test getindex(a_vec, 1) == (x = 1.0, y = 2.0, z = 3.0)
@test cross_prod.x[] == -3.0 && cross_prod.y[] == 6.0 && cross_prod.z[] == -3.0
@test b_clamped.x[] == 4.5 && b_clamped.y[] == 5.0 && b_clamped.z[] == 5.5
end
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | docs | 5877 | # RayTracer.jl

[](https://codecov.io/gh/avik-pal/RayTracer.jl)
[](https://avik-pal.github.io/RayTracer.jl/dev/)
[](https://doi.org/10.21105/jcon.00037)
[](https://doi.org/10.5281/zenodo.1442781)
<p align="center">
<video width="512" height="320" autoplay loop>
<source src="docs/src/assets/udem1.gif" type="video/gif">
</video>
</p>
> This package was written in the early days of Flux / Zygote. Both these packages have significantly improved over time. Unfortunately the current state of this package of has not been updated to reflect those improvements. It also seems that it might be better to gradually transition to AD systems like Diffractor (which will potentially have good support for mutations) / define the adjoints directly using ChainRules since Zygote will likely not be having these features (note there has not been an official announcement and the statement is based on some discussions in zulip forum)
A Ray Tracer written completely in Julia. This allows us to leverage the AD capablities provided by Zygote to differentiate through the Ray Tracer.
## INSTALLATION
This package is registered. So open up a Julia 1.3+ repl and enter the pkg mode.
```julia
julia> ]
(v1.3) pkg> add RayTracer
```
To use the master branch (not recommended) do.
```julia
julia> ]
(v1.3) pkg> add RayTracer#master
```
## TUTORIALS
<div align="center">
<table>
<tr>
<th style="text-align:center">
<a href="examples/teapot_rendering.jl">Introductory Rendering Tutorial</a>
</th>
<th style="text-align:center">
<a href="examples/inverse_lighting.jl">Inverse Lighting Tutorial</a>
</th>
<th style="text-align:center">
<a href="examples/optim_compatibility.jl">Inverse Rendering with Optim.jl Tutorial</a>
</th>
</tr>
<tr>
<td align="center">
<a href="examples/teapot_rendering.jl">
<img border="0" src="paper/images/render/teapot_top.jpg" width="200" height="200">
</a>
</td>
<td align="center">
<a href="examples/inverse_lighting.jl">
<img border="0" src="docs/src/assets/inv_lighting.gif" width="200" height="200">
</a>
</td>
<td align="center">
<a href="examples/optim_compatibility.jl">
<img border="0" src="docs/src/assets/inv_lighting_optim.gif" width="200" height="200">
</a>
</td>
</tr>
</table>
</div>
## USAGE EXAMPLES
Follow the instructions below to run individual examples or use
`examples/script.sh` to run all of them together.
First we need to get the versions of the packages used when these
examples were written.
```bash
$ cd examples
$ julia --color=yes -e "using Pkg; Pkg.instantiate()"
```
Now we can run any of the file we need by
`julia --project=. --color=yes "/path/to/file"`
### Running Individual Examples
* [`teapot_rendering.jl`](examples/teapot_rendering.jl) -- We need to download the `teapot.obj` file.
```
wget https://raw.githubusercontent.com/McNopper/OpenGL/master/Binaries/teapot.obj
```
* [`performance_benchmarks.jl`](examples/performance_benchmarks.jl) -- We need the mesh and texture for
the yield sign board.
```bash
$ mkdir meshes
$ cd meshes
$ wget https://raw.githubusercontent.com/avik-pal/RayTracer.jl/master/test/meshes/sign_yield.obj
$ wget https://raw.githubusercontent.com/avik-pal/RayTracer.jl/master/test/meshes/sign_yield.mtl
$ cd ..
$ mkdir textures
$ cd textures
$ wget https://raw.githubusercontent.com/avik-pal/RayTracer.jl/master/test/textures/wood_osb.jpg
$ wget https://raw.githubusercontent.com/avik-pal/RayTracer.jl/master/test/textures/sign_yield.png
$ cd ..
```
This example requires a few arguments to be passes from command line. Chack them using
`julia --project=. --color=yes "performance_benchmarks.jl" --help`
* [`inverse_lighting.jl`](examples/inverse_lighting.jl) &
[`optim_compatibility.jl`](examples/optim_compatibility.jl) -- We need to the `tree.mtl`
and `tree.obj` files.
```
$ wget https://raw.githubusercontent.com/tejank10/Duckietown.jl/master/src/meshes/tree.obj
$ wget https://raw.githubusercontent.com/tejank10/Duckietown.jl/master/src/meshes/tree.mtl
```
### Additional Examples
[Duckietown.jl](https://github.com/tejank10/Duckietown.jl) uses RayTracer.jl for generating renders
of a self-driving car environment. For more complex examples of RayTracer, checkout that project.
## SUPPORTING AND CITING:
This software was developed as part of academic research. If you would like to help support it, please star the repository. If you use this software as part of your research, teaching, or other activities, we would be grateful if you could cite the following:
```
@article{Pal2020,
doi = {10.21105/jcon.00037},
url = {https://doi.org/10.21105/jcon.00037},
year = {2020},
publisher = {The Open Journal},
volume = {1},
number = {1},
pages = {37},
author = {Avik Pal},
title = {RayTracer.jl: A Differentiable Renderer that supports Parameter Optimization for Scene Reconstruction},
journal = {Proceedings of the JuliaCon Conferences}
}
```
## CURRENT ROADMAP
These are not listed in any particular order
- [X] Add more types of common objects (use mesh rendering for this)
- [X] Add support for rendering arbitrary mesh
- [X] Inverse Rendering Examples
- [X] Texture Rendering
- [ ] Application in Machine Learning Models through Flux (work in progress)
- [ ] Major Overhaul using Flux3D.jl
- [ ] Exploit the latest improvements to Flux and Zygote
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | docs | 4440 | # RayTracer : Differentiable Ray Tracing in Julia
```@raw html
<p align="center">
<video width="512" height="320" autoplay loop>
<source src="./assets/udem1.webm" type="video/webm">
</video>
</p>
```
RayTracer.jl is a library for differentiable ray tracing. It provides utilities for
1. Render complex 3D scenes.
2. Differentiate the Ray Tracer wrt arbitrary scene parameters for Gradient Based
Inverse Rendering.
## Installation
Download [Julia 1.0](https://julialang.org/) or later.
For the time being, the library is under active development and hence is not registered. But the
master branch is pretty stable for experimentation. To install it simply open a julia REPL and
do `] add RayTracer`.
The master branch will do all computation on CPU. To try out the experimental GPU support do
`] add RayTracer#ap/gpu`. To observe the potential performance
gains of using GPU you will have to render scenes having more number of objects and the 2D
image must be of reasonably high resolution.
!!! note
Only rendering is currently supported on GPUs. Gradient Computation is broken but
will be supported in the future.
## Supporting and Citing
This software was developed as part of academic research. If you would like to help support it, please star the repository. If you use this software as part of your research, teaching, or other activities, we would be grateful if you could cite:
```
@misc{pal2019raytracerjl,
title={{RayTracer.jl: A Differentiable Renderer that supports Parameter Optimization for Scene Reconstruction}},
author={Avik Pal},
year={2019},
eprint={1907.07198},
archivePrefix={arXiv},
primaryClass={cs.GR}
}
```
## Contribution Guidelines
This package is written and maintained by [Avik Pal](https://avik-pal.github.io). Please fork and
send a pull request or create a [GitHub issue](https://github.com/avik-pal/RayTracer.jl/issues) for
bug reports. If you are submitting a pull request make sure to follow the official
[Julia Style Guide](https://docs.julialang.org/en/v1/manual/style-guide/index.html) and please use
4 spaces and NOT tabs.
### Adding a new feature
* For adding a new feature open a Github Issue first to discuss about it.
* Please note that we try and avoid having many primitive objects. This might speed up
rendering in some rare cases (as most objects will end up being represented as [`Triangle`](@ref)s)
but is really painful to maintain in the future.
* If you wish to add rendering algorithms it needs to be added to the `src/renderers` directory.
Ideally we wish that this is differentiable but we do accept algorithms which are not differentiable
(simply add a note in the documentation).
* Any new type that is defined should have a corresponding entry in `src/gradients/zygote.jl`. Look
at existing types to understand how it is done. Note that it is a pretty ugly thing to do and
becomes uglier as the number of fields in your struct increases, so do not define something that has
a lot of fields unless you need it (see [`Material`](@ref)).
* If you don't want a field in your custom type to be not updated while inverse rendering create a
subtype of [`RayTracer.FixedParams`](@ref) and wrap those field in it and store it in your custom type.
### Adding a tutorial/example
* We use Literate.jl to convert `examples` to `markdown` files. Look into its
[documentation](https://fredrikekre.github.io/Literate.jl/stable/)
* Next use the following commands to convert he script to markdown
```
julia> using Literate
julia> Literate.markdown("examples/your_example.jl", "docs/src/getting_started/",
documenter = false)
```
* Add an entry to `docs/make.jl` so that it is available in the side navigation bar.
* Add an entry to the `docs/src/index.md` [Contents](@ref) section.
## Contents
### Home
```@contents
Pages = [
"index.md"
]
Depth = 2
```
### Getting Started Tutorials
```@contents
Pages = [
"getting_started/teapot_rendering.md",
"getting_started/inverse_lighting.md",
"getting_started/optim_compatibility.md"
]
Depth = 2
```
### API Documentation
```@contents
Pages = [
"api/utilities.md",
"api/differentiation.md",
"api/scene.md",
"api/optimization.md",
"api/renderers.md",
"api/accelerators.md"
]
Depth = 2
```
## Index
```@index
```
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | docs | 521 | ```@meta
CurrentModule = RayTracer
```
# Acceleration Structures
!!! warning
This is a Beta Feature and not all things work with this.
```@index
Pages = ["accelerators.md"]
```
## Bounding Volume Hierarchy
Bounding Volume Hierarchy (or BVH) acts like a primitive object, just
like [`Triangle`](@ref) or [`Sphere`](@ref). So we can simply pass a BVH
object into [`raytrace`](@ref) function.
!!! warning
The backward pass for BVH is currently broken
```@autodocs
Modules = [RayTracer]
Pages = ["bvh.jl"]
```
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | docs | 553 | ```@meta
CurrentModule = RayTracer
```
# Differentiation
The recommended mode of differentation is by Automatic Differentiation using [Zygote](https://github.com/FluxML/Zygote.jl).
Refer to the [Zygote docs](http://fluxml.ai/Zygote.jl/dev/#Taking-Gradients-1) for this. The API listed below is for
numerical differentiation and is very restrictive (and unstable) in its current form. It should only be used as a
validation for the gradients from Zygote.
```@index
Pages = ["differentiation.md"]
```
## Documentation
```@docs
ngradient
numderiv
```
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | docs | 756 | ```@meta
CurrentModule = RayTracer
```
# Optimization
One of the primary use cases of RayTracer.jl is to solve the Inverse Rendering Problem. In this problem, we
try to predict the 3D scene given a 2D image of it. Since, "truly" solving this problem is very difficult,
we focus on a subproblem where we assume that we have partial knowledge of the 3D scene and now using this
image we need to figure out the correct remaining parameters. We do this by iteratively optimizing the parameters
using the gradients obtained with the [Differentiation](@ref) API.
We describe the current API for optimizing these parameters below.
```@index
Pages = ["api/optimization.md"]
```
## Documentation
```@autodocs
Modules = [RayTracer]
Pages = ["optimize.jl"]
```
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | docs | 303 | ```@meta
CurrentModule = RayTracer
```
# Renderers
This section describes the renderers available in RayTracer.jl
```@index
Pages = ["renderers.md"]
```
## Documentation
```@autodocs
Modules = [RayTracer]
Pages = ["blinnphong.jl",
"rasterizer.jl",
"accelerated_raytracer.jl"]
```
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | docs | 680 | ```@meta
CurrentModule = RayTracer
```
# Scene Configuration
This page provides the details about how to configure the parameters of the scene. For a
more hands on tutorial see [Introduction to rendering using RayTracer.jl](@ref).
```@index
Pages = ["scene.md"]
```
## Camera
```@autodocs
Modules = [RayTracer]
Pages = ["camera.jl"]
```
## Light
```@autodocs
Modules = [RayTracer]
Pages = ["light.jl"]
```
## Materials
```@autodocs
Modules = [RayTracer]
Pages = ["materials.jl"]
```
## Objects
```@autodocs
Modules = [RayTracer]
Pages = ["sphere.jl",
"triangle.jl",
"obj_parser.jl",
"polygon_mesh.jl",
"objects.jl"]
```
```@docs
```
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | docs | 363 | ```@meta
CurrentModule = RayTracer
```
# General Utilities
List of the General Functions and Types provided by the RayTracer. Most of the other functionalities
are built upon these.
```@index
Pages = ["utilities.md"]
```
## Documentation
```@autodocs
Modules = [RayTracer]
Pages = ["utils.jl",
"imutils.jl"]
```
```@docs
get_params
set_params!
```
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | docs | 4703 | # Inverse Lighting Tutorial
In this tutorial we shall explore the inverse lighting problem.
Here, we shall try to reconstruct a target image by optimizing
the parameters of the light source (using gradients).
```julia
using RayTracer, Images, Zygote, Flux, Statistics
```
## Configuring the Scene
Reduce the screen_size if the optimization is taking a bit long
```julia
screen_size = (w = 300, h = 300)
```
Now we shall load the scene using [`load_obj`](@ref) function. For
this we need the [`obj`](https://en.wikipedia.org/wiki/Wavefront_.obj_file)
and [`mtl`](https://en.wikipedia.org/wiki/Wavefront_.obj_file#Material_template_library)
files. They can be downloaded using the following commands:
```
wget https://raw.githubusercontent.com/tejank10/Duckietown.jl/master/src/meshes/tree.obj
wget https://raw.githubusercontent.com/tejank10/Duckietown.jl/master/src/meshes/tree.mtl
```
```julia
scene = load_obj("./tree.obj")
```
Let us set up the [`Camera`](@ref). For a more detailed understanding of
the rendering process look into [Introduction to rendering using RayTracer.jl](@ref).
```julia
cam = Camera(
lookfrom = Vec3(0.0f0, 6.0f0, -10.0f0),
lookat = Vec3(0.0f0, 2.0f0, 0.0f0),
vup = Vec3(0.0f0, 1.0f0, 0.0f0),
vfov = 45.0f0,
focus = 0.5f0,
width = screen_size.w,
height = screen_size.h
)
origin, direction = get_primary_rays(cam)
```
We should define a few convenience functions. Since we are going to calculate
the gradients only wrt to `light` we have it as an argument to the function. Having
`scene` as an additional parameters simply allows us to test our method for other
meshes without having to run `Zygote.refresh()` repeatedly.
```julia
function render(light, scene)
packed_image = raytrace(origin, direction, scene, light, origin, 2)
array_image = reshape(hcat(packed_image.x, packed_image.y, packed_image.z),
(screen_size.w, screen_size.h, 3, 1))
return array_image
end
showimg(img) = colorview(RGB, permutedims(img[:,:,:,1], (3,2,1)))
```
## [Ground Truth Image](@id inv_light)
For this tutorial we shall use the [`PointLight`](@ref) source.
We define the ground truth lighting source and the rendered image. We
will later assume that we have no information about this lighting
condition and try to reconstruct the image.
```julia
light_gt = PointLight(
color = Vec3(1.0f0, 1.0f0, 1.0f0),
intensity = 20000.0f0,
position = Vec3(1.0f0, 10.0f0, -50.0f0)
)
target_img = render(light_gt, scene)
```
The presence of [`zeroonenorm`](@ref) is very important here. It rescales the
values in the image to 0 to 1. If we don't perform this step `Images` will
clamp the values while generating the image in RGB format.
```julia
showimg(zeroonenorm(target_img))
```
```@raw html
<p align="center">
<img width=300 height=300 src="../../assets/inv_light_original.png">
</p>
```
## Initial Guess of Lighting Parameters
We shall make some arbitrary guess of the lighting parameters (intensity and
position) and try to get back the image in [Ground Truth Image](@ref inv_light)
```julia
light_guess = PointLight(
color = Vec3(1.0f0, 1.0f0, 1.0f0),
intensity = 1.0f0,
position = Vec3(-1.0f0, -10.0f0, -50.0f0)
)
showimg(zeroonenorm(render(light_guess, scene)))
```
```@raw html
<p align="center">
<img width=300 height=300 src="../../assets/inv_light_initial.png">
</p>
```
We shall store the images in `results_inv_lighting` directory
```julia
mkpath("results_inv_lighting")
save("./results_inv_lighting/inv_light_original.png",
showimg(zeroonenorm(render(light_gt, scene))))
save("./results_inv_lighting/inv_light_initial.png",
showimg(zeroonenorm(render(light_guess, scene))))
```
## Optimization Loop
We will use the ADAM optimizer from Flux. (Try experimenting with other
optimizers as well). We can also use frameworks like Optim.jl for optimization.
We will show how to do it in a future tutorial
```julia
for i in 1:401
loss, back_fn = Zygote.forward(light_guess) do L
sum((render(L, scene) .- target_img) .^ 2)
end
@show loss
gs = back_fn(1.0f0)
update!(opt, light_guess.intensity, gs[1].intensity)
update!(opt, light_guess.position, gs[1].position)
if i % 5 == 1
save("./results_inv_lighting/iteration_$i.png",
showimg(zeroonenorm(render(light_guess, scene))))
end
end
```
If we generate a `gif` for the optimization process it will look similar to this
```@raw html
<p align="center">
<img width=300 height=300 src="../../assets/inv_lighting.gif">
</p>
```
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | docs | 4028 | # Optimizing Scene Parameters using Optim.jl
In this tutorial we will explore the exact same problem as demonstrated
in [Inverse Lighting Tutorial](@ref) but this time we will use the
Optimization Package [Optim.jl](https://julianlsolvers.github.io/Optim.jl/stable/).
I would recommend going through a few of the
[tutorials on Optim](https://julianlsolvers.github.io/Optim.jl/stable/#user/minimization/#_top)
before starting this one.
If you have already read the previous tutorial, you can safely skip to
[Writing the Optimization Loop using Optim](@ref). The part previous to this
is same as the previous tutorial.
```julia
using RayTracer, Images, Zygote, Flux, Statistics, Optim
```
## Script for setting up the Scene
```julia
screen_size = (w = 64, h = 64)
scene = load_obj("./tree.obj")
cam = Camera(
Vec3(0.0f0, 6.0f0, -10.0f0),
Vec3(0.0f0, 2.0f0, 0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
45.0f0,
0.5f0,
screen_size...
)
origin, direction = get_primary_rays(cam)
function render(light, scene)
packed_image = raytrace(origin, direction, scene, light, origin, 2)
array_image = reshape(hcat(packed_image.x, packed_image.y, packed_image.z),
(screen_size.w, screen_size.h, 3, 1))
return array_image
end
showimg(img) = colorview(RGB, permutedims(img[:,:,:,1], (3,2,1)))
light_gt = PointLight(
Vec3(1.0f0, 1.0f0, 1.0f0),
20000.0f0,
Vec3(1.0f0, 10.0f0, -50.0f0)
)
target_img = render(light_gt, scene)
showimg(zeroonenorm(render(light_gt, scene)))
light_guess = PointLight(
Vec3(1.0f0, 1.0f0, 1.0f0),
1.0f0,
Vec3(-1.0f0, -10.0f0, -50.0f0)
)
showimg(zeroonenorm(render(light_guess, scene)))
```
## Writing the Optimization Loop using Optim
Since, there is no direct support of Optim (unlike for Flux) in RayTracer
the interface might seem a bit ugly. This is mainly due to the way the
two optimization packages work. Flux allows inplace operation and ideally
even RayTracer prefers that. But Optim requires us to give the parameters
as an `AbstractArray`.
Firstly, we shall extract the parameters, using the [`RayTracer.get_params`](@ref)
function, we want to optimize.
```julia
initial_parameters = RayTracer.get_params(light_guess)[end-3:end]
```
Since the input to the `loss_function` is an abstract array we need to
convert it into a form that the RayTracer understands. For this we
shall use the [`RayTracer.set_params!`](@ref) function which will modify the
parameters inplace.
In this function we simply compute the loss values and print it for our
reference
```julia
function loss_function(θ::AbstractArray)
light_optim = deepcopy(light_guess)
RayTracer.set_params!(light_optim.intensity, θ[1:1])
RayTracer.set_params!(light_optim.position, θ[2:end])
loss = sum((render(light_optim, scene) .- target_img) .^ 2)
@show loss
return loss
end
```
RayTracer uses Zygote's Reverse Mode AD for computing the derivatives.
However, the default in Optim is ForwardDiff. Hence, we need to override
that by giving our own gradient function.
```julia
function ∇loss_function!(G, θ::AbstractArray)
light_optim = deepcopy(light_guess)
RayTracer.set_params!(light_optim.intensity, θ[1:1])
RayTracer.set_params!(light_optim.position, θ[2:end])
gs = gradient(light_optim) do L
sum((render(L, scene) .- target_img) .^ 2)
end
G .= RayTracer.get_params(gs[1])[end-3:end]
end
```
Now we simply call the `optimize` function with `LBFGS` optimizer.
```julia
res = optimize(loss_function, ∇loss_function!, initial_parameters, LBFGS())
@show res.minimizer
```
It might be interesting to note that convergence using LBFGS was much faster (only
252 iterations) compared to ADAM (401 iterations).
If we generate a `gif` for the optimization process it will look similar to this
```@raw html
<p align="center">
<img width=300 height=300 src="../../assets/inv_lighting_optim.gif">
</p>
```
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.1.4 | 9b84b299ed0742f769b64f28384f3147a677a576 | docs | 4443 | # Introduction to rendering using RayTracer.jl
In this example we will render the famous UTAH Teapot model.
We will go through the entire rendering API. We will load
an obj file for the scene. This needs to be downloaded manually.
Run this code in your terminal to get the file:
`wget https://raw.githubusercontent.com/McNopper/OpenGL/master/Binaries/teapot.obj`
If you are using REPL mode you need the `ImageView.jl` package
```julia
using RayTracer, Images #, ImageView
```
## General Attributes of the Scene
Specify the dimensions of the image we want to generate.
`screen_size` is never passed into the RayTracer directly so it
need not be a named tuple.
```julia
screen_size = (w = 256, h = 256)
```
Load the teapot object from an `obj` file. We can also specify
the scene using primitive objects directly but that becomes a
bit involved when there are complicated objects in the scene.
```julia
scene = load_obj("teapot.obj")
```
We shall define a convenience function for rendering and saving
the images.
For understanding the parameters passed to the individual functions
look into the documentations of [`get_primary_rays`](@ref), [`raytrace`](@ref)
and [`get_image`](@ref)
```julia
function generate_render_and_save(cam, light, filename)
#src # Get the primary rays for the camera
origin, direction = get_primary_rays(cam)
#src # Render the scene
color = raytrace(origin, direction, scene, light, origin, 2)
#src # This will reshape `color` into the proper dimensions and return
#src # an RGB image
img = get_image(color, screen_size...)
#src # Display the image
#src # For REPL mode change this to `imshow(img)`
display(img)
#src # Save the generated image
save(filename, img)
end
```
## Understanding the Light and Camera API
### DistantLight
In this example we will be using the [`DistantLight`](@ref). This king of lighting
is useful when we want to render a scene in which all parts of the scene
receive the same intensity of light.
For the DistantLight we need to provide three attributes:
* Color - Color of the Light Rays. Must be a Vec3 Object
* Intensity - Intensity of the Light
* Direction - The direction of light rays. Again this needs to be a Vec3 Object
### Camera
We use a perspective view [`Camera`](@ref) Model in RayTracer. Let us look into the
arguments we need to pass into the Camera constructor.
* LookFrom - The position of the Camera
* LookAt - The point in 3D space where the Camera is pointing
* vup - The UP vector of the world (typically Vec3(0.0, 1.0, 0.0), i.e. the y-axis)
* vfov - Field of View of the Camera
* Focus - The focal length of the Camera
* Width - Width of the output image
* Height - Height of the output image
## Rendering Different Views of the Teapot
Now that we know what each argument means let us render the teapot
### TOP VIEW Render
```julia
light = DistantLight(
Vec3(1.0f0),
100.0f0,
Vec3(0.0f0, 1.0f0, 0.0f0)
)
cam = Camera(
Vec3(1.0f0, 10.0f0, -1.0f0),
Vec3(0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
45.0f0,
1.0f0,
screen_size...
)
generate_render_and_save(cam, light, "teapot_top.jpg")
```
```@raw html
<p align="center">
<img width=256 height=256 src="../../assets/teapot_top.jpg">
</p>
```
### SIDE VIEW Render
```julia
light = DistantLight(
Vec3(1.0f0),
100.0f0,
Vec3(1.0f0, 1.0f0, -1.0f0)
)
cam = Camera(
Vec3(1.0f0, 2.0f0, -10.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
45.0f0,
1.0f0,
screen_size...
)
generate_render_and_save(cam, light, "teapot_side.jpg")
```
```@raw html
<p align="center">
<img width=256 height=256 src="../../assets/teapot_side.jpg">
</p>
```
### FRONT VIEW Render
```julia
light = DistantLight(
Vec3(1.0f0),
100.0f0,
Vec3(1.0f0, 1.0f0, 0.0f0)
)
cam = Camera(
Vec3(10.0f0, 2.0f0, 0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
45.0f0,
1.0f0,
screen_size...
)
generate_render_and_save(cam, light, "teapot_front.jpg")
```
```@raw html
<p align="center">
<img width=256 height=256 src="../../assets/teapot_front.jpg">
</p>
```
## Next Steps
* Try Rendering complex environments with RayTracer
* Look into the other examples in `examples/`
* Read about inverse rendering and see the examples on that
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| RayTracer | https://github.com/avik-pal/RayTracer.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 462 | using Documenter, HeatTransferFluids
makedocs(
modules = [HeatTransferFluids],
sitename = "HeatTransferFluids.jl",
pages = Any[
"HeatTransferFluids.jl"=>"index.md",
"API references"=>Any[
"api/fluid.md",
"api/structures.md",
"api/flow.md",
"api/pressure_drop.md",
"api/heat_transfer.md",
],
],
)
deploydocs(repo = "github.com/ryd-yb/HeatTransferFluids.jl.git") | HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 199 | module HeatTransferFluids
using DynamicQuantities
include("fluid.jl")
include("structure.jl")
include("flow.jl")
include("friction.jl")
include("pressure_drop.jl")
include("heat_transfer.jl")
end
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 3009 | export reynolds_number, nusselt_number, prandtl_number, dean_number
"""
reynolds_number(f::Fluid, t::Tube)
Computes the Reynolds number of a `fluid` flowing through a `tube`.
# Arguments
- `f::Fluid`: the fluid flowing through the tube
- `t::Tube`: the tube through which the fluid flows
# Returns
- `Float`: the Reynolds number of the fluid flowing through the tube
"""
function reynolds_number(f::Fluid, t::Tube)
ϱ = f.density
v = f.velocity
μ = f.viscosity
D = t.diameter
return ustrip(ϱ * v * D / μ)
end
function critical_reynolds_number(t::Tube)
return 2300
end
"""
pressure_drop(h::Helix)
Computes the critical Reynolds number for a Helix.
See VDI Heat Atlas, p. 1062 to 1063 for details.
# Arguments
- `h::Helix`: the coiled tube through which the fluid flows
# Returns
- `DynamicQuantity.AbstractQuantity`: the pressure drop of the fluid flowing through the tube
"""
function critical_reynolds_number(h::Helix)
Dw = h.diameter
H = h.pitch
D = Dw * (1 + (H / (π * Dw))^2)
d = h.tube.diameter
return ustrip(2300 * (1 + 8.6 * (d / D)^0.45))
end
"""
prandtl_number(f::Fluid)
Computes the Prandtl number of a `fluid``.
# Arguments
- `f::Fluid`: the fluid
# Returns
- `Float`: the Prandtl number of the fluid
"""
function prandtl_number(f::Fluid)
c = f.heat_capacity
μ = f.viscosity
k = f.thermal_conductivity
return ustrip(c * μ / k)
end
"""
nusselt_number(f::Fluid, t::Tube)
Computes the Nusselt number of a `fluid` flowing through a `tube`.
Depending on the regime (laminar or turbulent), different formula have to be used to compute the Nusselt number.
For the intermediate region, we perform a linear interpolation between the laminar and turbulent regimes.
See VDI Heat Atlas, p. 696 for details.
# Arguments
- `f::Fluid`: the fluid flowing through the tube
- `t::Tube`: the tube through which the fluid flows
# Returns
- `Float`: the Nusselt number of the fluid flowing through the tube
"""
function nusselt_number(f::Fluid, t::Tube)
Re = reynolds_number(f, t)
γ = clamp((Re - 2300) / (1e4 - 2300), 0.0, 1.0)
Nu_laminar = nusselt_number_laminar(f, t)
Nu_turbulent = nusselt_number_turbulent(f, t)
return (1 - γ) * Nu_laminar + γ * Nu_turbulent
end
function nusselt_number_laminar(f::Fluid, t::Tube)
Re = reynolds_number(f, t)
Pr = prandtl_number(f)
λ = t.diameter / t.length
Nu₁ = 4.354
Nu₂ = 1.953(Re * Pr * λ)^(1 / 3)
Nu₃ = (0.924Pr)^(1 / 3) * (Re * λ)^(1 / 2)
return (Nu₁^3 + 0.6^3 + (Nu₂ - 0.6)^3 + Nu₃^3)^(1 / 3)
end
function nusselt_number_turbulent(f::Fluid, t::Tube)
Re = reynolds_number(f, t)
Pr = prandtl_number(f)
λ = t.diameter / t.length
ξ = (1.8log10(Re) - 1.5)^(-2)
return ((ξ / 8)Re * Pr) * (1 + λ^(2 / 3)) / (1 + 12.7(ξ / 8)^(1 / 2) * (Pr^(2 / 3) - 1))
end
function dean_number(f::Fluid, b::Bend)
Re = reynolds_number(f, b.tube)
d = b.tube.diameter
D = 2 * b.radius
return Re * √(d / D)
end
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 2665 | export Fluid, Water
"""
Fluid{T<:AbstractQuantity}
A fluid with the important physical properties to be used in heat transfer calculations.
# Fields
- `density::T`: the density of the fluid
- `velocity::T`: the velocity of the fluid
- `viscosity::T`: the viscosity of the fluid
- `heat_capacity::T`: the specific heat capacity of the fluid
- `thermal_conductivity::T`: the thermal conductivity of the fluid
- `temperature::T`: the temperature of the fluid
"""
struct Fluid{T<:AbstractQuantity}
density::T
velocity::T
viscosity::T
heat_capacity::T
thermal_conductivity::T
temperature::T
function Fluid(;
density::T,
velocity::T,
viscosity::T,
heat_capacity::T,
thermal_conductivity::T,
temperature::T,
) where {T}
@assert dimension(density) == dimension(u"kg/m^3") "density must have units of mass per volume"
@assert dimension(velocity) == dimension(u"m/s") "velocity must have units of length per time"
@assert dimension(viscosity) == dimension(u"Pa*s") "viscosity must have units of pressure times time"
@assert dimension(heat_capacity) == dimension(u"J/(kg*K)") "heat_capacity must have units of energy per mass per temperature"
@assert dimension(thermal_conductivity) == dimension(u"W/(m*K)") "thermal_conductivity must have units of power per length per temperature"
@assert dimension(temperature) == dimension(u"K") "temperature must have units of temperature"
@assert ustrip(density) > 0 "density must be positive"
@assert ustrip(velocity) > 0 "velocity must be positive"
@assert ustrip(viscosity) > 0 "viscosity must be positive"
@assert ustrip(heat_capacity) > 0 "heat_capacity must be positive"
@assert ustrip(thermal_conductivity) > 0 "thermal_conductivity must be positive"
@assert ustrip(temperature) > 0 "temperature must be positive"
new{T}(density, velocity, viscosity, heat_capacity, thermal_conductivity, temperature)
end
end
"""
Water
Returns a Fluid with the properties of water close to room temperature.
# Keywords
- `velocity::AbstractQuantity`: the velocity of the water
- `temperature::AbstractQuantity`: the temperature of the water
# Returns
- `Fluid`: the fluid with the properties of water close to room temperature at the given velocity and temperature
"""
Water(; velocity::AbstractQuantity, temperature::AbstractQuantity) = Fluid(
density = 997u"kg/m^3",
velocity = velocity,
viscosity = 1e-3u"Pa*s",
heat_capacity = 4186u"J/(kg*K)",
thermal_conductivity = 0.591u"W/(m*K)",
temperature = temperature,
)
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 1651 | """
pressure_drop(f::Fluid, t::Tube)
Computes the friction coefficient of a `fluid` flowing through a `tube`.
See VDI Heat Atlas, p. 1057 for details.
# Arguments
- `f::Fluid`: the fluid flowing through the tube
- `t::Tube`: the tube through which the fluid flows
# Keywords
- `friction::Float`: the friction factor of the fluid flowing through the tube
# Returns
- `DynamicQuantities.AbstractQuantity`: the pressure drop of the fluid flowing through the tube
"""
function friction(f::Fluid, t::Tube)
Re = reynolds_number(f, t)
Re_c = critical_reynolds_number(t)
# laminar regime
if Re < Re_c
return 64 / Re
end
# turbulent regime
if Re > Re_c
# Blasius equation
if Re > 3000 && Re < 2e4
return 0.316 / Re^0.25
end
# Hermann equation
if Re > 2e4 && Re < 2e6
return 0.0054 + 0.3964 / Re^0.3
end
end
throw(DomainError(Re, "no analytical formula for flow regime"))
end
function friction(f::Fluid, b::Bend)
De = dean_number(f, b)
ξ = friction(f, b.tube)
# laminar flow as in straight tube
if De < 11.6
return ξ
end
# laminar flow with additional friction
if De >= 11.6 && De <= 2000
return ξ / (1 - (1 - (11.6 / De)^0.45)^(1 / 0.45))
end
r = b.tube.diameter / 2
R = b.radius
# turbulent flow
Re_c = critical_reynolds_number(b.tube) * 7.5 * (r / R)^0.25
Re = reynolds_number(f, b.tube)
if Re > Re_c
return (r / R)^0.5 * (0.003625 + 0.038 * (Re * (r / R)^2)^-0.25)
end
throw(DomainError(De, "no analytical formula for flow regime"))
end
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 529 | export heat_transfer
"""
heat_transfer(f::Fluid, t::Tube)
Computes the heat transfer coefficient of a `fluid`` flowing through a `tube`.
# Arguments
- `f::Fluid`: the fluid flowing through the tube
- `t::Tube`: the tube through which the fluid flows
# Returns
- `DynamicQuantity.AbstractQuantity`: the heat transfer coefficient of the fluid flowing through the tube
"""
function heat_transfer(f::Fluid, t::Tube)
k = f.thermal_conductivity
D = t.diameter
Nu = nusselt_number(f, t)
return Nu * (k / D)
end
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 2920 | export pressure_drop
"""
pressure_drop(f::Fluid, t::Tube[; friction])
Computes the pressure drop of a `fluid` flowing through a `tube` with a particular `friction`.
See VDI Heat Atlas, p. 1057 for details.
# Arguments
- `f::Fluid`: the fluid flowing through the tube
- `t::Tube`: the tube through which the fluid flows
# Keywords
- `friction::Float`: the friction factor of the fluid flowing through the tube
# Returns
- `DynamicQuantities.AbstractQuantity`: the pressure drop of the fluid flowing through the tube
"""
function pressure_drop(f::Fluid, t::Tube; friction = friction(f,t))
Re = reynolds_number(f, t)
L = t.length
d = t.diameter
ρ = f.density
u = f.velocity
ξ = friction
return uconvert(us"bar", ξ * (L / d) * (ρ * u^2 / 2))
end
"""
pressure_drop(f::Fluid, h::Helix)
Computes the pressure drop of a `fluid` flowing through a `helix`.
# Arguments
- `f::Fluid`: the fluid flowing through the tube
- `h::Helix`: the helix through which the fluid flows
# Returns
- `DynamicQuantity.AbstractQuantity`: the pressure drop of the fluid flowing through the tube
"""
function pressure_drop(f::Fluid, h::Helix)
Dw = h.diameter
H = h.pitch
D = Dw * (1 + (H / (π * Dw))^2)
d = h.tube.diameter
Re = reynolds_number(f, h.tube)
Re_crit = critical_reynolds_number(h)
if 1 < (Re * sqrt(d / D)) < (Re_crit * sqrt(d / D))
ξ = (64 / Re) * (1 + 0.033(log10(Re * sqrt(d / D)))^4.0)
else
ξ = (0.3164 / Re^(1 / 4)) * (1 + 0.095sqrt(d / D) * Re^(1 / 4))
end
return pressure_drop(f, h.tube, friction = ξ)
end
"""
pressure_drop(f::Fluid, v::Valve)
Computes the pressure drop of a `fluid` flowing through a `valve`.
# Arguments
- `f::Fluid`: the fluid flowing through the tube
- `v::Valve`: the valve through which the fluid flows
# Returns
- `DynamicQuantity.AbstractQuantity`: the pressure drop of the fluid flowing through the tube
"""
# https://en.wikipedia.org/wiki/Flow_coefficient
function pressure_drop(f::Fluid, v::Valve)
Q = uconvert(us"m^3/hr", v.flow_rate)
Kv = uconvert(us"m^3/hr", v.flow_factor)
ρ = f.density
ρ₀ = 1000u"kg/m^3"
p₀ = 1u"bar"
return p₀ * (Q / Kv)^2 * ρ / ρ₀
end
"""
pressure_drop(f::Fluid, b::Bend)
Computes the pressure drop of a `fluid` flowing through a `bend`.
So far, we only support 90-degree bends, see Spedding, P.L., Bernard, E. and McNally, G.M., ‘Fluid flow through 90 degree bends’, Dev. Chem. Eng Mineral Process, 12: 107–128, 2004.
# Arguments
- `f::Fluid`: the fluid flowing through the tube
- `b::Bend`: the valve through which the fluid flows
# Returns
- `DynamicQuantity.AbstractQuantity`: the pressure drop of the fluid flowing through the tube
"""
function pressure_drop(f::Fluid, b::Bend)
@assert b.angle == 90u"deg" "only 90-degree bends are supported at the moment"
return pressure_drop(f, b.tube; friction=friction(f, b))
end
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 2982 | export Structure, Tube, Helix, Valve, Bend, Elbow
"""
Structure
A structure is an element through which a fluid flows.
"""
abstract type Structure end
"""
Tube{T<:AbstractQuantity}
A tube with a diameter and length through which a fluid flows.
# Fields
- `diameter::T`: the diameter of the tube
- `length::T`: the length of the tube
"""
struct Tube{T<:AbstractQuantity} <: Structure
diameter::T
length::T
function Tube(; diameter::T, length::T) where {T}
@assert dimension(diameter) == dimension(u"m") "diameter must have units of length"
@assert dimension(length) == dimension(u"m") "length must have units of length"
@assert ustrip(diameter) > 0 "diameter must be positive"
@assert ustrip(length) > 0 "length must be positive"
new{T}(diameter, length)
end
end
"""
Helix{T<:Tube,V<:AbstractQuantity}
A tube in the shape of a helix with a diameter and pitch.
# Fields
- `tube::T`: the tube that is coiled
- `diameter::V`: the diameter of the coil
- `pitch::V`: the pitch of the coil
"""
struct Helix{T<:Tube,V<:AbstractQuantity} <: Structure
tube::T
diameter::V
pitch::V
function Helix(t::T; diameter::V, pitch::V) where {T,V}
@assert dimension(diameter) == dimension(u"m") "diameter must have units of length"
@assert dimension(pitch) == dimension(u"m") "pitch must have units of length"
@assert ustrip(diameter) > 0 "diameter must be positive"
@assert ustrip(pitch) > 0 "pitch must be positive"
new{T,V}(t, diameter, pitch)
end
end
"""
Valve{T<:AbstractQuantity}
A valve parametrized by a flow rate and flow factor.
# Fields
- `flow_rate::T`: the flow rate of the valve
- `flow_factor::T`: the flow factor of the valve
"""
struct Valve{T<:AbstractQuantity} <: Structure
flow_rate::T
flow_factor::T
function Valve(; flow_rate::T, flow_factor::T) where {T}
@assert dimension(flow_rate) == dimension(u"m^3/s") "flow_rate must have units of volume per time"
@assert dimension(flow_factor) == dimension(u"m^3/s") "flow_factor must have units of volume per time"
@assert ustrip(flow_rate) > 0 "flow_rate must be positive"
@assert ustrip(flow_factor) > 0 "flow_factor must be positive"
new{T}(flow_rate, flow_factor)
end
end
struct Bend{T<:AbstractQuantity} <: Structure
tube::Tube
radius::T
angle::T
function Bend(tube::Tube; radius::T, angle::T) where {T}
@assert dimension(radius) == dimension(u"m") "radius must have units of length"
@assert dimension(angle) == dimension(u"rad") "angle must have units of angle"
@assert ustrip(radius) > 0 "radius must be positive"
@assert angle > 0u"deg" "angle must be positive"
@assert angle < 180u"deg" "angle must be less than 180 degrees"
new{T}(tube, radius, angle)
end
end
Elbow(tube::Tube; radius::AbstractQuantity) = Bend(tube, radius = radius, angle = π / 2u"rad")
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 588 | @testset "Flow" begin
fluid = Water(velocity = 0.58u"m/s", temperature = 293.15u"K")
tube = Tube(diameter = 2.7u"mm", length = 9.5153u"m")
@testset "reynolds_number" begin
@test reynolds_number(fluid, tube) ≈ 1561 atol = 1
end
@testset "prandtl_number" begin
@test prandtl_number(fluid) ≈ 7 atol = 1
end
@testset "nusselt_number" begin
@test nusselt_number(fluid, tube) ≈ 5 atol = 1
end
@testset "dean_number" begin
@test dean_number(fluid, Elbow(tube, radius = 10u"mm")) ≈ 1561 * √(2.7 / 20) atol = 1
end
end
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 323 | @testset "Fluid" begin
@test Water(velocity = 1u"m/s", temperature = 293.15u"K") == Fluid(
density = 997u"kg/m^3",
velocity = 1u"m/s",
viscosity = 1e-3u"Pa*s",
heat_capacity = 4186u"J/(kg*K)",
thermal_conductivity = 0.591u"W/(m*K)",
temperature = 293.15u"K",
)
end
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 294 | @testset "heat_transfer" begin
fluid = Water(velocity = 3u"m/s", temperature = 293.15u"K")
tube = Tube(diameter = 2.7u"mm", length = 14u"m")
#coil = Coil(tube; diameter = 95u"mm", pitch = 5.2u"mm")
@test heat_transfer(fluid, tube) ≈ 12u"kW/(K*m^2)" atol = 1u"kW/(K*m^2)"
end
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 895 | @testset "pressure_drop" begin
fluid = Water(velocity = 0.58u"m/s", temperature = 293.15u"K")
tube = Tube(diameter = 2.7u"mm", length = 9.5153u"m")
@testset "tube" begin
@test pressure_drop(fluid, tube) ≈ 0.25u"bar" atol = 0.01u"bar"
@test pressure_drop(Water(velocity = 3u"m/s", temperature = 262.15u"K"), Tube(diameter = 5u"mm", length = 1u"m")) ≈ 0.25u"bar" atol = 0.3u"bar"
end
@testset "coil" begin
@test pressure_drop(fluid, Helix(tube, diameter = 63.1u"mm", pitch = 2.6u"mm")) ≈ 0.56u"bar" atol =
0.01u"bar"
end
@testset "valve" begin
@test pressure_drop(fluid, Valve(flow_rate = 62u"L/hr", flow_factor = 1.5u"m^3/hr")) ≈
0.0017u"bar" atol = 0.0001u"bar"
end
@testset "bend" begin
@test pressure_drop(fluid, Elbow(tube, radius = 10u"mm")) ≈ 0.7u"bar" atol = 0.1u"bar"
end
end
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 180 | using HeatTransferFluids
using Test
using DynamicQuantities
include("fluid.jl")
include("structure.jl")
include("flow.jl")
include("pressure_drop.jl")
include("heat_transfer.jl")
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | code | 1418 | @testset "Structure" begin
tube = Tube(diameter = 2.7u"mm", length = 9u"m")
@testset "Tube" begin
@test tube.diameter == 2.7u"mm"
@test tube.length == 9u"m"
end
@testset "Helix" begin
h = Helix(tube; diameter = 2.7u"mm", pitch = 9u"m")
@test h.tube == tube
@test h.diameter == 2.7u"mm"
@test h.pitch == 9u"m"
end
@testset "Valve" begin
v = Valve(flow_rate = 62u"L/hr", flow_factor = 1.5u"m^3/hr")
@test v.flow_rate == 62u"L/hr"
@test v.flow_factor == 1.5u"m^3/hr"
@test_throws AssertionError Valve(flow_rate = 0u"L/hr", flow_factor = 1.5u"m^3/hr")
@test_throws AssertionError Valve(flow_rate = 10u"L/hr", flow_factor = 0u"m^3/hr")
@test_throws AssertionError Valve(flow_rate = 10u"m/hr", flow_factor = 1.5u"m^3/hr")
@test_throws AssertionError Valve(flow_rate = 10u"L/hr", flow_factor = 1.5u"m^2/hr")
end
@testset "Bend" begin
t = Elbow(tube, radius = 10u"mm")
@test t.tube == tube
@test t.radius == 10u"mm"
@test t.angle == 90u"deg"
@test_throws AssertionError Elbow(tube, radius = 0u"mm")
@test_throws AssertionError Elbow(tube, radius = -10u"mm")
@test_throws AssertionError Bend(tube, radius = 10u"m", angle = 0u"deg")
@test_throws AssertionError Bend(tube, radius = 10u"m", angle = 180u"deg")
end
end
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | docs | 866 | # HeatTransferFluids.jl
| **Build Status** | **Code Coverage** |
|:-----------------------------------------:|:-------------------------------:|
| [![][CI-img]][CI-url] | [![][codecov-img]][codecov-url] |
HeatTransferFluids.jl is a Julia library that provides various types and functions for engineering heat transfer with fluids.
## Installation
```julia
using Pkg
Pkg.add("https://github.com/ryd-yb/HeatTransferFluids.jl")
```
## Usage
See the tests in `test`.
[CI-img]: https://github.com/ryd-yb/HeatTransferFluids.jl/actions/workflows/CI.yml/badge.svg
[CI-url]: https://github.com/ryd-yb/HeatTransferFluids.jl/actions/workflows/CI.yml
[codecov-img]: https://codecov.io/gh/ryd-yb/HeatTransferFluids.jl/branch/main/graph/badge.svg?token=CNF55N4HDZ
[codecov-url]: https://codecov.io/gh/ryd-yb/HeatTransferFluids.jl
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | docs | 222 | # HeatTransferFluids.jl
HeatTransferFluids.jl is a Julia library that provides various types and functions for engineering heat transfer with fluids.
## Installation
```julia
using Pkg; Pkg.add("HeatTransferFluids")
``` | HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | docs | 152 | # Flow
```@docs
HeatTransferFluids.reynolds_number
```
```@docs
HeatTransferFluids.prandtl_number
```
```@docs
HeatTransferFluids.nusselt_number
```
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | docs | 85 | # Fluid
```@docs
HeatTransferFluids.Fluid
```
```@docs
HeatTransferFluids.Water
``` | HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | docs | 63 | # Heat transfer
```@docs
HeatTransferFluids.heat_transfer
```
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | docs | 63 | # Pressure drop
```@docs
HeatTransferFluids.pressure_drop
```
| HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 0.2.0 | 9b3895644c4ca9a43b8650f315c0526fee907f6f | docs | 169 | # Structure
```@docs
HeatTransferFluids.Structure
```
```@docs
HeatTransferFluids.Tube
```
```@docs
HeatTransferFluids.Coil
```
```@docs
HeatTransferFluids.Valve
``` | HeatTransferFluids | https://github.com/rydyb/HeatTransferFluids.jl.git |
|
[
"MIT"
] | 1.0.4 | ecfe2e9a260c4723026b4a71460cf0420def9e40 | code | 290 | module CircStats
using Statistics,LinearAlgebra,Distributions,SpecialFunctions,HypothesisTests
include("src.jl")
# export all symbols
for n in names(@__MODULE__, all=true)
if Base.isidentifier(n) && n ∉ (nameof(@__MODULE__), :eval, :include)
@eval export $n
end
end
end
| CircStats | https://github.com/circstat/CircStats.jl.git |
|
[
"MIT"
] | 1.0.4 | ecfe2e9a260c4723026b4a71460cf0420def9e40 | code | 36679 | """
Computes mean resultant vector length for circular data.
1. α: sample of angles in radians
- w: number of incidences in case of binned angle data
- d: spacing of bin centers for binned data, used to correct for bias in estimation of r, in radians
- dims: compute along this dimension(default=1)
return: mean resultant length
"""
function circ_r(α; w = ones(size(α)), d = 0, dims = 1)
# compute weighted sum of cos and sin of angles
r = sum(w .* cis.(α); dims)
# obtain length
r = abs.(r) ./ sum(w; dims)
# for data with known spacing, apply correction factor to correct for bias in the estimation of r (see Zar, p. 601, equ. 26.16)
if d != 0
c = d / 2 / sin(d / 2)
r *= c
end
length(r) == 1 ? r[1] : r
end
"""
Computes the mean direction for circular data.
1. α: sample of angles in radians
- w: weightings in case of binned angle data
- dims: compute along this dimension(default=1)
return:
- μ: mean direction
- ul: upper 95% confidence limit
- ll: lower 95% confidence limit
"""
function circ_mean(α; w = ones(size(α)), dims = 1)
# compute weighted sum of cos and sin of angles
r = sum(w .* cis.(α); dims)
# obtain mean by
μ = angle.(r)
μ = length(μ) == 1 ? μ[1] : μ
# confidence limits
t = circ_confmean(α; xi = 0.05, w, d = 0, dims)
ul = μ .+ t
ll = μ .- t
return (; μ, ul, ll)
end
"""
Transforms p-axial data to a common scale.
1. α: sample of angles in radians
2. p: number of modes(default=1)
return: transformed data
"""
circ_axial(α, p = 1) = mod2pi.(α * p)
"""
Computes the median direction for circular data.
1. α: sample of angles in radians
return: median direction
"""
function circ_median(α::AbstractVector)
α = mod2pi.(α)
n = length(α)
dd = circ_dist2(α)
m1 = dropdims(count(>=(0), dd; dims = 1), dims = 1)
m2 = dropdims(count(<=(0), dd; dims = 1), dims = 1)
dm = abs.(m1 .- m2)
m = minimum(dm)
md = circ_mean(α[dm.==m]).μ
αμ = circ_mean(α).μ
if abs(circ_dist(αμ, md)) > abs(circ_dist(αμ, md + π))
md = mod2pi(md + π)
end
return md
end
"""
Computes circular standard deviation for circular data (equ. 26.20, Zar).
1. α: sample of angles in radians
- w: weightings in case of binned angle data
- d: spacing of bin centers for binned data, used to correct for bias in estimation of r, in radians
- dims: compute along this dimension(default=1)
return:
- s: angular deviation
- s0: circular standard deviation
"""
function circ_std(α; w = ones(size(α)), d = 0, dims = 1)
# compute mean resultant vector length
r = circ_r(α; w, d, dims)
s = sqrt.(2 .* (1 .- r)) # 26.20
s0 = sqrt.(-2 .* log.(r)) # 26.21
return (; s, s0)
end
"""
Computes circular variance for circular data (equ. 26.17/18, Zar).
1. α: sample of angles in radians
- w: number of incidences in case of binned angle data
- d: spacing of bin centers for binned data, used to correct for bias in estimation of r, in radians
- dims: compute along this dimension(default=1)
return:
- S: circular variance 1-r
- s: angular variance 2(1-r)
"""
function circ_var(α; w = ones(size(α)), d = 0, dims = 1)
# compute mean resultant vector length
r = circ_r(α; w, d, dims)
# apply transformation to var
S = 1 .- r
s = 2 * S
return (; S, s)
end
"""
Computes the confidence limits on the mean for circular data.
1. α: sample of angles in radians
- xi: (1-xi) confidence limits are computed, default=0.05
- w: number of incidences in case of binned angle data
- d: spacing of bin centers for binned data, used to correct for bias in estimation of r, in radians
- dims: compute along this dimension(default=1)
return: mean ± d yields upper/lower (1-xi)% confidence limit
"""
function circ_confmean(α; xi = 0.05, w = ones(size(α)), d = 0, dims = 1)
# compute ingredients for conf. lim.
r = circ_r(α; w, d, dims)
n = sum(w; dims)
R = n .* r
c2 = quantile(Chisq(1), 1 - xi)
# check for resultant vector length and select appropriate formula
t = zeros(size(r))
for i = 1:length(r)
if r[i] < 0.9 && r[i] > sqrt(c2 / 2 / n[i])
t[i] = sqrt((2 * n[i] * (2 * R[i]^2 - n[i] * c2)) / (4 * n[i] - c2)) # equ. 26.24
elseif r[i] >= 0.9
t[i] = sqrt(n[i]^2 - (n[i]^2 - R[i]^2) * exp(c2 / n[i])) # equ. 26.25
else
t[i] = NaN
@warn "Requirements for confidence levels not met."
end
end
# apply final transform
t = acos.(clamp.(t ./ R, -1, 1))
t = length(t) == 1 ? t[1] : t
end
"""
Calculates a measure of angular skewness.
1. α: sample of angles in radians
- w: weightings in case of binned angle data
- dims: compute along this dimension(default=1)
return:
- b: skewness (from Pewsey)
- b0: alternative skewness measure (from Fisher)
"""
function circ_skewness(α; w = ones(size(α)), dims = 1)
# compute neccessary values
R = circ_r(α; w, d = 0, dims)
θ = circ_mean(α; w, dims).μ
_, ρ₂, μ₂ = circ_moment(α; w, p = 2, cent = false, dims)
# compute skewness
if ndims(θ) > 0
θ₂ = repeat(θ, outer = Int.(size(α) ./ size(θ)))
else
θ₂ = θ
end
b = sum(w .* sin.(2 * circ_dist(α, θ₂)); dims) ./ sum(w; dims)
b0 = ρ₂ .* sin.(circ_dist(μ₂, 2θ)) ./ (1 .- R) .^ (3 / 2) # (formula 2.29)
b = length(b) == 1 ? b[1] : b
b0 = length(b0) == 1 ? b0[1] : b0
return (; b, b0)
end
"""
Calculates a measure of angular kurtosis.
1. α: sample of angles in radians
- w: weightings in case of binned angle data
- dims: compute along this dimension(default=1)
return:
- k: kurtosis (from Pewsey)
- k0: kurtosis (from Fisher)
"""
function circ_kurtosis(α; w = ones(size(α)), dims = 1)
# compute mean direction
R = circ_r(α; w, d = 0, dims)
θ = circ_mean(α; w, dims).μ
_, ρ₂, _ = circ_moment(α; w, p = 2, cent = true, dims)
_, _, μ₂ = circ_moment(α; w, p = 2, cent = false, dims)
# compute skewness
if ndims(θ) > 0
θ₂ = repeat(θ, outer = Int.(size(α) ./ size(θ)))
else
θ₂ = θ
end
k = sum(w .* cos.(2 * circ_dist(α, θ₂)); dims) ./ sum(w; dims)
k0 = (ρ₂ .* cos.(circ_dist(μ₂, 2θ)) .- R .^ 4) ./ (1 .- R) .^ 2 # (formula 2.30)
k = length(k) == 1 ? k[1] : k
k0 = length(k0) == 1 ? k0[1] : k0
return (; k, k0)
end
"""
Calculates the complex p-th centred or non-centred moment of the angular data in angle.
1. α: sample of angles in radians
- w: number of incidences in case of binned angle data
- p: p-th moment to be computed, default=1
- cent: if true, central moments are computed, default = false
- dims: compute along this dimension(default=1)
return:
- mp: complex p-th moment
- ρp: magnitude of the p-th moment
- μp: angle of th p-th moment
"""
function circ_moment(α; w = ones(size(α)), p = 1, cent = false, dims = 1)
if cent
θ = circ_mean(α; w, dims).μ
if ndims(θ) > 0
v = Int.(size(α) ./ size(θ))
θ = repeat(θ, outer = v)
end
α = circ_dist(α, θ)
end
n = size(α, dims)
c̄ = sum(cos.(p * α) .* w; dims) / n
s̄ = sum(sin.(p * α) .* w; dims) / n
mp = c̄ .+ im * s̄
ρp = abs.(mp)
μp = angle.(mp)
mp = length(mp) == 1 ? mp[1] : mp
ρp = length(ρp) == 1 ? ρp[1] : ρp
μp = length(μp) == 1 ? μp[1] : μp
return (; mp, ρp, μp)
end
"""
Pairwise difference α-β around the circle computed efficiently.
1. α: sample of linear random variable
2. β: sample of linear random variable or one single angle
return: matrix with differences
"""
circ_dist(α, β) = angle.(cis.(α) ./ cis.(β))
"""
All pairwise difference α-β around the circle computed efficiently.
1. α: sample of linear random variable
2. β: sample of linear random variable
return: matrix with pairwise differences
"""
circ_dist2(α) = circ_dist2(α, α)
circ_dist2(α, β) = angle.(cis.(α) ./ cis.(β'))
"""
Computes descriptive statistics for circular data.
1. α: sample of angles in radians
- w: weightings in case of binned angle data
- d: spacing of bin centers for binned data, used to correct for bias in estimation of r, in radians
return: descriptive statistics
"""
function circ_stats(α::AbstractVector; w = ones(size(α)), d = 0)
# mean
mean = circ_mean(α; w).μ
# median
median = circ_median(α)
# variance
var = circ_var(α; w, d)
# standard deviation
std, std0 = circ_std(α; w, d)
# skewness
skewness, skewness0 = circ_skewness(α; w)
# kurtosis
kurtosis, kurtosis0 = circ_kurtosis(α; w)
return (; mean, median, var,std,std0, skewness,skewness0,kurtosis,kurtosis0)
end
"""
Computes Rayleigh test for non-uniformity of circular data.
H0: the population is uniformly distributed around the circle
HA: the populatoin is not distributed uniformly around the circle
Assumption: the distribution has maximally one mode and the data is
sampled from a von Mises distribution!
1. α: sample of angles in radians
- w: number of incidences in case of binned angle data
- d: spacing of bin centers for binned data, used to correct for bias in estimation of r, in radians
return:
- p: p-value of Rayleigh's test
- z: value of the z-statistic
"""
function circ_rtest(α; w = ones(size(α)), d = 0)
r = circ_r(α; w, d)
n = sum(w)
# compute Rayleigh's R (equ. 27.1)
R = n * r
# compute Rayleigh's z (equ. 27.2)
z = R^2 / n
# compute p value using approxation in Zar, p. 617
p = exp(sqrt(1 + 4n + 4(n^2 - R^2)) - (1 + 2n))
return (; p, z)
end
"""
Computes Omnibus or Hodges-Ajne test for non-uniformity of circular data.
H0: the population is uniformly distributed around the circle
HA: the population is not distributed uniformly around the circle
Alternative to the Rayleigh and Rao's test. Works well for unimodal,
bimodal or multimodal data. If requirements of the Rayleigh test are met, the latter is more powerful.
1. α: sample of angles in radians
- sz: step size for evaluating distribution, default 1 degree
- w: number of incidences in case of binned angle data
return:
- p: p-value
- m: minimum number of samples falling in one half of the circle
"""
function circ_otest(α; sz = deg2rad(1), w = ones(size(α)))
α = mod2pi.(α)
n = sum(w)
dg = 0:sz:π
m1 = zeros(size(dg))
m2 = zeros(size(dg))
for i = 1:length(dg)
m1[i] = sum((α .> dg[i]) .& (α .< π + dg[i]) .* w)
m2[i] = n - m1[i]
end
m = min(minimum(m1), minimum(m2))
if n > 50
# approximation by Ajne (1968)
A = π * sqrt(n) / 2 / (n - 2m)
p = sqrt(2π) / A * exp(-π^2 / 8 / A^2)
else
# exact formula by Hodges (1955)
# p = 2^(1-n) * (n-2m) * nchoosek(n,m) # revised below for numerical stability
p = exp((1 - n) * log(2) + log(n - 2m) + loggamma(n + 1) - loggamma(m + 1) - loggamma(n - m + 1))
end
return (; p, m)
end
"""
Calculates Rao's spacing test by comparing distances between points on a circle to those expected from a uniform distribution.
H0: Data is distributed uniformly around the circle.
H1: Data is not uniformly distributed around the circle.
Alternative to the Rayleigh test and the Omnibus test. Less powerful
than the Rayleigh test when the distribution is unimodal on a global scale but uniform locally.
Due to the complexity of the distributioin of the test statistic, we resort to the tables published by
Russell, Gerald S. and Levitin, Daniel J.(1995) An expanded table of probability values for rao's spacing test, Communications in Statistics - Simulation and Computation
Therefore the reported p-value is the smallest α level at which the test would still be significant.
If the test is not significant at the α=0.1 level, we return the critical value for α = 0.05 and p = 0.5.
1. α: sample of angles in radians
return:
- p: smallest p-value at which test would be significant
- u: computed value of the test-statistic u
- UC: critical value of the test statistic at sig-level
"""
function circ_raotest(α)
# for the purpose of the test, convert to angles
α = sort(rad2deg.(α))
n = length(α)
# compute test statistic
u = 0
λ = 360 / n
for j = 1:n-1
ti = α[j+1] - α[j]
u += abs(ti - λ)
end
tn = 360 - α[n] + α[1]
u = 0.5(u + abs(tn - λ))
getVal = (N, u) -> begin
# Table II from Russel and Levitin, 1995
α = [0.001, 0.01, 0.05, 0.10]
table = [
4 247.32 221.14 186.45 168.02
5 245.19 211.93 183.44 168.66
6 236.81 206.79 180.65 166.30
7 229.46 202.55 177.83 165.05
8 224.41 198.46 175.68 163.56
9 219.52 195.27 173.68 162.36
10 215.44 192.37 171.98 161.23
11 211.87 189.88 170.45 160.24
12 208.69 187.66 169.09 159.33
13 205.87 185.68 167.87 158.50
14 203.33 183.90 166.76 157.75
15 201.04 182.28 165.75 157.06
16 198.96 180.81 164.83 156.43
17 197.05 179.46 163.98 155.84
18 195.29 178.22 163.20 155.29
19 193.67 177.08 162.47 154.78
20 192.17 176.01 161.79 154.31
21 190.78 175.02 161.16 153.86
22 189.47 174.10 160.56 153.44
23 188.25 173.23 160.01 153.05
24 187.11 172.41 159.48 152.68
25 186.03 171.64 158.99 152.32
26 185.01 170.92 158.52 151.99
27 184.05 170.23 158.07 151.67
28 183.14 169.58 157.65 151.37
29 182.28 168.96 157.25 151.08
30 181.45 168.38 156.87 150.80
35 177.88 165.81 155.19 149.59
40 174.99 163.73 153.82 148.60
45 172.58 162.00 152.68 147.76
50 170.54 160.53 151.70 147.05
75 163.60 155.49 148.34 144.56
100 159.45 152.46 146.29 143.03
150 154.51 148.84 143.83 141.18
200 151.56 146.67 142.35 140.06
300 148.06 144.09 140.57 138.71
400 145.96 142.54 139.50 137.89
500 144.54 141.48 138.77 137.33
600 143.48 140.70 138.23 136.91
700 142.66 140.09 137.80 136.59
800 142.00 139.60 137.46 136.33
900 141.45 139.19 137.18 136.11
1000 140.99 138.84 136.94 135.92]
ridx = findfirst(table[:, 1] .>= N)
cidx = findfirst(table[ridx, 2:end] .< u)
if isnothing(cidx)
UC = table[ridx, end-1]
p = 0.5
else
UC = table[ridx, cidx+1]
p = α[cidx]
end
return p, UC
end
# get critical value from table
p, UC = getVal(n, u)
return (; p, u, UC)
end
"""
Computes V test for non-uniformity of circular data with a specified mean direction.
H0: the population is uniformly distributed around the circle
HA: the population is not distributed uniformly around the circle but has a mean of `m`.
!!!note
Not rejecting H0 may mean that the population is uniformly distributed around the circle OR
that it has a mode but that this mode is not centered at `m`.
The V test has more power than the Rayleigh test and is preferred if there is reason to believe in a specific mean direction.
1. α: sample of angles in radians
- m: suspected mean direction, default=0
- w: number of incidences in case of binned angle data
- d: spacing of bin centers for binned data, used to correct for bias in estimation of r, in radians
return:
- p: p-value of V test
- v: value of the V statistic
"""
function circ_vtest(α; m = 0, w = ones(size(α)), d = 0)
# compute some ingredients
r = circ_r(α; w, d)
μ, = circ_mean(α; w)
n = sum(w)
# compute Rayleigh's R (equ. 27.1)
R = n * r
# compute the V statistic (equ. 27.5)
v = R * cos(μ - m)
# compute u (equ. 27.6)
u = v * sqrt(2 / n)
# compute p-value from one tailed normal approximation
p = 1 - cdf(Normal(), u)
return (; p, v)
end
"""
Tests for significance of the median.
H0: the population has median angle `md`
HA: the population has not median angle `md`
1. α: sample of angles in radians
- md: median to test, default=0
return: p-value
"""
function circ_medtest(α; md = 0)
n = length(α)
# compute deviations from median
d = circ_dist(α, md)
n1 = sum(d .< 0)
n2 = sum(d .> 0)
# compute p-value with binomial test
sum(pdf.(Binomial(n, 0.5), [0:min(n1, n2); max(n1, n2):n]))
end
"""
One-Sample test for the mean angle.
H0: the population has mean `m`.
HA: the population has not mean `m`.
!!!note: This is the equvivalent to a one-sample t-test with specified mean direction.
1. α: sample of angles in radians
- m: assumed mean direction, default=0
- w: number of incidences in case of binned angle data
- d: spacing of bin centers for binned data, used to correct for bias in estimation of r, in radians
- xi: alpha level of the test
return:
- h: false if H0 can not be rejected, true otherwise
- μ: mean
- ul: upper (1-xi) confidence level
- ll: lower (1-xi) confidence level
"""
function circ_mtest(α; xi = 0.05, m = 0, w = ones(size(α)), d = 0)
# compute ingredients
μ, = circ_mean(α; w)
t = circ_confmean(α; xi, w, d)
ul = μ + t
ll = μ - t
# compute test via confidence limits (example 27.3)
h = abs(circ_dist2(m, μ)) > t
return (; h, μ, ul, ll)
end
"""
Parametric Watson-Williams multi-sample test for equal means. Can be used as a one-way ANOVA test for circular data.
H0: the s populations have equal means
HA: the s populations have unequal means
!!! note
Use with binned data is only advisable if binning is finer than 10 deg.
In this case, α is assumed to correspond to bin centers.
The Watson-Williams two-sample test assumes underlying von-Mises distributrions.
All groups are assumed to have a common concentration parameter k.
1. α: angles in radians
2. idx: indicates which population the respective angle in α comes from, 1:s
- w: number of incidences in case of binned angle data
return:
- p: p-value of the Watson-Williams multi-sample test. Discard H0 if p is small.
- F: F statistics
"""
function circ_wwtest(α, idx; w = ones(size(α)))
# number of groups
u = unique(idx)
s = length(u)
# number of samples
n = sum(w)
# compute relevant quantitites
pn = zeros(s)
pr = zeros(s)
for t = 1:s
pidx = idx .== u[t]
pn[t] = sum(pidx .* w)
pr[t] = circ_r(α[pidx]; w = w[pidx])
end
r = circ_r(α; w)
rw = sum(pn .* pr) / n
# make sure assumptions are satisfied
checkAssumption =
(rw, n) -> begin
if n >= 11 && rw < 0.45
@warn "Test not applicable. Average resultant vector length < 0.45."
elseif n < 11 && n >= 7 && rw < 0.5
@warn "Test not applicable. Average number of samples per population 6 < x < 11 and average resultant vector length < 0.5."
elseif n >= 5 && n < 7 && rw < 0.55
@warn "Test not applicable. Average number of samples per population 4 < x < 7 and average resultant vector length < 0.55."
elseif n < 5
@warn "Test not applicable. Average number of samples per population < 5."
end
end
checkAssumption(rw, mean(pn))
# test statistic
kk = circ_kappa(rw)
β = 1 + 3 / (8 * kk) # correction factor
A = sum(pr .* pn) - r * n
B = n - sum(pr .* pn)
F = β * (n - s) * A / (s - 1) / B
# p = 1 - fcdf(F, s - 1, n - s)
p = 1 - cdf(FDist(s - 1, n - s), F)
# fprintf('\nANALYSIS OF VARIANCE TABLE (WATSON-WILLIAMS TEST)\n\n');
# fprintf('%s\t\t\t\t%s\t%s\t\t%s\t\t%s\t\t\t%s\n', ' ' ,'d.f.', 'SS', 'MS', 'F', 'P-Value');
# fprintf('--------------------------------------------------------------------\n');
# fprintf('%s\t\t\t%u\t\t%.2f\t%.2f\t%.2f\t\t%.4f\n', 'Columns', s-1 , A, A/(s-1), F, pval);
# fprintf('%s\t\t%u\t\t%.2f\t%.2f\n', 'Residual ', n-s, B, B/(n-s));
# fprintf('--------------------------------------------------------------------\n');
# fprintf('%s\t\t%u\t\t%.2f', 'Total ',n-1,A+B);
# fprintf('\n\n')
# table = ["Source",'d.f.','SS','MS','F','P-Value';
# 'Columns', s-1 , A, A/(s-1), F, pval;
# 'Residual ', n-s, B, B/(n-s), [], [];
# 'Total',n-1,A+B,[],[],[]]
return (; p, F)
end
"""
Parametric two-way ANOVA for circular data with interations.
!!!note
The test assumes underlying von-Mises distributrions.
All groups are assumed to have a common concentration parameter k, between 0 and 2.
1. α: angles in radians
2. idp: indicates the level of factor 1 (1:p)
3. idq: indicates the level of factor 2 (1:q)
- inter: whether to include effect of interaction
- fn: string array containing names of the factors
return:
- p: pvalues for factors and interaction
- s: statistic of each p value
"""
function circ_hktest(α, idp, idq; inter = true, fn = ['A', 'B'])
# number of groups for every factor
pu = unique(idp)
p = length(pu)
qu = unique(idq)
q = length(qu)
# number of samples
n = length(α)
# compute important sums for the test statistics
cn = zeros(p, q)
cr = zeros(p, q)
pm = zeros(p)
pr = zeros(p)
pn = zeros(p)
qm = zeros(q)
qr = zeros(q)
qn = zeros(q)
for pp = 1:p
p_id = idp .== pu[pp] # indices of factor1 = pp
for qq = 1:q
q_id = idq .== qu[qq] # indices of factor2 = qq
idx = p_id .& q_id
cn[pp, qq] = sum(idx) # number of items in cell
cr[pp, qq] = cn[pp, qq] * circ_r(α[idx]) # R of cell
end
# R and mean angle for factor 1
pr[pp] = sum(p_id) * circ_r(α[p_id])
pm[pp] = circ_mean(α[p_id]).μ
pn[pp] = sum(p_id)
end
# R and mean angle for factor 2
for qq = 1:q
q_id = idq .== qu[qq]
qr[qq] = sum(q_id) * circ_r(α[q_id])
qm[qq] = circ_mean(α[q_id]).μ
qn[qq] = sum(q_id)
end
# R and mean angle for whole sample (total)
tr = n * circ_r(α)
# estimate kappa
kk = circ_kappa(tr / n)
# different formulas for different width of the distribution
if kk > 2
# large kappa
# effect of factor 1
eff_1 = sum(pr .^ 2 ./ dropdims(sum(cn, dims = 2), dims = 2)) - tr .^ 2 / n
df_1 = p - 1
ms_1 = eff_1 / df_1
# effect of factor 2
eff_2 = sum(qr .^ 2 ./ dropdims(sum(cn, dims = 1), dims = 1)) - tr .^ 2 / n
df_2 = q - 1
ms_2 = eff_2 / df_2
# total effect
eff_t = n - tr .^ 2 / n
df_t = n - 1
m = mean(cn)
if inter
# correction factor for improved F statistic
β = 1 / (1 - 1 / (5kk) - 1 / (10kk^2))
# residual effects
eff_r = n - sum(cr .^ 2 ./ cn)
df_r = p * q * (m - 1)
ms_r = eff_r / df_r
# interaction effects
eff_i =
sum(cr .^ 2 ./ cn) - sum(qr .^ 2 ./ qn) - sum(pr .^ 2 ./ pn) +
tr .^ 2 / n
df_i = (p - 1) * (q - 1)
ms_i = eff_i / df_i
# interaction test statistic
FI = ms_i / ms_r
pI = 1 - cdf(FDist(df_i, df_r), FI)
else
# residual effect
eff_r = n - sum(qr .^ 2 ./ qn) - sum(pr .^ 2 ./ pn) + tr .^ 2 / n
df_r = (p - 1) * (q - 1)
ms_r = eff_r / df_r
# interaction effects
eff_i = []
df_i = []
ms_i = []
# interaction test statistic
FI = []
pI = NaN
β = 1
end
# compute all test statistics as F = β * MS(A) / MS(R)
F1 = β * ms_1 / ms_r
p1 = 1 - cdf(FDist(df_1, df_r), F1)
F2 = β * ms_2 / ms_r
p2 = 1 - cdf(FDist(df_2, df_r), F2)
s = [F1, F2, FI]
else
# small kappa
# correction factor
rr = besseli(1, kk) / besseli(0, kk)
f = 2 / (1 - rr^2)
chi1 = f * (sum(pr .^ 2 ./ pn) - tr .^ 2 / n)
df_1 = 2 * (p - 1)
p1 = 1 - cdf(Chisq(df_1), chi1)
chi2 = f * (sum(qr .^ 2 ./ qn) - tr .^ 2 / n)
df_2 = 2 * (q - 1)
p2 = 1 - cdf(Chisq(df_2), chi2)
chiI =
f * (
sum(cr .^ 2 ./ cn) - sum(pr .^ 2 ./ pn) - sum(qr .^ 2 ./ qn) +
tr .^ 2 / n
)
df_i = (p - 1) * (q - 1)
pI = 1 - cdf(Chisq(df_i), chiI)
s = [chi1, chi2, chiI]
end
p = [p1, p2, pI]
#
# if kk>2
#
# fprintf('\nANALYSIS OF VARIANCE TABLE (HIGH KAPPA MODE)\n\n');
#
# fprintf('%s\t\t\t\t%s\t%s\t\t%s\t\t%s\t\t\t%s\n', ' ' ,'d.f.', 'SS', 'MS', 'F', 'P-Value');
# fprintf('--------------------------------------------------------------------\n');
# fprintf('%s\t\t\t\t%u\t\t%.2f\t%.2f\t%.2f\t\t%.4f\n', fn{1}, df_1 , eff_1, ms_1, F1, p1);
# fprintf('%s\t\t\t\t%u\t\t%.2f\t%.2f\t%.2f\t\t%.4f\n', fn{2}, df_2 , eff_2, ms_2, F2, p2);
# if (inter)
# fprintf('%s\t\t%u\t\t%.2f\t%.2f\t%.2f\t\t%.4f\n', 'Interaction', df_i , eff_i, ms_i, FI, pI);
# end
# fprintf('%s\t\t%u\t\t%.2f\t%.2f\n', 'Residual ', df_r, eff_r, ms_r);
# fprintf('--------------------------------------------------------------------\n');
# fprintf('%s\t\t%u\t\t%.2f', 'Total ',df_t,eff_t);
# fprintf('\n\n')
# else
# fprintf('\nANALYSIS OF VARIANCE TABLE (LOW KAPPA MODE)\n\n');
#
# fprintf('%s\t\t\t\t%s\t%s\t\t\t%s\n', ' ' ,'d.f.', 'CHI2', 'P-Value');
# fprintf('--------------------------------------------------------------------\n');
# fprintf('%s\t\t\t\t%u\t\t%.2f\t\t\t%.4f\n', fn{1}, df_1 , chi1, p1);
# fprintf('%s\t\t\t\t%u\t\t%.2f\t\t\t%.4f\n', fn{2}, df_2 , chi2, p2);
# if (inter)
# fprintf('%s\t\t%u\t\t%.2f\t\t\t%.4f\n', 'Interaction', df_i , chiI, pI);
# end
# fprintf('--------------------------------------------------------------------\n');
# fprintf('\n\n')
#
# end
return (; p, s)
end
"""
A parametric two-sample test to determine whether two concentration parameters are different.
H0: The two concentration parameters are equal.
HA: The two concentration parameters are different.
Assumptions: both samples are drawn from von Mises type distributions and their joint resultant vector length should be > .7
1. α₁: sample of angles in radians
2. α₂: sample of angles in radians
return:
- p: p-value that samples have different concentrations
- f: f-statistic calculated
"""
function circ_ktest(α₁, α₂)
n1 = length(α₁)
n2 = length(α₂)
R1 = n1 * circ_r(α₁)
R2 = n2 * circ_r(α₂)
# make sure that r̄ > .7
r̄ = (R1 + R2) / (n1 + n2)
if r̄ < 0.7
@warn "Resultant vector length should be > 0.7"
end
# calculate test statistic
f = ((n2 - 1) * (n1 - R1)) / ((n1 - 1) * (n2 - R2))
if f > 1
p = 2 * (1 - cdf(FDist(n1, n2), f))
else
f = 1 / f
p = 2 * (1 - cdf(FDist(n2, n1), f))
end
return (; p, f)
end
"""
Tests for symmetry about the median.
H0: the population is symmetrical around the median
HA: the population is not symmetrical around the median
1. α: sample of angles in radians
return: p-value
"""
function circ_symtest(α)
# compute median
md = circ_median(α)
# compute deviations from median
d = circ_dist(α, md)
# compute wilcoxon sign rank test
pvalue(SignedRankTest(d))
end
const kuipertable= [5 1.45800000000000 1.56500000000000 1.68200000000000 1.76300000000000 1.83800000000000 1.92000000000000 1.97000000000000;
6 1.47100000000000 1.58200000000000 1.71100000000000 1.79300000000000 1.86700000000000 1.95700000000000 2.02000000000000;
7 1.48300000000000 1.59800000000000 1.72700000000000 1.81400000000000 1.89400000000000 1.98700000000000 2.05100000000000;
8 1.49300000000000 1.60800000000000 1.74100000000000 1.83000000000000 1.91100000000000 2.00900000000000 2.07700000000000;
9 1.50000000000000 1.61800000000000 1.75200000000000 1.84300000000000 1.92600000000000 2.02700000000000 2.09700000000000;
10 1.50700000000000 1.62500000000000 1.76100000000000 1.85400000000000 1.93800000000000 2.04100000000000 2.11300000000000;
11 1.51300000000000 1.63100000000000 1.76900000000000 1.86200000000000 1.94800000000000 2.05300000000000 2.12600000000000;
12 1.51700000000000 1.63700000000000 1.77600000000000 1.87000000000000 1.95700000000000 2.06200000000000 2.13700000000000;
13 1.52200000000000 1.64200000000000 1.78200000000000 1.87600000000000 1.96400000000000 2.07100000000000 2.15400000000000;
14 1.52500000000000 1.64600000000000 1.78700000000000 1.88200000000000 1.97000000000000 2.07800000000000 2.15400000000000;
15 1.52900000000000 1.65000000000000 1.79100000000000 1.88700000000000 1.97600000000000 2.08500000000000 2.16100000000000;
16 1.53200000000000 1.65300000000000 1.79500000000000 1.89200000000000 1.98100000000000 2.09000000000000 2.16800000000000;
17 1.53400000000000 1.65700000000000 1.79900000000000 1.89600000000000 1.98600000000000 2.09600000000000 2.17300000000000;
18 1.53700000000000 1.65900000000000 1.80200000000000 1.89900000000000 1.99000000000000 2.10000000000000 2.17800000000000;
19 1.53900000000000 1.66200000000000 1.80500000000000 1.90300000000000 1.99300000000000 2.10400000000000 2.18300000000000;
20 1.54100000000000 1.66400000000000 1.80800000000000 1.90600000000000 1.99700000000000 2.10800000000000 2.18700000000000;
21 1.54300000000000 1.66700000000000 1.81000000000000 1.90800000000000 2 2.11200000000000 2.19100000000000;
22 1.54500000000000 1.66900000000000 1.81300000000000 1.91100000000000 2.00300000000000 2.11500000000000 2.19400000000000;
23 1.54700000000000 1.67000000000000 1.81500000000000 1.91300000000000 2.00500000000000 2.11800000000000 2.19800000000000;
24 1.54900000000000 1.67200000000000 1.81700000000000 1.91600000000000 2.00800000000000 2.12100000000000 2.20100000000000;
25 1.55000000000000 1.67400000000000 1.81900000000000 1.91800000000000 2.01000000000000 2.12300000000000 2.20300000000000;
30 1.55600000000000 1.68100000000000 1.82600000000000 1.92600000000000 2.01900000000000 2.13400000000000 2.21500000000000;
35 1.56100000000000 1.68600000000000 1.83200000000000 1.93300000000000 2.02600000000000 2.14100000000000 2.22300000000000;
40 1.56500000000000 1.69000000000000 1.83700000000000 1.93800000000000 2.03200000000000 2.14800000000000 2.23000000000000;
45 1.56800000000000 1.69400000000000 1.84100000000000 1.94200000000000 2.03600000000000 2.15200000000000 2.23500000000000;
50 1.57100000000000 1.69700000000000 1.84400000000000 1.94600000000000 2.04000000000000 2.15700000000000 2.23900000000000;
100 1.58800000000000 1.71400000000000 1.86200000000000 1.96500000000000 2.06000000000000 2.17800000000000 2.26200000000000;
200 1.60000000000000 1.72600000000000 1.87600000000000 1.97900000000000 2.07500000000000 2.19400000000000 2.27900000000000;
500 1.61000000000000 1.73700000000000 1.88700000000000 1.99000000000000 2.08700000000000 2.20700000000000 2.29200000000000;
501 1.62000000000000 1.74700000000000 1.89800000000000 2.00100000000000 2.09800000000000 2.21800000000000 2.30300000000000]
"""
The Kuiper two-sample test tests whether the two samples differ significantly.
The difference can be in any property, such as mean location and dispersion.
It is a circular analogue of the Kolmogorov-Smirnov test.
H0: The two distributions are identical.
HA: The two distributions are different.
1. α₁: sample of angles in radians
2. α₂: sample of angles in radians
- n: resolution at which the cdf are evaluated
return:
- p: p-value; the smallest of .10, .05, .02, .01, .005, .002, .001,
for which the test statistic is still higher than the respective critical value.
this is due to the use of tabulated values. if p>.1, pval is set to 1.
- k: test statistic
- K: critical value
"""
function circ_kuipertest(α₁, α₂; n = 100)
n = length(α₁)
m = length(α₂)
# create cdfs of both samples
ϕ₁, cdf1 = circ_samplecdf(α₁; n)
_, cdf2 = circ_samplecdf(α₂; n)
# maximal difference between sample cdfs
dplus, gdpi = findmax([0; cdf1 .- cdf2])
dminus, gdmi = findmax([0; cdf2 .- cdf1])
# calculate k-statistic
k = n * m * (dplus + dminus)
# find p-value
p, K = kuiperlookup(min(n, m), k / sqrt(n * m * (n + m)))
K *= sqrt(n * m * (n + m))
return (; p, k, K)
end
function kuiperlookup(n, k)
α = [0.10, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001]
nn = kuipertable[:, 1]
# find correct row of the table
row = findfirst(n.==nn)
if isnothing(row)
# find closest value if no entry is present
row = length(nn) - sum(n .< nn)
if row == 0
error("n too small.")
else
@warn "n=$n not found in table, using closest n=$(nn[row]) present."
end
end
# find minimal p-value and test-statistic
idx = findlast(kuipertable[row, 2:end] .< k)
if isnothing(idx)
p = 1
K = NaN
else
p = α[idx]
K = kuipertable[row, idx+1]
end
return (; p, K)
end
"""
Circular correlation coefficient for two circular random variables.
1. α₁: sample of angles in radians
2. α₂: sample of angles in radians
return:
- ρ: correlation coefficient
- p: p-value
"""
function circ_corrcc(α₁, α₂)
# compute mean directions
n = length(α₁)
ᾱ₁ = circ_mean(α₁).μ
ᾱ₂ = circ_mean(α₂).μ
# compute correlation coeffcient from p. 176
num = sum(sin.(α₁ .- ᾱ₁) .* sin.(α₂ .- ᾱ₂))
den = sqrt(sum(sin.(α₁ .- ᾱ₁) .^ 2) .* sum(sin.(α₂ .- ᾱ₂) .^ 2))
ρ = num / den
# compute pvalue
l20 = mean(sin.(α₁ .- ᾱ₁) .^ 2)
l02 = mean(sin.(α₂ .- ᾱ₂) .^ 2)
l22 = mean((sin.(α₁ .- ᾱ₁) .^ 2) .* (sin.(α₂ .- ᾱ₂) .^ 2))
ts = sqrt((n * l20 * l02) / l22) * ρ
p = 2 * (1 - cdf(Normal(), abs(ts)))
return (; ρ, p)
end
"""
Correlation coefficient between one circular and one linear random variable.
1. α: sample of angles in radians
2. x: sample of linear random variable
return:
- ρ: correlation coefficient
- p: p-value
"""
function circ_corrcl(α, x)
n = length(α)
# compute correlation coefficent for sin and cos independently
rxs = cor(x, sin.(α))
rxc = cor(x, cos.(α))
rcs = cor(sin.(α), cos.(α))
# compute angular-linear correlation (equ. 27.47)
ρ = sqrt((rxc^2 + rxs^2 - 2 * rxc * rxs * rcs) / (1 - rcs^2))
# compute pvalue
p = 1 - cdf(Chisq(2), n * ρ^2)
return (; ρ, p)
end
"""
Computes an approximation to the ML estimate of the concentration parameter kappa of the von Mises distribution.
1. α: angles in radians OR α is length resultant
- w: number of incidences in case of binned angle data
return: estimated value of kappa
"""
function circ_kappa(α; w = ones(size(α)))
N = length(α)
if N > 1
R = circ_r(α; w)
else
R = α
end
if R < 0.53
κ = 2R + R^3 + 5R^5 / 6
elseif R >= 0.53 && R < 0.85
κ = -0.4 + 1.39R + 0.43 / (1 - R)
else
κ = 1 / (R^3 - 4R^2 + 3R)
end
if N < 15 && N > 1
if κ < 2
κ = max(κ - 2 * (N * κ)^-1, 0)
else
κ = (N - 1)^3 * κ / (N^3 + N)
end
end
κ
end
"""
Performs a simple agglomerative clustering of angular data.
1. α: sample of angles in radians
- k: number of clusters desired, default=2
return:
- cid: cluster id for each entry of α
- α: sorted angles, matched with cid
- μ: mean direction of angles in each cluster
"""
function circ_clust(α; k = 2)
n = length(α)
n < k && error("Not enough data for clusters.")
# prepare data
cid = 1:n
# main clustering loop
num_unique = length(unique(cid))
while (num_unique > k)
# find centroid means...
# calculate the means for each putative cluster
μ = fill(NaN, n)
for j = 1:n
if sum(cid .== j) > 0
μ[j], = circ_mean(α(cid .== j))
end
end
# find distance between centroids...
μdist = abs.(circ_dist2(μ))
# find closest pair of clusters/datapoints
mindist = minimum(μdist[tril(ones(size(μdist), size(μdist)), -1)==1])
row, col = findall(μdist .== mindist)
# update cluster id's
cid[cid.==maximum(row)] = minimum(col)
# update stop criteria
num_unique = length(unique(cid))
end
# renumber cluster ids (so cids [1 3 7 10] => [1 2 3 4])
cid2 = deepcopy(cid)
uniquecids = unique(cid)
for j = 1:length(uniquecids)
cid[cid2.==uniquecids[j]] = j
end
# compute final cluster means
μ = fill(NaN, num_unique)
for j = 1:num_unique
if sum(cid .== j) > 0
μ[j], = circ_mean(α[cid.==j]')
end
end
return (; cid, α, μ)
end
"""
Helper function for circ_kuipertest. Evaluates CDF of sample.
1. α: sample of angles in radians
- n: resolution at which the cdf are evaluated
return:
- ϕ: angles at which CDF are evaluated
- c: CDF values at ϕ
"""
function circ_samplecdf(α; n = 100)
ϕ = range(0, 2π, length = n + 1)
# ensure all points in α are on interval [0, 2pi)
α = sort(mod2pi.(α))
dp = 1 / length(α) # incremental change in probability
c = cumsum(map((l, r) -> dp * sum(l .<= α .< r), ϕ[1:end-1], ϕ[2:end]))
ϕ = ϕ[1:end-1]
return (; ϕ, c)
end
| CircStats | https://github.com/circstat/CircStats.jl.git |
|
[
"MIT"
] | 1.0.4 | ecfe2e9a260c4723026b4a71460cf0420def9e40 | code | 3672 | using Test, CircStats
@testset "CircStats" begin
av = [0:0.2:π;0.4π:0.05:0.6π;π:0.4:2π]
am = [av av]
aa = [am;;;am]
wv = [0:0.1:0.5π;0.4π:0.05:0.6π;0:0.2:0.5π]
wm = [wv wv]
wa = [wm;;;wm]
d = 0.1
@test circ_r(av) ≈ 0.481125184946105
@test circ_r(av;w=wv) ≈ 0.634569454038054
@test circ_r(av;w=wv,d) ≈ 0.634833935115386
circ_r(am)
circ_r(am;w=wm)
circ_r(am;w=wm,d)
circ_r(am;w=wm,d,dims=2)
circ_r(aa)
circ_r(aa;w=wa)
circ_r(aa;w=wa,d)
circ_r(aa;w=wa,d,dims=3)
μ, ul, ll = circ_mean(av)
@test μ ≈ 1.568889360630885
@test ul ≈ 2.037005335388447
@test ll ≈ 1.100773385873324
μ, ul, ll = circ_mean(av;w=wv)
@test μ ≈ 1.691236041279729
@test ul ≈ 2.018457532767024
@test ll ≈ 1.364014549792434
circ_mean(am)
circ_mean(am;w=wm)
circ_mean(aa)
circ_mean(aa;w=wa)
@test circ_median(av) ≈ 1.556637061435917
s, s0 = circ_std(av)
@test s ≈ 1.018699970603607
@test s0 ≈ 1.209651009981690
circ_std(am)
circ_std(am;dims=2)
circ_std(aa)
circ_std(am;dims=3)
S, s = circ_var(av)
@test S ≈ 0.518874815053895
@test s ≈ 1.037749630107790
circ_var(am)
circ_var(am;dims=2)
circ_var(aa)
circ_var(am;dims=3)
α = [1,2,3];β=[2,3,4]
circ_dist(α,π)
circ_dist(α,β)
circ_dist2(α)
circ_dist2(α,β)
mp, ρp, μp = circ_moment(av)
@test mp ≈ 0.000917488892268 + 0.481124310135703im
@test ρp ≈ 0.481125184946105
@test μp ≈ 1.568889360630885
mp, ρp, μp = circ_moment(av;cent=true)
@test mp ≈ 0.481125184946105 - 0.000000000000000im
@test ρp ≈ 0.481125184946105
@test μp ≈ 3.741981750042832e-17 atol=1e-16
mp, ρp, μp = circ_moment(am)
mp, ρp, μp = circ_moment(am;cent=true)
b, b0 = circ_skewness(av)
@test b ≈ -0.005585405160200
@test b0 ≈ -0.014943791328267
b, b0 = circ_skewness(am)
k, k0 = circ_kurtosis(av)
@test k ≈ 0.315477455279792
@test k0 ≈ 0.972747287142949
k, k0 = circ_kurtosis(am)
circ_stats(av)
p,z = circ_rtest(av)
@test p ≈ 1.247327496731614e-04
@test z ≈ 8.564813412808679
p,m = circ_otest(av)
@test p ≈ 0.003445833222941
@test m ≈ 7
idx = [fill(1,18);fill(2,19)]
p,F = circ_wwtest(av,idx)
@test p ≈ 0.489205605248093
@test F ≈ 0.488523443700675
idp = [repeat([1,2,3,4],outer=9);1]
idq = [repeat([1,2],outer=18);1]
p,s = circ_hktest(av,idp,idq)
@test p[1] ≈ 0.988563843496855
@test p[2] ≈ 0.865090769456459
@test isnan(p[3])
@test s[1] ≈ 0.917000658130361
@test s[2] ≈ 0.289841683535636
@test isnan(s[3])
p,f = circ_ktest(av,reverse(av))
@test p ≈ 0.999999999999993
@test f ≈ 1
p = circ_symtest(av)
# @test p ≈ 0.850454511827570 # diff in signrank in matlab?
p,k,K=circ_kuipertest(av,reverse(av))
@test p ≈ 1
@test k ≈ 0
p, u, UC = circ_raotest(av)
@test p ≈ 0.5
@test u ≈ 121.1858500639162
@test UC ≈ 153.82
p, v = circ_vtest(av)
@test p ≈ 0.496851365629160
@test v ≈ 0.033947089013911
p = circ_medtest(av)
@test p ≈ .0004719867429230360
h, μ, ul, ll = circ_mtest(av)
@test h
@test μ ≈ 1.568889360630885
@test ul ≈ 2.037005335388447
@test ll ≈ 1.100773385873324
ρ,p = circ_corrcc(av,reverse(av))
@test ρ ≈ 0.204639214081096
@test p ≈ 0.187332538620452
ρ,p = circ_corrcl(av,reverse(av))
@test ρ ≈ 0.591325482630456
@test p ≈ 0.001551058328371
@test circ_kappa(av) ≈ 1.095105628679724
ϕ,c = circ_samplecdf(av,n=8)
@test ϕ[4] ≈ 2.356194490192345
@test c[4] ≈ 0.783783783783784
end
| CircStats | https://github.com/circstat/CircStats.jl.git |
|
[
"MIT"
] | 1.0.4 | ecfe2e9a260c4723026b4a71460cf0420def9e40 | docs | 149 | # CircStats
This package is a straight forward translation of the [CircStat](https://github.com/circstat/circstat-matlab) MATLAB toolbox for Julia.
| CircStats | https://github.com/circstat/CircStats.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 1675 | module GLTF
using JSON3, StructTypes, PrecompileTools
export load, save
# constants
const ARRAY_BUFFER = 34962
const ELEMENT_ARRAY_BUFFER = 34963
const BYTE = 5120
const UNSIGNED_BYTE = 5121
const SHORT = 5122
const UNSIGNED_SHORT = 5123
const UNSIGNED_INT = 5125
const FLOAT = 5126
const POINTS = 0
const LINES = 1
const LINE_LOOP = 2
const LINE_STRIP = 3
const TRIANGLES = 4
const TRIANGLE_STRIP = 5
const TRIANGLE_FAN = 6
const NEAREST = 9728
const LINEAR = 9729
const NEAREST_MIPMAP_NEAREST = 9984
const LINEAR_MIPMAP_NEAREST = 9985
const NEAREST_MIPMAP_LINEAR = 9986
const LINEAR_MIPMAP_LINEAR = 9987
const CLAMP_TO_EDGE = 33071
const MIRRORED_REPEAT = 33648
const REPEAT = 10497
include("zvector.jl")
include("accessor.jl")
include("animation.jl")
include("asset.jl")
include("buffer.jl")
include("bufferView.jl")
include("camera.jl")
include("image.jl")
include("material.jl")
include("mesh.jl")
include("node.jl")
include("sampler.jl")
include("scene.jl")
include("skin.jl")
include("texture.jl")
include("object.jl")
include("show.jl")
function load(path::AbstractString)
open(path) do f
JSON3.read(read(f, String), Object)
end
end
function save(path::AbstractString, obj::Object)
open(path, write=true) do f
write(f, JSON3.write(obj))
end
end
@compile_workload begin
filenames = ["DamagedHelmet.gltf"]
for filename in filenames
path = joinpath(pkgdir(GLTF), "assets", filename)
asset = load(path)::Object
sprint(show, asset)
sprint(show, MIME"text/plain"(), asset)
tmp = tempname()
save(tmp, asset)
load(tmp)::Object
rm(tmp)
end
end
end # module
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 5388 | mutable struct Indices
bufferView::Int
byteOffset::Union{Nothing,Int}
componentType::Int
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Indices()
obj = new()
obj.byteOffset = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::Indices, sym::Symbol)
x = getfield(obj, sym)
sym === :byteOffset && x === nothing && return 0
return x
end
function Base.setproperty!(obj::Indices, sym::Symbol, x)
if sym === :bufferView
x ≥ 0 || throw(ArgumentError("the index of the bufferView should be ≥ 0"))
elseif sym === :byteOffset && x !== nothing
x ≥ 0 || throw(ArgumentError("byteOffset should be ≥ 0"))
elseif sym === :componentType
x === UNSIGNED_BYTE || x === UNSIGNED_SHORT || x === UNSIGNED_INT ||
throw(ArgumentError("componentType should be one of: UNSIGNED_BYTE(5121), UNSIGNED_SHORT(5123), UNSIGNED_INT(5125)"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Indices}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Indices}) = (:byteOffset, :extensions, :extras)
mutable struct Values
bufferView::Int
byteOffset::Union{Nothing,Int}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Values()
obj = new()
obj.byteOffset = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::Values, sym::Symbol)
x = getfield(obj, sym)
sym === :byteOffset && x === nothing && return 0
return x
end
function Base.setproperty!(obj::Values, sym::Symbol, x)
if sym === :bufferView
x ≥ 0 || throw(ArgumentError("the index of the bufferView should be ≥ 0"))
elseif sym === :byteOffset && x !== nothing
x ≥ 0 || throw(ArgumentError("byteOffset should be ≥ 0"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Values}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Values}) = (:byteOffset, :extensions, :extras)
mutable struct Sparse
count::Int
indices::Indices
values::Values
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Sparse()
obj = new()
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.setproperty!(obj::Sparse, sym::Symbol, x)
if sym === :count
x ≥ 1 || throw(ArgumentError("the number of attributes encoded in this sparse accessor should be ≥ 1"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Sparse}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Sparse}) = (:extensions, :extras)
mutable struct Accessor
bufferView::Union{Nothing,Int}
byteOffset::Union{Nothing,Int}
componentType::Int
normalized::Union{Nothing,Bool}
count::Int
type::String
max::Union{Nothing,Vector}
min::Union{Nothing,Vector}
sparse::Union{Nothing,Sparse}
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Accessor()
obj = new()
obj.bufferView = nothing
obj.byteOffset = nothing
obj.normalized = nothing
obj.max = nothing
obj.min = nothing
obj.sparse = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::Accessor, sym::Symbol)
x = getfield(obj, sym)
sym === :byteOffset && x === nothing && return 0
sym === :normalized && x === nothing && return false
return x
end
function Base.setproperty!(obj::Accessor, sym::Symbol, x)
if sym === :bufferView && x !== nothing
x ≥ 0 || throw(ArgumentError("the index of the bufferView should be ≥ 0"))
elseif sym === :byteOffset && x !== nothing
x ≥ 0 || throw(ArgumentError("byteOffset should be ≥ 0"))
elseif sym === :componentType
x === BYTE || x === UNSIGNED_BYTE || x === SHORT ||
x === UNSIGNED_SHORT || x === UNSIGNED_INT || x === FLOAT ||
throw(ArgumentError("componentType should be one of: BYTE(5120), UNSIGNED_BYTE(5121), SHORT(5122), UNSIGNED_SHORT(5123), UNSIGNED_INT(5125), FLOAT(5126)"))
elseif sym === :count
x ≥ 1 || throw(ArgumentError("the number of attributes referenced by this accessor should be ≥ 1"))
elseif sym === :type
x === "SCALAR" ||
x === "VEC2" || x === "VEC3" || x === "VEC4" ||
x === "MAT2" || x === "MAT3" || x === "MAT4" ||
throw(ArgumentError("""type should be one of: "SCALAR", "VEC2", "VEC3", "VEC4", "MAT2", "MAT3", "MAT4" """))
elseif sym === :max && x !== nothing
len = length(x)
len === 1 || len === 2 || len === 3 || len === 4 || len === 9 || len === 16 ||
throw(ArgumentError("""the length should be one of: 1, 2, 3, 4, 9, 16 """))
elseif sym === :min && x !== nothing
len = length(x)
len === 1 || len === 2 || len === 3 || len === 4 || len === 9 || len === 16 ||
throw(ArgumentError("""the length should be one of: 1, 2, 3, 4, 9, 16 """))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Accessor}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Accessor}) = (:bufferView, :byteOffset, :normalized, :max, :min, :sparse, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 3235 | mutable struct Target
node::Union{Nothing,Int}
path::String
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Target()
obj = new()
obj.node = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.setproperty!(obj::Target, sym::Symbol, x)
if sym === :node && x !== nothing
x ≥ 0 || throw(ArgumentError("the index of the node to target should be ≥ 0"))
elseif sym === :path
x === "translation" || x === "rotation" || x === "scale" || x === "weights" ||
throw(ArgumentError("""path should be one of: "translation", "rotation", "scale", "weights" """))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Target}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Target}) = (:node, :extensions, :extras)
mutable struct Channel
sampler::Int
target::Target
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Channel()
obj = new()
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.setproperty!(obj::Channel, sym::Symbol, x)
if sym === :sampler
x ≥ 0 || throw(ArgumentError("the index of a sampler used to compute the value for the target should be ≥ 0"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Channel}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Channel}) = (:extensions, :extras)
mutable struct AnimationSampler
input::Int
interpolation::Union{Nothing,String}
output::Int
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function AnimationSampler()
obj = new()
obj.interpolation = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::AnimationSampler, sym::Symbol)
x = getfield(obj, sym)
sym === :interpolation && x === nothing && return "LINEAR"
return x
end
function Base.setproperty!(obj::AnimationSampler, sym::Symbol, x)
if sym === :input
x ≥ 0 || throw(ArgumentError("the index of an accessor containing keyframe input values should be ≥ 0"))
elseif sym === :interpolation && x !== nothing
x === "LINEAR" || x === "STEP" || x === "CUBICSPLINE" ||
throw(ArgumentError("""interpolation should be one of: "LINEAR", "STEP", "CUBICSPLINE" """))
elseif sym === :output
x ≥ 0 || throw(ArgumentError("the index of an accessor containing keyframe output values should be ≥ 0"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{AnimationSampler}) = JSON3.Mutable()
StructTypes.omitempties(::Type{AnimationSampler}) = (:interpolation, :extensions, :extras)
mutable struct Animation
channels::ZVector{Channel}
samplers::ZVector{AnimationSampler}
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Animation()
obj = new()
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
JSON3.StructType(::Type{Animation}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Animation}) = (:name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 597 | mutable struct Asset
copyright::Union{Nothing,String}
generator::Union{Nothing,String}
version::String
minVersion::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Asset()
obj = new()
obj.copyright = nothing
obj.generator = nothing
obj.minVersion = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
JSON3.StructType(::Type{Asset}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Asset}) = (:copyright, :generator, :minVersion, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 673 | mutable struct Buffer
uri::Union{Nothing,String}
byteLength::Int
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Buffer()
obj = new()
obj.uri = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.setproperty!(obj::Buffer, sym::Symbol, x)
if sym === :byteLength
x ≥ 1 || throw(ArgumentError("byteLength should be ≥ 1"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Buffer}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Buffer}) = (:uri, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 1589 | mutable struct BufferView
buffer::Int
byteOffset::Union{Nothing,Int}
byteLength::Int
byteStride::Union{Nothing,Int}
target::Union{Nothing,Int}
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function BufferView()
obj = new()
obj.byteOffset = nothing
obj.byteStride = nothing
obj.target = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::BufferView, sym::Symbol)
x = getfield(obj, sym)
sym === :byteOffset && x === nothing && return 0
return x
end
function Base.setproperty!(obj::BufferView, sym::Symbol, x)
if sym === :buffer
x ≥ 0 || throw(ArgumentError("the index of the buffer should be ≥ 0"))
elseif sym === :byteOffset && x !== nothing
x ≥ 0 || throw(ArgumentError("byteOffset should be ≥ 0"))
elseif sym === :byteLength
x ≥ 1 || throw(ArgumentError("byteLength should be ≥ 1"))
elseif sym === :byteStride && x !== nothing
4 ≤ x ≤ 252 || throw(ArgumentError("byteStride should be ≥ 4 and ≤ 252"))
elseif sym === :target && x !== nothing
x === ARRAY_BUFFER || x === ELEMENT_ARRAY_BUFFER ||
throw(ArgumentError("target should be ARRAY_BUFFER(34962) or ELEMENT_ARRAY_BUFFER(34963)"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{BufferView}) = JSON3.Mutable()
StructTypes.omitempties(::Type{BufferView}) = (:byteOffset, :byteStride, :target, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 2791 | mutable struct Orthographic
xmag::Cfloat
ymag::Cfloat
zfar::Cfloat
znear::Cfloat
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Orthographic()
obj = new()
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.setproperty!(obj::Orthographic, sym::Symbol, x)
if sym === :zfar
x > 0 || throw(ArgumentError("the distance to the far clipping plane should be > 0"))
elseif sym === :znear
x ≥ 0 || throw(ArgumentError("the distance to the near clipping plane should be ≥ 0"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Orthographic}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Orthographic}) = (:extensions, :extras)
mutable struct Perspective
aspectRatio::Union{Nothing,Cfloat}
yfov::Cfloat
zfar::Union{Nothing,Cfloat}
znear::Cfloat
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Perspective()
obj = new()
obj.aspectRatio = nothing
obj.zfar = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.setproperty!(obj::Perspective, sym::Symbol, x)
if sym === :aspectRatio && x !== nothing
x > 0 || throw(ArgumentError("the aspect ratio of the field of view should be > 0"))
elseif sym === :yfov
x > 0 || throw(ArgumentError("the vertical field of view in radians should be > 0"))
elseif sym === :zfar && x !== nothing
x > 0 || throw(ArgumentError("the distance to the far clipping plane should be > 0"))
elseif sym === :znear
x > 0 || throw(ArgumentError("the distance to the near clipping plane should be > 0"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Perspective}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Perspective}) = (:aspectRatio, :zfar, :extensions, :extras)
mutable struct Camera
orthographic::Union{Nothing,Orthographic}
perspective::Union{Nothing,Perspective}
type::String
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Camera()
obj = new()
obj.orthographic = nothing
obj.perspective = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.setproperty!(obj::Camera, sym::Symbol, x)
if sym === :type
x == "perspective" || x == "orthographic" ||
throw(ArgumentError("""type should be "perspective" or "orthographic" """))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Camera}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Camera}) = (:orthographic, :perspective, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 1061 | mutable struct Image
uri::Union{Nothing,String}
mimeType::Union{Nothing,String}
bufferView::Union{Nothing,Int}
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Image()
obj = new()
obj.uri = nothing
obj.mimeType = nothing
obj.bufferView = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.setproperty!(obj::Image, sym::Symbol, x)
if sym === :mimeType && x !== nothing
x == "image/jpeg" || x == "image/png" ||
throw(ArgumentError("""the image's MIME type should be "image/jpeg" or "image/png" """))
elseif sym === :bufferView && x !== nothing
x ≥ 0 || throw(ArgumentError("the index of the bufferView that contains the image should be ≥ 0"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Image}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Image}) = (:uri, :mimeType, :bufferView, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 7634 | mutable struct TextureInfo
index::Int
texCoord::Union{Nothing,Int}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function TextureInfo()
obj = new()
obj.texCoord = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::TextureInfo, sym::Symbol)
x = getfield(obj, sym)
sym === :texCoord && x === nothing && return 0
return x
end
function Base.setproperty!(obj::TextureInfo, sym::Symbol, x)
if sym === :index
x ≥ 0 || throw(ArgumentError("the index of the texture should be ≥ 0"))
elseif sym === :texCoord && x !== nothing
x ≥ 0 || throw(ArgumentError("the set index of texture's TEXCOORD attribute used for texture coordinate mapping should be ≥ 0"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{TextureInfo}) = JSON3.Mutable()
StructTypes.omitempties(::Type{TextureInfo}) = (:texCoord, :extensions, :extras)
mutable struct NormalTextureInfo
index::Int
texCoord::Union{Nothing,Int}
scale::Union{Nothing,Cfloat}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function NormalTextureInfo()
obj = new()
obj.texCoord = nothing
obj.scale = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::NormalTextureInfo, sym::Symbol)
x = getfield(obj, sym)
sym === :texCoord && x === nothing && return 0
sym === :scale && x === nothing && return 1
return x
end
function Base.setproperty!(obj::NormalTextureInfo, sym::Symbol, x)
if sym === :index
x ≥ 0 || throw(ArgumentError("the index of the texture should be ≥ 0"))
elseif sym === :texCoord && x !== nothing
x ≥ 0 || throw(ArgumentError("the set index of texture's TEXCOORD attribute used for texture coordinate mapping should be ≥ 0"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{NormalTextureInfo}) = JSON3.Mutable()
StructTypes.omitempties(::Type{NormalTextureInfo}) = (:texCoord, :scale, :extensions, :extras)
mutable struct OcclusionTextureInfo
index::Int
texCoord::Union{Nothing,Int}
strength::Union{Nothing,Cfloat}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function OcclusionTextureInfo()
obj = new()
obj.texCoord = nothing
obj.strength = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::OcclusionTextureInfo, sym::Symbol)
x = getfield(obj, sym)
sym === :texCoord && x === nothing && return 0
sym === :strength && x === nothing && return 1
return x
end
function Base.setproperty!(obj::OcclusionTextureInfo, sym::Symbol, x)
if sym === :index
x ≥ 0 || throw(ArgumentError("the index of the texture should be ≥ 0"))
elseif sym === :texCoord && x !== nothing
x ≥ 0 || throw(ArgumentError("the set index of texture's TEXCOORD attribute used for texture coordinate mapping should be ≥ 0"))
elseif sym === :strength && x !== nothing
0 ≤ x ≤ 1 || throw(ArgumentError("strength should be should be ≥ 0 and ≤ 1"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{OcclusionTextureInfo}) = JSON3.Mutable()
StructTypes.omitempties(::Type{OcclusionTextureInfo}) = (:texCoord, :strength, :extensions, :extras)
mutable struct PBRMetallicRoughness
baseColorFactor::Union{Nothing,Vector{Cfloat}}
baseColorTexture::Union{Nothing,TextureInfo}
metallicFactor::Union{Nothing,Cfloat}
roughnessFactor::Union{Nothing,Cfloat}
metallicRoughnessTexture::Union{Nothing,TextureInfo}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function PBRMetallicRoughness()
obj = new()
obj.baseColorFactor = nothing
obj.baseColorTexture = nothing
obj.metallicFactor = nothing
obj.roughnessFactor = nothing
obj.metallicRoughnessTexture = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::PBRMetallicRoughness, sym::Symbol)
x = getfield(obj, sym)
sym === :baseColorFactor && x === nothing && return Cfloat[1,1,1,1]
sym === :metallicFactor && x === nothing && return 1
sym === :roughnessFactor && x === nothing && return 1
return x
end
function Base.setproperty!(obj::PBRMetallicRoughness, sym::Symbol, x)
if sym === :baseColorFactor && x !== nothing
length(x) == 4 || throw(ArgumentError("the material's base color factor should exactly contain 4 values(RGBA)"))
all(0 .≤ x .≤ 1) || throw(ArgumentError("the material's base color factor value should ≥ 0 and ≤ 1"))
elseif sym === :metallicFactor && x !== nothing
0 ≤ x ≤ 1 || throw(ArgumentError("the metalness of the material factor should ≥ 0 and ≤ 1"))
elseif sym === :roughnessFactor && x !== nothing
0 ≤ x ≤ 1 || throw(ArgumentError("the roughness of the material factor should ≥ 0 and ≤ 1"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{PBRMetallicRoughness}) = JSON3.Mutable()
StructTypes.omitempties(::Type{PBRMetallicRoughness}) = (:baseColorFactor, :baseColorTexture, :metallicFactor, :roughnessFactor, :metallicRoughnessTexture, :extensions, :extras)
mutable struct Material
pbrMetallicRoughness::Union{Nothing,PBRMetallicRoughness}
normalTexture::Union{Nothing,NormalTextureInfo}
occlusionTexture::Union{Nothing,OcclusionTextureInfo}
emissiveTexture::Union{Nothing,TextureInfo}
emissiveFactor::Union{Nothing,Vector{Cfloat}}
alphaMode::Union{Nothing,String}
alphaCutoff::Union{Nothing,Cfloat}
doubleSided::Union{Nothing,Bool}
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Material()
obj = new()
obj.pbrMetallicRoughness = nothing
obj.normalTexture = nothing
obj.occlusionTexture = nothing
obj.emissiveTexture = nothing
obj.emissiveFactor = nothing
obj.alphaMode = nothing
obj.alphaCutoff = nothing
obj.doubleSided = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::Material, sym::Symbol)
x = getfield(obj, sym)
sym === :emissiveFactor && x === nothing && return Cfloat[0,0,0]
sym === :alphaMode && x === nothing && return "OPAQUE"
sym === :alphaCutoff && x === nothing && return 0.5
sym === :doubleSided && x === nothing && return false
return x
end
function Base.setproperty!(obj::Material, sym::Symbol, x)
if sym === :emissiveFactor && x !== nothing
length(x) == 3 || throw(ArgumentError("the RGB components of the emissive color of the material should exactly contain 3 values"))
all(0 .≤ x .≤ 1) || throw(ArgumentError("the emissive color should be ≥ 0 and ≤ 1"))
elseif sym === :alphaMode && x !== nothing
x === "OPAQUE" || x === "MASK" || x === "BLEND" ||
throw(ArgumentError("""the material's alpha rendering mode should be one of: "OPAQUE", "MASK", "BLEND" """))
elseif sym === :alphaCutoff && x !== nothing
x ≥ 0 || throw(ArgumentError("alphaCutoff should be ≥ 0"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Material}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Material}) = (:pbrMetallicRoughness, :normalTexture, :occlusionTexture, :emissiveTexture, :emissiveFactor, :alphaMode, :alphaCutoff, :doubleSided, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 2135 | mutable struct Primitive
attributes::Dict{String,Int}
indices::Union{Nothing,Int}
material::Union{Nothing,Int}
mode::Union{Nothing,Int}
targets::Union{Nothing,Vector{Dict}}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Primitive()
obj = new()
obj.indices = nothing
obj.material = nothing
obj.mode = nothing
obj.targets = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::Primitive, sym::Symbol)
x = getfield(obj, sym)
sym === :mode && x === nothing && return 4
return x
end
function Base.setproperty!(obj::Primitive, sym::Symbol, x)
if sym === :indices && x !== nothing
x ≥ 0 || throw(ArgumentError("the index of the accessor that contains mesh indices should be ≥ 0"))
elseif sym === :material && x !== nothing
x ≥ 0 || throw(ArgumentError("the index of the material to apply to this primitive when rendering should be ≥ 0"))
elseif sym === :mode && x !== nothing
x === POINTS || x === LINES || x === LINE_LOOP || x === LINE_STRIP ||
x === TRIANGLES || x === TRIANGLE_STRIP || x === TRIANGLE_FAN ||
throw(ArgumentError("the type of primitives to render should be one of: POINTS(0), LINES(1), LINE_LOOP(2), LINE_STRIP(3), TRIANGLES(4), TRIANGLE_STRIP(5), TRIANGLE_FAN(6)"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Primitive}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Primitive}) = (:indices, :material, :mode, :targets, :extensions, :extras)
mutable struct Mesh
primitives::ZVector{Primitive}
weights::Union{Nothing,Vector{Cfloat}}
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Mesh()
obj = new()
obj.weights = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
JSON3.StructType(::Type{Mesh}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Mesh}) = (:weights, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 2873 | mutable struct Node
camera::Union{Nothing,Int}
children::Union{Nothing,Vector{Int}}
skin::Union{Nothing,Int}
matrix::Union{Nothing,Vector{Cfloat}}
mesh::Union{Nothing,Int}
rotation::Union{Nothing,Vector{Cfloat}}
scale::Union{Nothing,Vector{Cfloat}}
translation::Union{Nothing,Vector{Cfloat}}
weights::Union{Nothing,Vector{Cfloat}}
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Node()
obj = new()
obj.camera = nothing
obj.children = nothing
obj.skin = nothing
obj.matrix = nothing
obj.mesh = nothing
obj.rotation = nothing
obj.scale = nothing
obj.translation = nothing
obj.weights = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::Node, sym::Symbol)
x = getfield(obj, sym)
sym === :matrix && x === nothing && return Cfloat[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]
sym === :rotation && x === nothing && return Cfloat[0,0,0,1]
sym === :scale && x === nothing && return Cfloat[1,1,1]
sym === :translation && x === nothing && return Cfloat[0,0,0]
return x
end
function Base.setproperty!(obj::Node, sym::Symbol, x)
if sym === :camera && x !== nothing
x ≥ 0 || throw(ArgumentError("the index of the camera referenced by this node should be ≥ 0"))
elseif sym === :children && x !== nothing
all(c->c ≥ 0, x) || throw(ArgumentError("the indices of this node's children should be ≥ 0"))
allunique(x) || throw(ArgumentError("children must be unique."))
elseif sym === :skin && x !== nothing
x ≥ 0 || throw(ArgumentError("the index of the skin referenced by this node should be ≥ 0"))
elseif sym === :matrix && x !== nothing
length(x) == 16 || throw(ArgumentError("the length of matrix should be exactly 16"))
elseif sym === :mesh && x !== nothing
x ≥ 0 || throw(ArgumentError("the index of the mesh in this node should be ≥ 0"))
elseif sym === :rotation && x !== nothing
length(x) == 4 || throw(ArgumentError("the length of rotation should be exactly 4"))
all(-1 .≤ x .≤ 1) || throw(ArgumentError("each element in the unit quaternion rotation should be ≥ -1 and ≤ 1"))
elseif sym === :scale && x !== nothing
length(x) == 3 || throw(ArgumentError("the length of scale should be exactly 3"))
elseif sym === :translation && x !== nothing
length(x) == 3 || throw(ArgumentError("the length of translation should be exactly 3"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Node}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Node}) = (:camera, :children, :skin, :matrix, :mesh, :rotation, :scale, :translation, :weights, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 1827 | mutable struct Object
extensionsUsed::Union{Nothing,Vector{String}}
extensionsRequired::Union{Nothing,Vector{String}}
accessors::Union{Nothing,ZVector{Accessor}}
animations::Union{Nothing,ZVector{Animation}}
asset::Asset
buffers::Union{Nothing,ZVector{Buffer}}
bufferViews::Union{Nothing,ZVector{BufferView}}
cameras::Union{Nothing,ZVector{Camera}}
images::Union{Nothing,ZVector{Image}}
materials::Union{Nothing,ZVector{Material}}
meshes::Union{Nothing,ZVector{Mesh}}
nodes::Union{Nothing,ZVector{Node}}
samplers::Union{Nothing,ZVector{Sampler}}
scene::Union{Nothing,Int}
scenes::Union{Nothing,ZVector{Scene}}
skins::Union{Nothing,ZVector{Skin}}
textures::Union{Nothing,ZVector{Texture}}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Object()
obj = new()
obj.extensionsUsed = nothing
obj.extensionsRequired = nothing
obj.accessors = nothing
obj.animations = nothing
obj.buffers = nothing
obj.bufferViews = nothing
obj.cameras = nothing
obj.images = nothing
obj.materials = nothing
obj.meshes = nothing
obj.nodes = nothing
obj.samplers = nothing
obj.scene = nothing
obj.scenes = nothing
obj.skins = nothing
obj.textures = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
JSON3.StructType(::Type{Object}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Object}) = (:extensionsUsed, :extensionsRequired, :accessors, :animations,
:buffers, :bufferViews, :cameras, :images, :materials, :meshes,
:nodes, :samplers, :scene, :scenes, :skins, :textures, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 2066 | mutable struct Sampler
magFilter::Union{Nothing,Int}
minFilter::Union{Nothing,Int}
wrapS::Union{Nothing,Int}
wrapT::Union{Nothing,Int}
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Sampler()
obj = new()
obj.magFilter = nothing
obj.minFilter = nothing
obj.wrapS = nothing
obj.wrapT = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.getproperty(obj::Sampler, sym::Symbol)
x = getfield(obj, sym)
sym === :wrapS && x === nothing && return 10497
sym === :wrapT && x === nothing && return 10497
return x
end
function Base.setproperty!(obj::Sampler, sym::Symbol, x)
if sym === :magFilter && x !== nothing
x === NEAREST || x === LINEAR ||
throw(ArgumentError("magFilter should be one of: NEAREST(9728), LINEAR(9729)"))
elseif sym === :minFilter && x !== nothing
x === NEAREST || x === LINEAR || x === NEAREST_MIPMAP_NEAREST ||
x === LINEAR_MIPMAP_NEAREST || x === NEAREST_MIPMAP_LINEAR || x === LINEAR_MIPMAP_LINEAR ||
throw(ArgumentError("minFilter should be one of: NEAREST(9728), LINEAR(9729), NEAREST_MIPMAP_NEAREST(9984), LINEAR_MIPMAP_NEAREST(9985), NEAREST_MIPMAP_LINEAR(9986), LINEAR_MIPMAP_LINEAR(9987)"))
elseif sym === :wrapS && x !== nothing
x === CLAMP_TO_EDGE || x === MIRRORED_REPEAT || x === REPEAT ||
throw(ArgumentError("wrapS should be one of: CLAMP_TO_EDGE(33071), MIRRORED_REPEAT(33648), REPEAT(10497)"))
elseif sym === :wrapT && x !== nothing
x === CLAMP_TO_EDGE || x === MIRRORED_REPEAT || x === REPEAT ||
throw(ArgumentError("wrapT should be one of: CLAMP_TO_EDGE(33071), MIRRORED_REPEAT(33648), REPEAT(10497)"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Sampler}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Sampler}) = (:magFilter, :minFilter, :wrapS, :wrapT, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 833 | mutable struct Scene
nodes::Union{Nothing,Vector{Int}}
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Scene(; nodes=Set(), name=nothing, extensions=Dict(), extras=nothing)
obj = new()
obj.nodes = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.setproperty!(obj::Scene, sym::Symbol, x)
if sym === :nodes && x !== nothing
all(n->n ≥ 0, x) || throw(ArgumentError("the indices of each root node should be ≥ 0"))
allunique(x) || throw(ArgumentError("nodes must be unique."))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Scene}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Scene}) = (:nodes, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 722 | for ty = (:Primitive, :Mesh, :Skin, :Node, :Scene,
:Indices, :Values, :Sparse, :Accessor,
:Orthographic, :Perspective, :Camera,
:Target, :Channel, :AnimationSampler, :Animation,
:Object, :Asset, :Buffer, :BufferView, :Image, :Texture, :Sampler,
:TextureInfo, :NormalTextureInfo, :OcclusionTextureInfo, :PBRMetallicRoughness, :Material)
@eval begin
function Base.show(io::IO, ::MIME"text/plain", x::$ty)
print(io, $ty, ":")
for name in fieldnames($ty)
isdefined(x, name) || continue
v = getfield(x, name)
v != nothing && print(io, "\n $name: ", v)
end
end
end
end
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 1197 | mutable struct Skin
inverseBindMatrices::Union{Nothing,Int}
skeleton::Union{Nothing,Int}
joints::Vector{Int}
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Skin()
obj = new()
obj.inverseBindMatrices = nothing
obj.skeleton = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.setproperty!(obj::Skin, sym::Symbol, x)
if sym === :inverseBindMatrices && x !== nothing
x ≥ 0 || throw(ArgumentError("the index of the accessor containing the inverse-bind matrices should be ≥ 0"))
elseif sym === :skeleton && x !== nothing
skeleton ≥ 0 || throw(ArgumentError("the index of the node used as a skeleton root should be ≥ 0"))
elseif sym === :joints
isempty(x) && throw(ArgumentError("joints should not be empty."))
allunique(x) || throw(ArgumentError("joint number must be unique."))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Skin}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Skin}) = (:inverseBindMatrices, :skeleton, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 933 | mutable struct Texture
sampler::Union{Nothing,Int}
source::Union{Nothing,Int}
name::Union{Nothing,String}
extensions::Union{Nothing,Dict}
extras::Union{Nothing,Dict}
function Texture()
obj = new()
obj.sampler = nothing
obj.source = nothing
obj.name = nothing
obj.extensions = nothing
obj.extras = nothing
obj
end
end
function Base.setproperty!(obj::Texture, sym::Symbol, x)
if sym === :sampler && x !== nothing
x ≥ 0 || throw(ArgumentError("the index of the sampler used by this texture should be ≥ 0"))
elseif sym === :source && x !== nothing
source ≥ 0 || throw(ArgumentError("the index of the image used by this texture should be ≥ 0"))
end
setfield!(obj, sym, x)
end
JSON3.StructType(::Type{Texture}) = JSON3.Mutable()
StructTypes.omitempties(::Type{Texture}) = (:sampler, :source, :name, :extensions, :extras)
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 4381 | import Base: IdentityUnitRange, @propagate_inbounds
# from https://github.com/JuliaArrays/CustomUnitRanges.jl/blob/master/src/ZeroRange.jl
"""
ZeroRange(n)
Defines an `AbstractUnitRange` corresponding to the half-open interval
[0,n), equivalent to `0:n-1` but with the lower bound guaranteed to be
zero by Julia's type system.
"""
struct ZeroRange{T<:Integer} <: AbstractUnitRange{T}
len::T
ZeroRange{T}(len) where {T} = new{T}(max(zero(T), len))
end
ZeroRange(len::T) where {T<:Integer} = ZeroRange{T}(len)
Base.length(r::ZeroRange) = r.len
Base.length(r::ZeroRange{T}) where {T<:Union{Int,Int64}} = T(r.len)
let smallint = (Int === Int64 ?
Union{Int8,UInt8,Int16,UInt16,Int32,UInt32} :
Union{Int8,UInt8,Int16,UInt16})
Base.length(r::ZeroRange{T}) where {T<:smallint} = Int(r.len)
end
Base.first(r::ZeroRange{T}) where {T} = zero(T)
Base.last(r::ZeroRange{T}) where {T} = r.len-one(T)
function Base.iterate(r::ZeroRange{T}) where T
r.len <= 0 && return nothing
x = oftype(one(T) + one(T), zero(T))
return (x,x)
end
function Base.iterate(r::ZeroRange{T}, i) where T
x = i + one(T)
return (x >= oftype(x, r.len) ? nothing : (x,x))
end
@inline function Base.getindex(v::ZeroRange{T}, i::Integer) where T
@boundscheck ((i > 0) & (i <= length(v))) || Base.throw_boundserror(v, i)
convert(T, i-1)
end
@inline function Base.getindex(r::ZeroRange{R}, s::AbstractUnitRange{S}) where {R,S<:Integer}
@boundscheck checkbounds(r, s)
R(first(s)-1):R(last(s)-1)
end
Base.intersect(r::ZeroRange, s::ZeroRange) = ZeroRange(min(r.len,s.len))
Base.promote_rule(::Type{ZeroRange{T1}},::Type{ZeroRange{T2}}) where {T1,T2} = ZeroRange{promote_type(T1,T2)}
Base.convert(::Type{ZeroRange{T}}, r::ZeroRange{T}) where {T<:Real} = r
Base.convert(::Type{ZeroRange{T}}, r::ZeroRange) where {T<:Real} = ZeroRange{T}(r.len)
ZeroRange{T}(r::ZeroRange) where {T} = convert(ZeroRange{T}, r)
Base.show(io::IO, r::ZeroRange) = print(io, typeof(r), "(", r.len, ")")
Base.show(io::IO, ::MIME"text/plain", r::ZeroRange) = show(io, r)
"""
ZVector{T} <: AbstractVector{T}
Simple 0-based Vector. For a more generic solution, see OffsetArrays.jl.
"""
struct ZVector{T} <: AbstractVector{T}
x::Vector{T}
end
ZVector() = ZVector(Vector{Any}(undef, 0))
ZVector(::UndefInitializer, m::Integer) = ZVector(Vector{Any}(undef, Int(m)))
Base.parent(A::ZVector) = A.x
Base.size(A::ZVector) = size(parent(A))
Base.size(A::ZVector, d) = size(parent(A), d)
@inline Base.axes(A::ZVector) = (axes(A, 1),)
@inline Base.axes(A::ZVector, d) = d == 1 ? IdentityUnitRange(ZeroRange(length(parent(A)))) : IdentityUnitRange(0:0)
Base.IndexStyle(::Type{T}) where {T<:ZVector} = IndexLinear()
Base.eachindex(::IndexLinear, A::ZVector) = axes(A, 1)
Base.length(A::ZVector) = prod(size(A))
Base.isassigned(A::ZVector, i::Integer, j::Integer) = isassigned(A, i) && j == 0
@inline @propagate_inbounds function Base.getindex(A::ZVector{T}, i::Int) where {T}
@boundscheck checkbounds(A, i)
@inbounds ret = parent(A)[i + 1]
ret
end
@inline @propagate_inbounds function Base.getindex(A::ZVector{T}, I::Vararg{Int,N}) where {T,N}
@boundscheck checkbounds(parent(A), (I .+ 1)...)
@inbounds ret = parent(A)[(I .+ 1)...]
ret
end
@inline @propagate_inbounds function Base.setindex!(A::ZVector{T}, val, i::Int) where {T}
@boundscheck checkbounds(A, i)
@inbounds parent(A)[i + 1] = val
val
end
@inline @propagate_inbounds function Base.setindex!(A::ZVector{T}, val, I::Vararg{Int,N}) where {T,N}
@boundscheck checkbounds(parent(A), (I .+ 1)...)
@inbounds parent(A)[(I .+ 1)...] = val
val
end
indexlength(r::AbstractRange) = length(r)
indexlength(i::Integer) = i
ZeroRangeIUR{T} = IdentityUnitRange{ZeroRange{T}}
Base.similar(A::ZVector) = similar(A, eltype(A), size(A))
Base.similar(A::ZVector, ::Type{T}) where {T} = similar(A, T, size(A))
Base.similar(A::ZVector, dims::Dims{1}) = similar(A, eltype(A), dims)
Base.similar(A::ZVector, ::Type{T}, dims::Dims{1}) where {T} = ZVector{T}(undef, first(dims))
Base.similar(A::AbstractVector, ::Type{T}, inds::Tuple{ZeroRangeIUR,Vararg{ZeroRangeIUR}}) where {T} = ZVector(similar(A, T, map(indexlength, inds)))
Base.similar(::Type{T}, shape::Tuple{ZeroRangeIUR,Vararg{ZeroRangeIUR}}) where {T<:AbstractArray} = ZVector(T(undef, map(indexlength, shape)))
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | code | 1210 | using GLTF
using Test
using Downloads
using Pkg
const TEST_ASSETS_URL = "https://github.com/KhronosGroup/glTF-Asset-Generator/releases/download/v0.6.1/GeneratedAssets-0.6.1.zip"
const TEST_LOCAL_PATH = joinpath(@__DIR__, "download.zip")
const ASSETS_LOCAL_PATH = joinpath(@__DIR__, "assets")
if !isfile(TEST_LOCAL_PATH)
@info "downloading test assets..."
Downloads.download(TEST_ASSETS_URL, TEST_LOCAL_PATH)
end
if Sys.islinux()
isdir(ASSETS_LOCAL_PATH) || run(`unzip -x $TEST_LOCAL_PATH -d $ASSETS_LOCAL_PATH`)
else
p7z = VERSION >= v"1.3.0" ? Pkg.PlatformEngines.find7z() : joinpath(Sys.BINDIR, "7z.exe")
isdir(ASSETS_LOCAL_PATH) || run(`$p7z x $TEST_LOCAL_PATH -o$ASSETS_LOCAL_PATH`)
end
extra_assets = ["DamagedHelmet.gltf"]
for asset in extra_assets
cp(joinpath(pkgdir(GLTF), "assets", asset), joinpath(ASSETS_LOCAL_PATH, asset); force = true)
end
@testset "glTF-Asset-Generator" begin
for (root, dirs, files) in walkdir(ASSETS_LOCAL_PATH)
for file in files
if endswith(file, ".gltf")
path = joinpath(root, file)
@info "loading $path..."
@test_nowarn load(path)
end
end
end
end;
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.4.0 | d9924f00084281f97780846bcc0ae2b8c939b6fe | docs | 1742 | # GLTF
[](https://github.com/Gnimuc/GLTF.jl/actions/workflows/ci.yml)
[](https://github.com/Gnimuc/GLTF.jl/actions/workflows/TagBot.yml)
[](https://codecov.io/gh/Gnimuc/GLTF.jl)
[glTF](https://github.com/KhronosGroup/glTF) 2.0 loader and writer based on [JSON3](https://github.com/quinnj/JSON3.jl). This package only handles .gltf and not .glb.
## Installation
```julia
pkg> add GLTF
```
## Usage
glTF file format is just a JSON file + raw binaries. This package defines Julia types that map to the corresponding glTF objects.
```julia
julia> using JSON3, GLTF
julia> accessor_str = """{
"bufferView": 0,
"componentType": 5126,
"count": 24,
"type": "VEC3",
"max": [
0.3,
0.3,
0.3
],
"min": [
-0.3,
-0.3,
-0.3
],
"name": "Positions Accessor"
}"""
"{\n \"bufferView\": 0,\n \"componentType\": 5126,\n \"count\": 24,\n \"type\": \"VEC3\",\n \"max\": [\n 0.3,\n 0.3,\n 0.3\n ],\n \"min\": [\n -0.3,\n -0.3,\n -0.3\n ],\n \"name\": \"Positions Accessor\"\n}"
julia> accessor = JSON3.read(accessor_str, GLTF.Accessor)
GLTF.Accessor:
bufferView: 0
componentType: 5126
count: 24
type: VEC3
max: Any[0.3, 0.3, 0.3]
min: Any[-0.3, -0.3, -0.3]
name: Positions Accessor
```
load/save file from/to disk:
```
load("path/to/xxx.gltf") # -> GLTF.Object
save("path/to/xxx.gltf", x) # where x is of type GLTF.Object
```
| GLTF | https://github.com/Gnimuc/GLTF.jl.git |
|
[
"MIT"
] | 0.1.2 | bb85619109cf797662628ed74c20cda2912e5462 | code | 572 | using SimpleTypePrint
using Documenter
makedocs(;
modules=[SimpleTypePrint],
authors="Jiayi Wei <wjydzh1@gmail.com> and contributors",
repo="https://github.com/MrVPlusOne/SimpleTypePrint.jl/blob/{commit}{path}#L{line}",
sitename="SimpleTypePrint.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://MrVPlusOne.github.io/SimpleTypePrint.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/MrVPlusOne/SimpleTypePrint.jl",
)
| SimpleTypePrint | https://github.com/MrVPlusOne/SimpleTypePrint.git |
|
[
"MIT"
] | 0.1.2 | bb85619109cf797662628ed74c20cda2912e5462 | code | 5592 | module SimpleTypePrint
export show_type, repr_type, config_type_display
"""
# Examples
```jldoctest
julia> using SimpleTypePrint: print_multiple
print_multiple(show, stdout, 1:10, "{", ",", "}")
{1,2,3,4,5,6,7,8,9,10}
```
"""
function print_multiple(f, io::IO, xs, left="{", sep=",", right="}")
n = length(xs)::Int
print(io, left)
for (i, x) in enumerate(xs)
f(io,x)
i < n && print(io, sep)
end
print(io, right)
end
"""
show_type(io, type; kwargs...)
"""
function show_type(io::IO, @nospecialize(ty::Type); max_depth::Int = 3, short_type_name::Bool = true)
t_var_scope::Set{Symbol} = Set{Symbol}()
function rec(x::DataType, d)
# to be consistent with the Julia Compiler.
(x === Tuple) && return Base.show_type_name(io, x.name)
if x.name === Tuple.name
n = length(x.parameters)::Int
if n > 3 && all(i -> (x.parameters[1] === i), x.parameters)
# Print homogeneous tuples with more than 3 elements compactly as NTuple
print(io, "NTuple{", n, ',')
rec(x.parameters[1], d-1)
print(io, "}")
return
end
end
# hanlde function type specially
is_func = startswith(string(nameof(x)), "#")
if short_type_name && !is_func
print(io, nameof(x))
else
Base.show_type_name(io, x.name)
end
if !isempty(x.parameters)
if d ≤ 1
print(io, "{...}")
else
print_multiple((_,p) -> rec(p, d-1), io, x.parameters)
end
end
end
function rec(x::Union, d)
if x.a isa DataType && Core.Compiler.typename(x.a) === Core.Compiler.typename(DenseArray)
T, N = x.a.parameters
if x == StridedArray{T,N}
print(io, "StridedArray")
print_multiple(show, io, (T,N))
return
elseif x == StridedVecOrMat{T}
print(io, "StridedVecOrMat")
print_multiple(show, io, (T,))
return
elseif StridedArray{T,N} <: x
print(io, "Union")
elems = vcat(StridedArray{T,N},
Base.uniontypes(Core.Compiler.typesubtract(x, StridedArray{T,N})))
print_multiple((_, p) -> rec(p, d-1), io, elems)
return
end
end
print(io, "Union")
print_multiple((_, p) -> rec(p, d-1), io, Base.uniontypes(x))
end
function show_tv_def(tv::TypeVar, d)
function show_bound(io::IO, @nospecialize(b))
parens = isa(b,UnionAll) && !Base.print_without_params(b)
parens && print(io, "(")
rec(b, d-1)
parens && print(io, ")")
end
lb, ub = tv.lb, tv.ub
if lb !== Base.Bottom
if ub === Any
Base.show_unquoted(io, tv.name)
print(io, ">:")
show_bound(io, lb)
else
show_bound(io, lb)
print(io, "<:")
Base.show_unquoted(io, tv.name)
end
else
Base.show_unquoted(io, tv.name)
end
if ub !== Any
print(io, "<:")
show_bound(io, ub)
end
nothing
end
function rec(x::UnionAll, d, var_group::Vector{TypeVar}=TypeVar[])
# rename tvar as needed
var_symb = x.var.name
if var_symb === :_ || var_symb ∈ t_var_scope
counter = 1
while true
newname = Symbol(var_symb, counter)
if newname ∉ t_var_scope
newtv = TypeVar(newname, x.var.lb, x.var.ub)
x = UnionAll(newtv, x{newtv})
break
end
counter += 1
end
end
var_symb = x.var.name
push!(var_group, x.var)
push!(t_var_scope, var_symb)
if x.body isa UnionAll
# current var group continues
rec(x.body, d, var_group)
else
# current var group ends
rec(x.body, d)
print(io, " where ")
if length(var_group) == 1
show_tv_def(var_group[1], d)
else
print_multiple((_, v) -> show_tv_def(v, d), io, var_group)
end
end
delete!(t_var_scope, var_symb)
end
function rec(tv::TypeVar, d)
Base.show_unquoted(io, tv.name)
end
function rec(ohter, d)
@nospecialize(other)
show(io, ohter)
end
rec(ty, max_depth)
end
"""
repr_type(ty::Type; kwargs...)::String
"""
repr_type(ty::Type; kwargs...) = sprint((io,t) -> show_type(io,t; kwargs...), ty)
"""
config_type_display(;kwargs...)
Replace `Base.show(io::IO, x::Type)` with the simpler type printing funciton
`show_type`.
See also: `show_type`, `repr_type`.
"""
function config_type_display(;kwargs...)
@eval Base.show(io::IO, x::Type) = show_type(io, x; $(kwargs)...)
end
"""
# Keyword args
- `max_depth=3`: the maximal type AST depth to show. Type arguments deeper than this value
will be printed as `...`.
- `short_type_name=true`: when set to `true`, will print simple type names without their
corresponding module path. e.g. "Name" instead of "ModuleA.ModuleB.Name". Note that the
shorter name will always be used if the type is visible from the current scope.
"""
show_type, repr_type, config_type_display
end # module SimpleTypePrint
| SimpleTypePrint | https://github.com/MrVPlusOne/SimpleTypePrint.git |
|
[
"MIT"
] | 0.1.2 | bb85619109cf797662628ed74c20cda2912e5462 | code | 2235 | module TestSimpleTypePrint
if isdefined(@__MODULE__, :LanguageServer) # hack to make vscode linter work properly
include("../src/SimpleTypePrint.jl")
using .SimpleTypePrint
else
using SimpleTypePrint: repr_type
end
using Test
module A
module B
struct Foo{A} end
f(x) = x
end
end
macro type_print_test(ty, result)
esc(:(@test repr_type($ty) == $result))
end
@testset "type simple print" begin
@test repr_type(Array{Int64, 2}) == "Array{Int64,2}"
@test repr_type(Array{Int64}) == "Array{Int64,N} where N"
@test repr_type(Tuple{A,B,C} where {A, B, C}) == "Tuple{A,B,C} where {A,B,C}"
let nested = Tuple{Tuple{Tuple{A,B},C},D} where {A,B,C,D}
expected = [
"Tuple{...} where {A,B,C,D}",
"Tuple{Tuple{...},D} where {A,B,C,D}",
"Tuple{Tuple{Tuple{...},C},D} where {A,B,C,D}",
"Tuple{Tuple{Tuple{A,B},C},D} where {A,B,C,D}",
"Tuple{Tuple{Tuple{A,B},C},D} where {A,B,C,D}",
]
@testset "with different depth limit" begin
for d in 1:5
@test repr_type(nested, max_depth=d) == expected[d]
end
end
end
@test repr_type(A.B.Foo) == "Foo{A} where A"
@test endswith(repr_type(A.B.Foo; short_type_name=false), "A.B.Foo{A} where A")
@test (repr_type(Tuple{A,B,C} where {A, B >: A, A<:C<:B})
== "Tuple{A,B,C} where {A,B>:A,A<:C<:B}")
@test (repr_type(Tuple{A} where {A <: Tuple{Tuple{Tuple{Int64}}}}, max_depth=3)
== "Tuple{A} where A<:Tuple{Tuple{...}}")
@type_print_test(Tuple{(Tuple{A} where A), A} where A,
"Tuple{Tuple{A1} where A1,A} where A")
union_s = repr_type(Union{A,B} where {A,B})
@test union_s ∈ ["Union{A,B} where {A,B}", "Union{B,A} where {A,B}"]
@type_print_test(StridedArray{T,N} where {T, N}, "StridedArray{T,N} where {T,N}")
@type_print_test(StridedVecOrMat{String}, "StridedVecOrMat{String}")
@type_print_test NTuple{2, Int64} "Tuple{Int64,Int64}"
@type_print_test NTuple{5, Int64} "NTuple{5,Int64}"
f_repr = repr_type(typeof(A.B.f))
@test startswith(f_repr, "typeof(") && endswith(f_repr, "A.B.f)")
end
end # module TestSimpleTypePrint | SimpleTypePrint | https://github.com/MrVPlusOne/SimpleTypePrint.git |
|
[
"MIT"
] | 0.1.2 | bb85619109cf797662628ed74c20cda2912e5462 | docs | 2719 | # SimpleTypePrint.jl
[](https://travis-ci.com/MrVPlusOne/SimpleTypePrint)
[](https://codecov.io/gh/MrVPlusOne/SimpleTypePrint)
**Display Julia types in a more human-friendly way.**
## Motivation
This package provides alternative type printing functions to make it easier to read Julia types. So instead of having to read messy outputs like this:

Using this package, we can overwrite `Base.show(::IO, ::Type)` to achieve a much cleaner result:

## Usages
First, install the package with
```julia
Using Pkg; Pkg.add("SimpleTypePrint")
```
You can then override the default type printing behavior by calling
```julia
config_type_display(max_depth=3, short_type_name=true)
```
If you prefer not to override the Julia default, you can instead use the provided `show_type(io, type; kwargs...)` and `repr_type(type; kwargs...)` function to manually print selected types.
## Changes compared to `Base.show`
- Merging nested where clauses
```julia
julia> using SimpleTypePrint: repr_type
julia> repr(Tuple{A,B,C} where {A, B, C})
"Tuple{A,B,C} where C where B where A" # By default, Julia display multiple where clauses separately
julia> repr_type(Tuple{A,B,C} where {A, B, C})
"Tuple{A,B,C} where {A,B,C}" # Where clauses are correctly merged, just like how you would write them
```
- Displaying deep parts as ellipsis
```julia
julia> repr_type(Tuple{Tuple{Tuple{A,B},C},D} where {A,B,C,D})
"Tuple{Tuple{Tuple{...},C},D} where {A,B,C,D}" # By default, the maximal display depth is 3
julia> repr_type(Tuple{Tuple{Tuple{A,B},C},D} where {A,B,C,D}; max_depth=5)
"Tuple{Tuple{Tuple{A,B},C},D} where {A,B,C,D}" # You can always increase `max_depth` as needed
julia> repr_type(Tuple{A} where {A <: Tuple{Tuple{Tuple{Int}}}})
"Tuple{A} where A<:Tuple{Tuple{...}}" # depth limit also applies to type constraints
```
- Displaying type names without module prefixes
```julia
julia> module A
module B
struct Foo{A} end
end
end # Foo is nested inside A and B.
Main.A
julia> repr(A.B.Foo)
"Main.A.B.Foo" # By default, Julia displays with module prefixes unless the type is directly visible from the current scope
julia> repr_type(A.B.Foo; short_type_name=true)
"Foo{A} where A"
```
- Renaming type variables with conflicting names
```julia
julia> repr(Tuple{(Tuple{A} where A), A} where A)
"Tuple{Tuple{A} where A,A} where A"
julia> repr_type(Tuple{(Tuple{A} where A), A} where A)
"Tuple{Tuple{A1} where A1,A} where A"
```
| SimpleTypePrint | https://github.com/MrVPlusOne/SimpleTypePrint.git |
|
[
"MIT"
] | 0.1.2 | bb85619109cf797662628ed74c20cda2912e5462 | docs | 125 | ```@meta
CurrentModule = SimpleTypePrint
```
# SimpleTypePrint
```@index
```
```@autodocs
Modules = [SimpleTypePrint]
```
| SimpleTypePrint | https://github.com/MrVPlusOne/SimpleTypePrint.git |
|
[
"MIT"
] | 1.1.1 | e98272c197bd0dc45fe11299fcf90196f595ba6a | code | 7001 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
module Biplots
using Tables
using LinearAlgebra
using Statistics
using Printf
import Makie
# -----------------------
# TYPES OF NORMALIZATION
# -----------------------
center(X) = X .- mean(X, dims=1)
function logcenter(X)
L = log.(X)
μn = mean(L, dims=1)
μp = mean(L, dims=2)
μ = mean(L)
L .- μn .- μp .+ μ
end
formtransform(X) = (Z=center(X), α=1.0, κ=√(size(X,1)-1))
covtransform(X) = (Z=center(X), α=0.0, κ=1.0 )
rformtransform(X) = (Z=logcenter(X), α=1.0, κ=1.0 )
rcovtransform(X) = (Z=logcenter(X), α=0.0, κ=√size(X,2) )
biplotof = Dict(
:form => formtransform,
:cov => covtransform,
:rform => rformtransform,
:rcov => rcovtransform
)
"""
factors(table; kind=:form, dim=2)
Return `F`, `G/k` and `σ²` where `F` and `G` are the
factors (i.e. matrices with rank `dim`) of the design
matrix `Z` obtained with a given `kind` of transformation.
The scalar `κ` scales the column vectors for plotting
purposes and the variance explained `σ²` is also returned.
"""
function factors(table; kind=:form, dim=2)
# sanity checks
@assert dim ∈ [2,3] "dim must be 2 or 3"
@assert kind ∈ [:form,:cov,:rform,:rcov] "$kind is not a valid kind of biplot"
# original design matrix
X = Tables.matrix(table)
# matrix transformation
Z, α, κ = biplotof[kind](X)
# singular value decomposition
U, σ, V = svd(Z)
# matrix factors Z ≈ F*G'
F = U[:,1:dim] .* (σ[1:dim] .^ α)'
G = V[:,1:dim] .* (σ[1:dim] .^ (1 - α))'
# variance explained
σ² = σ[1:dim] .^ 2 / sum(σ .^ 2)
# return scaled factors
F, G/κ, σ²
end
"""
biplot(table; kind=:form, dim=2, [aesthetics...])
Biplot of `table` of given `kind` in `dim`-dimensional space.
There are four kinds of biplots:
* `:form` - standard biplot with shape parameter `α = 1`
* `:cov` - standard biplot with shape parameter `α = 0`
* `:rform` - relative variation biplot with `α = 1`
* `:rcov` - relative variation biplot with `α = 0`
# Biplot attributes
* `kind` - kind of biplot (`:form`, `:cov`, `:rform` or `:rcov`)
* `dim` - number of dimensions `dim ∈ {2,3}` (default to `2`)
# Aesthetics attributes
* `axescolormap` - colormap of principal axes (default to theme colormap)
* `dotcolormap` - colormap of sample dots (default to theme colormap)
* `fontsize` - font size in axes and dots (default to `12`)
* `axesbody` - size of principal axes' body (depends on `dim`)
* `axeshead` - size of principal axes' head (depends on `dim`)
* `axescolor` - color of principal axes (default to `:black`)
* `axeslabel` - names of principal axes (default to `x1,x2,...`)
* `dotsize` - size of sample dots (depends on `dim`)
* `dotcolor` - color of sample dots (default to `:black`)
* `dotlabel` - names of sample dots (default to `1:nobs`)
* `showdots` - show names of dots (default to `true`)
* `showlinks` - show links between principal axes (default to`false`)
See https://en.wikipedia.org/wiki/Biplot.
## References
* Gabriel, K. 1971. [The Biplot Graphic Display of Matrices
with Application to Principal Component Analysis]
(https://www.jstor.org/stable/2334381)
* Aitchison, J. & Greenacre, M. 2002. [Biplots of Compositional data]
(https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9876.00275)
"""
@Makie.recipe(Biplot, table) do scene
Makie.Attributes(;
# biplot attributes
kind = :form,
dim = 2,
# aesthetic attributes
axescolormap = Makie.theme(scene, :colormap),
dotcolormap = Makie.theme(scene, :colormap),
fontsize = 12,
axesbody = nothing,
axeshead = nothing,
axescolor = :black,
dotsize = nothing,
dotcolor = :black,
dotlabel = nothing,
showdots = true,
showlinks = false,
)
end
function Makie.plot!(plot::Biplot{<:Tuple{Any}})
# biplot attributes
table = plot[:table][]
kind = plot[:kind][]
dim = plot[:dim][]
# aesthetics attributes
axescolormap = plot[:axescolormap][]
dotcolormap = plot[:dotcolormap][]
fontsize = plot[:fontsize][]
axesbody = plot[:axesbody][]
axeshead = plot[:axeshead][]
axescolor = plot[:axescolor][]
dotsize = plot[:dotsize][]
dotcolor = plot[:dotcolor][]
dotlabel = plot[:dotlabel][]
showdots = plot[:showdots][]
showlinks = plot[:showlinks][]
# biplot factors
F, G, σ² = factors(table, kind=kind, dim=dim)
# n samples x p variables
n = size(F, 1)
p = size(G, 1)
# defaults differ on 2 or 3 dimensions
if isnothing(axesbody)
axesbody = dim == 2 ? 2 : 0.01
end
if isnothing(axeshead)
axeshead = dim == 2 ? 14 : 0.03
end
if axescolor isa AbstractVector{<:Number}
min, max = extrema(axescolor)
axesscale(x) = x / (max-min) - min / (max - min)
axescolor = Makie.cgrad(axescolormap)[axesscale.(axescolor)]
end
if isnothing(dotsize)
dotsize = dim == 2 ? 4 : 10
end
if isnothing(dotlabel)
dotlabel = string.(1:n)
end
if dotcolor isa AbstractVector{<:Number}
min, max = extrema(dotcolor)
dotscale(x) = x / (max-min) - min / (max - min)
dotcolor = Makie.cgrad(dotcolormap)[dotscale.(dotcolor)]
end
# plot principal axes
points = fill(Makie.Point(ntuple(i->0., dim)), n)
direcs = [Makie.Vec{dim}(v) for v in eachrow(G)]
Makie.arrows!(plot, points, direcs,
linewidth = axesbody,
arrowsize = axeshead,
arrowcolor = axescolor,
linecolor = axescolor,
)
# plot axes names
position = Tuple.(direcs)
names = Tables.columnnames(table)
Makie.text!(plot, collect(string.(names)),
position = position,
fontsize = fontsize,
color = axescolor,
)
# plot links between axes
if showlinks
links = Makie.Vec{dim}[]
for i in 1:p
for j in i+1:p
push!(links, direcs[i])
push!(links, direcs[j])
end
end
position = Tuple.(links)
Makie.linesegments!(plot, position,
color = :gray,
linestyle = :dash,
linewidth = 0.5,
)
end
# plot samples
points = [Makie.Point{dim}(v) for v in eachrow(F)]
Makie.scatter!(plot, points,
markersize = dotsize,
color = dotcolor,
)
if showdots
# plot samples names
position = Tuple.(points)
Makie.text!(plot, dotlabel,
position = position,
fontsize = fontsize,
color = dotcolor,
)
end
# plot variance explained
minpos = fill(Inf, dim)
for i in 1:dim
for direc in direcs
if direc[i] < minpos[i]
minpos[i] = direc[i]
end
end
for point in points
if point[i] < minpos[i]
minpos[i] = point[i]
end
end
end
textdim = [(@sprintf "Dim %d (%.01f " i 100*v)*"%)" for (i, v) in enumerate(σ²)]
Makie.text!(plot, join(textdim, "\n"),
position = Tuple(minpos),
)
end
end
| Biplots | https://github.com/MakieOrg/Biplots.jl.git |
|
[
"MIT"
] | 1.1.1 | e98272c197bd0dc45fe11299fcf90196f595ba6a | code | 1692 | using Biplots
using CairoMakie
using ReferenceTests
using Test
@testset "Biplots.jl" begin
# data matrix (22 paintings x 6 colors)
data = [
0.125 0.243 0.153 0.031 0.181 0.266
0.143 0.224 0.111 0.051 0.159 0.313
0.147 0.231 0.058 0.129 0.133 0.303
0.164 0.209 0.120 0.047 0.178 0.282
0.197 0.151 0.132 0.033 0.188 0.299
0.157 0.256 0.072 0.116 0.153 0.246
0.153 0.232 0.101 0.062 0.170 0.282
0.115 0.249 0.176 0.025 0.176 0.259
0.178 0.167 0.048 0.143 0.118 0.347
0.164 0.183 0.158 0.027 0.186 0.281
0.175 0.211 0.070 0.104 0.157 0.283
0.168 0.192 0.120 0.044 0.171 0.305
0.155 0.251 0.091 0.085 0.161 0.257
0.126 0.273 0.045 0.156 0.131 0.269
0.199 0.170 0.080 0.076 0.158 0.318
0.163 0.196 0.107 0.054 0.144 0.335
0.136 0.185 0.162 0.020 0.193 0.304
0.184 0.152 0.110 0.039 0.165 0.350
0.169 0.207 0.111 0.057 0.156 0.300
0.146 0.240 0.141 0.038 0.184 0.250
0.200 0.172 0.059 0.120 0.136 0.313
0.135 0.225 0.217 0.019 0.187 0.217
]
# variable names
names = [:Black,:White,:Blue,:Red,:Yellow,:Other]
# choose any Tables.jl table
table = (; zip(names, eachcol(data))...)
fig, ax = biplot(table, kind = :form, dotcolor = table.Red)
ax.aspect = DataAspect()
@test_reference "data/form.png" fig
fig, ax = biplot(table, kind = :cov, dotcolor = table.Red)
ax.aspect = DataAspect()
@test_reference "data/cov.png" fig
fig, ax = biplot(table, kind = :rform, dotcolor = table.Red)
ax.aspect = DataAspect()
@test_reference "data/rform.png" fig
fig, ax = biplot(table, kind = :rcov, dotcolor = table.Red)
ax.aspect = DataAspect()
@test_reference "data/rcov.png" fig
end
| Biplots | https://github.com/MakieOrg/Biplots.jl.git |
|
[
"MIT"
] | 1.1.1 | e98272c197bd0dc45fe11299fcf90196f595ba6a | docs | 1640 | # Biplots.jl
[](https://github.com/juliohm/Biplots.jl/actions)
[Biplot](https://en.wikipedia.org/wiki/Biplot) recipes in 2D and 3D for Makie.jl.
## Installation
Get the latest stable release with Julia's package manager:
```julia
] add Biplots
```
## Usage
```julia
using Biplots
using GLMakie
# data matrix (22 paintings x 6 colors)
data = [
0.125 0.243 0.153 0.031 0.181 0.266
0.143 0.224 0.111 0.051 0.159 0.313
0.147 0.231 0.058 0.129 0.133 0.303
0.164 0.209 0.120 0.047 0.178 0.282
0.197 0.151 0.132 0.033 0.188 0.299
0.157 0.256 0.072 0.116 0.153 0.246
0.153 0.232 0.101 0.062 0.170 0.282
0.115 0.249 0.176 0.025 0.176 0.259
0.178 0.167 0.048 0.143 0.118 0.347
0.164 0.183 0.158 0.027 0.186 0.281
0.175 0.211 0.070 0.104 0.157 0.283
0.168 0.192 0.120 0.044 0.171 0.305
0.155 0.251 0.091 0.085 0.161 0.257
0.126 0.273 0.045 0.156 0.131 0.269
0.199 0.170 0.080 0.076 0.158 0.318
0.163 0.196 0.107 0.054 0.144 0.335
0.136 0.185 0.162 0.020 0.193 0.304
0.184 0.152 0.110 0.039 0.165 0.350
0.169 0.207 0.111 0.057 0.156 0.300
0.146 0.240 0.141 0.038 0.184 0.250
0.200 0.172 0.059 0.120 0.136 0.313
0.135 0.225 0.217 0.019 0.187 0.217
]
# variable names
names = [:Black,:White,:Blue,:Red,:Yellow,:Other]
# choose any Tables.jl table
table = (; zip(names, eachcol(data))...)
# 2D relative variation biplot with colored dots
fig, ax = biplot(table, kind = :rform, dotcolor = table.Red)
ax.aspect = DataAspect()
```

Please check the docstring `?biplot` for available attributes.
| Biplots | https://github.com/MakieOrg/Biplots.jl.git |
|
[
"MIT"
] | 0.1.1 | 63abcf2fbbf20e52204a4e7529514a6bd10e5b76 | code | 411 | using Documenter, OceanColorData
makedocs(;
modules=[OceanColorData],
format=Documenter.HTML(),
pages=[
"Home" => "index.md",
],
repo="https://github.com/gaelforget/OceanColorData.jl/blob/{commit}{path}#L{line}",
sitename="OceanColorData.jl",
authors="gaelforget <gforget@mit.edu>",
assets=String[],
)
deploydocs(;
repo="github.com/gaelforget/OceanColorData.jl",
)
| OceanColorData | https://github.com/gaelforget/OceanColorData.jl.git |
|
[
"MIT"
] | 0.1.1 | 63abcf2fbbf20e52204a4e7529514a6bd10e5b76 | code | 6126 |
using Distributions, NetCDF
"""
FuzzyClassification(M,Sinv,Rrs)
Apply fuzzy membership classifier (`M` + `Sinv`) to a vector of remotely sensed
reflectcances (`Rrs`) and returns a membership vector (values between 0 and 1).
"""
function FuzzyClassification(M,Sinv,Rrs)
f=Array{Any,1}(undef,length(M))
for ii=1:length(M)
X=vec(Rrs)-M[ii]
Z=transpose(X)*Sinv[ii]*X
f[ii]=ccdf(Chisq(6),Z)
end
return f
end
"""
Jackson2017()
`Fuzzy logic` classifiers defined in [Moore et al 2009](https://doi.org/10.1016/j.rse.2009.07.016) and
[Jackson et al 2017](http://dx.doi.org/10.1016/j.rse.2017.03.036) can be used to
assign optical class memberships from an `Rrs` vector. This function provides
vector `M` and inverse matrix `Sinv` for the Jackson et al 2017 classifier.
Credits: T. Jackson kindly provided the `J17.nc` classifier file
"""
function Jackson2017()
fil=joinpath(dirname(pathof(OceanColorData)),"../examples/J17.nc")
tmpM = ncread(fil, "cluster_means")
tmpSinv = ncread(fil, "inverse_covariance")
M=Array{Any,1}(undef,14)
Sinv=Array{Any,1}(undef,14)
for ii=1:length(M)
M[ii]=vec(tmpM[ii,:])
Sinv[ii]=tmpSinv[1:6,1:6,ii]
end
return M,Sinv
end
"""
Moore2009()
`Fuzzy logic` classifiers defined in [Moore et al 2009](https://doi.org/10.1016/j.rse.2009.07.016) and
[Jackson et al 2017](http://dx.doi.org/10.1016/j.rse.2017.03.036) can be used to
assign optical class memberships from an `Rrs` vector. This function provides
vector `M` and inverse matrix `Sinv` for the Moore et al 2009 classifier.
"""
function Moore2009()
#Moore et al 2009 mean vectors:
M=Array{Any,1}(undef,8)
M[1]=vec([0.0234 0.0192 0.0129 0.0075 0.0031 0.0002])
M[2]=vec([0.0162 0.0141 0.0112 0.0073 0.0034 0.0002])
M[3]=vec([0.0107 0.0098 0.0092 0.0070 0.0039 0.0003])
M[4]=vec([0.0065 0.0064 0.0070 0.0064 0.0048 0.0006])
M[5]=vec([0.0033 0.0034 0.0042 0.0042 0.0043 0.0009])
M[6]=vec([0.0064 0.0074 0.0105 0.0116 0.0140 0.0041])
M[7]=vec([0.0121 0.0140 0.0192 0.0204 0.0231 0.0084])
M[8]=vec([0.0184 0.0230 0.0333 0.0359 0.0409 0.0137])
#Moore et al 2009 covariance matrices:
S=Array{Any,1}(undef,8)
S[1]=[0.00000959 0.00000556 0.00000138 -0.00000034 -0.00000024 -0.00000003;
0.00000556 0.00000493 0.00000193 0.00000060 0.00000023 0.00000001;
0.00000138 0.00000193 0.00000282 0.00000223 0.00000119 0.00000007;
-0.00000034 0.00000060 0.00000223 0.00000232 0.00000119 0.00000007;
-0.00000024 0.00000023 0.00000119 0.00000119 0.00000071 0.00000005;
-0.00000003 0.00000001 0.00000007 0.00000007 0.00000005 0.00000001]
S[2]=[0.00000346 0.00000186 -0.00000011 -0.00000060 -0.00000062 -0.00000005;
0.00000186 0.00000228 0.00000086 0.00000033 -0.00000007 0.00000003;
-0.00000011 0.00000086 0.00000231 0.00000221 0.00000145 0.00000023;
-0.00000060 0.00000033 0.00000221 0.00000266 0.00000191 0.00000034;
-0.00000062 -0.00000007 0.00000145 0.00000191 0.00000175 0.00000041;
-0.00000005 0.00000003 0.00000023 0.00000034 0.00000041 0.00000021]
S[3]=[0.00000241 0.00000144 0.00000035 -0.00000031 -0.00000063 -0.00000006;
0.00000144 0.00000138 0.00000076 0.00000015 -0.00000021 -0.00000001;
0.00000035 0.00000076 0.00000161 0.00000156 0.00000121 0.00000016;
-0.00000031 0.00000015 0.00000156 0.00000227 0.00000209 0.00000031;
-0.00000063 -0.00000021 0.00000121 0.00000209 0.00000225 0.00000037;
-0.00000006 -0.00000001 0.00000016 0.00000031 0.00000037 0.00000013]
S[4]=[0.00000166 0.00000091 0.00000034 -0.00000009 -0.00000080 -0.00000025;
0.00000091 0.00000097 0.00000071 0.00000025 -0.00000041 -0.00000015;
0.00000034 0.00000071 0.00000118 0.00000103 0.00000072 0.00000003;
-0.00000009 0.00000025 0.00000103 0.00000137 0.00000162 0.00000025;
-0.00000080 -0.00000041 0.00000072 0.00000162 0.00000290 0.00000065;
-0.00000025 -0.00000015 0.00000003 0.00000025 0.00000065 0.00000050]
S[5]=[0.00000178 0.00000132 0.00000104 0.00000081 0.00000018 -0.00000014;
0.00000132 0.00000127 0.00000121 0.00000099 0.00000034 -0.00000010;
0.00000104 0.00000121 0.00000150 0.00000142 0.00000110 0.00000013;
0.00000081 0.00000099 0.00000142 0.00000158 0.00000177 0.00000042;
0.00000018 0.00000034 0.00000110 0.00000177 0.00000351 0.00000131;
-0.00000014 -0.00000010 0.00000013 0.00000042 0.00000131 0.00000081]
S[6]=[0.00000715 0.00000586 0.00000409 0.00000292 0.00000005 -0.00000075;
0.00000586 0.00000589 0.00000520 0.00000398 0.00000027 -0.00000114;
0.00000409 0.00000520 0.00000634 0.00000541 0.00000188 -0.00000097;
0.00000292 0.00000398 0.00000541 0.00000528 0.00000392 0.00000070;
0.00000005 0.00000027 0.00000188 0.00000392 0.00000995 0.00000657;
-0.00000075 -0.00000114 -0.00000097 0.00000070 0.00000657 0.00000819]
S[7]=[0.00002625 0.00001981 0.00001058 0.00000544 -0.00000654 -0.00001122;
0.00001981 0.00001745 0.00001314 0.00000822 -0.00000431 -0.00001228;
0.00001058 0.00001314 0.00001629 0.00001226 0.00000035 -0.00001311;
0.00000544 0.00000822 0.00001226 0.00001170 0.00000742 -0.00000500;
-0.00000654 -0.00000431 0.00000035 0.00000742 0.00002241 0.00001782;
-0.00001122 -0.00001228 -0.00001311 -0.00000500 0.00001782 0.00003987]
S[8]=[0.00001186 0.00001134 0.00001139 0.00000919 0.00000395 -0.00000186;
0.00001134 0.00001484 0.00002034 0.00001907 0.00001531 0.00000087;
0.00001139 0.00002034 0.00003467 0.00003546 0.00003555 0.00000708;
0.00000919 0.00001907 0.00003546 0.00003907 0.00004604 0.00001733;
0.00000395 0.00001531 0.00003555 0.00004604 0.00007306 0.00004953;
-0.00000186 0.00000087 0.00000708 0.00001733 0.00004953 0.00006542];
Sinv=inv.(S)
return M,Sinv
end
| OceanColorData | https://github.com/gaelforget/OceanColorData.jl.git |
|
[
"MIT"
] | 0.1.1 | 63abcf2fbbf20e52204a4e7529514a6bd10e5b76 | code | 2380 |
"""
RemotelySensedReflectance(rirr_in,wvbd_in,wvbd_out)
Compute remotely sensed reflectance at wvbd_out from
irradiance reflectance at wvbd_in.
```
wvbd_out=Float64.([412, 443, 490, 510, 555, 670])
wvbd_in=Float64.([400,425,450,475,500,525,550,575,600,625,650,675,700])
rirr_in=1e-3*[23.7641,26.5037,27.9743,30.4914,28.1356,
21.9385,18.6545,13.5100,5.6338,3.9272,2.9621,2.1865,1.8015]
rrs_out=RemotelySensedReflectance(rirr_in,wvbd_in,wvbd_out)
using Plots
plot(vec(rrs_out),linewidth=4,lab="recomputed RRS")
rrs_ref=1e-3*[4.4099, 4.8533, 5.1247, 4.5137, 3.0864, 0.4064]
plot!(rrs_ref,linewidth=4,ls=:dash,lab="reference result")
```
"""
function RemotelySensedReflectance(rirr_in,wvbd_in,wvbd_out)
rrs_out=similar(wvbd_out)
nin=length(wvbd_in)
nout=length(wvbd_out)
jj=Array{Int64,1}(undef,nin)
ww=Array{Float64,1}(undef,nin)
for ii=1:6
tmp=wvbd_out[ii].-wvbd_in
kk=maximum(findall(tmp.>=0))
jj[ii]=kk
ww[ii]=tmp[kk]/(wvbd_in[kk+1]-wvbd_in[kk])
end
tmp=rirr_in/3
rrs_tmp=(0.52*tmp)./(1.0 .-1.7*tmp);
rrs_out=Array{Float64,1}(undef,nout)
for vv=1:6
tmp0=rrs_tmp[jj[vv]]
tmp1=rrs_tmp[jj[vv]+1]
rrs_out[vv]=tmp0.*(1-ww[vv])+tmp1.*ww[vv]
end
return rrs_out
end
"""
RrsToChla(Rrs; Eqn="OC4")
Satellite `Chl_a` estimates typicaly derive from remotely sensed reflectances
using the blue/green reflectance ratio method and a polynomial formulation.
```
wvbd_out=Float64.([412, 443, 490, 510, 555, 670])
wvbd_in=Float64.([400,425,450,475,500,525,550,575,600,625,650,675,700])
rirr_in=1e-3*[23.7641,26.5037,27.9743,30.4914,28.1356,
21.9385,18.6545,13.5100,5.6338,3.9272,2.9621,2.1865,1.8015]
rrs_out=RemotelySensedReflectance(rirr_in,wvbd_in,wvbd_out)
chla_out=RrsToChla(rrs_out)
```
"""
function RrsToChla(Rrs;Eqn="OC4")
RRSB=max.(Rrs[2],Rrs[3]) #blue
RRSG=Rrs[5] #green
X = log10.(RRSB./RRSG) #ratio of blue to green
if Eqn=="OC4"
C=[0.3272, -2.9940, +2.7218, -1.2259, -0.5683] #OC4 algorithms (SeaWifs, CCI)
elseif Eqn=="OC3M-547"
C=[0.2424, -2.7423, 1.8017, 0.0015, -1.2280] #OC3M-547 algorithm (MODIS)
else
error("this case has not been implemented yet...")
end
a0=C[1]; a1=C[2]; a2=C[3]; a3=C[4]; a4=C[5];
chld=exp10.(a0.+a1*X+a2*X.^2+a3*X.^3+a4*X.^4); #apply polynomial recipe
end
| OceanColorData | https://github.com/gaelforget/OceanColorData.jl.git |
|
[
"MIT"
] | 0.1.1 | 63abcf2fbbf20e52204a4e7529514a6bd10e5b76 | code | 185 | module OceanColorData
include("Conversions.jl")
include("Classifiers.jl")
export RemotelySensedReflectance, RrsToChla
export FuzzyClassification, Moore2009, Jackson2017
end # module
| OceanColorData | https://github.com/gaelforget/OceanColorData.jl.git |
|
[
"MIT"
] | 0.1.1 | 63abcf2fbbf20e52204a4e7529514a6bd10e5b76 | code | 1020 | using OceanColorData
using Test
@testset "OceanColorData.jl" begin
wvbd_out=[412, 443, 490, 510, 555, 670]
wvbd_in=[400,425,450,475,500,525,550,575,600,625,650,675,700]
rirr_in=1e-3*[23.7641,26.5037,27.9743,30.4914,28.1356,
21.9385,18.6545,13.5100,5.6338,3.9272,2.9621,2.1865,1.8015]
rrs_ref=1e-3*[4.4099, 4.8533, 5.1247, 4.5137, 3.0864, 0.4064]
chla_ref=0.6101219875535429
fcm_ref=[5.683734365402806e-26, 4.958850399758996e-64, 2.0058235898296587e-43,
2.399985306394786e-23, 1.0914931954631329e-15, 3.610712128260008e-8,
0.06660122938880934, 0.4566726319832639, 0.001153891939362191, 5.901424234631198e-11,
1.8433658038301877e-10, 0.4133547888920851, 0.027225883646784382, 0.005595266829573927]
rrs_out=RemotelySensedReflectance(rirr_in,wvbd_in,wvbd_out)
chla_out=RrsToChla(rrs_out; Eqn="OC4")
(M,Sinv)=Jackson2017()
fcm_out=FuzzyClassification(M,Sinv,rrs_out)
@test isapprox(rrs_out,rrs_ref,atol=1e-5)
@test isapprox(chla_out,chla_ref,atol=1e-5)
@test isapprox(fcm_out,fcm_ref,atol=1e-5)
end
| OceanColorData | https://github.com/gaelforget/OceanColorData.jl.git |
|
[
"MIT"
] | 0.1.1 | 63abcf2fbbf20e52204a4e7529514a6bd10e5b76 | docs | 1007 | # OceanColorData.jl
[](https://gaelforget.github.io/OceanColorData.jl/stable)
[](https://gaelforget.github.io/OceanColorData.jl/dev)
[](https://travis-ci.org/gaelforget/OceanColorData.jl)
[](https://codecov.io/gh/gaelforget/OceanColorData.jl)
[](https://coveralls.io/github/gaelforget/OceanColorData.jl?branch=master)
[](https://zenodo.org/badge/latestdoi/248762827)
Processing and analysis of [ocean color data](https://en.wikipedia.org/wiki/Ocean_color#Ocean_color_radiometry).
_This package is in early developement stage when breaking changes can be expected._
| OceanColorData | https://github.com/gaelforget/OceanColorData.jl.git |
|
[
"MIT"
] | 0.1.1 | 63abcf2fbbf20e52204a4e7529514a6bd10e5b76 | docs | 150 | # OceanColorData.jl
This package is at a very early stage of development. Stay tuned ...
```@index
```
```@autodocs
Modules = [OceanColorData]
```
| OceanColorData | https://github.com/gaelforget/OceanColorData.jl.git |
|
[
"MIT"
] | 2.4.0 | 313ea256ced33aa6039987c9fef57e59aa229589 | code | 209 | append!(empty!(LOAD_PATH), Base.DEFAULT_LOAD_PATH)
using Pkg
exampledir = joinpath(@__DIR__, "..", "examples")
Pkg.activate(exampledir)
Pkg.instantiate()
include(joinpath(exampledir, "generate_notebooks.jl"))
| RigidBodyDynamics | https://github.com/JuliaRobotics/RigidBodyDynamics.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.