|
import json |
|
import os |
|
from random import shuffle, seed |
|
from datasets import load_dataset |
|
|
|
test = load_dataset("cardiffnlp/super_tweeteval", "tweet_topic", split="test").shuffle(seed=42) |
|
test = list(test.to_pandas().T.to_dict().values()) |
|
train = load_dataset("cardiffnlp/super_tweeteval", "tweet_topic", split="train").shuffle(seed=42) |
|
train = list(train.to_pandas().T.to_dict().values()) |
|
validation = load_dataset("cardiffnlp/super_tweeteval", "tweet_topic", split="validation").shuffle(seed=42) |
|
validation = list(validation.to_pandas().T.to_dict().values()) |
|
n_train = len(train) |
|
n_validation = len(validation) |
|
for data in [train, validation, test]: |
|
for i in data: |
|
i["gold_label_list"] = i["gold_label_list"].tolist() |
|
|
|
n_test = int(len(test)/4) |
|
test_1 = test[:n_test] |
|
test_2 = test[n_test:n_test*2] |
|
test_3 = test[n_test*2:n_test*3] |
|
test_4 = test[n_test*3:] |
|
|
|
os.makedirs("data/tweet_topic", exist_ok=True) |
|
with open("data/tweet_topic/test.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in test])) |
|
with open("data/tweet_topic/test_1.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in test_1])) |
|
with open("data/tweet_topic/test_2.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in test_2])) |
|
with open("data/tweet_topic/test_3.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in test_3])) |
|
with open("data/tweet_topic/test_4.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in test_4])) |
|
with open("data/tweet_topic/train.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in train])) |
|
with open("data/tweet_topic/validation.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in validation])) |
|
|
|
|
|
def sampler(dataset_test, r_seed): |
|
seed(r_seed) |
|
shuffle(dataset_test) |
|
shuffle(train) |
|
shuffle(validation) |
|
test_tr = dataset_test[:int(n_train / 2)] |
|
test_vl = dataset_test[int(n_train / 2): int(n_train / 2) + int(n_validation / 2)] |
|
new_train = test_tr + train[:n_train - len(test_tr)] |
|
new_validation = test_vl + validation[:n_validation - len(test_vl)] |
|
return new_train, new_validation |
|
|
|
id2test = {n: t for n, t in enumerate([test_1, test_2, test_3, test_4])} |
|
for n, _test in enumerate([ |
|
test_4 + test_2 + test_3, |
|
test_1 + test_4 + test_3, |
|
test_1 + test_2 + test_4, |
|
test_1 + test_2 + test_3]): |
|
for s in range(3): |
|
os.makedirs(f"data/tweet_topic_test{n}_seed{s}", exist_ok=True) |
|
_train, _valid = sampler(_test, s) |
|
with open(f"data/tweet_topic_test{n}_seed{s}/train.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in _train])) |
|
with open(f"data/tweet_topic_test{n}_seed{s}/validation.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in _valid])) |
|
with open(f"data/tweet_topic_test{n}_seed{s}/test.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in id2test[n]])) |
|
|
|
|
|
|
|
|
|
|