Datasets:

ArXiv:
Maurice Weber commited on
Commit
34b0752
·
1 Parent(s): fbbd8c2

update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -6
README.md CHANGED
@@ -18,7 +18,7 @@ snapshots and processed using the [CCNet](https://github.com/facebookresearch/cc
18
 
19
  Check out our [blog post](XXXXX) for more details on the build process, dataset structure and schema.
20
 
21
- To familiarize yourself with the dataset, you can load the sample dataset with the following command:
22
 
23
  ```python
24
  from datasets import load_dataset
@@ -26,10 +26,22 @@ from datasets import load_dataset
26
  ds = load_dataset("togethercomputer/RedPajama-Data-V2", name="sample")
27
  ```
28
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  Alternatively, you can also directly download the files using the following instructions, using English data from the
30
  `2023-06` snapshot and the `head_middle` partition as an example. The full set of CC snapshots included in the dataset
31
- is given in `_CC_SNAPSHOT_IDS`, and the available partitions are `tail` and `head_middle`. The available language tags are
32
- `en`, `de`, `fr`, `es`, `it`.
33
 
34
  ```bash
35
  CC_SNAPSHOT="2023-06"
@@ -66,8 +78,37 @@ found [here](https://github.com/togethercomputer/RedPajama-Data).
66
 
67
  ### Dataset Summary
68
 
69
- RedPajama-V2 is a data foundation that includes over 100B text documents, out of which 30B documents come with
70
- quality annotations.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
  ### Languages
73
 
@@ -151,7 +192,8 @@ Documents files, which contain the text, folow the schema defined by CCNet, and
151
  }
152
  ```
153
 
154
- where signal scores are encoded as list of tuple `(start, end, score)`, where `start` and `end` are the locations in the
 
155
  `raw_content` string where the `score` applies.
156
 
157
  ## Dataset Creation
 
18
 
19
  Check out our [blog post](XXXXX) for more details on the build process, dataset structure and schema.
20
 
21
+ To familiarize yourself with the dataset, you can load the sample dataset using:
22
 
23
  ```python
24
  from datasets import load_dataset
 
26
  ds = load_dataset("togethercomputer/RedPajama-Data-V2", name="sample")
27
  ```
28
 
29
+ To download a the dataset for a specific combination of `{partition} x {snapshot_id} x {language}`, you can run
30
+
31
+ ```python
32
+ from datasets import load_dataset
33
+
34
+ ds = load_dataset("togethercomputer/RedPajama-Data-V2",
35
+ name="sample",
36
+ partition="head_middle",
37
+ snapshots=["2023-06", "2022-49"],
38
+ languages=["en", "de"])
39
+ ```
40
+
41
  Alternatively, you can also directly download the files using the following instructions, using English data from the
42
  `2023-06` snapshot and the `head_middle` partition as an example. The full set of CC snapshots included in the dataset
43
+ is given in `_CC_SNAPSHOT_IDS`, and the available partitions are `tail` and `head_middle`. The available language tags
44
+ are `en`, `de`, `fr`, `es`, `it`.
45
 
46
  ```bash
47
  CC_SNAPSHOT="2023-06"
 
78
 
79
  ### Dataset Summary
80
 
81
+ RedPajama-V2 is an open dataset for training large laguage models and includes over 100B text documents. Out of these,
82
+ 30B documents come with quality annotations.
83
+
84
+ #### Quality Annotations
85
+
86
+ | Annotation Tag | Description | Category | Reference |
87
+ |--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------|
88
+ | ccnet_bucket | head, middle or tail bucket of the perplexity score | ccnet | ccnet |
89
+ | ccnet_language_score | score of the language identification model | ccnet | ccnet |
90
+ | ccnet_length | number of characters | ccnet | ccnet |
91
+ | ccnet_nlines | number of lines | ccnet | ccnet |
92
+ | ccnet_original_length | number of characters before in-document line deduplication | ccnet | ccnet |
93
+ | ccnet_original_nlines | number of lines before in-document line deduplication | ccnet | ccnet |
94
+ | ccnet_perplexity | perplexity of an LM trained on Wikipedia | ccnet | ccnet |
95
+ | rps_doc_books_importance | Given a bag of {1,2}-wordgram model trained on Books p, and a model trained on the source domain q, This is the logarithm of the ratio p(doc)/q(doc) | ML Heuristics | Importance Resampling (Xie et al.) |
96
+ | rps_doc_openwebtext_importance | Given a bag of {1,2}-wordgram model trained on OpenWebText p, and a model trained on the source domain q, this is the logarithm of the ratio p(doc)/q(doc). | ML Heuristics | Importance Resampling (Xie et al.) |
97
+ | rps_doc_wikipedia_importance | Given a bag of {1,2}-wordgram model trained on Wikipedia articles p, and a model trained on the source domain q, this is the logarithm of the ratio p(doc)/q(doc). | ML Heuristics | Importance Resampling (Xie et al.) |
98
+ | rps_doc_ml_wikiref_score | Fasttext classifier prediction for the document being a Wikipedia | ML Heuristics | LLaMA, RedPajama-1T |
99
+ | | reference. This is the same fasttext model used in the RedPajama-1T | | |
100
+ | | dataset. Only applies to English data. | | |
101
+ | rps_doc_ml_palm_score | Fasttext classifier prediction for the document being a Wikipedia | ML Heuristics | PaLM, GLaM |
102
+ | | article, OpenWebText sample or a RedPajama-V1 book. Only for English | | |
103
+ | | data. | | |
104
+ | rps_doc_ml_wikipedia_score | Fasttext classifier prediction for the document being a Wikipedia | ML Heuristics | - |
105
+ | | article. This is used for non-English data | | |
106
+
107
+ #### Document Counts for the Annotated part of the dataset
108
+
109
+ | | en | de | fr | es | it | Total |
110
+ |-------------|-------|------|------|------|------|-------|
111
+ | # Documents | 24.5B | 2.7B | 2.2B | 2.3B | 1.2B | 32.9B |
112
 
113
  ### Languages
114
 
 
192
  }
193
  ```
194
 
195
+ where signal scores are encoded as a list of tuples `(start, end, score)`, where `start` and `end` are the locations in
196
+ the
197
  `raw_content` string where the `score` applies.
198
 
199
  ## Dataset Creation