Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
RedPajama-Data-V2 / RedPajama-Data-V2.py
Maurice Weber
remove _sample
a6472f5
raw
history blame
11.1 kB
# Copyright 2023 Together Computer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""RedPajama V2: Quality annotated Web Text Documents."""
import json
import datasets
import traceback
import os
import gzip
from typing import List
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
RedPajama V2: an Open Dataset for Training Large Language Models
"""
_URL_BASE = 'https://data.together.xyz/redpajama-data-v2/v1.0.0'
_LANGUAGES = ("en", "de", "fr", "es", "it")
_LISTINGS_PATTERN = "listings/{language}-{snapshot}-{partition}.txt"
_CC_SNAPSHOT_IDS = (
"2014-15",
"2014-23",
"2014-35",
"2014-41",
"2014-42",
"2014-49",
"2014-52",
"2015-14",
"2015-22",
"2015-27",
"2015-32",
"2015-35",
"2015-40",
"2015-48",
"2016-07",
"2016-18",
"2016-22",
"2016-26",
"2016-30",
"2016-36",
"2016-40",
"2016-44",
"2016-50",
"2017-04",
"2017-09",
"2017-17",
"2017-22",
"2017-26",
"2017-30",
"2017-34",
"2017-39",
"2017-43",
"2017-47",
"2017-51",
"2018-05",
"2018-09",
"2018-13",
"2018-17",
"2018-22",
"2018-26",
"2018-30",
"2018-34",
"2018-39",
"2018-43",
"2018-47",
"2018-51",
"2019-04",
"2019-09",
"2019-13",
"2019-18",
"2019-22",
"2019-26",
"2019-30",
"2019-35",
"2019-39",
"2019-43",
"2019-47",
"2019-51",
"2020-05",
"2020-10",
"2020-16",
"2020-24",
"2020-29",
"2020-34",
"2020-40",
"2020-45",
"2020-50",
"2021-04",
"2021-10",
"2021-17",
"2021-21",
"2021-25",
"2021-31",
"2021-39",
"2021-43",
"2021-49",
"2022-05",
"2022-21",
"2022-27",
"2022-33",
"2022-40",
"2022-49",
"2023-06",
"2023-14"
)
class RedPajamaDataV2Config(datasets.BuilderConfig):
"""BuilderConfig for RedPajama."""
def __init__(self, *args, **kwargs):
"""BuilderConfig for RedPajama.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(RedPajamaDataV2Config, self).__init__(**kwargs)
self.partition: str = kwargs.pop("partition", "all")
self.snapshots: List[str] = kwargs.pop("snapshots", _CC_SNAPSHOT_IDS)
self.languages: List[str] = kwargs.pop("languages", _LANGUAGES)
class RedPajamaV2(datasets.GeneratorBasedBuilder):
""" RedPajama V2: Quality annotated Web Text Documents. """
BUILDER_CONFIGS = [
RedPajamaDataV2Config(
name='default',
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2",
),
RedPajamaDataV2Config(
name='sample',
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample",
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"raw_content": datasets.Value("string"),
"doc_id": datasets.Value("string"),
"meta": datasets.Value("string"),
"quality_signals": datasets.Value("string")
}
),
supervised_keys=None,
)
def _split_generators_sample(self, dl_manager):
# fetch documents
sample_listings = dl_manager.download_and_extract(
"sample/sample_listings.txt"
)
with open(sample_listings, "r") as fd:
listings = [line.strip() for line in fd]
# fetch documents
documents_files = dl_manager.download({
"head_middle": [
f"sample/documents/{lst}.json.gz" for lst in listings
]
})
# fetch quality signals
quality_signals_files = dl_manager.download({
"head_middle": [
f"sample/quality_signals/{lst}.signals.json.gz"
for lst in listings
]
})
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"listings_ids": {"head_middle": listings},
"documents_files": documents_files,
"quality_signals_files": quality_signals_files
}
)
]
def _split_generators_full(self, dl_manager):
snapshots = getattr(self.config, 'snapshots', _CC_SNAPSHOT_IDS)
languages = getattr(self.config, 'languages', _LANGUAGES)
partition = getattr(self.config, 'partition', 'all')
partitions = {
"all": ["head_middle", "tail"]
}.get(partition, [partition])
# nested structure: partition -> urls
listings_files_urls = {}
for part in partitions:
listings_files_urls[part] = []
for snapshot_id in snapshots:
for lang in languages:
listings_files_urls[part].append(
_LISTINGS_PATTERN.format(
language=lang,
snapshot=snapshot_id,
partition=part,
)
)
# fetch listings from hub
listings_files = dl_manager.download_and_extract(listings_files_urls)
# fetch listings
listings_ids = {}
for part, part_listings_files in listings_files.items():
listings_ids[part] = []
for listings_file in part_listings_files:
with open(listings_file, encoding="utf-8") as f:
listings_ids[part].extend([
line.strip() for line in f
])
# build urls pointing to documents and quality signals
document_urls = {}
quality_signals_urls = {}
for part, part_listings_ids in listings_ids.items():
document_urls[part] = []
quality_signals_urls[part] = []
for lst_id in part_listings_ids:
document_urls[part].append(
os.path.join(_URL_BASE, f"documents/{lst_id}.json.gz")
)
if part != "head_middle":
continue
quality_signals_urls[part].append(
os.path.join(
_URL_BASE, f"quality_signals/{lst_id}.signals.json.gz"
)
)
documents_files = dl_manager.download(document_urls)
quality_signals_files = dl_manager.download(quality_signals_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"listings_ids": listings_ids,
"documents_files": documents_files,
"quality_signals_files": quality_signals_files
}
)
]
def _split_generators(self, dl_manager):
if self.config.name.endswith("sample"):
return self._split_generators_sample(dl_manager)
return self._split_generators_full(dl_manager)
def _generate_examples(
self, listings_ids, documents_files, quality_signals_files
):
key = 0
for part in documents_files.keys():
part_docs_files = documents_files[part]
part_qs_files = quality_signals_files[part]
part_listings_ids = listings_ids[part]
if len(part_qs_files) == 0:
for sample in self._handle_tail_partition(
part, part_docs_files, part_listings_ids
):
yield key, sample
key += 1
continue
for sample in self._handle_head_middle_partition(
part, part_docs_files, part_qs_files, part_listings_ids
):
yield key, sample
key += 1
def _handle_tail_partition(self, part, docs_files, listings_ids):
for doc_file, listing_id in zip(docs_files, listings_ids):
with gzip.open(doc_file, "rt", encoding="utf-8") as df:
for row, doc in enumerate(df):
doc_id = f"{listing_id}.json.gz/{row}"
try:
yield self.handle_record(part, doc_id, doc, None)
except Exception as e:
print(f'doc_file: {doc_file}')
print(f'row: {row}')
traceback.print_exc()
raise e
def _handle_head_middle_partition(
self, part, docs_files, qs_files, listings_ids
):
assert len(docs_files) == len(qs_files)
listings_ids = listings_ids[:len(docs_files)]
for doc_file, qs_file, listings_id in zip(
docs_files, qs_files, listings_ids
):
try:
with gzip.open(doc_file, "rt", encoding="utf-8") as df:
with gzip.open(qs_file, "rt", encoding="utf-8") as qf:
for row, (doc, qs) in enumerate(zip(df, qf)):
doc_id = f"{listings_id}.json.gz/{row}"
try:
yield self.handle_record(part, doc_id, doc, qs)
except Exception as e:
print(f'failed handling row {row} in '
f'{doc_file} ({qs_file})')
traceback.print_exc()
continue
except gzip.BadGzipFile as e:
# skip broken gzip files
print(f'BadGzipFile: {doc_file, qs_file}')
traceback.print_exc()
continue
@staticmethod
def handle_record(part, doc_id, doc, qs):
doc = json.loads(doc)
qs = json.loads(qs) if qs is not None else {}
meta = {
"url": doc["url"],
"partition": part,
"language": doc["language"],
"source_domain": doc["source_domain"],
"date_download": doc["date_download"],
"digest": doc["digest"],
}
quality_signals = json.dumps(qs.get("quality_signals", {}))
return {
"raw_content": doc["raw_content"],
"doc_id": doc_id,
"meta": json.dumps(meta),
"quality_signals": quality_signals,
}