Datasets:

Languages:
Chinese
License:
kd_conv_with_kb / dataset_infos.json
system's picture
system HF staff
Update files from the datasets library (from 1.2.0)
9c8827c
raw
history blame
19.5 kB
{"travel_dialogues": {"description": "KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation. \n", "citation": "@inproceedings{zhou-etal-2020-kdconv,\n title = \"{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation\",\n author = \"Zhou, Hao and\n Zheng, Chujie and\n Huang, Kaili and\n Huang, Minlie and\n Zhu, Xiaoyan\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.635\",\n doi = \"10.18653/v1/2020.acl-main.635\",\n pages = \"7098--7108\",\n}\n", "homepage": "https://github.com/thu-coai/KdConv", "license": "Apache License 2.0", "features": {"messages": {"feature": {"message": {"dtype": "string", "id": null, "_type": "Value"}, "attrs": {"feature": {"attrname": {"dtype": "string", "id": null, "_type": "Value"}, "attrvalue": {"dtype": "string", "id": null, "_type": "Value"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}, "name": {"dtype": "string", "id": null, "_type": "Value"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "kd_conv", "config_name": "travel_dialogues", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3241550, "num_examples": 1200, "dataset_name": "kd_conv"}, "test": {"name": "test", "num_bytes": 793883, "num_examples": 150, "dataset_name": "kd_conv"}, "validation": {"name": "validation", "num_bytes": 617177, "num_examples": 150, "dataset_name": "kd_conv"}}, "download_checksums": {"https://github.com/thu-coai/KdConv/archive/master.zip": {"num_bytes": 11037768, "checksum": "a083dd60846e75e55e792dd85c392a7119f68b8f06a50eeb8c3b9c3e256ef8fc"}}, "download_size": 11037768, "post_processing_size": null, "dataset_size": 4652610, "size_in_bytes": 15690378}, "travel_knowledge_base": {"description": "KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation. \n", "citation": "@inproceedings{zhou-etal-2020-kdconv,\n title = \"{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation\",\n author = \"Zhou, Hao and\n Zheng, Chujie and\n Huang, Kaili and\n Huang, Minlie and\n Zhu, Xiaoyan\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.635\",\n doi = \"10.18653/v1/2020.acl-main.635\",\n pages = \"7098--7108\",\n}\n", "homepage": "https://github.com/thu-coai/KdConv", "license": "Apache License 2.0", "features": {"head_entity": {"dtype": "string", "id": null, "_type": "Value"}, "kb_triplets": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "kd_conv", "config_name": "travel_knowledge_base", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1517024, "num_examples": 1154, "dataset_name": "kd_conv"}}, "download_checksums": {"https://github.com/thu-coai/KdConv/archive/master.zip": {"num_bytes": 11037768, "checksum": "a083dd60846e75e55e792dd85c392a7119f68b8f06a50eeb8c3b9c3e256ef8fc"}}, "download_size": 11037768, "post_processing_size": null, "dataset_size": 1517024, "size_in_bytes": 12554792}, "music_dialogues": {"description": "KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation. \n", "citation": "@inproceedings{zhou-etal-2020-kdconv,\n title = \"{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation\",\n author = \"Zhou, Hao and\n Zheng, Chujie and\n Huang, Kaili and\n Huang, Minlie and\n Zhu, Xiaoyan\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.635\",\n doi = \"10.18653/v1/2020.acl-main.635\",\n pages = \"7098--7108\",\n}\n", "homepage": "https://github.com/thu-coai/KdConv", "license": "Apache License 2.0", "features": {"messages": {"feature": {"message": {"dtype": "string", "id": null, "_type": "Value"}, "attrs": {"feature": {"attrname": {"dtype": "string", "id": null, "_type": "Value"}, "attrvalue": {"dtype": "string", "id": null, "_type": "Value"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}, "name": {"dtype": "string", "id": null, "_type": "Value"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "kd_conv", "config_name": "music_dialogues", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3006192, "num_examples": 1200, "dataset_name": "kd_conv"}, "test": {"name": "test", "num_bytes": 801012, "num_examples": 150, "dataset_name": "kd_conv"}, "validation": {"name": "validation", "num_bytes": 633905, "num_examples": 150, "dataset_name": "kd_conv"}}, "download_checksums": {"https://github.com/thu-coai/KdConv/archive/master.zip": {"num_bytes": 11037768, "checksum": "a083dd60846e75e55e792dd85c392a7119f68b8f06a50eeb8c3b9c3e256ef8fc"}}, "download_size": 11037768, "post_processing_size": null, "dataset_size": 4441109, "size_in_bytes": 15478877}, "music_knowledge_base": {"description": "KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation. \n", "citation": "@inproceedings{zhou-etal-2020-kdconv,\n title = \"{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation\",\n author = \"Zhou, Hao and\n Zheng, Chujie and\n Huang, Kaili and\n Huang, Minlie and\n Zhu, Xiaoyan\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.635\",\n doi = \"10.18653/v1/2020.acl-main.635\",\n pages = \"7098--7108\",\n}\n", "homepage": "https://github.com/thu-coai/KdConv", "license": "Apache License 2.0", "features": {"head_entity": {"dtype": "string", "id": null, "_type": "Value"}, "kb_triplets": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "kd_conv", "config_name": "music_knowledge_base", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5980643, "num_examples": 4441, "dataset_name": "kd_conv"}}, "download_checksums": {"https://github.com/thu-coai/KdConv/archive/master.zip": {"num_bytes": 11037768, "checksum": "a083dd60846e75e55e792dd85c392a7119f68b8f06a50eeb8c3b9c3e256ef8fc"}}, "download_size": 11037768, "post_processing_size": null, "dataset_size": 5980643, "size_in_bytes": 17018411}, "film_dialogues": {"description": "KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation. \n", "citation": "@inproceedings{zhou-etal-2020-kdconv,\n title = \"{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation\",\n author = \"Zhou, Hao and\n Zheng, Chujie and\n Huang, Kaili and\n Huang, Minlie and\n Zhu, Xiaoyan\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.635\",\n doi = \"10.18653/v1/2020.acl-main.635\",\n pages = \"7098--7108\",\n}\n", "homepage": "https://github.com/thu-coai/KdConv", "license": "Apache License 2.0", "features": {"messages": {"feature": {"message": {"dtype": "string", "id": null, "_type": "Value"}, "attrs": {"feature": {"attrname": {"dtype": "string", "id": null, "_type": "Value"}, "attrvalue": {"dtype": "string", "id": null, "_type": "Value"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}, "name": {"dtype": "string", "id": null, "_type": "Value"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "kd_conv", "config_name": "film_dialogues", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4867659, "num_examples": 1200, "dataset_name": "kd_conv"}, "test": {"name": "test", "num_bytes": 956995, "num_examples": 150, "dataset_name": "kd_conv"}, "validation": {"name": "validation", "num_bytes": 884232, "num_examples": 150, "dataset_name": "kd_conv"}}, "download_checksums": {"https://github.com/thu-coai/KdConv/archive/master.zip": {"num_bytes": 11037768, "checksum": "a083dd60846e75e55e792dd85c392a7119f68b8f06a50eeb8c3b9c3e256ef8fc"}}, "download_size": 11037768, "post_processing_size": null, "dataset_size": 6708886, "size_in_bytes": 17746654}, "film_knowledge_base": {"description": "KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation. \n", "citation": "@inproceedings{zhou-etal-2020-kdconv,\n title = \"{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation\",\n author = \"Zhou, Hao and\n Zheng, Chujie and\n Huang, Kaili and\n Huang, Minlie and\n Zhu, Xiaoyan\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.635\",\n doi = \"10.18653/v1/2020.acl-main.635\",\n pages = \"7098--7108\",\n}\n", "homepage": "https://github.com/thu-coai/KdConv", "license": "Apache License 2.0", "features": {"head_entity": {"dtype": "string", "id": null, "_type": "Value"}, "kb_triplets": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "kd_conv", "config_name": "film_knowledge_base", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 10500882, "num_examples": 8090, "dataset_name": "kd_conv"}}, "download_checksums": {"https://github.com/thu-coai/KdConv/archive/master.zip": {"num_bytes": 11037768, "checksum": "a083dd60846e75e55e792dd85c392a7119f68b8f06a50eeb8c3b9c3e256ef8fc"}}, "download_size": 11037768, "post_processing_size": null, "dataset_size": 10500882, "size_in_bytes": 21538650}, "all_dialogues": {"description": "KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation. \n", "citation": "@inproceedings{zhou-etal-2020-kdconv,\n title = \"{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation\",\n author = \"Zhou, Hao and\n Zheng, Chujie and\n Huang, Kaili and\n Huang, Minlie and\n Zhu, Xiaoyan\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.635\",\n doi = \"10.18653/v1/2020.acl-main.635\",\n pages = \"7098--7108\",\n}\n", "homepage": "https://github.com/thu-coai/KdConv", "license": "Apache License 2.0", "features": {"messages": {"feature": {"message": {"dtype": "string", "id": null, "_type": "Value"}, "attrs": {"feature": {"attrname": {"dtype": "string", "id": null, "_type": "Value"}, "attrvalue": {"dtype": "string", "id": null, "_type": "Value"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}, "name": {"dtype": "string", "id": null, "_type": "Value"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "kd_conv", "config_name": "all_dialogues", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 11115313, "num_examples": 3600, "dataset_name": "kd_conv"}, "test": {"name": "test", "num_bytes": 2551802, "num_examples": 450, "dataset_name": "kd_conv"}, "validation": {"name": "validation", "num_bytes": 2135226, "num_examples": 450, "dataset_name": "kd_conv"}}, "download_checksums": {"https://github.com/thu-coai/KdConv/archive/master.zip": {"num_bytes": 11037768, "checksum": "a083dd60846e75e55e792dd85c392a7119f68b8f06a50eeb8c3b9c3e256ef8fc"}}, "download_size": 11037768, "post_processing_size": null, "dataset_size": 15802341, "size_in_bytes": 26840109}, "all_knowledge_base": {"description": "KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation. \n", "citation": "@inproceedings{zhou-etal-2020-kdconv,\n title = \"{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation\",\n author = \"Zhou, Hao and\n Zheng, Chujie and\n Huang, Kaili and\n Huang, Minlie and\n Zhu, Xiaoyan\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.635\",\n doi = \"10.18653/v1/2020.acl-main.635\",\n pages = \"7098--7108\",\n}\n", "homepage": "https://github.com/thu-coai/KdConv", "license": "Apache License 2.0", "features": {"head_entity": {"dtype": "string", "id": null, "_type": "Value"}, "kb_triplets": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "kd_conv", "config_name": "all_knowledge_base", "version": "0.0.0", "splits": {"train": {"name": "train", "num_bytes": 17998529, "num_examples": 13685, "dataset_name": "kd_conv"}}, "download_checksums": {"https://github.com/thu-coai/KdConv/archive/master.zip": {"num_bytes": 11037768, "checksum": "a083dd60846e75e55e792dd85c392a7119f68b8f06a50eeb8c3b9c3e256ef8fc"}}, "download_size": 11037768, "post_processing_size": null, "dataset_size": 17998529, "size_in_bytes": 29036297}}