Upload 6 files
Browse files- cohort.py +136 -0
- data_generation_icu_modify.py +581 -0
- los.config +23 -0
- mortality.config +23 -0
- phenotype.config +23 -0
- readmission.config +23 -0
cohort.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ipywidgets as widgets
|
2 |
+
import sys
|
3 |
+
from pathlib import Path
|
4 |
+
import os
|
5 |
+
import importlib
|
6 |
+
sys.path.append('preprocessing/day_intervals_preproc')
|
7 |
+
sys.path.append('utils')
|
8 |
+
sys.path.append('preprocessing/hosp_module_preproc')
|
9 |
+
sys.path.append('model')
|
10 |
+
#print(sys.path)
|
11 |
+
root_dir = os.path.dirname(os.path.abspath('UserInterface.ipynb'))
|
12 |
+
import day_intervals_cohort_v2
|
13 |
+
import day_intervals_cohort
|
14 |
+
import feature_selection_icu
|
15 |
+
import data_generation_icu_modify
|
16 |
+
import time
|
17 |
+
import yaml
|
18 |
+
|
19 |
+
def task_cohort(task,mimic_path):
|
20 |
+
version_path = mimic_path
|
21 |
+
version = version_path.split('/')[-1][0]
|
22 |
+
start = time.time()
|
23 |
+
#----------------------------------------------config----------------------------------------------------
|
24 |
+
if task=='Mortality':
|
25 |
+
with open('./config/mortality.config') as f:
|
26 |
+
config = yaml.safe_load(f)
|
27 |
+
|
28 |
+
elif task == 'Phenotype':
|
29 |
+
with open('./config/phenotype.config') as f:
|
30 |
+
config = yaml.safe_load(f)
|
31 |
+
|
32 |
+
elif task == 'Length of Stay':
|
33 |
+
with open('./config/los.config') as f:
|
34 |
+
config = yaml.safe_load(f)
|
35 |
+
|
36 |
+
elif task == 'Readmission':
|
37 |
+
with open('./config/readmission.config') as f:
|
38 |
+
config = yaml.safe_load(f)
|
39 |
+
|
40 |
+
disease_label = config['disease_label']
|
41 |
+
tim = config['time']
|
42 |
+
label = config['label']
|
43 |
+
timeW = config['timeW']
|
44 |
+
include=int(timeW.split()[1])
|
45 |
+
bucket = config['bucket']
|
46 |
+
radimp = config['radimp']
|
47 |
+
predW = config['predW']
|
48 |
+
diag_flag = config['diagnosis']
|
49 |
+
out_flag = config['output']
|
50 |
+
chart_flag = config['chart']
|
51 |
+
proc_flag= config['proc']
|
52 |
+
med_flag = config['meds']
|
53 |
+
disease_filter = config['disease_filter']
|
54 |
+
icu_no_icu = config['icu_no_icu']
|
55 |
+
groupingICD = config['groupingICD']
|
56 |
+
# -------------------------------------------------------------------------------------------------------------
|
57 |
+
|
58 |
+
data_icu=icu_no_icu=="ICU"
|
59 |
+
data_mort=label=="Mortality"
|
60 |
+
data_admn=label=='Readmission'
|
61 |
+
data_los=label=='Length of Stay'
|
62 |
+
|
63 |
+
if (disease_filter=="Heart Failure"):
|
64 |
+
icd_code='I50'
|
65 |
+
elif (disease_filter=="CKD"):
|
66 |
+
icd_code='N18'
|
67 |
+
elif (disease_filter=="COPD"):
|
68 |
+
icd_code='J44'
|
69 |
+
elif (disease_filter=="CAD"):
|
70 |
+
icd_code='I25'
|
71 |
+
else:
|
72 |
+
icd_code='No Disease Filter'
|
73 |
+
|
74 |
+
#-----------------------------------------------EXTRACT MIMIC-----------------------------------------------------
|
75 |
+
if version == '2':
|
76 |
+
cohort_output = day_intervals_cohort_v2.extract_data(icu_no_icu,label,tim,icd_code, root_dir,disease_label)
|
77 |
+
elif version == '1':
|
78 |
+
cohort_output = day_intervals_cohort.extract_data(icu_no_icu,label,tim,icd_code, root_dir,disease_label)
|
79 |
+
end = time.time()
|
80 |
+
print("Time elapsed : ", round((end - start)/60,2),"mins")
|
81 |
+
#----------------------------------------------FEATURES-------------------------------------------------------
|
82 |
+
if data_icu :
|
83 |
+
feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
|
84 |
+
end = time.time()
|
85 |
+
print("Time elapsed : ", round((end - start)/60,2),"mins")
|
86 |
+
#----------------------------------------------GROUPING-------------------------------------------------------
|
87 |
+
group_diag=False
|
88 |
+
group_med=False
|
89 |
+
group_proc=False
|
90 |
+
if data_icu:
|
91 |
+
if diag_flag:
|
92 |
+
group_diag=groupingICD
|
93 |
+
feature_selection_icu.preprocess_features_icu(cohort_output, diag_flag, group_diag,False,False,False,0,0)
|
94 |
+
end = time.time()
|
95 |
+
print("Time elapsed : ", round((end - start)/60,2),"mins")
|
96 |
+
#----------------------------------------------SUMMARY-------------------------------------------------------
|
97 |
+
if data_icu:
|
98 |
+
feature_selection_icu.generate_summary_icu(cohort_output,diag_flag,proc_flag,med_flag,out_flag,chart_flag)
|
99 |
+
end = time.time()
|
100 |
+
print("Time elapsed : ", round((end - start)/60,2),"mins")
|
101 |
+
#----------------------------------------------FEATURE SELECTION---------------------------------------------
|
102 |
+
|
103 |
+
select_diag= config['select_diag']
|
104 |
+
select_med= config['select_med']
|
105 |
+
select_proc= config['select_proc']
|
106 |
+
#select_lab= config['select_lab']
|
107 |
+
select_out= config['select_out']
|
108 |
+
select_chart= config['select_chart']
|
109 |
+
|
110 |
+
feature_selection_icu.features_selection_icu(cohort_output, diag_flag,proc_flag,med_flag,out_flag, chart_flag,select_diag,select_med,select_proc,select_out,select_chart)
|
111 |
+
end = time.time()
|
112 |
+
print("Time elapsed : ", round((end - start)/60,2),"mins")
|
113 |
+
#---------------------------------------CLEANING OF FEATURES-----------------------------------------------
|
114 |
+
thresh=0
|
115 |
+
if data_icu:
|
116 |
+
if chart_flag:
|
117 |
+
outlier_removal=config['outlier_removal']
|
118 |
+
clean_chart=outlier_removal!='No outlier detection'
|
119 |
+
impute_outlier_chart=outlier_removal=='Impute Outlier (default:98)'
|
120 |
+
thresh=config['outlier']
|
121 |
+
left_thresh=config['left_outlier']
|
122 |
+
feature_selection_icu.preprocess_features_icu(cohort_output, False, False,chart_flag,clean_chart,impute_outlier_chart,thresh,left_thresh)
|
123 |
+
end = time.time()
|
124 |
+
print("Time elapsed : ", round((end - start)/60,2),"mins")
|
125 |
+
# ---------------------------------------tim-Series Representation--------------------------------------------
|
126 |
+
if radimp == 'forward fill and mean' :
|
127 |
+
impute='Mean'
|
128 |
+
elif radimp =='forward fill and median':
|
129 |
+
impute = 'Median'
|
130 |
+
else :
|
131 |
+
impute = False
|
132 |
+
|
133 |
+
if data_icu:
|
134 |
+
gen=data_generation_icu_modify.Generator(task,cohort_output,data_mort,data_admn,data_los,diag_flag,proc_flag,out_flag,chart_flag,med_flag,impute,include,bucket,predW)
|
135 |
+
print("[============TASK COHORT SUCCESSFULLY CREATED============]")
|
136 |
+
|
data_generation_icu_modify.py
ADDED
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from tqdm import tqdm
|
4 |
+
from datetime import datetime
|
5 |
+
from sklearn.preprocessing import LabelEncoder
|
6 |
+
import pickle
|
7 |
+
import datetime
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
from pathlib import Path
|
11 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + './../..')
|
12 |
+
if not os.path.exists("./data/dict"):
|
13 |
+
os.makedirs("./data/dict")
|
14 |
+
if not os.path.exists("./data/csv"):
|
15 |
+
os.makedirs("./data/csv")
|
16 |
+
|
17 |
+
class Generator():
|
18 |
+
def __init__(self,task,cohort_output,if_mort,if_admn,if_los,feat_cond,feat_proc,feat_out,feat_chart,feat_med,impute,include_time=24,bucket=1,predW=6):
|
19 |
+
self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_med = feat_cond,feat_proc,feat_out,feat_chart,feat_med
|
20 |
+
self.cohort_output=cohort_output
|
21 |
+
self.impute=impute
|
22 |
+
self.task = task
|
23 |
+
self.data = self.generate_adm()
|
24 |
+
if not os.path.exists("./data/dict/"+self.cohort_output):
|
25 |
+
os.makedirs("./data/dict/"+self.cohort_output)
|
26 |
+
print("[ READ COHORT ]")
|
27 |
+
|
28 |
+
self.generate_feat()
|
29 |
+
print("[ READ ALL FEATURES ]")
|
30 |
+
|
31 |
+
if if_mort:
|
32 |
+
self.mortality_length(include_time,predW)
|
33 |
+
print("[ PROCESSED TIME SERIES TO EQUAL LENGTH ]")
|
34 |
+
elif if_admn:
|
35 |
+
self.readmission_length(include_time)
|
36 |
+
print("[ PROCESSED TIME SERIES TO EQUAL LENGTH ]")
|
37 |
+
elif if_los:
|
38 |
+
self.los_length(include_time)
|
39 |
+
print("[ PROCESSED TIME SERIES TO EQUAL LENGTH ]")
|
40 |
+
|
41 |
+
self.smooth_meds(bucket)
|
42 |
+
print("[ SUCCESSFULLY SAVED DATA DICTIONARIES ]")
|
43 |
+
|
44 |
+
def generate_feat(self):
|
45 |
+
if(self.feat_cond):
|
46 |
+
print("[ ======READING DIAGNOSIS ]")
|
47 |
+
self.generate_cond()
|
48 |
+
if(self.feat_proc):
|
49 |
+
print("[ ======READING PROCEDURES ]")
|
50 |
+
self.generate_proc()
|
51 |
+
if(self.feat_out):
|
52 |
+
print("[ ======READING OUT EVENTS ]")
|
53 |
+
self.generate_out()
|
54 |
+
if(self.feat_chart):
|
55 |
+
print("[ ======READING CHART EVENTS ]")
|
56 |
+
self.generate_chart()
|
57 |
+
if(self.feat_med):
|
58 |
+
print("[ ======READING MEDICATIONS ]")
|
59 |
+
self.generate_meds()
|
60 |
+
|
61 |
+
def generate_adm(self):
|
62 |
+
data=pd.read_csv(f"./data/cohort/{self.cohort_output}.csv.gz", compression='gzip', header=0, index_col=None)
|
63 |
+
data['intime'] = pd.to_datetime(data['intime'])
|
64 |
+
data['outtime'] = pd.to_datetime(data['outtime'])
|
65 |
+
data['los']=pd.to_timedelta(data['outtime']-data['intime'],unit='h')
|
66 |
+
data['los']=data['los'].astype(str)
|
67 |
+
data[['days', 'dummy','hours']] = data['los'].str.split(' ', expand=True)
|
68 |
+
data[['hours','min','sec']] = data['hours'].str.split(':', expand=True)
|
69 |
+
data['los']=pd.to_numeric(data['days'])*24+pd.to_numeric(data['hours'])
|
70 |
+
data=data.drop(columns=['days', 'dummy','hours','min','sec'])
|
71 |
+
data=data[data['los']>0]
|
72 |
+
data['Age']=data['Age'].astype(int)
|
73 |
+
#print(data.head())
|
74 |
+
#print(data.shape)
|
75 |
+
return data
|
76 |
+
|
77 |
+
def generate_cond(self):
|
78 |
+
cond=pd.read_csv("./data/features/preproc_diag_icu.csv.gz", compression='gzip', header=0, index_col=None)
|
79 |
+
cond=cond[cond['stay_id'].isin(self.data['stay_id'])]
|
80 |
+
cond_per_adm = cond.groupby('stay_id').size().max()
|
81 |
+
self.cond, self.cond_per_adm = cond, cond_per_adm
|
82 |
+
|
83 |
+
def generate_proc(self):
|
84 |
+
proc=pd.read_csv("./data/features/preproc_proc_icu.csv.gz", compression='gzip', header=0, index_col=None)
|
85 |
+
proc=proc[proc['stay_id'].isin(self.data['stay_id'])]
|
86 |
+
proc[['start_days', 'dummy','start_hours']] = proc['event_time_from_admit'].str.split(' ', -1, expand=True)
|
87 |
+
proc[['start_hours','min','sec']] = proc['start_hours'].str.split(':', -1, expand=True)
|
88 |
+
proc['start_time']=pd.to_numeric(proc['start_days'])*24+pd.to_numeric(proc['start_hours'])
|
89 |
+
proc=proc.drop(columns=['start_days', 'dummy','start_hours','min','sec'])
|
90 |
+
proc=proc[proc['start_time']>=0]
|
91 |
+
|
92 |
+
###Remove where event time is after discharge time
|
93 |
+
proc=pd.merge(proc,self.data[['stay_id','los']],on='stay_id',how='left')
|
94 |
+
proc['sanity']=proc['los']-proc['start_time']
|
95 |
+
proc=proc[proc['sanity']>0]
|
96 |
+
del proc['sanity']
|
97 |
+
|
98 |
+
self.proc=proc
|
99 |
+
|
100 |
+
def generate_out(self):
|
101 |
+
out=pd.read_csv("./data/features/preproc_out_icu.csv.gz", compression='gzip', header=0, index_col=None)
|
102 |
+
out=out[out['stay_id'].isin(self.data['stay_id'])]
|
103 |
+
out[['start_days', 'dummy','start_hours']] = out['event_time_from_admit'].str.split(' ', -1, expand=True)
|
104 |
+
out[['start_hours','min','sec']] = out['start_hours'].str.split(':', -1, expand=True)
|
105 |
+
out['start_time']=pd.to_numeric(out['start_days'])*24+pd.to_numeric(out['start_hours'])
|
106 |
+
out=out.drop(columns=['start_days', 'dummy','start_hours','min','sec'])
|
107 |
+
out=out[out['start_time']>=0]
|
108 |
+
|
109 |
+
###Remove where event time is after discharge time
|
110 |
+
out=pd.merge(out,self.data[['stay_id','los']],on='stay_id',how='left')
|
111 |
+
out['sanity']=out['los']-out['start_time']
|
112 |
+
out=out[out['sanity']>0]
|
113 |
+
del out['sanity']
|
114 |
+
|
115 |
+
self.out=out
|
116 |
+
|
117 |
+
|
118 |
+
def generate_chart(self):
|
119 |
+
chunksize = 5000000
|
120 |
+
final=pd.DataFrame()
|
121 |
+
for chart in tqdm(pd.read_csv("./data/features/preproc_chart_icu.csv.gz", compression='gzip', header=0, index_col=None,chunksize=chunksize)):
|
122 |
+
chart=chart[chart['stay_id'].isin(self.data['stay_id'])]
|
123 |
+
chart[['start_days', 'dummy','start_hours']] = chart['event_time_from_admit'].str.split(' ', -1, expand=True)
|
124 |
+
chart[['start_hours','min','sec']] = chart['start_hours'].str.split(':', -1, expand=True)
|
125 |
+
chart['start_time']=pd.to_numeric(chart['start_days'])*24+pd.to_numeric(chart['start_hours'])
|
126 |
+
chart=chart.drop(columns=['start_days', 'dummy','start_hours','min','sec','event_time_from_admit'])
|
127 |
+
chart=chart[chart['start_time']>=0]
|
128 |
+
|
129 |
+
###Remove where event time is after discharge time
|
130 |
+
chart=pd.merge(chart,self.data[['stay_id','los']],on='stay_id',how='left')
|
131 |
+
chart['sanity']=chart['los']-chart['start_time']
|
132 |
+
chart=chart[chart['sanity']>0]
|
133 |
+
del chart['sanity']
|
134 |
+
del chart['los']
|
135 |
+
|
136 |
+
if final.empty:
|
137 |
+
final=chart
|
138 |
+
else:
|
139 |
+
final=final.append(chart, ignore_index=True)
|
140 |
+
|
141 |
+
self.chart=final
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
def generate_meds(self):
|
146 |
+
meds=pd.read_csv("./data/features/preproc_med_icu.csv.gz", compression='gzip', header=0, index_col=None)
|
147 |
+
meds[['start_days', 'dummy','start_hours']] = meds['start_hours_from_admit'].str.split(' ', -1, expand=True)
|
148 |
+
meds[['start_hours','min','sec']] = meds['start_hours'].str.split(':', -1, expand=True)
|
149 |
+
meds['start_time']=pd.to_numeric(meds['start_days'])*24+pd.to_numeric(meds['start_hours'])
|
150 |
+
meds[['start_days', 'dummy','start_hours']] = meds['stop_hours_from_admit'].str.split(' ', -1, expand=True)
|
151 |
+
meds[['start_hours','min','sec']] = meds['start_hours'].str.split(':', -1, expand=True)
|
152 |
+
meds['stop_time']=pd.to_numeric(meds['start_days'])*24+pd.to_numeric(meds['start_hours'])
|
153 |
+
meds=meds.drop(columns=['start_days', 'dummy','start_hours','min','sec'])
|
154 |
+
#####Sanity check
|
155 |
+
meds['sanity']=meds['stop_time']-meds['start_time']
|
156 |
+
meds=meds[meds['sanity']>0]
|
157 |
+
del meds['sanity']
|
158 |
+
#####Select hadm_id as in main file
|
159 |
+
meds=meds[meds['stay_id'].isin(self.data['stay_id'])]
|
160 |
+
meds=pd.merge(meds,self.data[['stay_id','los']],on='stay_id',how='left')
|
161 |
+
|
162 |
+
#####Remove where start time is after end of visit
|
163 |
+
meds['sanity']=meds['los']-meds['start_time']
|
164 |
+
meds=meds[meds['sanity']>0]
|
165 |
+
del meds['sanity']
|
166 |
+
####Any stop_time after end of visit is set at end of visit
|
167 |
+
meds.loc[meds['stop_time'] > meds['los'],'stop_time']=meds.loc[meds['stop_time'] > meds['los'],'los']
|
168 |
+
del meds['los']
|
169 |
+
|
170 |
+
meds['rate']=meds['rate'].apply(pd.to_numeric, errors='coerce')
|
171 |
+
meds['amount']=meds['amount'].apply(pd.to_numeric, errors='coerce')
|
172 |
+
|
173 |
+
self.meds=meds
|
174 |
+
|
175 |
+
def mortality_length(self,include_time,predW):
|
176 |
+
print("include_time",include_time)
|
177 |
+
self.los=include_time
|
178 |
+
self.data=self.data[(self.data['los']>=include_time+predW)]
|
179 |
+
self.hids=self.data['stay_id'].unique()
|
180 |
+
|
181 |
+
if(self.feat_cond):
|
182 |
+
self.cond=self.cond[self.cond['stay_id'].isin(self.data['stay_id'])]
|
183 |
+
|
184 |
+
self.data['los']=include_time
|
185 |
+
|
186 |
+
####Make equal length input time series and remove data for pred window if needed
|
187 |
+
|
188 |
+
###MEDS
|
189 |
+
if(self.feat_med):
|
190 |
+
self.meds=self.meds[self.meds['stay_id'].isin(self.data['stay_id'])]
|
191 |
+
self.meds=self.meds[self.meds['start_time']<=include_time]
|
192 |
+
self.meds.loc[self.meds.stop_time >include_time, 'stop_time']=include_time
|
193 |
+
|
194 |
+
|
195 |
+
###PROCS
|
196 |
+
if(self.feat_proc):
|
197 |
+
self.proc=self.proc[self.proc['stay_id'].isin(self.data['stay_id'])]
|
198 |
+
self.proc=self.proc[self.proc['start_time']<=include_time]
|
199 |
+
|
200 |
+
###OUT
|
201 |
+
if(self.feat_out):
|
202 |
+
self.out=self.out[self.out['stay_id'].isin(self.data['stay_id'])]
|
203 |
+
self.out=self.out[self.out['start_time']<=include_time]
|
204 |
+
|
205 |
+
###CHART
|
206 |
+
if(self.feat_chart):
|
207 |
+
self.chart=self.chart[self.chart['stay_id'].isin(self.data['stay_id'])]
|
208 |
+
self.chart=self.chart[self.chart['start_time']<=include_time]
|
209 |
+
|
210 |
+
#self.los=include_time
|
211 |
+
def los_length(self,include_time):
|
212 |
+
print("include_time",include_time)
|
213 |
+
self.los=include_time
|
214 |
+
self.data=self.data[(self.data['los']>=include_time)]
|
215 |
+
self.hids=self.data['stay_id'].unique()
|
216 |
+
|
217 |
+
if(self.feat_cond):
|
218 |
+
self.cond=self.cond[self.cond['stay_id'].isin(self.data['stay_id'])]
|
219 |
+
|
220 |
+
self.data['los']=include_time
|
221 |
+
|
222 |
+
####Make equal length input time series and remove data for pred window if needed
|
223 |
+
|
224 |
+
###MEDS
|
225 |
+
if(self.feat_med):
|
226 |
+
self.meds=self.meds[self.meds['stay_id'].isin(self.data['stay_id'])]
|
227 |
+
self.meds=self.meds[self.meds['start_time']<=include_time]
|
228 |
+
self.meds.loc[self.meds.stop_time >include_time, 'stop_time']=include_time
|
229 |
+
|
230 |
+
|
231 |
+
###PROCS
|
232 |
+
if(self.feat_proc):
|
233 |
+
self.proc=self.proc[self.proc['stay_id'].isin(self.data['stay_id'])]
|
234 |
+
self.proc=self.proc[self.proc['start_time']<=include_time]
|
235 |
+
|
236 |
+
###OUT
|
237 |
+
if(self.feat_out):
|
238 |
+
self.out=self.out[self.out['stay_id'].isin(self.data['stay_id'])]
|
239 |
+
self.out=self.out[self.out['start_time']<=include_time]
|
240 |
+
|
241 |
+
###CHART
|
242 |
+
if(self.feat_chart):
|
243 |
+
self.chart=self.chart[self.chart['stay_id'].isin(self.data['stay_id'])]
|
244 |
+
self.chart=self.chart[self.chart['start_time']<=include_time]
|
245 |
+
|
246 |
+
def readmission_length(self,include_time):
|
247 |
+
self.los=include_time
|
248 |
+
self.data=self.data[(self.data['los']>=include_time)]
|
249 |
+
self.hids=self.data['stay_id'].unique()
|
250 |
+
|
251 |
+
if(self.feat_cond):
|
252 |
+
self.cond=self.cond[self.cond['stay_id'].isin(self.data['stay_id'])]
|
253 |
+
self.data['select_time']=self.data['los']-include_time
|
254 |
+
self.data['los']=include_time
|
255 |
+
|
256 |
+
####Make equal length input time series and remove data for pred window if needed
|
257 |
+
|
258 |
+
###MEDS
|
259 |
+
if(self.feat_med):
|
260 |
+
self.meds=self.meds[self.meds['stay_id'].isin(self.data['stay_id'])]
|
261 |
+
self.meds=pd.merge(self.meds,self.data[['stay_id','select_time']],on='stay_id',how='left')
|
262 |
+
self.meds['stop_time']=self.meds['stop_time']-self.meds['select_time']
|
263 |
+
self.meds['start_time']=self.meds['start_time']-self.meds['select_time']
|
264 |
+
self.meds=self.meds[self.meds['stop_time']>=0]
|
265 |
+
self.meds.loc[self.meds.start_time <0, 'start_time']=0
|
266 |
+
|
267 |
+
###PROCS
|
268 |
+
if(self.feat_proc):
|
269 |
+
self.proc=self.proc[self.proc['stay_id'].isin(self.data['stay_id'])]
|
270 |
+
self.proc=pd.merge(self.proc,self.data[['stay_id','select_time']],on='stay_id',how='left')
|
271 |
+
self.proc['start_time']=self.proc['start_time']-self.proc['select_time']
|
272 |
+
self.proc=self.proc[self.proc['start_time']>=0]
|
273 |
+
|
274 |
+
###OUT
|
275 |
+
if(self.feat_out):
|
276 |
+
self.out=self.out[self.out['stay_id'].isin(self.data['stay_id'])]
|
277 |
+
self.out=pd.merge(self.out,self.data[['stay_id','select_time']],on='stay_id',how='left')
|
278 |
+
self.out['start_time']=self.out['start_time']-self.out['select_time']
|
279 |
+
self.out=self.out[self.out['start_time']>=0]
|
280 |
+
|
281 |
+
###CHART
|
282 |
+
if(self.feat_chart):
|
283 |
+
self.chart=self.chart[self.chart['stay_id'].isin(self.data['stay_id'])]
|
284 |
+
self.chart=pd.merge(self.chart,self.data[['stay_id','select_time']],on='stay_id',how='left')
|
285 |
+
self.chart['start_time']=self.chart['start_time']-self.chart['select_time']
|
286 |
+
self.chart=self.chart[self.chart['start_time']>=0]
|
287 |
+
|
288 |
+
|
289 |
+
def smooth_meds(self,bucket):
|
290 |
+
final_meds=pd.DataFrame()
|
291 |
+
final_proc=pd.DataFrame()
|
292 |
+
final_out=pd.DataFrame()
|
293 |
+
final_chart=pd.DataFrame()
|
294 |
+
|
295 |
+
if(self.feat_med):
|
296 |
+
self.meds=self.meds.sort_values(by=['start_time'])
|
297 |
+
if(self.feat_proc):
|
298 |
+
self.proc=self.proc.sort_values(by=['start_time'])
|
299 |
+
if(self.feat_out):
|
300 |
+
self.out=self.out.sort_values(by=['start_time'])
|
301 |
+
if(self.feat_chart):
|
302 |
+
self.chart=self.chart.sort_values(by=['start_time'])
|
303 |
+
|
304 |
+
t=0
|
305 |
+
for i in tqdm(range(0,self.los,bucket)):
|
306 |
+
###MEDS
|
307 |
+
if(self.feat_med):
|
308 |
+
sub_meds=self.meds[(self.meds['start_time']>=i) & (self.meds['start_time']<i+bucket)].groupby(['stay_id','itemid','orderid']).agg({'stop_time':'max','subject_id':'max','rate':np.nanmean,'amount':np.nanmean})
|
309 |
+
sub_meds=sub_meds.reset_index()
|
310 |
+
sub_meds['start_time']=t
|
311 |
+
sub_meds['stop_time']=sub_meds['stop_time']/bucket
|
312 |
+
if final_meds.empty:
|
313 |
+
final_meds=sub_meds
|
314 |
+
else:
|
315 |
+
final_meds=final_meds.append(sub_meds)
|
316 |
+
|
317 |
+
###PROC
|
318 |
+
if(self.feat_proc):
|
319 |
+
sub_proc=self.proc[(self.proc['start_time']>=i) & (self.proc['start_time']<i+bucket)].groupby(['stay_id','itemid']).agg({'subject_id':'max'})
|
320 |
+
sub_proc=sub_proc.reset_index()
|
321 |
+
sub_proc['start_time']=t
|
322 |
+
if final_proc.empty:
|
323 |
+
final_proc=sub_proc
|
324 |
+
else:
|
325 |
+
final_proc=final_proc.append(sub_proc)
|
326 |
+
|
327 |
+
###OUT
|
328 |
+
if(self.feat_out):
|
329 |
+
sub_out=self.out[(self.out['start_time']>=i) & (self.out['start_time']<i+bucket)].groupby(['stay_id','itemid']).agg({'subject_id':'max'})
|
330 |
+
sub_out=sub_out.reset_index()
|
331 |
+
sub_out['start_time']=t
|
332 |
+
if final_out.empty:
|
333 |
+
final_out=sub_out
|
334 |
+
else:
|
335 |
+
final_out=final_out.append(sub_out)
|
336 |
+
|
337 |
+
|
338 |
+
###CHART
|
339 |
+
if(self.feat_chart):
|
340 |
+
sub_chart=self.chart[(self.chart['start_time']>=i) & (self.chart['start_time']<i+bucket)].groupby(['stay_id','itemid']).agg({'valuenum':np.nanmean})
|
341 |
+
sub_chart=sub_chart.reset_index()
|
342 |
+
sub_chart['start_time']=t
|
343 |
+
if final_chart.empty:
|
344 |
+
final_chart=sub_chart
|
345 |
+
else:
|
346 |
+
final_chart=final_chart.append(sub_chart)
|
347 |
+
|
348 |
+
t=t+1
|
349 |
+
print("bucket",bucket)
|
350 |
+
los=int(self.los/bucket)
|
351 |
+
|
352 |
+
|
353 |
+
###MEDS
|
354 |
+
if(self.feat_med):
|
355 |
+
f2_meds=final_meds.groupby(['stay_id','itemid','orderid']).size()
|
356 |
+
self.med_per_adm=f2_meds.groupby('stay_id').sum().reset_index()[0].max()
|
357 |
+
self.medlength_per_adm=final_meds.groupby('stay_id').size().max()
|
358 |
+
|
359 |
+
###PROC
|
360 |
+
if(self.feat_proc):
|
361 |
+
f2_proc=final_proc.groupby(['stay_id','itemid']).size()
|
362 |
+
self.proc_per_adm=f2_proc.groupby('stay_id').sum().reset_index()[0].max()
|
363 |
+
self.proclength_per_adm=final_proc.groupby('stay_id').size().max()
|
364 |
+
|
365 |
+
###OUT
|
366 |
+
if(self.feat_out):
|
367 |
+
f2_out=final_out.groupby(['stay_id','itemid']).size()
|
368 |
+
self.out_per_adm=f2_out.groupby('stay_id').sum().reset_index()[0].max()
|
369 |
+
self.outlength_per_adm=final_out.groupby('stay_id').size().max()
|
370 |
+
|
371 |
+
|
372 |
+
###chart
|
373 |
+
if(self.feat_chart):
|
374 |
+
f2_chart=final_chart.groupby(['stay_id','itemid']).size()
|
375 |
+
self.chart_per_adm=f2_chart.groupby('stay_id').sum().reset_index()[0].max()
|
376 |
+
self.chartlength_per_adm=final_chart.groupby('stay_id').size().max()
|
377 |
+
|
378 |
+
print("[ PROCESSED TIME SERIES TO EQUAL TIME INTERVAL ]")
|
379 |
+
###CREATE DICT
|
380 |
+
# if(self.feat_chart):
|
381 |
+
# self.create_chartDict(final_chart,los)
|
382 |
+
# else:
|
383 |
+
self.create_Dict(final_meds,final_proc,final_out,final_chart,los)
|
384 |
+
|
385 |
+
|
386 |
+
def create_Dict(self,meds,proc,out,chart,los):
|
387 |
+
dataDic={}
|
388 |
+
|
389 |
+
for hid in self.hids:
|
390 |
+
grp=self.data[self.data['stay_id']==hid]
|
391 |
+
dataDic[hid]={'Cond':{},'Proc':{},'Med':{},'Out':{},'Chart':{},'ethnicity':grp['ethnicity'].iloc[0],'age':int(grp['Age']),'gender':grp['gender'].iloc[0],'label':int(grp['label'])}
|
392 |
+
|
393 |
+
|
394 |
+
for hid in tqdm(self.hids):
|
395 |
+
grp=self.data[self.data['stay_id']==hid]
|
396 |
+
|
397 |
+
###MEDS
|
398 |
+
if(self.feat_med):
|
399 |
+
feat=meds['itemid'].unique()
|
400 |
+
df2=meds[meds['stay_id']==hid]
|
401 |
+
if df2.shape[0]==0:
|
402 |
+
amount=pd.DataFrame(np.zeros([los,len(feat)]),columns=feat)
|
403 |
+
amount=amount.fillna(0)
|
404 |
+
amount.columns=pd.MultiIndex.from_product([["MEDS"], amount.columns])
|
405 |
+
else:
|
406 |
+
rate=df2.pivot_table(index='start_time',columns='itemid',values='rate')
|
407 |
+
#print(rate)
|
408 |
+
amount=df2.pivot_table(index='start_time',columns='itemid',values='amount')
|
409 |
+
df2=df2.pivot_table(index='start_time',columns='itemid',values='stop_time')
|
410 |
+
#print(df2.shape)
|
411 |
+
add_indices = pd.Index(range(los)).difference(df2.index)
|
412 |
+
add_df = pd.DataFrame(index=add_indices, columns=df2.columns).fillna(np.nan)
|
413 |
+
df2=pd.concat([df2, add_df])
|
414 |
+
df2=df2.sort_index()
|
415 |
+
df2=df2.ffill()
|
416 |
+
df2=df2.fillna(0)
|
417 |
+
|
418 |
+
rate=pd.concat([rate, add_df])
|
419 |
+
rate=rate.sort_index()
|
420 |
+
rate=rate.ffill()
|
421 |
+
rate=rate.fillna(-1)
|
422 |
+
|
423 |
+
amount=pd.concat([amount, add_df])
|
424 |
+
amount=amount.sort_index()
|
425 |
+
amount=amount.ffill()
|
426 |
+
amount=amount.fillna(-1)
|
427 |
+
#print(df2.head())
|
428 |
+
df2.iloc[:,0:]=df2.iloc[:,0:].sub(df2.index,0)
|
429 |
+
df2[df2>0]=1
|
430 |
+
df2[df2<0]=0
|
431 |
+
rate.iloc[:,0:]=df2.iloc[:,0:]*rate.iloc[:,0:]
|
432 |
+
amount.iloc[:,0:]=df2.iloc[:,0:]*amount.iloc[:,0:]
|
433 |
+
#print(df2.head())
|
434 |
+
dataDic[hid]['Med']['signal']=df2.iloc[:,0:].to_dict(orient="list")
|
435 |
+
dataDic[hid]['Med']['rate']=rate.iloc[:,0:].to_dict(orient="list")
|
436 |
+
dataDic[hid]['Med']['amount']=amount.iloc[:,0:].to_dict(orient="list")
|
437 |
+
|
438 |
+
###PROCS
|
439 |
+
if(self.feat_proc):
|
440 |
+
feat=proc['itemid'].unique()
|
441 |
+
df2=proc[proc['stay_id']==hid]
|
442 |
+
if df2.shape[0]==0:
|
443 |
+
df2=pd.DataFrame(np.zeros([los,len(feat)]),columns=feat)
|
444 |
+
df2=df2.fillna(0)
|
445 |
+
df2.columns=pd.MultiIndex.from_product([["PROC"], df2.columns])
|
446 |
+
else:
|
447 |
+
df2['val']=1
|
448 |
+
#print(df2)
|
449 |
+
df2=df2.pivot_table(index='start_time',columns='itemid',values='val')
|
450 |
+
#print(df2.shape)
|
451 |
+
add_indices = pd.Index(range(los)).difference(df2.index)
|
452 |
+
add_df = pd.DataFrame(index=add_indices, columns=df2.columns).fillna(np.nan)
|
453 |
+
df2=pd.concat([df2, add_df])
|
454 |
+
df2=df2.sort_index()
|
455 |
+
df2=df2.fillna(0)
|
456 |
+
df2[df2>0]=1
|
457 |
+
#print(df2.head())
|
458 |
+
dataDic[hid]['Proc']=df2.to_dict(orient="list")
|
459 |
+
|
460 |
+
###OUT
|
461 |
+
if(self.feat_out):
|
462 |
+
feat=out['itemid'].unique()
|
463 |
+
df2=out[out['stay_id']==hid]
|
464 |
+
if df2.shape[0]==0:
|
465 |
+
df2=pd.DataFrame(np.zeros([los,len(feat)]),columns=feat)
|
466 |
+
df2=df2.fillna(0)
|
467 |
+
df2.columns=pd.MultiIndex.from_product([["OUT"], df2.columns])
|
468 |
+
else:
|
469 |
+
df2['val']=1
|
470 |
+
df2=df2.pivot_table(index='start_time',columns='itemid',values='val')
|
471 |
+
#print(df2.shape)
|
472 |
+
add_indices = pd.Index(range(los)).difference(df2.index)
|
473 |
+
add_df = pd.DataFrame(index=add_indices, columns=df2.columns).fillna(np.nan)
|
474 |
+
df2=pd.concat([df2, add_df])
|
475 |
+
df2=df2.sort_index()
|
476 |
+
df2=df2.fillna(0)
|
477 |
+
df2[df2>0]=1
|
478 |
+
#print(df2.head())
|
479 |
+
dataDic[hid]['Out']=df2.to_dict(orient="list")
|
480 |
+
|
481 |
+
###CHART
|
482 |
+
if(self.feat_chart):
|
483 |
+
feat=chart['itemid'].unique()
|
484 |
+
df2=chart[chart['stay_id']==hid]
|
485 |
+
if df2.shape[0]==0:
|
486 |
+
val=pd.DataFrame(np.zeros([los,len(feat)]),columns=feat)
|
487 |
+
val=val.fillna(0)
|
488 |
+
val.columns=pd.MultiIndex.from_product([["CHART"], val.columns])
|
489 |
+
else:
|
490 |
+
val=df2.pivot_table(index='start_time',columns='itemid',values='valuenum')
|
491 |
+
df2['val']=1
|
492 |
+
df2=df2.pivot_table(index='start_time',columns='itemid',values='val')
|
493 |
+
#print(df2.shape)
|
494 |
+
add_indices = pd.Index(range(los)).difference(df2.index)
|
495 |
+
add_df = pd.DataFrame(index=add_indices, columns=df2.columns).fillna(np.nan)
|
496 |
+
df2=pd.concat([df2, add_df])
|
497 |
+
df2=df2.sort_index()
|
498 |
+
df2=df2.fillna(0)
|
499 |
+
|
500 |
+
val=pd.concat([val, add_df])
|
501 |
+
val=val.sort_index()
|
502 |
+
if self.impute=='Mean':
|
503 |
+
val=val.ffill()
|
504 |
+
val=val.bfill()
|
505 |
+
val=val.fillna(val.mean())
|
506 |
+
elif self.impute=='Median':
|
507 |
+
val=val.ffill()
|
508 |
+
val=val.bfill()
|
509 |
+
val=val.fillna(val.median())
|
510 |
+
val=val.fillna(0)
|
511 |
+
|
512 |
+
|
513 |
+
df2[df2>0]=1
|
514 |
+
df2[df2<0]=0
|
515 |
+
#print(df2.head())
|
516 |
+
dataDic[hid]['Chart']['signal']=df2.iloc[:,0:].to_dict(orient="list")
|
517 |
+
dataDic[hid]['Chart']['val']=val.iloc[:,0:].to_dict(orient="list")
|
518 |
+
|
519 |
+
##########COND#########
|
520 |
+
if(self.feat_cond):
|
521 |
+
feat=self.cond['new_icd_code'].unique()
|
522 |
+
grp=self.cond[self.cond['stay_id']==hid]
|
523 |
+
if(grp.shape[0]==0):
|
524 |
+
dataDic[hid]['Cond']={'fids':list(['<PAD>'])}
|
525 |
+
else:
|
526 |
+
dataDic[hid]['Cond']={'fids':list(grp['new_icd_code'])}
|
527 |
+
|
528 |
+
|
529 |
+
######SAVE DICTIONARIES##############
|
530 |
+
metaDic={'Cond':{},'Proc':{},'Med':{},'Out':{},'Chart':{},'LOS':{}}
|
531 |
+
metaDic['LOS']=los
|
532 |
+
with open("./data/dict/dataDic", 'wb') as fp:
|
533 |
+
pickle.dump(dataDic, fp)
|
534 |
+
|
535 |
+
with open("./data/dict/hadmDic", 'wb') as fp:
|
536 |
+
pickle.dump(self.hids, fp)
|
537 |
+
|
538 |
+
with open("./data/dict/ethVocab", 'wb') as fp:
|
539 |
+
pickle.dump(list(self.data['ethnicity'].unique()), fp)
|
540 |
+
self.eth_vocab = self.data['ethnicity'].nunique()
|
541 |
+
|
542 |
+
with open("./data/dict/ageVocab", 'wb') as fp:
|
543 |
+
pickle.dump(list(self.data['Age'].unique()), fp)
|
544 |
+
self.age_vocab = self.data['Age'].nunique()
|
545 |
+
|
546 |
+
with open("./data/dict/insVocab", 'wb') as fp:
|
547 |
+
pickle.dump(list(self.data['insurance'].unique()), fp)
|
548 |
+
self.ins_vocab = self.data['insurance'].nunique()
|
549 |
+
|
550 |
+
if(self.feat_med):
|
551 |
+
with open("./data/dict/medVocab", 'wb') as fp:
|
552 |
+
pickle.dump(list(meds['itemid'].unique()), fp)
|
553 |
+
self.med_vocab = meds['itemid'].nunique()
|
554 |
+
metaDic['Med']=self.med_per_adm
|
555 |
+
|
556 |
+
if(self.feat_out):
|
557 |
+
with open("./data/dict/outVocab", 'wb') as fp:
|
558 |
+
pickle.dump(list(out['itemid'].unique()), fp)
|
559 |
+
self.out_vocab = out['itemid'].nunique()
|
560 |
+
metaDic['Out']=self.out_per_adm
|
561 |
+
|
562 |
+
if(self.feat_chart):
|
563 |
+
with open("./data/dict/chartVocab", 'wb') as fp:
|
564 |
+
pickle.dump(list(chart['itemid'].unique()), fp)
|
565 |
+
self.chart_vocab = chart['itemid'].nunique()
|
566 |
+
metaDic['Chart']=self.chart_per_adm
|
567 |
+
|
568 |
+
if(self.feat_cond):
|
569 |
+
with open("./data/dict/condVocab", 'wb') as fp:
|
570 |
+
pickle.dump(list(self.cond['new_icd_code'].unique()), fp)
|
571 |
+
self.cond_vocab = self.cond['new_icd_code'].nunique()
|
572 |
+
metaDic['Cond']=self.cond_per_adm
|
573 |
+
|
574 |
+
if(self.feat_proc):
|
575 |
+
with open("./data/dict/procVocab", 'wb') as fp:
|
576 |
+
pickle.dump(list(proc['itemid'].unique()), fp)
|
577 |
+
self.proc_vocab = proc['itemid'].nunique()
|
578 |
+
metaDic['Proc']=self.proc_per_adm
|
579 |
+
|
580 |
+
with open("./data/dict/metaDic", 'wb') as fp:
|
581 |
+
pickle.dump(metaDic, fp)
|
los.config
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
disease_label: null
|
2 |
+
time: 3
|
3 |
+
label: Length of Stay
|
4 |
+
timeW: First 24 hours
|
5 |
+
bucket: 2
|
6 |
+
radimp: forward fill and mean
|
7 |
+
predW: 0
|
8 |
+
diagnosis: True
|
9 |
+
output: True
|
10 |
+
chart: True
|
11 |
+
proc: True
|
12 |
+
meds: True
|
13 |
+
disease_filter: No Disease Filter
|
14 |
+
icu_no_icu: ICU
|
15 |
+
groupingICD: Convert ICD-9 to ICD-10 and group ICD-10 codes
|
16 |
+
select_diag: False
|
17 |
+
select_med: False
|
18 |
+
select_proc: False
|
19 |
+
select_out: False
|
20 |
+
select_chart: False
|
21 |
+
outlier_removal: Impute Outlier (default:98)
|
22 |
+
outlier: 98
|
23 |
+
left_outlier: 0
|
mortality.config
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
disease_label: null
|
2 |
+
time: 0
|
3 |
+
label: Mortality
|
4 |
+
timeW: First 48 hours
|
5 |
+
bucket: 2
|
6 |
+
radimp: forward fill and mean
|
7 |
+
predW: 6
|
8 |
+
diagnosis: True
|
9 |
+
output: True
|
10 |
+
chart: True
|
11 |
+
proc: True
|
12 |
+
meds: True
|
13 |
+
disease_filter: No Disease Filter
|
14 |
+
icu_no_icu: ICU
|
15 |
+
groupingICD: Convert ICD-9 to ICD-10 and group ICD-10 codes
|
16 |
+
select_diag: False
|
17 |
+
select_med: False
|
18 |
+
select_proc: False
|
19 |
+
select_out: False
|
20 |
+
select_chart: False
|
21 |
+
outlier_removal: Impute Outlier (default:98)
|
22 |
+
outlier: 98
|
23 |
+
left_outlier: 0
|
phenotype.config
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
disease_label: I50
|
2 |
+
time: 30
|
3 |
+
label: Readmission
|
4 |
+
timeW: Last 72 hours
|
5 |
+
bucket: 2
|
6 |
+
radimp: forward fill and mean
|
7 |
+
predW: 0
|
8 |
+
diagnosis: True
|
9 |
+
output: True
|
10 |
+
chart: True
|
11 |
+
proc: True
|
12 |
+
meds: True
|
13 |
+
disease_filter: No Disease Filter
|
14 |
+
icu_no_icu: ICU
|
15 |
+
groupingICD: Convert ICD-9 to ICD-10 and group ICD-10 codes
|
16 |
+
select_diag: False
|
17 |
+
select_med: False
|
18 |
+
select_proc: False
|
19 |
+
select_out: False
|
20 |
+
select_chart: False
|
21 |
+
outlier_removal: Impute Outlier (default:98)
|
22 |
+
outlier: 98
|
23 |
+
left_outlier: 0
|
readmission.config
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
disease_label: null
|
2 |
+
time: 30
|
3 |
+
label: Readmission
|
4 |
+
timeW: Last 72 hours
|
5 |
+
bucket: 2
|
6 |
+
radimp: forward fill and mean
|
7 |
+
predW: 0
|
8 |
+
diagnosis: True
|
9 |
+
output: True
|
10 |
+
chart: True
|
11 |
+
proc: True
|
12 |
+
meds: True
|
13 |
+
disease_filter: No Disease Filter
|
14 |
+
icu_no_icu: ICU
|
15 |
+
groupingICD: Convert ICD-9 to ICD-10 and group ICD-10 codes
|
16 |
+
select_diag: False
|
17 |
+
select_med: False
|
18 |
+
select_proc: False
|
19 |
+
select_out: False
|
20 |
+
select_chart: False
|
21 |
+
outlier_removal: Impute Outlier (default:98)
|
22 |
+
outlier: 98
|
23 |
+
left_outlier: 0
|