Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +8 -12
Mimic4Dataset.py
CHANGED
@@ -165,11 +165,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
165 |
self.feat_cond, self.feat_lab, self.feat_proc, self.feat_meds, self.feat_chart, self.feat_out = config['diagnosis'], config['lab'], config['proc'], config['meds'], False, False
|
166 |
|
167 |
|
168 |
-
#####################downloads modules from hub
|
169 |
-
#if not os.path.exists('./icd10.txt'):
|
170 |
-
# file_path, head = urlretrieve(_ICD_CODE, "icd10.txt")
|
171 |
-
# shutil.move(file_path, './')
|
172 |
-
|
173 |
if not os.path.exists('./model/data_generation_icu_modify.py'):
|
174 |
file_path, head = urlretrieve(_DATA_GEN, "data_generation_icu_modify.py")
|
175 |
shutil.move(file_path, './model')
|
@@ -219,8 +215,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
219 |
return dict_dir
|
220 |
|
221 |
|
222 |
-
def verif_dim_tensor(self, proc, out, chart, meds, lab):
|
223 |
-
interv = (self.timeW//self.bucket)
|
224 |
verif=True
|
225 |
if self.feat_proc:
|
226 |
if (len(proc)!= interv):
|
@@ -435,7 +430,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
435 |
|
436 |
df = pd.DataFrame.from_dict(dico, orient='index')
|
437 |
for i, data in df.iterrows():
|
438 |
-
dyn_df,cond_df,demo=concat_data(data,self.
|
439 |
dyn=dyn_df.copy()
|
440 |
dyn.columns=dyn.columns.droplevel(0)
|
441 |
concat_cols = [f"{col}_{t}" for t in range(dyn.shape[0]) for col in dyn.columns]
|
@@ -447,8 +442,8 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
447 |
X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
|
448 |
X=X.values[0]
|
449 |
|
450 |
-
|
451 |
-
size_concat = self.size_cond+ self.size_proc *
|
452 |
size_aggreg = self.size_cond+ self.size_proc + self.size_meds+ self.size_out+ self.size_chart+ self.size_lab + 4
|
453 |
|
454 |
if ((self.concat and len(X)==size_concat) or ((not self.concat) and len(X)==size_aggreg)):
|
@@ -484,8 +479,8 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
484 |
dico = pickle.load(fp)
|
485 |
|
486 |
for key, data in dico.items():
|
487 |
-
stat, demo, meds, chart, out, proc, lab, y = generate_deep(data, self.config.name.replace(" ","_"), self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab,self.condDict, self.procDict, self.outDict, self.chartDict, self.medDict)
|
488 |
-
if self.verif_dim_tensor(proc, out, chart, meds, lab):
|
489 |
if self.data_icu:
|
490 |
yield int(key), {
|
491 |
'label': y,
|
@@ -538,6 +533,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
538 |
#############################################################################################################################
|
539 |
def _info(self):
|
540 |
self.path = self.init_cohort()
|
|
|
541 |
self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,self.feat_lab)
|
542 |
self.condDict, self.procDict, self.outDict, self.chartDict, self.medDict = open_dict(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_lab,self.feat_meds)
|
543 |
if (self.encoding == 'concat' or self.encoding =='aggreg'):
|
|
|
165 |
self.feat_cond, self.feat_lab, self.feat_proc, self.feat_meds, self.feat_chart, self.feat_out = config['diagnosis'], config['lab'], config['proc'], config['meds'], False, False
|
166 |
|
167 |
|
168 |
+
#####################downloads modules from hub
|
|
|
|
|
|
|
|
|
169 |
if not os.path.exists('./model/data_generation_icu_modify.py'):
|
170 |
file_path, head = urlretrieve(_DATA_GEN, "data_generation_icu_modify.py")
|
171 |
shutil.move(file_path, './model')
|
|
|
215 |
return dict_dir
|
216 |
|
217 |
|
218 |
+
def verif_dim_tensor(self, proc, out, chart, meds, lab,interv):
|
|
|
219 |
verif=True
|
220 |
if self.feat_proc:
|
221 |
if (len(proc)!= interv):
|
|
|
430 |
|
431 |
df = pd.DataFrame.from_dict(dico, orient='index')
|
432 |
for i, data in df.iterrows():
|
433 |
+
dyn_df,cond_df,demo=concat_data(data,self.interval,self.feat_cond,self.feat_proc,self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab,self.condDict, self.procDict, self.outDict, self.chartDict, self.medDict)
|
434 |
dyn=dyn_df.copy()
|
435 |
dyn.columns=dyn.columns.droplevel(0)
|
436 |
concat_cols = [f"{col}_{t}" for t in range(dyn.shape[0]) for col in dyn.columns]
|
|
|
442 |
X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
|
443 |
X=X.values[0]
|
444 |
|
445 |
+
|
446 |
+
size_concat = self.size_cond+ self.size_proc * self.interval + self.size_meds * self.interval+ self.size_out * self.interval+ self.size_chart *self.interval+ self.size_lab * self.interval + 4
|
447 |
size_aggreg = self.size_cond+ self.size_proc + self.size_meds+ self.size_out+ self.size_chart+ self.size_lab + 4
|
448 |
|
449 |
if ((self.concat and len(X)==size_concat) or ((not self.concat) and len(X)==size_aggreg)):
|
|
|
479 |
dico = pickle.load(fp)
|
480 |
|
481 |
for key, data in dico.items():
|
482 |
+
stat, demo, meds, chart, out, proc, lab, y = generate_deep(data,self.interval, self.config.name.replace(" ","_"), self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab,self.condDict, self.procDict, self.outDict, self.chartDict, self.medDict)
|
483 |
+
if self.verif_dim_tensor(proc, out, chart, meds, lab, self.interval):
|
484 |
if self.data_icu:
|
485 |
yield int(key), {
|
486 |
'label': y,
|
|
|
533 |
#############################################################################################################################
|
534 |
def _info(self):
|
535 |
self.path = self.init_cohort()
|
536 |
+
self.interval = (self.timeW//self.bucket)
|
537 |
self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,self.feat_lab)
|
538 |
self.condDict, self.procDict, self.outDict, self.chartDict, self.medDict = open_dict(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_lab,self.feat_meds)
|
539 |
if (self.encoding == 'concat' or self.encoding =='aggreg'):
|