thbndi commited on
Commit
7f14939
1 Parent(s): 0e0e235

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +5 -7
Mimic4Dataset.py CHANGED
@@ -10,7 +10,7 @@ from sklearn.model_selection import train_test_split
10
  from sklearn.preprocessing import LabelEncoder
11
  import yaml
12
  import numpy as np
13
- from .dataset_utils import vocab, concat_data, generate_deep, generate_ml, generate_text
14
  from .task_cohort import create_cohort
15
 
16
 
@@ -238,7 +238,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
238
  if (len(lab)!=interv):
239
  verif=False
240
  return verif
241
-
242
  ###########################################################RAW##################################################################
243
 
244
  def _info_raw(self):
@@ -435,11 +435,9 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
435
 
436
  df = pd.DataFrame.from_dict(dico, orient='index')
437
  for i, data in df.iterrows():
438
- dyn_df,cond_df,demo=concat_data(data,self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
439
  dyn=dyn_df.copy()
440
  dyn.columns=dyn.columns.droplevel(0)
441
- #cols=dyn.columns
442
- #time=dyn.shape[0]
443
  concat_cols = [f"{col}_{t}" for t in range(dyn.shape[0]) for col in dyn.columns]
444
  demo['gender']=gen_encoder.transform(demo['gender'])
445
  demo['ethnicity']=eth_encoder.transform(demo['ethnicity'])
@@ -486,8 +484,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
486
  dico = pickle.load(fp)
487
 
488
  for key, data in dico.items():
489
- stat, demo, meds, chart, out, proc, lab, y = generate_deep(data, self.config.name.replace(" ","_"), self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
490
-
491
  if self.verif_dim_tensor(proc, out, chart, meds, lab):
492
  if self.data_icu:
493
  yield int(key), {
@@ -542,6 +539,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
542
  def _info(self):
543
  self.path = self.init_cohort()
544
  self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,self.feat_lab)
 
545
  if (self.encoding == 'concat' or self.encoding =='aggreg'):
546
  return self._info_encoded()
547
 
 
10
  from sklearn.preprocessing import LabelEncoder
11
  import yaml
12
  import numpy as np
13
+ from .dataset_utils import vocab, concat_data, generate_deep, generate_ml, generate_text, open_dict
14
  from .task_cohort import create_cohort
15
 
16
 
 
238
  if (len(lab)!=interv):
239
  verif=False
240
  return verif
241
+
242
  ###########################################################RAW##################################################################
243
 
244
  def _info_raw(self):
 
435
 
436
  df = pd.DataFrame.from_dict(dico, orient='index')
437
  for i, data in df.iterrows():
438
+ dyn_df,cond_df,demo=concat_data(data,self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab,self.condDict, self.procDict, self.outDict, self.chartDict, self.medDict)
439
  dyn=dyn_df.copy()
440
  dyn.columns=dyn.columns.droplevel(0)
 
 
441
  concat_cols = [f"{col}_{t}" for t in range(dyn.shape[0]) for col in dyn.columns]
442
  demo['gender']=gen_encoder.transform(demo['gender'])
443
  demo['ethnicity']=eth_encoder.transform(demo['ethnicity'])
 
484
  dico = pickle.load(fp)
485
 
486
  for key, data in dico.items():
487
+ stat, demo, meds, chart, out, proc, lab, y = generate_deep(data, self.config.name.replace(" ","_"), self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab,self.condDict, self.procDict, self.outDict, self.chartDict, self.medDict)
 
488
  if self.verif_dim_tensor(proc, out, chart, meds, lab):
489
  if self.data_icu:
490
  yield int(key), {
 
539
  def _info(self):
540
  self.path = self.init_cohort()
541
  self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,self.feat_lab)
542
+ self.condDict, self.procDict, self.outDict, self.chartDict, self.medDict = open_dict(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_lab,self.feat_meds)
543
  if (self.encoding == 'concat' or self.encoding =='aggreg'):
544
  return self._info_encoded()
545